
Journal of Theoretical and Applied Information Technology
31st December 2024. Vol.102. No. 24

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

8883

ENHANCING CLARITY IN CHINESE SOFTWARE

REQUIREMENTS: A BOILERPLATE-BASED APPROACH TO

IMPROVE REQUIREMENT EXPRESSION

HE JIAYING1,2, MOHD HAFEEZ OSMAN1,*, SA'ADAH HASSAN1, NG KENG YAP1,*

1 Department of Software Engineering and Information System, Faculty of Computer Science and

Information Technology, Universiti Putra Malaysia, Serdang, Malaysia
2 Faculty of Physics & Information Engineering, Zhaotong University, Zhaotong, Yunnan, China

Email : hjy_cityu@163.com, hafeez@upm.edu.my, saadah@upm.edu.my, kengyap@upm.edu.my

ABSTRACT

During the rapid process of software development, requirements engineering plays a crucial role in ensuring

the success of software projects. Clear and accurate requirements specification directly impact the

effectiveness of project implementation, influences customer satisfaction, and ultimately determines the

overall success rate of the project. However, ambiguity and structural issues are common in Chinese software

requirements, which can hinder understanding and implementation. These issues not only increase the

complexity of project execution but may also lead to extended development cycles and wasted resources. To

address these challenges, this paper aims to develop a set of Chinese-based software requirement boilerplate

to improve the clarity and accuracy of requirements specification. The boilerplate is designed with

consideration for Chinese grammar conventions and international standards, offering a universal and

user-friendly solution. This paper reviews related literature, discuss the limitations of current requirements

specification method, and details the boilerplate design process and evaluation methodology. The

effectiveness of the boilerplate is demonstrated through the reconstruction of requirements statements across

various software industries, complemented by expert assessments and feedback from industry professionals.

This study provides a practical foundation for Chinese software requirements specification, aiming to

enhance the quality and efficiency of requirements expression.

Keywords: Software Requirements Engineering, Chinese Requirements Expression, boilerplate Design,

Clarity, Requirements Normalization

1. INTRODUCTION

In software development, Software Requirements

Engineering (SRE) is crucial for project success.

Unclear requirements, frequent changes, and

validation challenges can lead to delays, budget

overruns, or project failure. The primary methods

for expressing requirements are formal, informal,

and semi-formal descriptions. Formal methods use

mathematical or logical language for verifiable and

unambiguous requirements, suitable for

high-security and stability systems. Informal

methods utilize natural language, which is easy to

Journal of Theoretical and Applied Information Technology
31st December 2024. Vol.102. No. 24

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

8884

understand but can be ambiguous and should be

used cautiously. Semi-formal methods blend the

benefits of both, offering a balance of accuracy and

flexibility, making them suitable for requirements

documents and user stories[1][2][3].

To address the issues with software

requirements in the Chinese software

development industry, we conducted a

questionnaire survey with 422 practitioners

from 170 companies. The results reveal that

over 77% of Chinese software requirements are

expressed in natural language, which often

leads to ambiguity and comprehension bias.

Among respondents, 21.28% reported "always

encountering ambiguous requirements," 30.5%

"often encounter them," and 41.13% "generally

encounter them." The survey indicates that

ambiguous requirements directly contribute to

project failure. The ambiguity in Chinese

language spans multiple levels, including

phonology, vocabulary, syntax, semantics, and

context[4].

The emergence of ambiguities in Chinese

mainly arises from the language's complexity

and diversity, which can lead to comprehension

bias. Key causes include the trend of language

simplification, contextual diversity, and the

structural characteristics of Chinese. This

ambiguity highlights a fundamental

contradiction in human communication: clear

and accurate expression requires more

linguistic elements, while people often favor

simpler, more common language, resulting in

various ambiguous phenomena. Thus,

addressing the ambiguity in Chinese software

requirement descriptions is of great

significance.

Therefore, there is an urgent need for an effective

model to improve the quality of Chinese software

requirements. Boilerplate, as an informal software

requirement specification method, was first created

for the American printing industry and later used to

refer to textual requirement templates in

requirements engineering. Its core component is a

natural language model, which enhances the

automated analysis of natural language requirement

statements by restricting the syntactic structure of

requirement phrases, and reduces the ambiguity of

natural language requirement statements[5]. A

number of standardized requirements boilerplate

have been proposed internationally, e.g. EARS [6],

Pohl and Rupp [7], which provide specifications for

the preparation of high-quality requirements

documents. However, a natural language-based

boilerplate for Chinese software requirements has

not yet appeared. To solve this problem, this study

aims to construct a standardized boilerplate

specifically for Chinese software requirements. The

boilerplate not only standardizes the way Chinese

software requirements are written, but also improves

verifiability and communication efficiency by

reducing ambiguity and inconsistency in the

requirements. This study combines the Delphi

method of aggregating and optimizing expert

opinions to ensure the versatility and practicability

of the template, and verify the effectiveness of the

boilerplate in real projects to provide a reference for

the expression of software requirements in the

future.

