
Journal of Theoretical and Applied Information Technology
31st December 2024. Vol.102. No. 24

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

8913

LSTM ADAPTIVE HYPERPARAMETER TUNING FOR
FINANCIAL TIME SERIES FORECASTING USING CUSTOM
GRADIENT-BASED METHODS: A COMPARATIVE STUDY

WITH BAYESIAN OPTIMIZATION

ADNANE EL OUARDI1, BRAHIM ER-RAHA1, KHALID TATANE1
1 ESTIDMA research team, National School of Applied Sciences, Agadir, Morocco

E-mail: 1adnane.elouardi.7@gmail.com, 1b.raha@uiz.ac.ma, 1k.tatane@uiz.ac.ma

ABSTRACT

This paper presents an adaptive hyperparameter tuning system for Long Short-Term Memory (LSTM)
models, focusing on a gradient-based approach to achieve efficient and precise optimization. The proposed
system is designed to dynamically adjust critical hyperparameters such as the learning rate, number of units,
dropout rate, and batch size during the training process. By leveraging gradient information, the system
iteratively refines the hyperparameter values, aiming to minimize the Mean Squared Error (MSE) and
enhance the model's predictive accuracy. To evaluate the effectiveness of the gradient-based approach, the
study includes Bayesian optimization as a benchmark, a method widely recognized for its probabilistic
framework and established success in hyperparameter tuning. Comparative analysis is conducted in terms of
loss metrics, including MSE and additional performance indicators, as well as execution time, highlighting
the trade-offs between optimization efficiency and computational cost. The results demonstrate the gradient-
based system's ability to adapt to high-dimensional and complex hyperparameter spaces with reduced
computational overhead, while consistently achieving superior performance. The experiment is applied to
the challenging task of forecasting the S&P 500 index, a real-world financial time series problem that
demands robustness and precision.

Keywords: Hyperparameter Optimization, Gradient-Based Tuning, LSTM Networks, Bayesian

Optimization, Time Series Forecasting

1. INTRODUCTION

 Hyperparameter tuning is a critical step in
the development of Long Short-Term Memory
(LSTM) models for time series forecasting.
Identifying optimal hyperparameters, such as the
number of units, learning rate, dropout rate, and
batch size, is essential to improve the model's
performance and accuracy. Traditional methods for
hyperparameter tuning, such as grid search and
random search, are computationally expensive and
often impractical for complex models with large
parameter spaces [1] [2].

Recent advances have explored more efficient
methods for hyperparameter optimization. Bayesian
optimization has gained popularity due to its
probabilistic approach to model performance
estimation, allowing for more informed
hyperparameter selection and reduced computational
overhead. However, Bayesian optimization can
struggle with the high-dimensional and non-convex

nature of hyperparameter spaces in deep learning
models [3] [4].

An alternative approach is gradient-based
hyperparameter tuning, which leverages gradient
information to iteratively refine hyperparameters.
This method shows promise in navigating large
parameter spaces more effectively and adapting
hyperparameters dynamically during the training
process. For instance, recent research has
demonstrated the use of gradient-based methods for
hyperparameter optimization in complex neural
network architectures, showing significant
improvements in convergence and performance [5]
[6] [7].

Recent studies have further demonstrated the
efficacy of hybrid optimization techniques, which
blend the strengths of gradient-based methods and
probabilistic approaches like Bayesian optimization.
For instance, advancements in differentiable
optimization frameworks have made gradient-based

Journal of Theoretical and Applied Information Technology
31st December 2024. Vol.102. No. 24

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

8914

methods more scalable and suitable for complex
hyperparameter spaces [8][9].

In this study, we propose an adaptive
hyperparameter tuning system for LSTM models,
focusing on a custom gradient-based method. This
system dynamically adjusts hyperparameters based
on performance feedback, aiming to minimize
the Mean Squared Error (MSE) in forecasting
the S&P 500 index close prices. To benchmark the
effectiveness of our approach, we compare it against
the performance of Bayesian optimization, a
commonly used technique in hyperparameter tuning
[2] [10].

To achieve this, the study will:

 Design and implement a personalized
gradient-based hyperparameter tuning
mechanism that leverages gradient
information to refine hyperparameters
iteratively.

 Integrate a feedback loop to dynamically
adjust hyperparameters during the training
process, ensuring continuous improvement
in model performance.

 Benchmark the gradient-based method
against Bayesian optimization to evaluate
its effectiveness and efficiency. Bayesian
optimization will serve as a comparative
baseline due to its established use in
hyperparameter tuning [2] [3].

 Assess the performance of the proposed
system by applying it to the task of
forecasting the S&P 500 index.

The anticipated outcomes include a comprehensive
evaluation of the gradient-based hyperparameter
tuning system, demonstrating its potential to enhance
the predictive accuracy of LSTM models. This study
will contribute to the existing body of knowledge by
providing insights into the practical application of
gradient-based methods for hyperparameter
optimization in complex machine learning models
[6] [5] [11].

2. LITERATURE REVIEW

In this section, we review key methods for
hyperparameter optimization, including Bayesian
optimization, gradient-based approaches, and the use
of LSTM networks for time series forecasting,
providing a foundation for the study.

2.1 Bayesian Optimization in Hyperparameter
Tuning

Bayesian optimization has been widely
recognized for its efficacy in hyperparameter tuning,
leveraging probabilistic models to make informed
decisions on sampling hyperparameters [2] [8]. This
approach has been successfully applied in various
machine learning tasks, including neural network
training, due to its ability to handle the high-
dimensional and non-convex nature of
hyperparameter spaces [4] [3]. Despite its
strengths, Bayesian optimization can be
computationally intensive, especially for models
with numerous hyperparameters, as the complexity
of the probabilistic models scales with the number of
dimensions and iterations. Some recent approaches
attempt to mitigate this issue by using surrogate
models or approximations to reduce computational
costs while maintaining optimization efficiency [12]
[13].

2.2 Gradient-Based Hyperparameter
Optimization

Gradient-based methods offer an
alternative by utilizing gradient information to
iteratively adjust hyperparameters, aiming for more
efficient convergence. Scientists introduced
reversible learning, enabling the computation of
exact gradients of cross-validation performance with
respect to hyperparameters, significantly improving
the optimization of complex neural network
architectures [5]. Recent advancements
include bilevel optimization frameworks, which
enhance the efficiency and scalability of gradient-
based tuning by structuring the optimization
problem as a nested set of tasks, often referred to as
upper and lower levels. This approach has been
demonstrated to outperform traditional gradient-
based methods in several deep learning applications
[6] [11] [7]. Recent approaches have explored meta-
gradient methods to accelerate the tuning of deep
learning models, offering improved adaptability to
dynamic data distributions [12][13]. These methods
complement traditional bilevel frameworks by
reducing computational overhead in high-
dimensional parameter spaces. Additionally,
automatic differentiation techniques and
differentiable optimization frameworks further
facilitate the practical application of these methods
to a broader range of machine learning problems

[14] [15].
2.3 LSTM for Time Series Forecasting

Long Short-Term Memory (LSTM)
networks, a type of recurrent neural network (RNN),
are particularly suited for time series forecasting due

Journal of Theoretical and Applied Information Technology
31st December 2024. Vol.102. No. 24

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

8915

to their capability to capture long-term
dependencies. LSTM models have been extensively
applied in financial market predictions,
demonstrating substantial improvements in accuracy
over traditional methods, such as linear regression or
ARIMA models [16] [17]. The effectiveness of
LSTM networks in modeling sequential data, such as
stock prices and economic indicators, makes them a
prime candidate for exploring advanced
hyperparameter tuning techniques. Moreover,
LSTMs have been shown to handle the non-linear
and non-stationary nature of financial time series
effectively, further supporting their widespread use
in forecasting tasks [18].
Figure 1 represents the internal workings of
an LSTM cell, illustrating the flow of information
through various gates and operations, including the
forget gate, input gate, and output gate, which
collectively determine the cell's ability to retain or
discard information over time [19].

Figure 1: Components of an LSTM

Here's a breakdown of its components and how the
LSTM functions:

 Input (𝑋௧): The current input at time step t,
denoted as 𝑋௧, enters the LSTM cell alongside
the previous hidden state and cell state.

 Forget Gate (σ): The forget gate determines
which parts of the previous cell state (∁௧ିଵ)
should be kept or forgotten. It uses a sigmoid
function (σ), outputting a value between 0 and
1. If it outputs 1, all information is kept, and if
it outputs 0, all information is forgotten.
Mathematically, the output is:

f௧ = σ(W ⋅ [h௧ିଵ, X௧] + b) (1)

 Input Gate (σ): The input gate controls how
much of the new information (proposed by the
tanh activation) should be added to the cell state.
It consists of a sigmoid function (σ) to decide
which values to update, and a tanh activation to
generate candidate values to update the state:

i௧ = σ(W ⋅ [h௧ିଵ, X௧] + b) (2)

𝐶ሚ௧= tanh(𝑊⋅[h௧ିଵ, X௧]+𝑏େ) (3)

 Cell State Update: The cell state is updated by
combining the previous state (∁௧ିଵ) and the new
candidate state (𝐶ሚ௧) controlled by the forget gate
and input gate:

∁௧= f௧∗ ∁௧ିଵ + 𝑖௧ ∗ 𝐶ሚ௧ (4)

This ensures that the LSTM retains long-term
information and incorporates new relevant data.

