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ABSTRACT 
 

This study explores the application of machine learning regression models to predict power output in External 
Combustion Engine on Combined Cycle Power Plants (CCPPs) using a comprehensive dataset of 9,568 
hourly observations from 2006 to 2011. Key ambient variables include temperature, pressure, humidity, and 
vacuum. To prevent overfitting, a 5x2 fold cross-validation strategy is employed, generating 10 unique 
training and testing sets. Several models are assessed, including Random Forest, XGB Regressor, Extra Trees, 
Hist Gradient Boosting, and LGBM Regressor. XGB Regressor demonstrates superior performance with a 
Mean Absolute Error (MAE) of 2.41 and Root Mean Squared Error (RMSE) of 3.37, making it the most 
accurate model. Additionally, the performance of ensemble models further highlights their reliability in 
predicting power output. The study emphasizes the importance of advanced machine learning techniques in 
optimizing power predictions, balancing computational efficiency, accuracy, and interpretability for large-
scale industrial applications. Boosting Regressor provides a more equitable compromise between 
computational efficiency and performance, rendering it well-suited for implementations on a large scale. 
Furthermore, despite its marginally diminished accuracy, the Random Forest Regressor offers significant 
insights via the feature importance analysis, thereby augmenting interpretability. This study underscores the 
significance of sophisticated machine learning models in enhancing the precision and effectiveness of power 
output forecasts in CCPPs. It stresses balancing interpretability, computational cost, and accuracy in real-
world applications. 

Keywords: Cross-Validation, External Combustion Engine, Machine Learning Models, Power Output, 
Performance Metrics 

 
1. INTRODUCTION  

The application of machine learning across 
various fields has redefined the traditional approach 
to those areas by enhancing the process through data-
based operation. The use of machine learning 
algorithms can provide extraordinary accuracy when 
analyzing huge amounts of operational data and 
power output estimations[1], [2]. This could result in 
much better energy efficiencies and greater overall 

reliability. This topic is well illustrated by the efforts 
to increase power output from engines based on 
external combustion. The estimation of performance 
and the management of such machines should also 
be accurate enough to reduce the amount of energy 
that can be saved. Besides, such machines can be a 
vital component in many industry procedures [3]. 
The figure of the External Combustion Engine 
(ECE) was shown in figure 1 that indicates that an 
external combustion engine system is where fuel is 
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burned outside the actual engine to provide heat. 
This heat will later be used in a boiler, turning water 
into steam. The steam produced will drive a turbine 
and a generator, producing electricity. Steaming out 
of the turbine, the steam goes into the condenser, 
which cools and condenses into liquid water. This 
water is then pumped back to the boiler, repeating 
the cycle. Again, since this is external combustion, a 
wide range of fuels can be used, and the process 
usually has lower emissions than internal 
combustion engines, in which fuel is directly burned 
inside the engine cylinders. 

 

 
Figure 1 The External Combustion Engine 

  
 Management of complex non-linear 
relationships in machine performance data can be 
accomplished with the help of machine learning, 
which offers a robust framework. Even in the 
presence of noise and unexpected data points, 
machine learning algorithms can acquire information 
from previous data, identify patterns, and deliver 
accurate projections. Approaches considered 
conventional frequently require appropriate 
consideration of the loads of elements and 
interactions that affect the functioning of the 
machine [4]. As a result of this research, it has been 
demonstrated that the application of machine 
learning techniques, such as neural networks and 
support vector machines, can significantly enhance 
the precision of power output estimations compared 
to the conventional methods. These features are 
essential when it comes to improving the operating 
parameters of an external combustion engine 
because they guarantee that the engine will work 
within its ideal performance range while 
simultaneously reducing the amount of fuel 
consumed and emissions produced [5], [6]. 