The contributions of this paper is listed below:

(1) The study provides a summary of the

categories of Chinese software requirements and the

classifications of Chinese ambiguity.

(2) Based on literature review and real-world

examples, this study develops a series of Chinese

software requirement boilerplate that adhere to both

Chinese grammatical rules and international

standards, aiming to enhance the quality of Chinese

requirements by improving clarity, completeness,

Journal of Theoretical and Applied Information Technology
31st December 2024. Vol.102. No. 24

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

8885

singularity, verifiability, conformity, and

understandability.

(3) The structure of this paper is listed below:

Section 2 provides the background study, reviewing

relevant literature and previous research in the field.

Section 3 outlines the methodology, detailing the

approach and techniques employed in the study.

Section 4 presents the Chinese software

requirements boilerplate, explaining its formulation,

as well as the features, structure, and categories of

the boilerplate. Section 5 reports the results of the

research, examining the normative aspects of the

software requirements boilerplate. Finally, Section 6

presents the discussion, highlighting the advantages

of applying the boilerplate and comparing our work

with relevant studies.

2. BACKGROUND STUDY

Software Requirements Engineering (SRE) has

been widely researched and paid attention to as a

key part of the software development life cycle. One

of the main reasons for software project failure is

unclear requirements definition or problematic

requirements documentation. In order to improve

the quality of requirements, researchers have

proposed a variety of methods and tools, especially

in the design and application of requirements

boilerplate, which have made significant progress.

2.1 The effects of boilerplate on software

requirements quality

One of the primary factors contributing to the

failure of software projects is the inadequate

definition of requirements or flawed requirements

documentation, as indicated in references [8] and [9].

Numerous scholarly sources advocate that the

implementation of standardized requirements

boilerplate can significantly enhance the quality of

requirements documentation. Studies conducted by

Barbosa, Cerqueira, and Da Cunha (2023), Tian,

Yin, and Xiao (2022), Großer, Rukavitsyna, and

Jürjens (2023) propose that the utilization of

standardized boilerplate not only mitigates

ambiguity in document creation but also fosters

enhanced collaboration and communication among

teams, as cited in references [10], [11], and [12]

respectively. These studies emphasize that through

the constraints imposed by boilerplate, development

teams can capture requirements in a more systematic

manner, thereby ensuring their completeness and

consistency. Furthermore, Ramesh and Reddy

(2021), in reference [13], underscore that the use of

requirements boilerplate enhances the verifiability

of requirements documents, which subsequently

leads to more efficient reviews and testing of

requirements. A clear and structured presentation of

requirements diminishes the frequency of

requirement changes within a project, ultimately

elevating the project's success rate.

2.2 The criteria of boilerplate

IEEE 830, ISO/IEC 29148 and GB-T9385-2008

are international and Chinese standards for Software

Requirements Specification (SRS) to guide the

preparation and management of requirements

documents[14][15][16]. They provide definitions

for key software requirements, including the

characteristics of being unambiguous, complete,

singular, feasible, verifiable, correct, conforming,

necessary, appropriate, consistent, comprehensible,

validated, ranked for importance, modifiable, and

traceable[14][15][16].

2.3 Available Boilerplate

software requirement boilerplate vary across

languages. English-based boilerplate, such as EARS,

adv-EARS, RUPP, and ISO/IEC/IEEE 29148:2018,

use restricted natural language to express

requirements [5][7][14][17]. Some boilerplate, like

RUPP, have been translated into other languages,

including Turkish, German, Thai and Spanish, to

align with the grammatical structures of those

languages [18][19][20][21]. Additionally, there are

boilerplate tailored to specific linguistic features,

Journal of Theoretical and Applied Information Technology
31st December 2024. Vol.102. No. 24

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

8886

such as the IsiZulu boilerplate, which focuses on

sentence structure and quantitative expressions

[14] .

Boilerplate types including Ubiquitous,

Event-Driven, Unwanted Behavior, State-Driven,

Optional Features, and others.

Boilerplate structures encompass Sentence

Structure, Requirement Description, Conditional

boilerplate, and various others. Quantification types

include Universal, Existential, Subsumption and

Negative Subject Concord Quantification.

Descriptions cover conditional, general form,

attribute, quantity, location, numeric value and

verbal descriptions.

2.4 Chinese Language Ambiguity

In the English-speaking world, ambiguity is often

linked to vagueness, uncertainty, and multiple

meanings in language. ISO/IEC/IEEE 29148:2018

specifies that extreme terms (e.g., "best"),

subjective expressions (e.g., "user friendly"), vague

pronouns (e.g., "it"), logical connectors (e.g., "or"),

and generalized terms (e.g., "all" or "most") should

be avoided, as they can introduce ambiguity and

complicate the interpretation and validation of

requirements [22]. IEEE 830 and GB-T 9385-2008

also stress the importance of using clear,

unambiguous terms and suggest clarifying

polysemous words in a glossary[15][23] .