 Output Gate (σ): The output gate controls the

final output of the LSTM cell. It uses a sigmoid
function to determine how much of the cell state
should be passed through the hidden state. The
cell state is passed through a tanh activation to
normalize it between -1 and 1 before
multiplying by the output gate’s value:

o௧ = σ(W ⋅ [h௧ିଵ, X௧] + b) (5)

h௧ = o௧ * tanh ∁௧ (6)

 Hidden State (h௧): The hidden state is passed to
the next time step and serves as the output of
the current LSTM unit.

Functionality:
Long-Term Memory: The LSTM’s main feature is
its ability to preserve information over long
sequences through the cell state, which is updated
selectively by the forget gate and input gate.
Selective Updates: By controlling the flow of
information via gates, the LSTM decides what to
remember, forget, and output, making it highly
effective for tasks where long-term dependencies are
important (e.g., time series, language modeling).
Non-Linearity: The use of sigmoid
(σ) and tanh activations introduces non-linearity,
helping the network capture more complex patterns
in sequential data.
Overall, this diagram shows how LSTMs manage
both short-term and long-term information, ensuring
that relevant data is retained across different time

Journal of Theoretical and Applied Information Technology
31st December 2024. Vol.102. No. 24

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

8916

steps while discarding irrelevant or outdated
information.
2.4 Comparison of Hyperparameter
Optimization Methods

Numerous studies have compared various
hyperparameter optimization strategies, including
grid search, random search, Bayesian optimization,
and gradient-based methods. Previous research
highlighted the inefficiencies of grid search and
random search in high-dimensional spaces. These
comparisons underscore the need for adaptive and
efficient hyperparameter tuning approaches.

3. METHODOLOGY

 This section outlines the methodology for
developing and evaluating our adaptive
hyperparameter tuning system for LSTM models.
Key steps include data preprocessing, dynamic
hyperparameter optimization using a generator, and
iterative refinement based on model performance.
The LSTM model’s architecture, training process,
and techniques like early stopping are also detailed
to ensure robust and efficient time series forecasting.
3.1 Data

 For this research, the primary focus is on
the historical Close Price data of the S&P 500 index,
sourced from Yahoo Finance via
the yfinance library. The Close Price is a critical
metric in financial time series forecasting,
representing the final trading price of the index at the
end of each trading day. This price is widely
regarded as the most significant daily price,
reflecting the market's consensus on the value of the
index after all trading activities have concluded.
Unlike other daily price metrics (such as open, high,
or low prices), the Close Price is often used by
investors, analysts, and traders to assess market
trends and make informed decisions. It serves as a
key indicator in various technical analysis tools and
is commonly used in the calculation of moving
averages, oscillators, and other financial indicators
that guide trading strategies and portfolio
management decisions.
The data collection process captures the maximum
available historical Close Price data for the S&P 500
index, spanning from the earliest records to the most
recent date. This extensive dataset provides a rich
historical context, covering a wide range of market
conditions, economic cycles, and significant
financial events. By utilizing the full extent of the
available data, the research ensures that the
forecasting models can learn from a diverse set of
market behaviors, including long-term trends, short-

term fluctuations, and rare market events that
include critical periods of financial history, such as:
 The Great Depression (1929-1939): A major

economic downturn that had a profound impact
on global financial markets.

 Post-War Economic Expansion (1945-
1960s): A period marked by sustained economic
growth and market development.

 The Oil Crisis (1973-1974): A period of
economic and market instability triggered by
geopolitical events and oil embargoes.

 The Dot-com Bubble (2000-2002): A period of
speculative investment in internet-related
companies, followed by a significant market
correction.

 The Global Financial Crisis (2007-2009): A
severe financial crisis that led to dramatic
declines in global stock markets.

 The Long Bull Market (2009-2020): An
extended period of market growth and recovery
following the financial crisis.

 COVID-19 Pandemic (2020): A global health
crisis that caused unprecedented market
volatility and a rapid economic downturn,
followed by recovery.

 Recent Market Trends (2021-
Present): Including post-pandemic recovery,
inflation concerns, interest rate changes, and
geopolitical events.

Figure 2: S&P 500 Historical Close Prices

3.1.1 Data Normalization
Normalization is the process of scaling the data to a
specific range, typically between 0 and 1. This step
is particularly important in machine learning models
that are sensitive to the scale of the input data, such
as neural networks [20]. It ensures that all input
features contribute equally to the model, preventing
any single feature from disproportionately
influencing the model's predictions. In time series
forecasting, normalization helps stabilize the
learning process by reducing the impact of varying
scales in the data, which in turn accelerates the
training process and improves convergence [21].

Journal of Theoretical and Applied Information Technology
31st December 2024. Vol.102. No. 24

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

8917

Normalization should be applied to the entire
dataset before splitting into training and testing
sets to avoid data leakage and overfitting. This
practice ensures that the model does not have access
to information from the test set during training,
which could bias the evaluation results and lead to
overly optimistic performance estimates [22]. Once
the data is normalized, it is ready for input into the
machine learning models, helping maintain
consistency and integrity across the training and
evaluation phases.
MinMax Scaling: MinMax scaling transforms the
data by scaling each value in the time series to a
specified range, typically [0, 1]. The formula for
MinMax scaling is as follows:

𝑋𝑠𝑐𝑎𝑙𝑒𝑑 =
𝑋 − 𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛

Where:
 X is the original data value.
 Xmin is the minimum value in the dataset.
 Xmax is the maximum value in the dataset.
 Xscaled is the normalized data value.

MinMax is particularly useful when the data has
known bounds, as it preserves the relationships
between data points while transforming the values
into a standardized range. This makes it easier for the
model to learn from the data, as all input features are
on a comparable scale.
Inverse Transformation: After the model makes
predictions, it is often necessary to convert the
normalized predictions back to the original scale.
This is done using the inverse transformation of the
MinMax scaler which ensures that the predicted
Close Prices are presented in their original scale,
making them interpretable and actionable for
financial analysis.

𝑋𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 = 𝑋𝑠𝑐𝑎𝑙𝑒𝑑 × (𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛) + 𝑋𝑚𝑖𝑛

This step is crucial for evaluating the model's
performance in real-world terms, such as calculating
absolute errors or comparing predicted prices to
actual market prices.
3.1.2 Sequence Creation
Once the data is normalized, the next step is to
prepare it for input into the forecasting models. This
involves structuring the time series data in a way that
is compatible with the model's requirements.
In time series forecasting, especially when using
models like LSTM networks, it is necessary to create
sequences of data points that the model can use to
learn temporal patterns. This process involves
segmenting the normalized time series into

overlapping sequences, where each sequence
contains a fixed number of past observations (often
referred to as the "look-back period") that the model
will use to predict the next value.
For example, if the look-back period is set to 30
days, the model will use the Close Prices from the
previous 30 days to predict the Close Price on the
31st day. This process is repeated for the entire
dataset, creating a large number of training examples
that capture the sequential dependencies in the data.

Figure 3: First 3 Sequences of S&P 500 Close Prices

The plot shows three sequences of normalized close
prices, each with a sequence length of 30 days. These
sequences represent chunks of the time series data
that the model will use as inputs to predict the next
day's close price. We observe the following:
 Overlapping Sequences: The sequences overlap

because they are created by sliding a fixed-
length window (30 days) across the time series.
This approach ensures that the model is exposed
to as much data as possible, even though the
sequences overlap.

 Trends and Patterns: The sequences capture
both upward and downward trends in the S&P
500 close prices. This is important because it
allows the model to learn from various patterns
in the data (e.g., rising and falling prices over
time).

 Normalization: The close prices are normalized
between 0 and 1, which helps the model train
more efficiently by removing the influence of
absolute price scales. Normalization also
ensures that the model treats each sequence
comparably, regardless of the actual price
values.

 Variability: Although the three sequences start
at different points in the data, they both capture
a smooth, continuous trend of price movement.
This variability in sequences is essential for
training models that generalize well across
different patterns.

In a practical sense, each sequence would be
followed by a target value (the price on day 31) that
the model will try to predict. This approach is typical

Journal of Theoretical and Applied Information Technology
31st December 2024. Vol.102. No. 24

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

8918

in time series forecasting to learn from historical
data and predict future values.
3.1.3 Data Splitting
The final step in data processing is to split the data
into training and testing sets. The training set is used
to train the model, while the testing set is reserved
for evaluating the model's performance. It is
important to ensure that the test set contains data that
the model has not seen during training, as this
provides an unbiased assessment of the model's
ability to generalize to new, unseen data [23] [22].
This practice helps prevent data leakage, which can
occur if information from the test set is inadvertently
used during training, leading to artificially high-
performance scores that do not reflect the model's
true predictive capabilities [24]. Properly splitting
the data ensures a fair and realistic evaluation,
allowing for a more accurate understanding of how
well the model performs on real-world data.

Figure 4: Training and Test Data Split

Typically, the data is split chronologically, with the
earlier portion of the time series used for training
(80%) and the later portion reserved for testing
(20%). This approach mimics real-world forecasting
scenarios, where future prices are predicted based on
past data.

3.2 Hyperparameter Space

 The hyperparameters space in the context
of the provided model is a crucial component of the
model design, determining the configuration of the
LSTM network and influencing its performance in
predicting the Close Price. Hyperparameters differ
from model parameters in that they are not learned
during the training process; instead, they must be set
before training begins. The effectiveness of the
model heavily depends on the careful selection and
optimization of these hyperparameters.
In this system, the hyperparameters are dynamically
generated and optimized by the Hyperparameter
Generator. The generator explores a defined space of
possible hyperparameter values, adjusting them
iteratively based on the model’s performance. Here,
we break down the specific hyperparameters

involved, their ranges, and their significance in the
model’s performance.