Several studies have explored regression 
techniques to model power output in various energy 
systems, including internal combustion engines and 
renewable energy systems[7]. Regression models in 
machine learning are employed to forecast 
continuous values by analyzing the interconnections 
among variables. Regression analysis is a statistical 
technique used to create a mathematical model 

representing the relationship between independent 
and dependent variables. It aids in comprehending 
the relationship between the dependent variable and 
the independent variables by observing how the 
value of the dependent variable changes with 
different values of the independent variables[8]. For 
example, [9] applied multiple linear regression 
(MLR) to predict performance in diesel engines, 
while [10] demonstrated the superiority of 
polynomial regression in capturing complex 
interactions among variables in renewable energy 
setups. However, research specifically targeting the 
application of regression models to external 
combustion engines remains limited, leaving a 
critical gap in the understanding of how these 
techniques can be optimized for External 
Combustion Engine performance prediction. 
Regression models are extensively utilized in 
diverse applications, including predicting 
continuous outcomes such as house prices, stock 
prices, or sales. They are also employed to estimate 
the performance of upcoming retail sales or 
marketing initiatives and predict client or user trends 
[11]. The selection of a regression model is 
contingent upon the characteristics of the data and 
the specific problem being tackled. Some common 
regression models are simple linear regression, 
multiple linear regression, logistic regression, and 
polynomial regression [12]. 

Regression models are most effective when 
the target variable is continuous, and there is a 
distinct relationship between the predictor and target 
variables. They are extensively utilized in banking, 
marketing, and other domains where accurate 
forecasting and prediction are critical [11], [13], 
[14]. Organizations can enhance their performance 
by employing regression models to generate 
forecasts and make better decisions by 
comprehending the correlations between variables. 
The regression analysis method has been shown to 
have excellent prediction accuracy and reliability in 
energy output prediction models. As a result, it is a 
significant tool for optimizing the performance of 
external combustion engines. It is a very successful 
approach of machine learning to use regression 
analysis, particularly when employing tools for 
regression analysis such as XGBoost, LightGBM, 
and Extremely Randomized Trees. The primary 
purpose for which these algorithms were developed 
is to process big data sets that contain many 
dimensions and intricate interactions between 
variables [2], [12], [15]. As a result of its excellent 
scalability and performance, XGBoost is well-
known for its capacity to manage big data sets with 
minimal errors [16]. The LightGBM algorithm, on 
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the other hand, is highly effective and can provide 
predictions that are both quick and accurate while 
consuming less memory [17]. Decision Trees, well-
known for their ease of use and reliable performance, 
also perform exceptionally well in regression 
situations because they reduce variation through 
randomization [18]. 

It is possible to quantify the average size of 
the error in a particular group of forecasts using the 
Mean Absolute Error (MAE) metric, regardless of 
the direction of the error. One can use this as a 
straightforward and straightforward indicator of how 
accurate the predictions are. Mean Absolute Error 
(MAE) and Root Mean Square Error (RMSE) are 
two examples of metrics typically utilized to 
evaluate machine learning models' efficiency. On the 
other hand, the root mean square error (RMSE) is 
more dependent on more significant errors and more 
sensitive to outliers. The phrase provided is the 
square root of the average of the squared 
discrepancies between the expected value and the 
value that occurred. Evaluating the predictive 
performance of machine learning models in energy 
production projections requires both processes to be 
completed. This ensures that the algorithms offer 
estimates that are both dependable and accurate at 
the same time. By utilizing these evaluation criteria, 
researchers can ensure that their models are accurate 
and resistant to fluctuations in the data it contains 
[19], [20]. 