In Chinese, ambiguity exists at multiple levels,

including phonology, vocabulary, syntax, semantics,

and pragmatics. Phonological ambiguity arises from

homophones and variations in stress, while lexical

ambiguity stems from words with multiple

meanings. Grammatical ambiguity is caused by

flexible word structure and differences in word

modification scope. Semantic ambiguity occurs due

to differences in meaning or omission, and

contextual ambiguity results from varying

interpretations in different cultural or situational

contexts [24][25][26].

Ambiguity can be further categorized into lexical

and syntactic types. Lexical ambiguities including

word meaning confusion, polysemy, quantifier

ambiguity, and comparative ambiguity

[23][26][27][28][29]. Syntactic ambiguities, such as

passive voice, hierarchical structures, and

attachment issues, arise from unclear sentence

structures and grammatical choices[32].

2.5 Chinese Software Requirements Expression

Challenges

Despite progress in software requirements

standardization, research on expressing of

requirements in Chinese environments is still in its

early stages. In Chinese requirement documents,

misinterpretations between requirement personnel

and developers often lead to deviations in later

development stages. Current research mainly

addresses linguistic issues, with limited systematic

work on developing standardized boilerplate for

Chinese language features. Shen (2024) notes that

the flexibility of Chinese makes descriptions more

concise but can lead to ambiguity, suggesting that

grammatical boilerplate could improve clarity while

maintaining brevity [30]. The diversity of Chinese

vocabulary and grammar also complicates

automated validation of requirements. While the

General Administration of Quality Supervision,

Inspection and Quarantine of China (AQSIQ) and

the National Standardization Administration of

China (2008) have provided guidelines for writing

requirements in Chinese [15]. However, a

standardized format for requirement statements is

still lacking, limiting the effectiveness of these

guidelines in real projects.

2.6 Boilerplate and their testing methods

This study involves designing, validating, and

evaluating a standardized boilerplate for Chinese

software requirements. Currently, there is no

Journal of Theoretical and Applied Information Technology
31st December 2024. Vol.102. No. 24

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

8887

systematic method for assessing requirement

boilerplate[31]. Evaluations are often qualitative or

quantitative, typically conducted by practitioners.

For example, Oztekin and Dalveren (2023) created a

Turkish boilerplate based on RUPP and had

requirements engineers revise existing requirements

using it[5]. Großer et al. (2023) similarly invited

engineers to assess requirements before and after

using their boilerplate[11]. The Delphi method, used

by Thangaratinam and Redman (2005), and

Beiderbeck et al. (2021), gathers expert feedback to

refine boilerplate over multiple rounds [32][33] .

This study aims to address the lack of language

specification in Chinese software requirements by

proposing a standardized boilerplate. The Delphi

method gathers feedback from experts in both

Chinese language and software requirements,

evaluating the boilerplate’s syntax, clarity, and

alignment with international standards like IEEE

830, ISO/IEC/IEEE 29148:2018, and GB/T

9385-2008.

3. METHODOLOGY

This study employs a multi-step methodology to

create a standardized template for Chinese software

requirements expression, utilizing literature

analysis and expert interviews based on the Delphi

method. These methods ensure the boilerplate's

validity, feasibility, and applicability. The research

framework is shown in Figure 1.

Figure 1.

Research framework

3.1 Literature review techniques

By conducting literature review, this study

summarizes aspects including international

standards for evaluating software requirement

boilerplate, the types of currently available

boilerplate, the sentence components included in

their presentation, as well as the types of Chinese

ambiguities and their underlying causes.

3.2 Expert Review: Labeling Ambiguities in

Requirements

Seven senior software engineering experts, each

with over five years of experience, were invited to

label the ambiguity in 3,697 Chinese software

requirement statements independently. These

requirements were gathered from industries. The

experts review focused on annotating the original

Journal of Theoretical and Applied Information Technology
31st December 2024. Vol.102. No. 24

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

8888

requirements to identify and classify ambiguous

instances.

3.3 Expert Review: Grammatical Accuracy

Check

To ensure the grammatical accuracy and

comprehensibility of the Chinese software

requirement boilerplate, we invited Chinese

language experts to conduct five rounds of rigorous

review using the Delphi method. Firstly, based on

the annotations made by seven senior software

engineering experts on 3,697 Chinese requirement

statements, non-ambiguous statements were filtered

and analyzed. Drawing on the linguistic elements

and classifications contained in the international

boilerplate, the types of Chinese software

requirement boilerplate were summarized, and the

initial structure of the software requirement syntax

boilerplate was designed for each type.

Subsequently, the original Chinese requirement

statements were rewritten using the current

preliminary boilerplate obtained for software

requirement description statements, a Malaysian

Chinese lecturer and a Singaporean Chinese NLP

researcher conducted pre-tests, five senior Chinese

experts (including two university professors, two

university lecturers, and a secondary school teacher

with 30 years of experience) reviewed the

boilerplate in multiple rounds, and the research team

optimized the boilerplate based on the experts'

feedbacks.

3.4 Expert Review: Evaluate the functionality

of the boilerplate

This study uses quantitative analysis to evaluate

the performance of software requirement boilerplate.