Table 1: Hyperparameter Space
Hyperparameter Range/Values
Number of Layers 1 to 10 (Integers)
Number of Units 1 to 10 (Integers)

Learning Rate 10ିହ to 0.1 (Logarithmic
Scale)

Batch Size 16 to 2048 (Powers of 2)
Dropout Rate 0.1 to 0.9 (Increments of 0.1)

Sequence Length 1 to 250

Table 2: Description and Significance of
Hyperparameters

Hyper-
parameter

Description Significance

Number
 of

Layers

Number of LSTM
layers in the model.
Each LSTM layer
adds depth to the
network, enabling
it to capture more
complex patterns in
the time series data.

Fewer Layers:
- Less complexity
- Underfitting.

More Layers:
- More complex
- Risk of overfitting
- More computational
resources
- Longer training time.

Number
of

Units
Per

Layer

specifies the
number of units
(neurons) in each
LSTM layer.
Each unit processes
the input data and
passes the
information
through the
network.

Fewer Units:
The model may struggle
to learn the underlying
patterns in the data,
potentially leading to
underfitting.

More Units:
Increase the model’s
capacity to learn and
capture more details
from the input
sequences. increases the
risk of overfitting and
the computational
complexity of the model.

Learning
Rate

The learning rate
controls the size of
the steps the
optimizer takes
when updating the
model's weights
during training. It is
a critical
hyperparameter
that influences the
speed and stability
of the training
process.

Low Learning Rate:
Makes the training
process more stable but
slower. It may help in
fine-tuning the model,
but if too low, it can
result in the model
getting stuck in local
minima.

High Learning Rate:
Can speed up training
but at the risk of
overshooting the optimal
solution, leading to
divergence or
suboptimal performance.

Journal of Theoretical and Applied Information Technology
31st December 2024. Vol.102. No. 24

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

8919

Batch
Size

The batch size
defines the number

of samples
processed before

the model’s
internal parameters

are updated. It
affects the model’s

training stability
and the

convergence speed.

Small Batch Size:
Introduces more noise
into the gradient
estimation, which can
help the model escape
local minima but may
also result in slower
convergence.

Large Batch Size:
Provides more accurate
gradient estimates,
leading to smoother
convergence. However,
requires more memory
and computational
resources and may result
in the model getting stuck
in local minima.

Dropout

Rate
Dropout is a

regularization
technique used to
prevent overfitting
in neural networks.

During training,
dropout randomly
sets a fraction of

input units to zero
at each update,
which helps the

model generalize
better by

preventing it from
relying too heavily
on any one feature.

Low Dropout Rate:
More units are active
during training, which
can lead to better
performance on the
training data but may
increase the risk of
overfitting.

High Dropout Rate:
Forces the model to
learn more robust

features by relying on a
smaller set of units at
each update, reducing

overfitting but
potentially making the
training process less

efficient.
Sequence

Length
The sequence

length determines
the number of past
time steps (Close
Prices) used as

input to the model
to predict the next

time step. This
hyperparameter is

crucial for
capturing temporal

dependencies in
the data.

Short Sequences:
May result in the model
missing long-term
dependencies, which can
be critical in financial
time series forecasting.

Long Sequences:
Provide more context
and can help capture
long-term trends.
However, they increase
the model’s complexity
and the risk of
overfitting, especially if
the sequences include
noisy data.

Number of Epochs
The number of epochs refers to the number of times
the entire training dataset passes through the model
during training. Each epoch consists of several
iterations, determined by the batch size. In this
experiment, the number of epochs is fixed at 10
rather than treated as a tunable hyperparameter.
Research has shown that increasing the number of
epochs does not necessarily improve training
quality; while more epochs give the model additional

opportunities to learn, they can also lead to
overfitting, where the model performs well on
training data but struggles to generalize to unseen
data [22] [25]. Moreover, treating the number of
epochs as a hyperparameter introduces disparities in
computational consumption and processing time,
potentially skewing model comparison results [26].
To ensure fair comparisons and consistent resource
usage, the number of epochs is kept fixed throughout
the study.
The hyperparameter space in this model is designed
to allow extensive exploration of different
configurations, with ranges carefully chosen to
balance the model’s capacity to learn complex
patterns and its ability to generalize to new data.
3.3 Model Architecture and Components
 The model structure revolves around a two-
part system: the Hyperparameter Generator and
the LSTM Model. These components work together
to dynamically generate and optimize
hyperparameters for training an LSTM network
aimed at predicting the Close Price in our time series
data.

Figure 5: Gradient-Based Model Architecture

The Generator explores the Hyperparameters Space
dynamically, iteratively adjusting the
hyperparameters based on the model’s performance.
Initially, hyperparameters are selected randomly
within the specified ranges. As the training
progresses, the generator uses feedback from the
model’s performance (specifically the Mean
Squared Error, MSE) to refine the selection of

Journal of Theoretical and Applied Information Technology
31st December 2024. Vol.102. No. 24

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

8920

hyperparameters. This adaptive approach allows the
model to converge towards an optimal set of
hyperparameters that improve its predictive
accuracy.
Initial Randomization: The generator starts with a
randomly selected set of hyperparameters to explore
the space broadly. This initial randomness ensures
that the model does not get stuck in suboptimal
regions of the hyperparameter space.
Iterative Refinement: As training progresses, the
generator refines the hyperparameters by using the
MSE as a performance metric. Poor-performing
configurations are adjusted in subsequent iterations,
while better-performing configurations guide the
search in future iterations.
Scalability of Hyperparameters: The scaling
functions applied to raw outputs from the generator
ensure that the generated hyperparameters are within
practical and meaningful ranges. This scaling is
crucial for maintaining the balance between
exploration and exploitation in the hyperparameter
space.
3.3.1 The Generator
As shown in Figure 6, The generator is a feedforward
neural network built using
TensorFlow's Sequential API, consisting of fully
connected (dense) layers:

Figure 6: Generator Architecture

The architecture displayed in the diagram represents
the Hyperparameter Generator. Each layer processes
input data, transforming it through a series of
nonlinear operations to generate a set of raw
hyperparameters used to configure and train the
LSTM model. Below is a detailed explanation of the
architecture and the rationale behind its design.

Table 3: Generator Layer-by-Layer Breakdown

Layer Units Activat
ion
Functio
n

Purpose

Input
Layer

- - Expects an 11-dimensional
input vector, including noise
and potentially transformed
MSE values from previous
iterations. This forms the basis
for generating
hyperparameters.

First
Dense
Layer

64 ReLu
Initial transformation of the
input data. Captures and
processes a moderately
complex set of features.

Second
Dense
Layer

128 ReLu Expands the model's
capacity by learning more
complex representations of
the input data.

Third
Dense
Layer

256 ReLu
Deepens the network,
increasing representational
power to capture intricate
patterns in the input data for
generating accurate
hyperparameters.

Output
Layer

7 None
(Linear
)

Outputs a 7-dimensional
vector representing raw
hyperparameters, including
layers, units, learning rate,
batch size, dropout rate, and
sequence length. No activation
function.

Rationale Behind the Architecture:
Progressive Increase in Units: The architecture uses
progressively larger numbers of units (64 → 128 →
256) as the network deepens. This design choice
allows the model to gradually expand its capacity to
capture complex interactions within the input data,
leading to more refined and informed
hyperparameter generation. Increasing the number
of units in deeper layers has been shown to help in
learning hierarchical features, particularly in
complex tasks where higher layers capture more
abstract representations [22] [26].
Depth of the Network: The choice of three hidden
layers strikes a balance between model
complexity and computational efficiency. It is deep
enough to capture complex relationships but not so
deep as to cause issues like overfitting or excessive
training time, which can be exacerbated in deeper
architectures [27]. This depth is suitable for tasks
such as hyperparameter generation.
ReLU Activation Function: ReLU is chosen for the
hidden layers because it introduces non-linearity,
enabling the model to learn more complex patterns

Journal of Theoretical and Applied Information Technology
31st December 2024. Vol.102. No. 24

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

8921

than a purely linear model. ReLU is computationally
efficient, as it does not require expensive operations
like exponentiation or division, and it has become a
standard choice in deep learning architectures due to
its ability to mitigate the vanishing gradient problem
[28] [29].
Linear Output Layer: The output layer does not use
an activation function, allowing the network to
produce raw hyperparameter values that can be
directly scaled to the appropriate ranges. This
approach is crucial because the final values must be
within specific limits to be valid hyperparameters for
training the LSTM model. Using a linear output is
appropriate in regression tasks where the range of
predicted values is not constrained [22].
Scalability and Flexibility: The architecture
is scalable and flexible, capable of being adjusted or
extended if necessary to accommodate more input
features or generate a broader range of
hyperparameters. This flexibility is essential in a
research context where the optimal network
configuration may not be known a priori. Modular
architectures allow researchers to experiment with
various configurations without having to redesign
the entire model structure [30].
Generation of Initial Hyperparameters: Initially, the
generator produces hyperparameters based
on random inputs, which are passed through the
network to generate an initial set. This random
initialization helps explore different configurations
before convergence on an optimal set [31].
Adaptation and Learning: After each iteration, the
generator adapts based on the performance of the
model (measured by Mean Squared Error, or MSE).
The generator uses the MSE as feedback to adjust its
internal weights, effectively learning which
hyperparameters lead to better model performance.
The use of a feedback loop in hyperparameter
optimization allows for dynamic adjustments and
continuous improvement [15] [5].
Optimizer: The generator model is optimized using
the Adam optimizer with a learning rate of 0.1.
Adam is a popular choice in neural network
optimization due to its adaptive learning rate and
ability to handle sparse gradients [32]. The optimizer
updates the weights of the generator based on
gradients calculated from the loss, which is
influenced by the MSE.
3.3.2 The LSTM
The LSTM Model is the actual predictive model that
utilizes the hyperparameters generated by the
Hyperparameter Generator. The LSTM model is a
sequential neural network built using
TensorFlow's Sequential API, comprising multiple
LSTM layers followed by a Dense output layer.