In addition to playing a significant part in 
accomplishing the overarching objective of reducing 
energy consumption, machine learning enhances the 
capability of predicting the requirements for 
maintenance and developing efficient operational 
plans. By utilizing machine learning techniques, 
businesses can achieve sustainability in their 
operations, reduce their operational expenses, and 
contribute to protecting the environment. In this 
circumstance, the significance of utilizing machine 
learning cannot be stressed sufficiently. Improving 
the efficiency of energy systems is necessary 
considering the growing demand for energy 
worldwide [2], [15], [21]. The results of previous 
studies demonstrate that machine learning has the 
potential to minimize energy use by removing 
operational inefficiencies and encouraging 
environmentally friendly choices from individuals 
[3], [5]. The purpose of this study is to evaluate the 
capability of machine learning to forecast the amount 
of power generated by external combustion engines 
[22]. This will allow for the creation of energy 
management solutions that are both more intelligent 
and efficient. 

2. METHOD 

2.1 Dataset 

The Combined Cycle Power Plant (CCPP) 
dataset, which is extensively employed in power 
generation prediction tasks and resulted from the 
external combustion engine, is utilized in this study. 
The CCPP dataset comprises operational data 
obtained from a combined cycle power plant, where 
Gas Turbines (GT), Steam Turbines (ST), and Heat 
Recovery Steam Generators (HRSG) measurements 
are integrated. Combined cycle power stations are 
specifically engineered to optimize operational 
effectiveness through the synchronized utilization of 
gas and steam turbines [5], [23]. The dataset presents 
a distinctive architecture consisting of five 
randomized iterations of the data, each 
encompassing 9568 data points gathered on an 
hourly basis for a period of six years, from 2006 to 
2011. The structure of this comprehensive dataset is 
tailored to accommodate the 5x2 fold cross-
validation method, which is a reliable approach for 
assessing the performance of models in machine 
learning endeavors. By employing this 
methodology, which consists of dividing the dataset 
into five discrete subsets and performing two 
iterations of cross-validation, the model's precision 
and applicability are comprehensively evaluated 
[23]. 

Every data point in the dataset is composed 
of four characteristics, which are the hourly mean 
values of the surrounding conditions. Vacuum (V), 
Ambient Temperature (T), Atmospheric Pressure 
(AP), and Relative Humidity (RH) are these 
characteristics. The ambient temperature (T) 
indicates the temperature of the external air, which 
has the potential to substantially impact the 
efficiency of the power facility. The pressure exerted 
by the weight of the atmosphere, known as 
Atmospheric Pressure (AP), has the potential to 
influence the combustion process within gas 
turbines. The RH value serves as an indicator of the 
relative humidity, which influences the refrigeration 
mechanisms operating within the facility. The term 
vacuum (V) denotes the critical pressure differential 
that exists between the steam condenser and the 
atmosphere, which has a direct bearing on the 
efficacy of the steam turbine [24]. The target 
variable in this dataset is the continuous net hourly 
electrical power output (PE) of the facility; 
therefore, this is a regression task. It is essential to 
forecast the net hourly electrical power output to 
improve the efficiency and operation of the power 
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facility. The capacity to precisely predict power 
output in accordance with ambient conditions 
enhances resource management at the power facility 
and contributes to more consistent and effective 
power generation [24].  

For researchers and practitioners in the fields of 
machine learning and power systems, the CCPP 
dataset is indispensable. It furnishes an extensive 
array of characteristics and a demanding prediction 
endeavor that can be employed to evaluate a 
multitude of machine learning algorithms and 
methodologies. The dataset facilitates the creation of 
more precise and dependable power output 
prediction models, a critical aspect in ensuring the 
effective functioning of combined cycle power 
plants—by providing an extensive and detailed 
arsenal of operational data.  In summary, the CCPP 
dataset serves as an indispensable asset in the 
progression of power generation prediction. The 
exhaustive data and well-organized format of this 
system establish a solid foundation for assessing and 
enhancing machine learning models, which 
ultimately contributes to the development of power 
generation systems that are more dependable and 
efficient [12], [24]. 
 
2.2 Training Pipeline 

The research technique utilizes a 
conventional deep-learning training process to 
construct and assess regression models to predict 
power output. The training pipeline follows a 
sequential process to get the most optimal model. 
The training methodology utilized in this study is 
depicted in Figure 2. 