The evaluators should be senior software engineers,

and the evaluation standards include IEEE 830,

ISO/IEC/IEEE 29148:2018, and GB/T 9385-2008.

Among the criteria within these standards,

traceability, modifiability and importance ranking of

the boilerplate can be improved by tools such as

JIRA, Rational DOORS and Git, while other aspects

(e.g., correctness and feasibility) are assessed

manually by software engineers. Therefore, this

study only assesses the changes in non-ambiguity,

completeness, singularity, verifiability, consistency

and understandability of software requirement

boilerplate by mixing the original requirement

documents with the boilerplate rewritten

requirement documents. The experiment

hypothesizes that the rewritten requirements are

better in the evaluated criteria.

4. THE CHINESE SOFTWARE

REQUIREMENTS BOILERPLATE

This section explains the boilerplate for Chinese

software requirements which include how the

boilerplate is formulated and the features, structures

and categories of the boilerplate.

4.1 Features, Structures, and Categories of

Existing Boilerplate

From the literature review, it was identified that

existing boilerplate adopt a modular design

approach, encompassing core components such as

subject (subject, predicate, complement) and

hierarchical divisions (e.g., system structure, states,

events, activities, temporal constraints, and

performance metrics). These boilerplate utilize

placeholders (e.g., `<entity>`, `<property>`,

`<value>`, `<comparison>`) to ensure consistency,

precision, and flexibility of expression, thereby

effectively minimizing ambiguity. The hierarchical

framework supports the description of static

information (e.g., composition, arrangement,

attribute states), dynamic behaviors (e.g., events,

activities), temporal relationships (e.g., timing

constraints, sequential dependencies), performance

metrics (e.g., rate, capacity), and logical inferences

(e.g., conditions, possibilities, decision-making).

Furthermore, the boilerplate exhibit versatility by

covering various types, including entity descriptions,

Journal of Theoretical and Applied Information Technology
31st December 2024. Vol.102. No. 24

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

8889

behavioral specifications, attribute constraints,

temporal conditions, event-driven logic,

performance requirements, aggregate operations,

and nested structures.

4.2 The Structure and Types of Chinese

Software Requirements Boilerplate

The Chinese software requirement boilerplate

summarized by the research team follow a modular

structure that describes specific conditions,

behaviors and operations through prefixes, bodies

and suffixes. As for the boilerplate's format,

contained within 【】 is considered as a whole, /

separates multiple choices. Requirement types

define the kinds of requirements, each requirement

type and version (e.g., conditional V1, state-driven

V2) is designed to handle specific scenarios and

operations. The prefix usually contains the system

location or state that provides the contextual

environment for the requirement. The main body

describes the system components, system behaviors

and user actions involved and is supported by

placeholders (e.g., <system location>, <system

component>, <user behavior>, etc.) to ensure

flexibility of the boilerplate. Suffixes provide

further context or conditions, such as temporal

constraints (e.g., ‘after’, ‘when’) or optional

conditions (e.g., ‘optional’, ‘default’), enabling the

boilerplate to be used to satisfy different

circumstances.

4.3 Chinese requirement boilerplate

The study classifies Chinese software

requirement statements into eight categories based

on a review of relevant literature and annotations

from seven senior software engineering experts

(TABLE 1). These categories include Conditional

Requirements (actions triggered by specific

conditions), State-driven Requirements (responses

to state changes at certain locations), Autonomous

Requirements (automated actions based on time or

default conditions), User Interaction Requirements

(actions triggered by user input), Interface

Requirements (automatic actions following state

changes), Optional Functional Requirements

(functions users can enable or disable), Functional

Inclusion Requirements (boundaries that must be

met by the system), and Complex Requirements

(requirements combining multiple patterns and

conditions).

In addition, three types of supplementary

descriptive statements are introduced to provide

further context. Conceptual Descriptions define the

fundamental characteristics and relationships of an

object or concept, Location Descriptions specify the

location or spatial relationship of an object, and

Attribute Descriptions describe the features or

attributes of an object. These descriptive statements

complement the main requirement categories and

enhance the clarity of the boilerplate, which can be

seen in TABLE 2.

Journal of Theoretical and Applied Information Technology
31st December 2024. Vol.102. No. 24

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

8890

Table 1: The boilerplate for Chinese software requirements

Journal of Theoretical and Applied Information Technology
31st December 2024. Vol.102. No. 24

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

8891

Table 2: System action descriptions

Concept description <System Components> 包括 / 见 / 是 Include / can be seen on / be <System Components>

Location description
<system properties > 位于 <System Components> <direction position>

<System Components><direction position>是 is<System Components>

Attribute description

<system properties > ： list of <system properties >

<system properties > 跟/ 同 / 在 with <system properties > (optional)<state description>(optional)

<System Components>(optional)<System behavior><specific content >

<System Components><System behavior><system properties >

<System Components><System behavior>

<System Components><System behavior>(<explanation>)

5. RESULTS

This section will examine the normative

aspects of the software requirements boilerplate.