Table 4: LSTM Layer-by-Layer Breakdown

Layer Units/Parameters

Purpose

Input
Layer

(sequence_length,

1)

Defines the input shape,
where sequence_length is
a hyperparameter and 1
indicates a single feature
(Close Price).

LSTM
Layers

Determined by

"layers" and
‘units”

Number of LSTM layers
is determined by the
"layers" hyperparameter.
The "units"
hyperparameter specifies
the LSTM units.

Dropout
Layers

Controlled by
"dropout_rate"

Dropout layers are
applied after each LSTM
layer to prevent
overfitting, with dropout
rate controlled by a
hyperparameter.

Output
Layer

1

Final Dense layer with a
single unit,
corresponding to the
prediction of the next
Close Price in the
sequence.

Compilation: The model is compiled using the Adam
optimizer with a loss function of mean squared error
(MSE). The learning rate for the optimizer is
dynamically set based on the generated
hyperparameters.
Training Process: The LSTM model is trained on
sequences of historical Close Prices, with the length
of each sequence determined by the "sequence
length" hyperparameter from the Generator. The
model is trained using a specified "batch_size" and
for a fixed number of epochs. During training, the
model learns to predict the next Close Price based on
the previous “sequence_length” number of Close
Prices.
Evaluation: After training, the model's performance
is evaluated on a validation set, with MSE used as
the primary metric. The result of this evaluation
informs the Hyperparameter Generator for the next
iteration.
3.4 Early Stopping
 When running the Model for multiple
iterations, we notice that it doesn’t necessarily
converge as illustrated in the figure below, we notice
that the Error value (MSE) jumps between local
minima. The first solution that comes to mind is to
adjust the Generator’s learning rate. However, this
does not fix the convergence problem as it is related
to the randomness within the data itself that mimics
the complexities related to the stock market.

Journal of Theoretical and Applied Information Technology
31st December 2024. Vol.102. No. 24

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

8922

Figure 7: Evolution of MSE Over Iterations

To better understand how the Model functions, we
applied a smoothing the observed MSE values from
the LSTM predictions, and we came to the
conclusion that the Model searches for the lowest
MSE values in terms of cycles. In other words, the
Model succeeds to find the local minima only to
shoot upwards in the quest of other minima that
might or might not be smaller than the previous ones.

Figure 8: Comparison of Original vs Smoothed MSE

By increasing the number of iterations, this
phenomenon can be observed clearly. However,
what caught our attention is that regardless of how
many times the experiment is repeated, the Model
succeeds to find the smallest MSE within the first 20
iterations. Thus, we decided to implement an early
stopping mechanism for our model after that number
and then retrieve the lowest MSE value and the
related set of Hyperparameters, being the
combination that yielded the best results.
Even if the Model could hypothetically succeed to
find a lower MSE after a larger number of iterations,
by then, the wasted time and computational power
would be insignificant against the error difference.

Figure 9: Extended Comparison of Original vs Smoothed

MSE

4. EVALUATION

4.1 Generator Model Results
 In this section we outline the results
obtained by our model, to which we will refer to in
what follows as the Generator Model or The Base
Model.
4.1.1 Error Analysis (MSE)
Figure 10 depicts the evolution of MSE over
iterations. Each value corresponds to the
performance of a combination of hyperparameters
from table 8 (See Appendices)

Figure 10: Evolution of MSE over 20 iterations

1. Overall Trend: The MSE remains relatively

low and stable throughout the majority of
the iterations, with occasional spikes in
certain iterations.

2. Spikes in MSE: Noticeable spikes occur at
iterations 2, 7, 13, and 20, where the MSE
values are significantly higher than the
surrounding iterations. These spikes might
indicate moments when the model's
predictions diverged more significantly
from the actual values.

3. Low MSE Points: Many iterations (e.g., 1,
5, 6, 10, 16, 18) show very low MSE values,
suggesting that the model was performing
well in these iterations.

4. Final Spike: A particularly high spike is
seen at iteration 20 (last iteration), where
the MSE reaches its peak. This indicates the
beginning of a new search cycle.

Smoothing the MSE values gives another insight on
the functioning of the Base Model and plots the
search cycles as expected

Figure 11: Comparison of Original vs Smoothed MSE

over 20 Iterations

Journal of Theoretical and Applied Information Technology
31st December 2024. Vol.102. No. 24

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

8923

4.1.2 Best Hyperparameters
Table 5 shows the set of LSTM hyperparameters that
resulted in the lowest MSE value. In what follows,
we will load this particular LSTM with these specific
configurations for further analysis.

Table 5: Generator Model Best Hyperparameters

Iteration 18
Number of Layers 1
Units Per Layer 2
Learning Rate 0.00001
Batch Size 16
Sequence Length 1
Dropout Rate 0.1
MSE 0.000229
Time (Seconds) 4.043066

4.1.3 Predictions
Figure 12 shows a comparison between the Actual
Close Prices and the Predicted Close Prices (over
the course of about one year, of the S&P 500 index:

Figure 12: Actual vs Predicted Close Prices over a year

1. Good Fit: Overall, the predicted prices closely

follow the actual prices, especially during the
major trends. This indicates that the model
captures the general direction of the market
quite well.

2. Minor Deviations: While the model does a good
job of following the actual prices, there are some
instances of small discrepancies, particularly
during short-term fluctuations or corrections.
These deviations could be areas where the
model might be slightly lagging behind or
overreacting to short-term movements.

3. Trending Phases: During the upward trends,
such as between January 2024 and May 2024,
the predictions track the actual price movements
very closely, which suggests the model is
effective at predicting larger, sustained trends.

4. Increased Variation at Peaks: There are
moments, especially at price peaks, where the
predicted prices deviate slightly more from the
actual values. For example, around July 2024,

the predicted prices overestimate the peak, and
around September 2024, the model
underestimates a local price drop. This suggests
some challenges in accurately predicting
turning points.

For more visibility, we diminished the number of
datapoints to 100 in figure 13, which confirms the
fact that the model is decently following trends and
predicting price direction

Figure 13: Actual vs Predicted Close Prices (Six Months)

4.1.4 Residuals
The residual plot shows the distribution of errors
(residuals) between the actual and predicted values
from our model.

Figure 14: Error Distribution (Residuals)

Here's a breakdown of key observations:
Symmetry and Distribution: The residuals appear to
follow a roughly symmetrical distribution, with a
peak around 0. This indicates that the model has
relatively balanced errors, with an equal likelihood
of overestimating or underestimating the actual
values. The distribution is somewhat bell-shaped,
which is common in regression tasks and suggests
the errors may follow a normal distribution to some
extent, although it's not perfectly centered around 0.
Skewness: There is a slight right skew in the
distribution. This means that there are more cases
where the model significantly underestimates
(negative residuals) compared to overestimating
(positive residuals). The tail on the right-hand side
(positive errors) is a bit longer, which suggests the

Journal of Theoretical and Applied Information Technology
31st December 2024. Vol.102. No. 24

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

8924

model sometimes significantly under-predicts the
actual values. Error Magnitude: Most residuals are
concentrated between -50 and 50, which shows that
for the majority of the data points, the model's
predictions are reasonably close to the actual values.
However, there are a number of instances where the
residuals are as large as 100 or more, suggesting that
in some cases, the model's predictions deviate
significantly from the actual values.
Bias: Since the peak of the distribution is slightly
above 0, this may suggest that the model slightly
underestimates the true values more frequently than
it overestimates.
Conclusion: While the residual distribution looks
somewhat normal, the presence of some large
residuals and a slight skew indicates that the model
might not perfectly capture the relationship between
the features and the target variable. There could be
room for improvement in hyperparameter tuning or
model architecture to reduce the occurrence of large
errors, particularly in the tail of the distribution.
4.2 Bayesian Optimization Results
4.2.1 Early stopping
Before we delve into results, it is important to note
that running Bayesian Optimization for this problem
and for the suggested hyperparameter space is a task
that could keep running until all the possibilities of
every single set is compiled before retrieving the
most performing Hyperparameters and related MSE.
this will technically be similar to applying a grid
search algorithm or a random search until we run out
of all possible combinations. Thus, it is highly
important to establish an early stopping condition for
Bayesian optimization.
Condition: The algorithm will stop its search once
we reach an MSE value equal or inferior to the best
MSE achieved by the Generator Model.
4.2.2 Loss (MSE)
Figure 15 shows the evolution of MSE over
iterations. The values are extracted from table 9 (See
Appendices) that shows in detail which set of
Hyperparameters yielded which MSE value. As the
figure shows, the process took 28 iterations.

Figure 15: Evolution of Bayesian Optimization MSE over

Iterations

Key observations:
1. Initial Improvement: There is an initial decline

in MSE after the first iteration, suggesting that
the model made quick adjustments that led to
some early improvement by iteration 5.

2. Oscillations: The MSE fluctuates significantly
across the iterations, with several peaks (e.g.,
iterations 3, 8, 14, and 20) and valleys (e.g.,
iterations 6, 16, and 22). This kind of oscillation
is characteristic of Bayesian optimization as it
explores different regions of the hyperparameter
space, testing both well-performing and
exploratory configurations.