 

 
Figure 2 Training Pipeline 

The research technique utilizes a 
conventional deep-learning training process to 
construct and assess regression models to predict 
power output. The training pipeline follows a 
sequential process to get the most optimal model. 

The training methodology utilized in this study is 
depicted in Figure 2. Figure 2 shows our pipeline for 
model training in this research. We start by using 
CCPP dataset as our dataset[5], [22]. After that, we 
applied 5x2 fold cross validation split, which 
resulting in 10 distinct set of training dataset and 10 
distinct set of testing dataset. This cross-validation 
technique was employed to make sure a robust 
evaluation of model generalization capability. These 
training set then used to train five different 
regression models, which are XGBRegressor, 
ExtraTreesRegressor, 
HistGradientBoostingRegressor, LGBMRegressor, 
and RandomForestRegressor. These models were 
chosen to represent a diverse range of ensemble 
learning, trees, and gradient boosting algorithm 
techniques, enabling a comprehensive comparison 
of their predictive capabilities. This training step 
resulting in 50 trained models, which corresponds to 
10 set of training dataset for each 5 regression 
models. Each trained model then tested using the 
testing dataset, focusing on Mean Absolute Error 
(MAE) and Root Mean Squared Error (RMSE) as 
the evaluation metrices, following the standard 
metric of regression tasks [20]. This process is 
repeated for all 10 train-test splits of 5 regression 
models to obtain a comprehensive model 
performance evaluation. Lastly, the final 
performance of each model aggregated by averaging 
the MAE and RMSE values across all 10 evaluation 
instances. This provides a robust and unbiased 
estimate of the model's predictive performance. 

During the second stage, known as model 
training, five distinct regression models are trained 
using each training set. The models employed in this 
study consist of XGBRegressor [16], [17], [25], [26], 
ExtraTreesRegressor [27], [28], 
HistGradientBoostingRegressor [27], 
LGBMRegressor [17] and RandomForestRegressor 
[29], [30]. These models encompass various 
ensemble learning and gradient-boosting strategies, 
facilitating a thorough evaluation of their prediction 
abilities. XGBRegressor and LGBMRegressor are 
renowned for their exceptional efficiency and 
superior performance in gradient boosting. 
ExtraTreesRegressor and RandomForestRegressor 
are resilient ensemble algorithms that mitigate 
overfitting by averaging the predictions of numerous 
decision trees. HistGradientBoostingRegressor is a 
high-speed and precise implementation of gradient 
boosting that efficiently handles big datasets. 

Once the models have been trained, the 
subsequent step involves evaluating the models. The 
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performance of each training model is assessed on 
the appropriate test set using Mean Absolute Error 
(MAE) and Root Mean Squared Error (RMSE), 
commonly used metrics for regression tasks. Mean 
Absolute Error (MAE) quantifies the average size of 
mistakes in each set of forecasts, offering a clear 
indication of the accuracy of the predictions. Root 
Mean Square Error (RMSE) quantifies the square 
root of the mean of the squared discrepancies 
between predicted and actual values. It assigns a 
greater weight to more significant errors, 
highlighting precise predictions' significance. This 
exhaustive evaluation approach is iterated for all ten 
train-test splits to guarantee a meticulous assessment 
of each model's performance across diverse data 
partitions [20], [21], [31]. 

In the final stage, performance aggregation, 
the overall performance of each model is determined 
by calculating the average of the MAE and RMSE 
values over all ten evaluation instances. This yields 
a strong and impartial evaluation of the model's 
ability to make accurate predictions. By calculating 
the average performance metrics across numerous 
splits, we ensure that the findings are not excessively 
impacted by any specific train-test split, resulting in 
a more dependable comparison of the models.This 
precise and systematic approach to developing and 
evaluating models enables the discovery of the most 
efficient regression model for predicting power 
production in combined cycle power plants. By 
employing numerous models and conducting 
thorough cross-validation, the study assures that its 
conclusions are strong and applicable to various 
situations. This provides vital insights into the ability 
of different machine learning techniques to make 
accurate predictions in this specific context [2], [15]. 