It will first introduce the respondents' identities

and professional backgrounds, then assess the

reliability of the questionnaire results. Finally,

it will detail the improvements the boilerplate

brings to each metric of the software

requirement description. This analysis will

provide a basis for evaluating the boilerplate's

practical effectiveness.

The quality of the software requirements

boilerplate was assessed by eleven software

practitioners, consisting of two software

developers, three project managers, four

requirements analysts, and two testers. Of these,

90.9% (10) had over ten years of experience in

requirements engineering, 9.09% (1) had 6-10

years of experience, and all had worked on five

or more software projects. Among them, 72.73%

(8) primarily used natural language for

requirements expression, 18.18% (2) used

UML, and 9.09% (1) used decision tables. The

pre-tests for this section were carried out by two

product managers with nine years of experience

working in Shenzhen, China's first-tier city.

Randomly mixing the original and rewritten

statements helps eliminate investigator bias,

ensuring objectivity and fairness in the evaluation.

This approach reduces the influence of subjective

judgment on the results. Each software requirement

was assessed across six dimensions: Unambiguous,

Complete, Singular, Verifiable, Conforming, and

Comprehensible.

For validity testing, the Kaiser-Meyer-Olkin

(KMO) method was used, with a score of 0.60 or

higher considered acceptable[34]. To assess item

consistency, Cronbach's alpha was calculated, with

values above 0.70 is considered reliable[35]. The

KMO values ranged from 0.84 to 0.90, and

Cronbach's alpha values ranged from 0.972 to 0.978,

indicating strong validity and reliability of the

survey items for evaluating the developed interface,

as shown in Table 3.

Table 3: KMO and Cronbach's alpha test outcomes

Question KMO Cronbach's

alpha

clarity 0.85 0.974

completeness 0.88 0.976

singularity 0.87 0.975

Verifiability 0.84 0.973

Conformity 0.90 0.978

Understandability 0.86 0.972

After rewriting, the software requirement use

cases showed improvements in Unambiguous,

Complete, Singular, Verifiable, Conforming, and

Journal of Theoretical and Applied Information Technology
31st December 2024. Vol.102. No. 24

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

8892

Comprehensible. Notably, the most significant

improvements were observed in Unambiguous and

Singular, followed by Complete, Verifiable,

Conforming, and Comprehensible. Table 4 presents

a comparison of evaluation metrics for software

requirements before and after revision.

Table 4: Comparison of evaluation metrics for software

requirements before and after improvement

Indicators Before After

clarity 2.1 3.3

completeness 2.1 3.2

singularity 2.1 3.3

Verifiability 2.2 3.3

Conformity 2.2 3.2

Understandability 2.2 3.3

6. DISCUSSION

In the process of describing software requirement

statements, rigorous presentation and accurate

analysis are crucial, as any errors may have a

negative impact on the development of subsequent

programs. Standardized templates can effectively

improve the clarity and accuracy of requirement

statements and reduce ambiguities caused by the

flexibility of Chinese presentation.

If manual checking of software requirements is

adopted, it usually requires a lot of human and

material resources, especially in complex software

engineering projects, involving the collaboration of

multiple stakeholders, where it is more challenging

to maintain consistency in requirements descriptions.

Therefore, it is particularly important to adopt an

automated or simplified approach to requirements

rewriting and assessment. This not only helps to

ensure the uniformity of software requirement

descriptions, but also effectively reduces

ambiguities, which enhances team members'

understanding and promotes efficient collaboration.

This study demonstrates the process of

constructing a standardized software requirements

template, which involves a variety of methods such

as literature review, case study, and expert

assessment. The experimental results show that the

template achieves significant results in reducing

statement ambiguity and enhancing requirements

reusability, consistency, completeness, singularity,

verifiability and understandability.

Table 5: Center Table Captions Above The Tables

Study Method/Tool Evaluation Method Focused domain

Oztekin & Dalveren

(2023) [36]

Developed a Turkish boilerplate

based on RUPP

Qualitative evaluation from

domain-specific requirements

engineers.

e-Government

Großer, Rukavitsyna,

and Jürjens (2023) [37]
boilerplate comparison quality guidelines “Master” is the most useful boilerplate

Antoniou & Bassiliades

(2024) [38]

Developed a tool using ontologies

based on the natural language

library (Resource Description

Framework

triples).

Case study and user assessments. ATM

Journal of Theoretical and Applied Information Technology
31st December 2024. Vol.102. No. 24

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

8893

Großer, Rukavitsyna,

and Jürjens (2024) [39]

compare between free-text

requirements and treatment

groups rewrote with different

boilerplates

quality guidelines
boilerplates can generally improve

quality

de Mello Barbosa,

Cerqueira, & da Cunha

(2023) [40]

compare between 54 natural

language boilerplates
quality guidelines cross-industry

Our Work

Developed a Chinese natural

language boilerplate checked by

Chinese linguists and software

engineers manually

quality guidelines. cross-industry

Our work stands out for its use of natural

language, the most widely used method for

expressing requirements, offering a flexible and

generalizable solution across industries, unlike

domain-specific approaches in other studies.