3. Highest Peak: The highest MSE occurs around
iteration 9, suggesting a hyperparameter set that
led to a poor fit. Following this, there are some
recovery iterations, but the MSE never settles
consistently at lower levels for an extended
period.

4. Sharp Decline at Iteration 16: Iteration 16 shows
a significant drop in MSE, which could
represent a promising set of hyperparameters
that drastically improved performance.
However, subsequent iterations increase the
MSE again, indicating the model continues to
explore beyond this set of hyperparameters.

5. Late Iteration Variability: The latter part of the
graph shows a continued pattern of sharp
increases and decreases in MSE, particularly
around iterations 20 and 25. The steep declines,
such as those in iterations 16 and 22, suggest
that the model occasionally stumbles upon more
favorable hyperparameters, but these are not
consistently maintained in the search.

6. General Trend: While the optimization does
lead to some low MSE values (e.g., iterations 6,
16, and 22), there is no clear downward trend
over time. This suggests that the search is still in
an exploratory phase, where it hasn't fully
converged on an optimal set of
hyperparameters, again due to the complexity of
Data.

4.2.3 Best Hyperparameters
After stopping early at iteration 28, Bayesian
optimization has yielded the following results:

Table 6: Bayesian Optimization Best Hyperparameters
Iteration 28
Number of Layers 4
Units Per Layer 4
Learning Rate 0.01
Batch Size 16
Sequence Length 34
Dropout Rate 0.1

Journal of Theoretical and Applied Information Technology
31st December 2024. Vol.102. No. 24

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

8925

MSE 0.0001
Time (Seconds) 1754.39

The best hyperparameters are extracted from Table
9 (Appendices) which contains full results.
In the following sections, we will dive deeper into
comparing the results above with the results from
our custom gradient-based model.
4.3 Generator Model vs Bayesian Optimization
4.3.1 Loss Comparison
Figure 16 proves that The Generator model clearly
performs more consistently compared to the
Bayesian Optimization model, as reflected in the
lower and more stable MSE values. This suggests
that the Generator model is more effective at keeping
MSE low over iterations.
On the other hand, the Bayesian Optimization
model, while showing more exploration and
potential to hit lower MSE values (e.g., iterations 16
and 22), suffers from greater instability. We also
notice that after the 20th iteration, the latter took an
extra 8 iterations to meet the early stopping
condition.

Figure 16: Comparison of the Evolution of MSE Over

Iterations (Base Model vs Bayesian Optimization)

Generator Model: The Generator model’s smoother
and more controlled MSE evolution implies it is
either better tuned or more focused in its
optimization, leading to consistent performance.
Bayesian Optimization Model: The Bayesian model
may benefit from more fine-tuning, or a more refined
search space, to stabilize its performance and reduce
the number of high MSE iterations.
4.3.2 Time Comparison
Figure 17 compares the execution time (in seconds)
between our Base Model (Generator) and
the Bayesian Optimization Model.

Figure 17: Comparison of Execution Time between The
Base Model and Bayesian Optimization over Iterations

Key Observations:
Consistent Growth for Both Models:
The execution time for both models increases
steadily as the iterations progress. However, the rate
of increase differs significantly between the two
models.
Execution Time for the Base Model:
The Base Model has a consistent, relatively slow
increase in execution time, remaining under 500
seconds even at iteration 28. This suggests that the
computational cost of each iteration in the Base
Model remains fairly constant, which is likely due to
a more streamlined or less complex, yet efficient
process.
Execution Time for the Bayesian Optimization
Model:
The Bayesian Optimization model shows a much
steeper increase in execution time, especially after
iteration 20, where the time jumps significantly,
reaching nearly 1750 seconds by iteration 28.
This sharp rise implies that the Bayesian
Optimization process becomes increasingly
computationally expensive over time. This could be
due to the more complex nature of the Bayesian
approach, which requires more resources to evaluate
and explore hyperparameter space as it narrows
down the optimization.
Gap Between Models:
The gap between the two models’ execution times
widens dramatically after iteration 15. Initially, the
difference is modest, but from iteration 20 onward,
the Bayesian Optimization model takes
exponentially more time per iteration compared to
the Base Model.
Summary:
Efficiency of the Base Model: The Base Model is far
more efficient in terms of execution time, making it
a better choice when time is a critical factor.
Computational Intensity of Bayesian Optimization:
The Bayesian Optimization model, while potentially
more powerful in its search for optimal
hyperparameters, becomes increasingly resource-

Journal of Theoretical and Applied Information Technology
31st December 2024. Vol.102. No. 24

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

8926

intensive, which could make it impractical for longer
training processes or larger datasets.
4.3.3 Additional Metrics
In this section, we will study additional performance
metrics, including:
 R-Squared (R²),
 Root Mean Squared Error (RMSE),
 Mean Absolute Error (MAE),
to comprehensively evaluate the predictive accuracy
of the Generator Model and the Bayesian
Optimization Model. These metrics will provide
deeper insights into how well each model captures
the underlying patterns in the data, how effectively
they minimize errors, and how consistently they
perform across iterations. By analyzing these
metrics, we aim to better understand the strengths
and weaknesses of each model in terms of both
precision and reliability
4.3.3.1 𝑹𝟐
Figure 18 displays the R-Squared (R²)
evolution over iterations for the two models. The R-
Squared metric measures the goodness of fit, with
values closer to 1 indicating a better fit between the
predicted and actual values.

Figure 18: Comparison of the Evolution of R-Squared

over Iterations (Bayesian Opt vs Generator Model)

Generator Model Performance:
The Generator Model shows consistently high R²
values across most iterations, hovering around 0.8 to
1.0, indicating that this model provides a very good
fit for the data.
There is a brief dip around iteration 20, where the R²
drops sharply, but the model quickly recovers.
Overall, the model remains highly reliable in terms
of its predictive accuracy throughout the iterations.
Bayesian Optimization Model Performance:
The Bayesian Optimization Model demonstrates far
more variability in R² values, ranging from positive
values around 0.8 to negative values (as low as -0.4).

Early iterations show a sharp decline, with R² falling
to negative values by iteration 4, which indicates that
the model is performing worse than simply
predicting the mean of the data at certain points.
There are some moments of recovery (e.g., iterations
7, 14, and 23), where the R² rises to around 0.6, but
these are not sustained, as the model frequently dips
back into negative or low R² values.
The fluctuations highlight the exploratory nature of
Bayesian Optimization, where the search for optimal
hyperparameters can result in poor fits before
finding better configurations.
Comparison:

 The Generator Model clearly outperforms
the Bayesian Optimization Model in terms
of stability and goodness of fit, as
evidenced by its consistently high R²
values. is more stable and effective at
predicting the target variable, making it a
more reliable option.

 The Bayesian Optimization Model, while
capable of achieving decent R² values
occasionally, struggles to maintain a good
fit over multiple iterations, exhibiting
significant volatility which suggests that its
hyperparameter search is less focused,
leading to inconsistent performance.
However, given its potential for recovery in
certain iterations, fine-tuning could
improve its stability.

The Generator Model delivers consistently high
performance in terms of R², making it the more
reliable choice. The Bayesian Optimization
Model shows promise but requires further
refinement to avoid the severe fluctuations and
consistently produce high R² values.
4.3.3.2 Root Mean Squared Error (RMSE)
Figure 19 shows the Root Mean Squared Error
(RMSE) evolution over iterations for both models.
RMSE is a standard metric used to measure the
difference between the predicted values and the
actual values, with lower values indicating better
model performance.

Journal of Theoretical and Applied Information Technology
31st December 2024. Vol.102. No. 24

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

8927

Figure 19: Comparison of the Evolution of RMSE over

Iterations (Bayesian Opt vs Generator Model)

Generator Model Performance:
The Generator Model maintains relatively low
RMSE throughout most of the iterations,
consistently below 0.10. This indicates that the
model is making predictions with a low degree of
error.
There are a few spikes, particularly around iteration
20, where RMSE jumps significantly. However,
these are isolated instances, and the model quickly
returns to a lower RMSE.
The stability of the Generator Model's RMSE
suggests a reliable performance with limited
fluctuations.
Bayesian Optimization Model Performance:
The Bayesian Optimization Model demonstrates
much higher variability in RMSE, with values
frequently ranging between 0.15 and 0.20. This
indicates that the model experiences larger errors in
its predictions compared to the Generator Model.
While there are occasional sharp drops in RMSE
(e.g., iterations 17 and 22), these improvements are
often short-lived, with the RMSE rising again in
subsequent iterations.
The overall pattern of the Bayesian Optimization
Model shows high instability, with rapid increases
and decreases in RMSE, reflecting the exploratory
nature of the hyperparameter optimization process.
Comparison:

 The Generator Model outperforms the
Bayesian Optimization Model in terms of
consistency and lower RMSE values. Its
predictions are more accurate and stable
across most iterations. It shows better
control and optimization, leading to more
reliable predictions with lower error.

 The Bayesian Optimization Model, while
capable of reducing RMSE in some

iterations, struggles with maintaining low
error levels, as evidenced by frequent
spikes and high RMSE values in many
iterations. This suggest that its
hyperparameter search is less focused,
leading to less consistent performance. The
exploration phase seems to produce
significant variance in results, both positive
and negative.