Furthermore, it is vital to comprehend the 
importance of each model employed in this 
investigation and these scientific procedures. The 
XGBRegressor is renowned for its implementation 
of the extreme gradient boosting technique and its 
ability to handle a combination of continuous and 
categorical data effectively [32]. LGBMRegressor, a 
modified version of gradient boosting, is designed to 
prioritize speed and performance, making it well-
suited for handling extensive datasets [17]. The 
ExtraTreesRegressor algorithm constructs numerous 
decision trees and combines their predictions, 
providing resilience against overfitting [27], [28]. 
RandomForestRegressor is an ensemble method that 
enhances predictive accuracy and mitigates 
overfitting by averaging the predictions of numerous 
decision trees [27], [29]. Lastly, the 
HistGradientBoostingRegressor is an accelerated 

variant of gradient boosting that utilizes histogram-
based techniques to improve processing efficiency 
[27]. 

The methodology emphasizes the 
significance of a well-organized training procedure 
and thorough evaluation in creating highly efficient 
machine learning models for intricate tasks like 
power output prediction. This research enhances the 
field of predictive modelling in power production by 
utilizing a wide range of models and comprehensive 
evaluation approaches. It can potentially enhance 
operational efficiency and decision-making in 
combined cycle power plants [2], [33]. Overall, the 
methodology's methodical approach guarantees that 
the final models are accurate and generalizable, able 
to produce dependable forecasts for power 
production applications in the real world. 
 
2.3 Cross-Validation Strategy 

To avoid overfitting and guarantee a 
dependable assessment of the model's ability to 
generalize, this research employs a rigorous 5x2 fold 
cross-validation approach. Cross-validation is 
essential for assessing machine learning models, 
significantly when the dataset is constrained or 
susceptible to bias. Within this particular 
framework, the Combined Cycle Power Plant 
(CCPP) dataset poses a distinctive obstacle because 
of its operational complexities and the imperative for 
precise power generation forecasting [24]. To tackle 
these obstacles, the research utilizes the innate 
shuffles in the CCPP dataset and implements a 5x2 
fold cross-validation methodology. The procedure 
entails partitioning the dataset into five randomized 
iterations, followed by a two-fold cross-validation 
procedure for each iteration. The outcome is the 
generation of ten distinct training and testing sets, 
which facilitate the assessment of the model on 
various subsets of data.  

The model's robustness and dependability 
are significantly improved by this diversity, which is 
essential for evaluating its performance under 
various conditions and scenarios. By implementing 
cross-validation across numerous shuffles of the 
dataset, the research guarantees a comprehensive 
assessment of the model's performance across a wide 
range of data distributions [34], [35]. This 
methodology reduces the likelihood of overfitting, in 
which the model memorizes the training data instead 
of making accurate predictions on unobserved data. 
Furthermore, it furnishes a more pragmatic 
assessment of the model's efficacy in practical 
scenarios, wherein data distributions might fluctuate 
over time or among distinct operational 
environments. Following the completion of cross-
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validation on every iteration of the dataset, the 
research compiles the outcomes to depict the 
ultimate performance of the model. By 
implementing this aggregating procedure, any 
discrepancies in performance among distinct data 
subsets are mitigated, resulting in a more consistent 
and dependable estimation of the predictive prowess 
of the model. The study obtains a comprehensive 
evaluation of the model's overall performance, 
including accuracy and error rates, by calculating the 
mean of the performance metrics [34], [36], [37]. 
This assessment is vital to make informed decisions 
regarding the model's feasibility for practical 
implementation. 
 