Besides, the focus on Chinese software

requirements boilerplate is a significant

contribution. Additionally, our work paves the way

for leveraging advanced Chinese AI technologies

to automate the handling of Chinese software

requirements. We build on existing studies. For

example, Bao et al. (2021) introduced the

RNL2SysML method, which automatically

generates SysML models from restricted Chinese

requirements, improving accuracy and efficiency

[41]. Chen et al.'s (2023) NLP-based approach for

converting free-text requirements into SysML

models [42], Wang et al.'s (2023) syntax correction

method [43], Xu and Wang's (2022) word

segmentation and POS tagging model [44], Chai

and Wang's (2022) enhanced named entity

recognition using BERT and BILSTM [45], and

Zhu et al.'s (2022) TF-IDF-based K-Means

clustering for requirement classification [46].

These advancements all contribute to improving

the precision of model generation. However, these

technologies still require the development of a

standardized set of Chinese natural language

templates to address ambiguity in requirement

expressions.

Potential limitations of the study include sample

selection bias, assessment subjectivity, survey

design issues, external factors, boilerplate

applicability and statistical analysis limitations.

Assessors' backgrounds may not be sufficiently

representative of industry diversity, and personal

opinions and experiences may influence results;

differences in understanding of terminology in

questionnaires may lead to response bias, and

external factors such as time, resources, or

emotional state may interfere with the assessment

process. In addition, there are limitations to the

applicability of the requirements boilerplate across

different industries or projects, and statistical

analysis methods may also have an impact on the

results. Improvements such as increasing sample

diversity, using double-blind assessments,

clarifying terminology, and conducting more

extensive empirical testing could be implemented

to increase the validity of the study.

7. CONCLUSION

In summary, this research addresses the

problems of ambiguity and unclear structure in

Chinese software requirement expression, which

can negatively affect the understanding and

Journal of Theoretical and Applied Information Technology
31st December 2024. Vol.102. No. 24

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

8894

implementation of software projects. By

developing a set of Chinese-based software

requirement boilerplate, this research provides a

practical solution aimed at improving the clarity,

completeness, singularity, verifiability,

consistency ,and comprehensibility of requirement

expression. The boilerplate, designed based on

Chinese grammar specifications and international

standards to ensure their applicability to various

software industries. Through evaluation by

linguists evaluation and feedback from industry

professionals, we have validated the effectiveness

of the template and demonstrated its great potential

to improve the quality and efficiency of software

requirements.

Looking ahead, there are many aspects of our work

that we would like to explore in greater depth. First,

we will continue to collect and analyse feedback from

different software industries and application domains

to further optimize and refine the templates so that

they are more closely aligned with the habits of

requirements expression in the actual development

process. Second, we plan to introduce artificial

intelligence and natural language processing

technologies into the application of the templates to

automate the checking and correction of requirement

descriptions, and further improve the efficiency and

accuracy of requirement document generation.

Finally, we are looking forward to cooperating with

more international counterparts to explore the

standardization path of cross-lingual and

cross-cultural software requirement expression and

contribute to the collaborative development of the

global software industry.

REFERENCES

[1] Y. U. Pabuccu, I. Yel, A. B. Helvacioglu, and

B. N. Asa, "The requirement cube: A

requirement template for business, user, and

functional requirements with 5W1H

approach," International Journal of

Information System Modeling and Design,

vol. 13, no. 1, pp. 1–18, 2022, doi:

10.4018/IJISMD.297046.

[2] C. Antoniou, K. Kravari, and N. Bassiliades,

"Semantic requirements construction using

ontologies and boilerplates," Data &

Knowledge Engineering, vol. 152, p. 102323,

2024, doi: 10.1016/j.datak.2024.102323.

[3] J. W. Lim, T. K. Chiew, M. T. Su, S. Ong, H.

Subramaniam, M. B. Mustafa, and Y. K.

Chiam, "Test case information extraction from

requirements specifications using NLP-based

unified boilerplate approach," Journal of

Systems and Software, vol. 211, p. 112005,

2024, doi: 10.1016/j.jss.2024.112005.

[4] Y. J. Zhao, Ambiguity Phenomena and

Differentiation Methods in Modern Chinese,

Encyclopedic Knowledge, no. 12, pp. 73–74,

2023.

[5] G. C. Oztekin and G. G. Menekse Dalveren,

"Structured SRS for e-Government services

with boilerplate design and interface," IEEE

Access, vol. 11, pp. 62906–62917, 2023, doi:

10.1109/ACCESS.2023.3287882.

[6] A. Mavin, P. Wilkinson, A. Harwood, and M.

Novak, "Easy approach to requirements syntax

(EARS)," in Proc. 2009 17th IEEE Int.

Requirements Engineering Conf., 2009, pp.

317–322, doi: 10.1109/RE.2009.9.

[7] K. Pohl and C. Rupp, Requirements

Engineering Fundamentals, 1st ed., Rocky

Nook, 2011.