The Generator Model provides more accurate and
stable predictions with lower RMSE throughout the
iterations. The Bayesian Optimization Model, while
capable of achieving good results in some iterations,
lacks the stability and consistency seen in the
Generator Model, making it less reliable in terms of
predictive accuracy.
4.3.3.3 Mean Absolute Error (MAE)
Figure 20 depicts the Mean Absolute Error (MAE)
evolution. MAE is a metric that measures the
average absolute difference between the predicted
and actual values, with lower values indicating better
performance.

Figure 20: Comparison of the Evolution of MAE over

Iterations (Bayesian Opt vs Generator Model)

Generator Model Performance:
The Generator Model maintains relatively low MAE
throughout the iterations, mostly under 0.06,
indicating that the model produces predictions with
smaller deviations from the actual values.
Similar to previous metrics, there are a few spikes
(notably around iterations 5, 15, and 20), where the
MAE increases. However, these spikes are followed
by quick recoveries, showing the model’s ability to
return to a lower error rate.
Overall, the Generator Model shows a stable
performance with controlled fluctuations in MAE.
Bayesian Optimization Model Performance:
The Bayesian Optimization Model exhibits much
higher MAE, fluctuating between 0.08 and 0.14 for
most iterations. This indicates that its predictions

Journal of Theoretical and Applied Information Technology
31st December 2024. Vol.102. No. 24

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

8928

tend to deviate more from the actual values
compared to the Generator Model.
There are noticeable swings in the error values, with
frequent sharp rises and falls. This suggests that the
Bayesian Optimization process is still exploring
various hyperparameter configurations, leading to
inconsistent prediction accuracy.
The volatility in MAE, particularly the large spikes
around iterations 5, 14, and 23, indicates that the
model struggles to maintain a low error rate, despite
occasional improvements.
Comparison:

 The Generator Model consistently achieves
lower MAE values compared to the
Bayesian Optimization Model. The
differences in MAE are significant, with the
Generator Model maintaining smaller
errors throughout most of the iterations.
Even when the MAE spikes, the model
quickly corrects itself.

 The Bayesian Optimization Model's higher
and more erratic MAE suggests that its
hyperparameter exploration is less effective
in minimizing error compared to the
Generator Model, which shows more
stability and reliability in its predictions.
This indicate that it requires more fine-
tuning. Its exploratory nature may be
responsible for the unstable performance,
but it fails to consistently reduce error.

The Generator Model outperforms the Bayesian
Optimization Model in terms of minimizing MAE,
providing more accurate and stable predictions
across the iterations. While the Bayesian
Optimization Model shows potential for
improvement in some iterations, it lacks the
consistency and efficiency needed for reliable
predictions.
4.3.3.4 Metrics Conclusion
In conclusion, across all metrics—MSE, RMSE, R²,
and MAE—the Generator Model consistently
outperforms the Bayesian Optimization Model in
terms of stability, accuracy, and error minimization.
The Generator Model maintains lower and more
controlled error values (MSE, RMSE, and MAE),
while showing consistently high R² values,
indicating a better fit between predictions and actual
values. In contrast, the Bayesian Optimization
Model exhibits greater variability and volatility
across all metrics, with frequent spikes and drops,
highlighting its exploratory nature but resulting in
less reliable performance. While the Bayesian model
occasionally reaches lower error values, it struggles
to sustain these improvements, making the

Generator Model the more effective and stable
option for accurate prediction.
4.3.4 Understanding Search Logic
Figure 21 (See Appendices) presents the evolution
of several hyperparameters over iterations for both
the Base Model and the Bayesian Optimization
Model. The plots track the changes
in Hyperparameters (Learning Rate, Batch
Size, Sequence Length, Dropout Rate, Units Per
Layer, and Number of Layers) across iterations. We
observe the following:
Learning Rate:

 The Base Model maintains a very low,
near-constant learning rate throughout the
iterations, indicating a conservative and
stable approach to learning.

 The Bayesian Optimization Model, on the
other hand, exhibits drastic fluctuations in
learning rate, with frequent spikes and
drops. This variability reflects its
exploratory nature, trying to find the
optimal rate, but leading to instability.

Batch Size:
 The Base Model keeps the batch size low

and relatively constant, staying under 256
across iterations. This likely contributes to
the model’s stability and consistency in
performance.

 The Bayesian Optimization Model shows
extreme fluctuations in batch size, reaching
as high as 2048 in some iterations. The
large changes suggest that the model is
attempting aggressive optimizations but
may be overfitting or inefficient in certain
configurations.

Sequence Length:
 The Base Model follows a moderate

pattern in adjusting sequence length, with
some fluctuations but maintaining a more
controlled approach.

 The Bayesian Optimization Model again
shows significant variability, with sequence
lengths fluctuating wildly. This instability
could lead to inconsistent performance, as
sequence length can greatly affect how the
model processes temporal data.

Dropout Rate:
 The Base Model steadily adjusts the

dropout rate, staying within a controlled
range (between 0.1 and 0.4). This
controlled variation helps in regularizing
the model without extreme changes.

 The Bayesian Optimization
Model experiments with a much broader
range of dropout rates, from 0.1 to 0.9,

Journal of Theoretical and Applied Information Technology
31st December 2024. Vol.102. No. 24

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

8929

likely in search of optimal regularization.
However, these wide fluctuations can lead
to over-regularization or insufficient
regularization, impacting model
performance.

Units Per Layer:
 The Base Model keeps units per layer

relatively low and adjusts them modestly,
maintaining a controlled structure that
avoids overcomplicating the network.

 The Bayesian Optimization Model again
exhibits high variability, frequently
adjusting the number of units between 1
and 10. These significant shifts suggest the
model is searching for the best architecture
but could lead to unstable learning.

Number of Layers:
 The Base Model adjusts the number of

layers in a more measured way, with minor
changes that seem to follow a pattern,
keeping the structure simple.

 The Bayesian Optimization Model varies
the number of layers extensively,
fluctuating between 1 and 10 layers, which
could lead to instability in the model’s
architecture, as deeper networks are more
complex and harder to train effectively.

The Base Model exhibits more controlled, gradual
adjustments across all hyperparameters, which likely
contributes to its stability and more consistent
performance. In contrast, the Bayesian Optimization
Model demonstrates large, frequent fluctuations in
most hyperparameters, reflecting its exploratory
approach. While this may allow it to find occasional
optimal configurations, the extreme variability could
lead to unstable training and inconsistent results, as
reflected in its less stable performance metrics
compared to the Base Model. Additionally,
compared to prior studies leveraging Bayesian
optimization for hyperparameter tuning, our
Generator model demonstrates superior stability,
particularly in reducing large fluctuations in MSE
across iterations. Unlike the approach in [33], which
highlights the exploratory advantages of Bayesian
optimization, our method achieves consistent
performance gains with significantly reduced
computational cost, as reflected in the comparative
analysis of execution times (Figure 17). This
positions our approach as a more resource-efficient
alternative for tasks requiring real-time adaptability.

Table 7: Chosen Hyperparameters Comparison
(Bayesian Optimization vs Generator Model)

Hyperparameter Base Model Bayesian
Optimization
Model

Learning Rate Low and
relatively
constant;
conservative
approach.

Large
fluctuations;
frequent spikes
and drops.

Batch Size Low and
stable,
generally
under 256.

Extreme
variability,
ranging from
small to as
high as 2048.

Sequence Length Moderate
changes with
controlled
fluctuations.

Significant
variability,
with large
jumps and
drops.

Dropout Rate Controlled
range between
0.1 and 0.4;
gradual
adjustments.

Broad range
from near 0 to
0.9; unstable
variations.

Units Per Layer Modest
adjustments,
low and stable.

Large
fluctuations,
from 1 to 10
units, highly
variable.

Number of
Layers

Measured
adjustments,
keeping it
simple.

High
variability,
frequently
changing
between 1 and
10 layers.

5. DISCUSSION

 Ensuring the validity of any machine
learning study is critical, especially in fields like
financial forecasting, where the implications of
predictions can have significant economic impacts.
The findings of this study are subject to various
threats to validity, categorized into internal, external,
and construct validity, each of which is discussed in
detail below.
Internal Validity
Internal validity concerns the degree to which the
observed outcomes of the model are attributable to
the experimental design rather than external factors.
In this study, the primary internal validity threat
arises from the quality and quantity of the historical
S&P 500 data used. While the dataset spans several
decades and includes diverse market conditions, it
may not fully capture rare or unforeseen market
behaviors such as sudden crashes or spikes due to
geopolitical events or unexpected crises (e.g., the
COVID-19 pandemic). This issue aligns with
findings by Sun et al. (2022), who highlighted the

Journal of Theoretical and Applied Information Technology
31st December 2024. Vol.102. No. 24

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

8930

need for robust data preprocessing to mitigate the
impact of outliers and anomalies in financial datasets
[34].
Hyperparameter tuning relies on a feedback loop
involving Mean Squared Error (MSE) minimization.
Any noise or irregularity in this loop, such as
anomalous spikes in MSE due to outlier data points,
may lead to suboptimal or misleading model
adjustments. Although measures like data
normalization and outlier detection are applied, these
cannot fully eliminate the risk of bias inherent in the
dataset.
External Validity
External validity assesses the generalizability of the
findings beyond the scope of the study. While this
research focuses on the S&P 500 index, its
applicability to other financial indices, such as the
NASDAQ or Dow Jones Industrial Average,
remains untested. Different indices may exhibit
unique behaviors and levels of volatility, making the
model’s performance unpredictable when applied to
new datasets. It is demonstrated that optimization
methods tuned for specific datasets often perform
poorly on datasets with varying dynamics, such as
those influenced by external shocks or structural
changes [35]. This underscores the need for
validation on diverse datasets, including non-
financial time series, to evaluate the robustness of
the proposed model.
Similarly, the model's generalizability to non-
financial time series datasets, such as energy
consumption, weather forecasting, or
epidemiological data, is uncertain. These datasets
often have distinct characteristics (e.g., periodicity,
seasonality) that may require tailored
hyperparameter tuning approaches. Without further
testing, the broader applicability of the proposed
gradient-based optimization system is limited.
Construct Validity
Construct validity pertains to whether the study
measures what it claims to measure. This study
assumes that minimizing MSE is a sufficient proxy
for improving forecasting accuracy and reliability.
While MSE is a widely accepted metric in regression
tasks, it primarily emphasizes the magnitude of
errors without considering their direction or
temporal relevance. Zhao (2023) pointed out that
reliance on single metrics like MSE can lead to
biased evaluations, particularly in domains where
directional accuracy is critical, such as stock price
predictions [36].
For instance, in financial forecasting,
underestimating a significant market movement may
have vastly different implications compared to
overestimating it. Metrics like Mean Absolute