2.4 Regression Models 

Five distinct regression models has been 
considered to predict the power output target data, 
and their models are: 
1. XGBRegressor: a model which uses the 
gradient boosting framework, where the weak 
learners are decision trees, and is capable to capture 
complex non- linear relationships between features 
and target variable with high accuracy [16], [25], 
[26], [32].  

2. ExtraTreesRegressor: this model uses an 
ensemble of randomized decision trees that 
introduces additional randomness into feature 
permutation during splits and helps in generalizing 
and preventing overfitting [27], [28]. 

3. HistGradientBoostingRegressor: a model 
that uses a histogram-based approach for gradient 
boosting which provides computational efficiency 
while maintaining the level of predictivity to be 
competitive, generally used with large-scale data 
[27]. 

4. LGBMRegressor: stands for Light Gradient 
Boosting Machine Regressor is a model that uses the 
light gradient boosting framework, optimized for 
fast computation speed and efficient memory 
usage[17]. 

5.  RandomForestRegressor: a model that 
involves ensemble learning, averaging multiple 
decision tree predictions due to its resistance to 
outliers and effectiveness in capturing intricate 
feature relationships [27], [29]. 

 
2.5 Evaluations Metrics 

Model evaluation is an essential component 
of machine learning, particularly in regression tasks 
such as estimating power output in a combined cycle 
power plant (CCPP). This study utilizes two main 
metrics, Mean Absolute Error (MAE) and Root 

Mean Squared Error (RMSE), to evaluate the 
effectiveness of regression models. Mean Absolute 
Error (MAE) is a measure that quantifies the average 
absolute difference between projected and actual 
data. It offers a concise comprehension of the mean 
forecast inaccuracy. The Mean Absolute Error 
(MAE) formula, represented by Eq. (1), calculates 
the sum of the absolute differences between each 
anticipated value (ŷi) and its corresponding actual 
value (yi). This sum is then divided by the total 
number of data points (n). The Mean Absolute Error 
(MAE) provides a straightforward and transparent 
measure of model performance by calculating 
prediction mistakes without considering their 
direction[38].  

𝑀𝐴𝐸 =  
ଵ


∑ |𝑦 −  𝑦ො|

ୀଵ   (1) 

Where n is the total of data. yi is the actual value, and 
𝑦ො is predicted value.  

Conversely, RMSE calculates the square 
root of the mean squared difference between 
expected and actual values. RMSE, unlike MAE, 
applies a greater penalty to more significant errors, 
thereby making it more responsive to outliers. 
RMSE is commonly employed in regression tasks to 
assess prediction accuracy holistically. The Root 
Mean Square Error (RMSE) formula, as expressed 
in Eq.(2), computes the square root of the average of 
the squared discrepancies between each predicted 
value (ŷi) and its corresponding actual value (yi), 
divided by the total number of data points (n). The 
Root Mean Square Error (RMSE) calculates the 
average magnitude of mistakes by taking the square 
root of the average squared differences. This metric 
provides a measure of the overall forecast accuracy 
of the model. The user's text is a single period [38], 
[39]. 

𝑅𝑀𝑆𝐸 =  ට
ଵ


∑ (𝑦 −  𝑦ො)ଶ

ୀଵ  (2) 

Where n is the total of data. yi is the actual 
value, and 𝑦ො is predicted value. 

 
Mean Absolute Error (MAE) and Root 

Mean Squared Error (RMSE) are used as 
quantitative metrics to evaluate the accuracy of 
regression models in predicting power output. They 
provide essential information on the precision and 
dependability of the model's forecasts, assisting 
stakeholders in making informed decisions. 
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Researchers can determine the optimal model 
configuration for a specific job by analyzing and 
comparing alternative models' MAE and RMSE 
values or tuning parameters. Moreover, these 
metrics aid in choosing and implementing models by 
offering explicit and comprehensible measures of 
predictive effectiveness. MAE and RMSE are 
crucial evaluation measures in regression tasks, such 
as predicting power output in CCPP. Their 
computation yields valuable data regarding the 
predictive abilities of regression models, allowing 
researchers to make well-informed judgments and 
enhance model performance. 