[8] S. Khalid, U. Rasheed, M. Muneer, W. H. Butt,

R. Mehmood, and U. Qamar, "Common

problems in software requirement engineering

process: An overview of Pakistani software

industry," in Proc. 2023 4th Int. Conf.

Advancements in Computational Sciences

(ICACS), 2023, pp. 1–6, doi:

10.1109/ICACS55311.2023.10089703.

Journal of Theoretical and Applied Information Technology
31st December 2024. Vol.102. No. 24

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

8895

[9] F. Huang, "Software requirement criteria

based on human errors," in Proc. 2021 IEEE

Int. Symp. Software Reliability Engineering

Workshops (ISSREW), 2021, pp. 77–82, doi:

10.1109/ISSREW53611.2021.00047.

[10] J. Tian, J. Yin, and L. Xiao, "Software

requirements engineer's ability assessment

method based on empirical software

engineering," Wireless Communications and

Mobile Computing, vol. 2022, p. e3617140,

2022, doi: 10.1155/2022/3617140.

[11] K. Großer, M. Rukavitsyna, and J. Jürjens,

"A comparative evaluation of requirement

template systems," in Proc. 2023 IEEE 31st

Int. Requirements Engineering Conf. (RE),

2023, pp. 41–52.

[12] M. R. R. Ramesh and Ch. S. Reddy, "Metrics

for software requirements specification quality

quantification," Computers & Electrical

Engineering, vol. 96, p. 107445, 2021, doi:

10.1016/j.compeleceng.2021.107445.

[13] IEEE, "IEEE Recommended Practice for

Software Requirements Specifications," IEEE

Std 830-1998, pp. 1–40, Oct. 20, 1998, doi:

10.1109/IEEESTD.1998.88286.

[14] ISO/IEC/IEEE, International Standard -

Systems and software engineering -- Life

cycle processes -- Requirements engineering -

Redline, ISO/IEC/IEEE 29148:2018(E) -

Redline, pp. 1–209, Nov. 30, 2018.

[15] GB/T 9385-2008, "Software

Engineering—Documentation Guidelines for

Software Requirements Specifications," China

National Standard, 2008.

[16] H. Y. Wang, Overview of Software

Requirements Engineering Technologies,

Computer Science, vol. S2, pp. 766–779,

2022.

[17] D. Majumdar, S. Sengupta, A. Kanjilal, and

S. Bhattacharya, "Automated requirements

modeling with Adv-EARS," International

Journal of Information Technology

Convergence and Services, vol. 1, pp. 57–67,

2011, doi: 10.5121/ijitcs.2011.1406.

[18] C. Rupp and R. Joppich,

"Anforderungsschablonen ? Der

MASTeR-Plan für gute Anforderungen," in

Requirements-Engineering und -Management,

pp. 215–246, Carl Hanser Verlag GmbH &

Co. KG, 2014, doi:

10.3139/9783446443136.010.

[19] K. Thongglin, S. Cardey, and P. Greenfield,

"Thai software requirements specification

pattern," in Proc. 2013 IEEE 12th Int. Conf.

Intelligent Software Methodologies, Tools and

Techniques (SoMeT), Sept. 2013, pp. 179–

184, doi: 10.1109/SoMeT.2013.6645650.

[20] R. D. G. Apaza, J. E. M. Barrios, D. A. I.

Becerra, and J. A. H. Quispe, "ERS-TOOL:

Hybrid model for software requirements

elicitation in Spanish language," in Proc. Int.

Conf. Geoinformatics and Data Analysis,

2018, pp. 27–30, doi:

10.1145/3220228.3220255.

[21] C. M. Keet and L. Khumalo, "Toward a

knowledge-to-text controlled natural language

of isiZulu," Language Resources and

Evaluation, vol. 51, no. 1, pp. 131–157, 2017,

doi: 10.1007/s10579-016-9340-0.

[22] IEEE, IEEE Std 830-1998 IEEE Standard for

Software Requirements Specification, IEEE

Computer Society, 1998.

[23] Y. M. Zang, Viewing Contextual Ambiguity

from the Perspective of Chinese Language

Teaching, Literary Education (Part II), no. 04,

pp. 24–26, 2022, doi:

10.16692/j.cnki.wxjyx.2022.04.007.

[24] P. Yang, Analysis of Grammatical Ambiguity

in Modern Chinese, Cranflower (Zhong), no.

09, pp. 119–121, 2023.

[25] G. Chen, Study of Ambiguity in Relational

Markers and Relative Clauses, Journal of

Journal of Theoretical and Applied Information Technology
31st December 2024. Vol.102. No. 24

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

8896

Anhui University of Science and Technology,

vol. 1, pp. 59–63, 2023.

[26] A. Fantechi, S. Gnesi, and L. Semini, "VIBE:

Looking for Variability In amBiguous

rEquirements," Journal of Systems and

Software, vol. 195, p. 111540, 2023, doi:

10.1016/j.jss.2022.111540.

[27] Q. F. Cai, Analysis of Ambiguity Phenomena

in Chinese, Cai Zhi, vol. 15, p. 213, 2019.