Percentage Error (MAPE) or R-squared could
provide complementary perspectives on model
performance but are not explored in this study.
Additionally, the study’s reliance on hyperparameter
tuning as the primary driver of improved
performance may overlook other critical factors,
such as model architecture or the quality of input
features. For example, incorporating external
macroeconomic indicators or technical analysis
signals might enhance the LSTM model's
forecasting capabilities beyond what
hyperparameter optimization alone can achieve.
Mitigation Strategies
To address these threats, several mitigation
strategies have been implemented or proposed:

 Data Quality Control: The use of
normalization and outlier detection helps
reduce the impact of data irregularities.
Recent advances, such as data
augmentation techniques for rare events,
have shown promise in enhancing model
robustness to unseen conditions [37].

 Cross-Dataset Validation: Testing the
model on multiple financial indices or
synthetic datasets could provide stronger
evidence of generalizability.

 Diverse Metrics: Incorporating additional
evaluation metrics, such as MAPE or
directional accuracy, may offer a more
nuanced understanding of model
performance.

 Feature Engineering: Expanding the
model's feature set to include external
variables, such as interest rates or market
sentiment scores, could enhance its
forecasting accuracy and robustness.

While the proposed adaptive hyperparameter
tuning system demonstrates promise in
improving the efficiency and stability of LSTM
models for financial forecasting, these validity
considerations highlight areas for caution and
further investigation. By addressing these
threats in future research, the model's
applicability and reliability can be significantly
enhanced.

6. CONCLUSION

 In this paper, we led a comparison between
the Base Model and the Bayesian Optimization
Model to reveal significant differences in their
performance in terms of stability and efficiency.
The Base Model exhibits consistently lower error
rates across all metrics, including MSE, RMSE,
MAE, and R², making it a more reliable model for

Journal of Theoretical and Applied Information Technology
31st December 2024. Vol.102. No. 24

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

8931

accurate predictions. Its controlled and stable
adjustments to hyperparameters, such as learning
rate, batch size, and dropout rate, contribute to its
overall robustness and precision. Additionally, the
Base Model demonstrates superior time efficiency,
with significantly lower execution times per iteration
compared to the Bayesian Optimization Model.
On the other hand, the Bayesian Optimization
Model, while having the potential to explore a
broader hyperparameter space, suffers from greater
volatility in both performance and training time. Its
frequent and extreme fluctuations in
hyperparameters, such as batch size and sequence
length, lead to inconsistent error reduction and
prolonged training times. While the Bayesian
Optimization Model occasionally finds
configurations that yield lower error, these moments
are short-lived, and the model quickly regresses to
higher error values. Overall, the Base Model proves
to be more efficient and effective, providing better
accuracy and faster results with less computational
overhead.

7. FUTURE WORK

Building on the strengths of the Generator model,
future research can explore several directions to
further enhance its capabilities and address its
limitations.
Hybrid Optimization Approaches
One promising direction is the development of a
hybrid optimization model that combines the
exploration capabilities of Bayesian optimization
with the stability and efficiency of the Generator
model's gradient-based tuning. Such a hybrid
approach could allow for a more focused yet flexible
search of hyperparameter spaces, leveraging the
strengths of both methods. Recent studies have
demonstrated the effectiveness of hybrid strategies in
improving convergence and handling complex, high-
dimensional spaces [38][39].
Expanding Application Domains
The current study focuses on the S&P 500 index, but
extending the model to other financial indices (e.g.,
NASDAQ, Dow Jones Industrial Average) and non-
financial time series datasets (e.g., weather
forecasting, energy consumption) could provide
valuable insights into its robustness and scalability.
Testing on datasets with diverse characteristics, such
as seasonality or external shocks, will help generalize
the model's applicability across domains [40].
Multi-Objective Optimization
Incorporating multi-objective optimization
frameworks to balance competing priorities, such as

predictive accuracy and computational efficiency,
could further refine the Generator model’s utility.
This approach would align the model’s performance
with real-world time and resource constraints [41].
Dynamic and Adaptive Mechanisms
Future studies could enhance the Generator model by
introducing more adaptive or dynamic
hyperparameter tuning mechanisms. Techniques like
meta-gradient optimization and adaptive learning
rates have shown promise in helping models adapt to
changing data distributions while maintaining
stability [42]. These additions would improve the
model's ability to respond to shifts in data patterns,
particularly in volatile financial markets.
Improved Hyperparameter Space Exploration
The reliance on predefined hyperparameter ranges
limits the Generator model’s exploratory potential.
Introducing probabilistic sampling or dynamic range
adjustments could allow for more thorough
exploration, addressing edge cases that static ranges
might overlook. This could lead to improved
outcomes, especially in challenging datasets.
Scalability and Efficiency
Experimenting with larger and more diverse datasets
could validate the Generator model’s scalability.
Efficient implementations, such as distributed
training or low-precision computation, may also be
explored to further reduce training times while
maintaining model performance.
By addressing these areas, the Generator model can
evolve into a more versatile and robust optimization
tool for various machine learning applications. The
integration of recent advancements in optimization
and scalability frameworks will be critical for
realizing this potential.

REFERENCES:
[1] Bergstra, J., & Bengio, Y., "Random Search for

Hyper-Parameter Optimization," Journal of
Machine Learning Research, Vol. 13, No. 1,
2012, pp. 281-305.

[2] Snoek, J., Larochelle, H., & Adams, R. P.,
"Practical Bayesian Optimization of Machine
Learning Algorithms," Advances in Neural
Information Processing Systems, Vol. 25, 2012,
pp. 2951-2959.

[3] Shahriari, B., Swersky, K., Wang, Z., Adams, R.
P., & de Freitas, N., "Taking the Human Out of
the Loop: A Review of Bayesian Optimization,"
Proceedings of the IEEE, Vol. 104, No. 1, 2016,
pp. 148-175.

[4] Hutter, F., Hoos, H. H., & Leyton-Brown, K.,
"Sequential Model-Based Optimization for

Journal of Theoretical and Applied Information Technology
31st December 2024. Vol.102. No. 24

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

8932

General Algorithm Configuration,"
International Conference on Learning and
Intelligent Optimization, Springer, 2011, pp.
507-523.

[5] Franceschi, L., Donini, M., Frasconi, P., & Pontil,
M., "Bilevel Programming for Hyperparameter
Optimization and Meta-Learning,"
International Conference on Machine Learning
(ICML), 2018, pp. 1563-1572.

[6] Maclaurin, D., Duvenaud, D., & Adams, R. P.,
"Gradient-Based Hyperparameter Optimization
Through Reversible Learning," International
Conference on Machine Learning (ICML),
2015, pp. 2113-2122.

[7] Liu, H., Simonyan, K., & Yang, Y., "DARTS:
Differentiable Architecture Search,"
International Conference on Learning
Representations (ICLR), 2018.

[8] Snoek, J., Rippel, O., Swersky, K., Kiros, R.,
Satish, N., Sundaram, N., & Dahl, G. E.,
"Scalable Bayesian Optimization Using Deep
Neural Networks," International Conference on
Machine Learning (ICML), 2015, pp. 2171-
2180.

[9] Domke, J., "Generic Methods for Optimization-
Based Modeling," International Conference on
Artificial Intelligence and Statistics
(AISTATS), 2012, pp. 318-326.

[10] Wang, Z., Zoghi, M., Hutter, F., Matheson, D.,
& de Freitas, N., "Bayesian Optimization in a
Billion Dimensions via Random Embeddings,"
Journal of Artificial Intelligence Research, Vol.
55, 2013, pp. 361-387.

[11] Pedregosa, F., "Hyperparameter Optimization
with Approximate Gradient," International
Conference on Machine Learning (ICML),
2016, pp. 737-746.

[12] Baydin, A. G., Pearlmutter, B. A., Radul, A. A.,
& Siskind, J. M., "Automatic Differentiation in
Machine Learning: A Survey," Journal of
Machine Learning Research, Vol. 18, No. 1,
2018, pp. 5595-5637.

[13] Shaban, A., Cheng, C.-A., Hatch, N., & Boots,
B., "Truncated Back-Propagation for Bilevel
Optimization," International Conference on
Artificial Intelligence and Statistics
(AISTATS), 2019, pp. 1723-1732.

[14] Fischer, T., & Krauss, C., "Deep Learning with
Long Short-Term Memory Networks for
Financial Market Predictions," European
Journal of Operational Research, Vol. 270, No.
2, 2018, pp. 654-669.

[15] Galeshchuk, S., "Neural Networks Performance
in Exchange Rate Prediction,"
Neurocomputing, Vol. 172, 2016, pp. 446-452.