 
3. RESULTS AND DISCUSSION 

The results of our study demonstrate the 
effectiveness of various regression models in 
predicting power output using the CCPP dataset 
from external combustion engine [21], [38]. Table 1 
presents a comparative analysis of the model 
performance based on the average MAE and RMSE 
values obtained through the 5x2 fold cross-
validation process. 

Table 1 Dataset Label Distribution 
Model MAE RMS

E 
Bagging REP Tree [23] 2.82 3.79 

XGBRegressor 2.41 3.37 

ExtraTreesRegressor 2.53 3.54 

HistGradientBoostingRegres
sor 

2.56 3.49 

LGBMRegressor 2.56 3.49 

RandomForestRegressor 2.56 3.54 

 

Figure 3 The result of Scaler for every model 

As shown in Table 1 above, the study 
explores the relative effectiveness of different 
regression models in forecasting power output using 
environmental factors. The XGBRegressor stands 
out as the best performance of all these models, with 
the lowest Mean Absolute Error (MAE) and Root 
Mean Squared Error (RMSE) values. The results 
demonstrate that XGBRegressor well captures the 
complex non-linear connections between ambient 
variables and power output, outperforming other 
models such as ExtraTreesRegressor, 
HistGradientBoostingRegressor, LGBMRegressor, 
and RandomForestRegressor [21].  

Figure 3 had shown the effect of scaler 
parameter for every regressor model A scaler is a 
configuration instrument in a regression model 
employed to standardize the features (input 
variables) before model training. Scaling aims to 
standardize all features to a uniform range or 
distribution. This can enhance the performance of 
machine learning models, particularly those 
sensitive to input data size. In regression models, a 
scaler ensures uniformity among components by 
standardizing or normalizing features. In regression 
models, employing a scaler is essential, as features 
with disparate scales can adversely affect the model's 
performance and training stability. Specific 
algorithms, such as linear regression, exhibit 
sensitivity to the magnitudes of the input features. 
Variables having larger values can exert a more 
significant influence on the model outcomes. Scaling 
ensures that all features contribute uniformly. This is 
particularly crucial for enhancing algorithms such as 
gradient descent, as it accelerates their performance. 
Scaling enhances numerical stability, hence 
reducing the likelihood of errors resulting from 
significant value disparities. It facilitates a more 
precise and uniform comprehension of model 
coefficients, resulting in enhanced analysis and 
insight into the significance of elements inside the 
regression model[40], [41]. 

A comparison with a previous model 
further demonstrates the better performance of every 
model in the experiment, the Bagging REP Tree. 
This highlights the strength and efficiency of the 
chosen models, especially in the case of 
XGBRegressor. Its accurate power output prediction 
is due to its ability to capture non-linearities and 
interactions between features efficiently. 
Nevertheless, it is crucial to acknowledge that 
ensemble learning techniques like 
RandomForestRegressor, ExtraTreesRegressor, and 
HistGradientBoostingRegressor also exhibit 
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resilience, albeit with significantly lower 
performance than XGBRegressor. 

Factors beyond the predictions' accuracy 
become essential when putting something into 
practice. Although XGBRegressor may provide 
more outstanding performance, other considerations, 
such as computational efficiency and 
interpretability, are also important. For instance, the 
HistGradientBoostingRegressor algorithm is often 
used because it can compromise performance and 
computational cost. This makes it well-suited for 
large-scale applications that have limited 
computational resources. However, 
RandomForestRegressor, while slightly less 
accurate than XGBRegressor, offers interpretability 
by examining the importance of features. The ability 
to interpret the results can be highly beneficial when 
it is essential to comprehend the fundamental aspects 
that affect forecasts to make informed decisions. 