[28] Y. Y. Song, Application of Word Boundary

Information in Chinese Segmentation

Ambiguity, Chinese Character Culture, vol.

21, pp. 105–108, 2022.

[29] Z. Z. Zheng, A Study on the Differentiation

of Ambiguous Structures in Modern Chinese

Based on Quantification Theory, M.A. thesis,

Hebei University, 2022.

[30] X. L. Shen, On the Chinese Nature of

Chinese, Global Chinese Development

Studies, no. 01, pp. 15–35, 2024.

[31] L. D. M. Barbosa, C. S. Cerqueira, and A. E.

C. Da Cunha, "Natural language requirements

boilerplates: An integrative literature review,"

Revista de Gestão e Secretariado

(Management and Administrative Professional

Review), vol. 14, no. 8, pp. 13444–13476,

2023, doi: 10.7769/gesec.v14i8.2610.

[32] Thangaratinam, S., & Redman, C. W. (2005).

The delphi technique. The obstetrician &

gynaecologist, 7(2), 120-125.

[33] D. Beiderbeck, N. Frevel, H. A. von der

Gracht, S. L. Schmidt, and V. M. Schweitzer,

"Preparing, conducting, and analyzing Delphi

surveys: Cross-disciplinary practices, new

directions, and advancements," MethodsX,

vol. 8, p. 101401, 2021.

[34] H. Taherdoost, S. Sahibuddin, and N.

Jalaliyoon, "Exploratory factor analysis;

concepts and theory," Adv. Appl. Pure Math.,

vol. 27, pp. 375–382, Aug. 2022.

[35] M. Amirrudin, K. Nasution, and S. Supahar,

"Effect of variability on Cronbach alpha

reliability in research practice," Jurnal

Matematika, Statistika dan Komputasi, vol.

17, no. 2, pp. 223–230, 2021.

[36] Oztekin, G. C., & Menekse Dalveren, G. G.

(2023). Structured SRS for e-Government

Services With Boilerplate Design and

Interface. IEEE Access, 11, 62906–62917.

IEEE Access.

https://doi.org/10.1109/ACCESS.2023.32878

82

[37] Großer, K., Rukavitsyna, M., & Jürjens, J.

(2023, September). A Comparative

Evaluation of Requirement Template Systems.

In 2023 IEEE 31st International

Requirements Engineering Conference (RE)

(pp. 41-52). IEEE.

[38] Antοniou, C., & Bassiliades, N. (2024). Α

tool for requirements engineering using

ontologies and boilerplate. Automated

Software Engineering, 31(1), 5.

[39] Großer, K., Rukavitsyna, M., & Jürjens, J.

(2024). A Comparative Evaluation of

Requirement Template Systems (Summary).

In Software Engineering 2024 (SE 2024) (pp.

47-48). Gesellschaft für Informatik eV.

[40] de Mello Barbosa, L., Cerqueira, C. S., & da

Cunha, A. E. C. (2023). Natural language

requirements boilerplates: an integrative

literature review. Revista de Gestão e

Secretariado, 14(8), 13444-13476.

[41] Bao, Y., Yang, Z., Yang, Y., Xie, J., Zhou,

Y., Yue, T., Huang, Z., & Guo, P. (2021). An

Automated Approach to Generate SysML

Models from Restricted Natural Language

Requirements in Chinese. Jisuanji Yanjiu yu

Fazhan/Computer Research and Development,

58(4), 706–730. Scopus.

https://doi.org/10.7544/issn1000-1239.2021.2

0200757

Journal of Theoretical and Applied Information Technology
31st December 2024. Vol.102. No. 24

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

8897

[42] Chen, J., Hu, B., Diao, W., & Huang, Y.

(2023). Automatic Generation of SysML

Requirement Models Based on Chinese

Natural Language Requirements. Proceedings

of the 2022 6th International Conference on

Electronic Information Technology and

Computer Engineering, 242–248.

https://doi.org/10.1145/3573428.3573470

[43] Wang, Z., Yu, Q., Wang, J., Hu, Z., & Wang,

A. (2023). Grammar Correction for Multiple

Errors in Chinese Based on Prompt Templates.

Applied Sciences, 13(15), 8858.

https://doi.org/10.3390/app13158858

[44] Xu, Q., & Wang, Z. (2022). A Data-Driven

Model for Automated Chinese Word

Segmentation and POS Tagging.

Computational Intelligence and Neuroscience,

2022, 7622392.

https://doi.org/10.1155/2022/7622392

[45] Chai, W., & Wang, J. (2022). A Chinese

Named Entity Recognition Method Based on

Fusion of Character and Word Features. 2022

IEEE 14th International Conference on

Advanced Infocomm Technology (ICAIT),

308–313.

https://doi.org/10.1109/ICAIT56197.2022.98

62628

[46] Zhu, J., Huang, S., Shi, Y., Wu, K., & Wang,

Y. (2022). A Method of K-Means Clustering

Based on TF-IDF for Software Requirements

Documents Written in Chinese Language.

IEICE TRANSACTIONS on Information and

Systems, E105-D(4), 736–754.