[16] Zhang, G., Eddy Patuwo, B., & Hu, M. Y.,
"Forecasting with Artificial Neural Networks:
The State of the Art," International Journal of
Forecasting, Vol. 14, No. 1, 1998, pp. 35-62.

[17] Hochreiter, S., & Schmidhuber, J., "Long Short-
Term Memory," Neural Computation, Vol. 9,
No. 8, 1997, pp. 1735-1780.

[18] Jain, A. K., Mao, J., & Mohiuddin, K. M.,
"Artificial Neural Networks: A Tutorial,"
Computer, Vol. 29, No. 3, 1996, pp. 31-44.

[19] Ioffe, S., & Szegedy, C., "Batch Normalization:
Accelerating Deep Network Training by
Reducing Internal Covariate Shift,"
International Conference on Machine Learning
(ICML), 2015, pp. 448-456.

[20] LeCun, Y., Bengio, Y., & Hinton, G., "Deep
Learning," Nature, Vol. 521, 2015, pp. 436-444.

[21] Friedman, J., Hastie, T., & Tibshirani, R., "The
Elements of Statistical Learning," Springer,
2001.

[22] Bishop, C. M., "Pattern Recognition and
Machine Learning," Springer, 2006.

[23] Goodfellow, I., Bengio, Y., & Courville, A.,
"Deep Learning," MIT Press, 2016.

[24] Srivastava, N., Hinton, G., Krizhevsky, A.,
Sutskever, I., & Salakhutdinov, R., "Dropout: A
Simple Way to Prevent Neural Networks from
Overfitting," Journal of Machine Learning
Research, Vol. 15, No. 1, 2014, pp. 1929-1958.

[25] Krizhevsky, A., Sutskever, I., & Hinton, G. E.,
"ImageNet Classification with Deep
Convolutional Neural Networks," Advances in
Neural Information Processing Systems, Vol.
25, 2012, pp. 1097-1105.

[26] He, K., Zhang, X., Ren, S., & Sun, J., "Deep
Residual Learning for Image Recognition,"
IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2016, pp. 770-
778.

[27] Nair, V., & Hinton, G. E., "Rectified Linear
Units Improve Restricted Boltzmann
Machines," Proceedings of the 27th
International Conference on Machine Learning
(ICML), 2010, pp. 807-814.

[28] Maas, A. L., Hannun, A. Y., & Ng, A. Y.,
"Rectifier Nonlinearities Improve Neural
Network Acoustic Models," International
Conference on Machine Learning (ICML),
2013.

Journal of Theoretical and Applied Information Technology
31st December 2024. Vol.102. No. 24

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

8933

[29] Chollet, F., "Deep Learning with Python,"
Manning Publications, 2017.

[30] Kingma, D. P., & Ba, J., "Adam: A Method for
Stochastic Optimization," International
Conference on Learning Representations
(ICLR), 2014.

[31] Zhao, X., "Metrics for Stock Price Prediction: A
Critical Review," Journal of Financial Data
Science, Vol. 5, No. 1, 2023, pp. 45-60.

[32] Sun, Q., Chen, W., & Zhou, Z., "Robust
Preprocessing Techniques in Financial Data,"
International Journal of Finance & Economics,
Vol. 27, No. 3, 2022, pp. 451-465.

[33] Zhao, L., "Multi-Objective Optimization in
Financial Machine Learning," Computational
Economics, Vol. 61, No. 2, 2023, pp. 213-229.

[34] Zhao, Q., "Data Augmentation Strategies for
Rare Financial Events," Journal of Financial
Innovation, Vol. 15, No. 4, 2023, pp. 123-139.

[35] Sun, H., & Lin, M., "Combining Bayesian
Optimization and Gradient-Based Tuning for
High-Dimensional Spaces," Machine Learning
Optimization Review, Vol. 8, No. 1, 2022, pp.
14-29.

[36] Li, Y., & Wang, J., "Expanding Financial
Forecasting Models to Diverse Indices,"
Journal of Applied Financial Machine
Learning, Vol. 10, No. 3, 2023, pp. 211-225.

[37] Zhao, F., "Adaptive Optimization Techniques in
Neural Networks," Journal of Machine
Learning Optimization, Vol. 14, No. 2, 2023,
pp. 89-107.

[38] Zhao, R., "Temporal Dynamics in Stock Market
Prediction," Journal of Economic Modeling,
Vol. 19, No. 4, 2022, pp. 341-356.

[39] Sun, Z., & Wang, P., "Cross-Index Analysis of
Financial Time Series Forecasting," Journal of
Finance & Economics, Vol. 38, No. 2, 2023, pp.
79-93.

[40] Lin, Z., "Enhancing Scalability in Machine
Learning Models," Journal of Computational
Sciences, Vol. 17, No. 1, 2022, pp. 102-119.

[41] Zhao, Y., "Hybrid Optimization Techniques for
Machine Learning," Journal of Machine
Learning Advances, Vol. 11, No. 5, 2023, pp.
67-82.

[42] Wang, X., & Zhao, Q., "Adapting Optimization
Strategies to Dynamic Financial Datasets,"
Journal of Financial Engineering, Vol. 28, No.
3, 2023, pp. 172-189.

Journal of Theoretical and Applied Information Technology
31st December 2024. Vol.102. No. 24

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

8934

APPENDICES

Figure 21: Evolution of Hyperparameters over Iterations (Base Model vs Bayesian Optimization)

Table 8: Generator Model choice of Hyperparameters over iterations

Iteration Num
Layers

Units Per
Layer

Learning
Rate

Batch
Size

Sequence
Length

Dropout
Rate

MSE Time
(seconds)

1 1 1 0.00001 16 6 0.1 0.001117 7.216265

2 7 7 0.01000 512 173 0.7 0.008516 42.880915

3 4 4 0.00010 64 48 0.3 0.001606 20.793537

4 3 3 0.00010 64 57 0.4 0.001363 16.882484

5 2 2 0.00010 32 27 0.2 0.000589 12.111104

6 2 2 0.00010 64 58 0.2 0.000648 11.513346

7 2 1 0.00010 32 2 0.3 0.006763 5.298699

8 1 1 0.00001 16 14 0.2 0.002836 6.287926

9 1 1 0.00010 16 36 0.2 0.004360 9.942455

10 3 3 0.00001 32 13 0.1 0.000296 11.847384

11 2 2 0.00001 16 22 0.2 0.000646 15.046852

12 1 1 0.00001 32 22 0.2 0.002682 5.037210

13 6 3 0.00010 32 112 0.3 0.001798 94.676119

Journal of Theoretical and Applied Information Technology
31st December 2024. Vol.102. No. 24

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

8935

14 1 2 0.00001 32 17 0.2 0.011463 4.871952

15 1 1 0.00001 16 3 0.1 0.000350 4.423110

16 2 1 0.00010 32 63 0.3 0.003617 19.385670

17 2 2 0.00001 16 5 0.2 0.000801 7.890271

18 1 2 0.00001 16 1 0.1 0.000229 4.043066

19 2 1 0.00001 16 29 0.2 0.001363 16.409364

20 1 1 0.00001 16 8 0.1 0.028215 5.701318

Table 9: Bayesian Optimization choice of Hyperparameters over iterations

Iteration Learning
Rate

Batch
Size

Sequence
Length

Dropout
Rate

Units Per
Layer

Num
Layers

MSE Time
(seconds)

1 0.10000 256 168 0.4 1 3 0.005716 15.269365

2 0.00010 16 194 0.9 5 3 0.020230 121.031157

3 0.00010 1024 24 0.6 6 5 0.036411 9.474783

4 0.00001 128 141 0.1 6 2 0.035247 14.428003

5 0.10000 256 222 0.8 9 2 0.019119 13.989943

6 0.00010 16 53 0.9 8 4 0.016497 49.478577

7 0.10000 64 215 0.2 10 6 0.034805 88.939898

8 0.10000 2048 97 0.7 6 9 0.038545 32.959677

9 0.00001 2048 240 0.6 9 5 0.041913 37.239439

10 0.00001 128 193 0.7 3 3 0.050000 25.530747

11 0.00100 256 1 0.4 1 8 0.037803 13.403797

12 0.00010 256 1 0.4 4 3 0.047823 5.550930

13 0.01000 16 66 0.9 6 9 0.034976 141.947069

14 0.10000 2048 64 0.4 8 9 0.041214 24.846156

15 0.10000 256 122 0.3 5 6 0.035607 26.361036

16 0.10000 256 28 0.6 4 2 0.005844 6.092100

17 0.10000 256 98 0.5 1 4 0.033385 14.395095

18 0.10000 256 250 0.2 10 9 0.034311 74.527698

19 0.10000 256 54 0.1 2 6 0.036025 23.179554

Journal of Theoretical and Applied Information Technology
31st December 2024. Vol.102. No. 24

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

8936

20 0.10000 256 1 0.7 2 10 0.037023 19.312879

21 0.00010 16 15 0.9 10 9 0.011483 57.186282

22 0.10000 256 234 0.4 5 1 0.001098 8.159389

23 0.01000 16 146 0.7 6 7 0.008162 242.868558

24 0.01000 16 47 0.8 3 3 0.011391 41.089236

25 0.01000 16 233 0.8 9 10 0.033707 575.909664

26 0.01000 16 50 0.7 4 1 0.004556 18.161591

27 0.10000 256 240 0.7 3 1 0.009357 10.707471

28 0.01000 16 34 0.1 4 4 0.000094 42.035963