The exceptional efficacy of 
XGBRegressor, specifically in capturing intricate 
non-linear connections and feature interactions, 
highlights the need to utilize sophisticated 
methodologies in regression modelling, particularly 
in domains defined by intricate and ever-changing 
relationships between variables. Nevertheless, it is 
essential to recognize that selecting the most suitable 
model for actual implementation relies on several 
aspects, such as computing efficiency, 
interpretability, and the specific needs of the use case 
[26], [32]. 

This paper identifies many problems in 
implementing machine learning models for 
predicting power production in Combined Cycle 
Power Plants (CCPPs). Principal concerns 
encompass the intricacy of reconciling precision 
with computing efficiency, susceptibility to dataset 
attributes, and scalability under resource-limited 
settings[6], [24]. Furthermore, the trade-off between 
interpretability and performance remains a critical 
challenge for industrial applications. Future research 
should improve computationally intensive models 
for real-time applications, integrate various datasets 
to enhance generalizability and investigate hybrid 
and explainable AI models. Integrating machine 
learning with Computer Vision, IoT and edge 
computing frameworks[42] has substantial potential 
for enhancing predictive skills in energy systems. 

 

4. CONCLUSION AND FUTURE WORKS 

This study illustrates the effectiveness of 
advanced machine learning regression techniques in 
forecasting the power output of Combined Cycle 
Power Plants (CCPPs) that employ an external 
combustion engine. XGBRegressor demonstrated 
superior performance to other models, recording the 
lowest Mean Absolute Error (MAE) of 2.41 and a 
Root Mean Squared Error (RMSE) of 3.37. The 
capacity to capture intricate non-linear relationships 
between ambient variables and power output 
provides a significant advantage compared to 
alternative methods. While XGBRegressor 
demonstrates high accuracy, its computational cost 
presents challenges for real-time applications, 
indicating a necessity for further optimization in 
practical contexts. 

The research confirms the effectiveness of 
ensemble learning methods, specifically 
ExtraTreesRegressor, 
HistGradientBoostingRegressor, LGBMRegressor, 
and RandomForestRegressor, which yielded 
consistent predictions. These methods exhibited 
statistically significant enhancements compared to 
prior studies' Bagging REP Tree model, highlighting 
their superior performance. XGBRegressor 
demonstrated superior accuracy; however, 
HistGradientBoostingRegressor proved to be a more 
computationally efficient option, rendering it 
appropriate for large-scale applications. The trade-
off between accuracy and computational efficiency 
illustrates the essential balance required for practical 
implementation. The study has limitations that 
suggest directions for future research. The dataset, 
while comprehensive, was obtained from a single 
power plant, which raises concerns regarding the 
generalizability of the findings to various 
operational contexts. The emphasis on ambient 
conditions as predictive variables neglects other 
potential factors, including fuel type, maintenance 
schedules, and equipment age, that may affect power 
output. Addressing these gaps may improve the 
accuracy and applicability of machine learning 
models in power generation.  

Future research should explore the creation 
of hybrid models that integrate the interpretability of 
RandomForestRegressor with the accuracy of 
gradient-boosting models such as XGBRegressor. 
Furthermore, optimizing computationally intensive 
models via pruning or model compression may 
facilitate their application in real-time systems. 
Incorporating diverse power plants with different 
environmental and operational attributes into 
datasets is essential for validating the scalability and 
reliability of these models. This study highlights the 
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efficacy of advanced machine learning models, 
specifically ensemble and gradient-boosting 
techniques, in enhancing power output prediction in 
combined cycle power plants (CCPPs). Compared to 
more straightforward regression methods, these 
models provide enhanced accuracy, operational 
efficiency, and improved managerial decision-
making. Addressing current limitations and 
exploring open research issues may facilitate 
advancements in machine learning that enhance 
energy systems' sustainability, resilience, and 
efficiency, thereby contributing to the overarching 
objective of global energy sustainability. 
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