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ABSTRACT 
 

This paper presents an adaptive hyperparameter tuning system for Long Short-Term Memory (LSTM) 
models, focusing on a gradient-based approach to achieve efficient and precise optimization. The proposed 
system is designed to dynamically adjust critical hyperparameters such as the learning rate, number of units, 
dropout rate, and batch size during the training process. By leveraging gradient information, the system 
iteratively refines the hyperparameter values, aiming to minimize the Mean Squared Error (MSE) and 
enhance the model's predictive accuracy. To evaluate the effectiveness of the gradient-based approach, the 
study includes Bayesian optimization as a benchmark, a method widely recognized for its probabilistic 
framework and established success in hyperparameter tuning. Comparative analysis is conducted in terms of 
loss metrics, including MSE and additional performance indicators, as well as execution time, highlighting 
the trade-offs between optimization efficiency and computational cost. The results demonstrate the gradient-
based system's ability to adapt to high-dimensional and complex hyperparameter spaces with reduced 
computational overhead, while consistently achieving superior performance. The experiment is applied to 
the challenging task of forecasting the S&P 500 index, a real-world financial time series problem that 
demands robustness and precision. 
 
Keywords: Hyperparameter Optimization, Gradient-Based Tuning, LSTM Networks, Bayesian 

Optimization, Time Series Forecasting 
 
1. INTRODUCTION  

 Hyperparameter tuning is a critical step in 
the development of Long Short-Term Memory 
(LSTM) models for time series forecasting. 
Identifying optimal hyperparameters, such as the 
number of units, learning rate, dropout rate, and 
batch size, is essential to improve the model's 
performance and accuracy. Traditional methods for 
hyperparameter tuning, such as grid search and 
random search, are computationally expensive and 
often impractical for complex models with large 
parameter spaces [1] [2]. 

Recent advances have explored more efficient 
methods for hyperparameter optimization. Bayesian 
optimization has gained popularity due to its 
probabilistic approach to model performance 
estimation, allowing for more informed 
hyperparameter selection and reduced computational 
overhead. However, Bayesian optimization can 
struggle with the high-dimensional and non-convex 

nature of hyperparameter spaces in deep learning 
models [3] [4]. 

An alternative approach is gradient-based 
hyperparameter tuning, which leverages gradient 
information to iteratively refine hyperparameters. 
This method shows promise in navigating large 
parameter spaces more effectively and adapting 
hyperparameters dynamically during the training 
process. For instance, recent research has 
demonstrated the use of gradient-based methods for 
hyperparameter optimization in complex neural 
network architectures, showing significant 
improvements in convergence and performance [5] 
[6] [7]. 

Recent studies have further demonstrated the 
efficacy of hybrid optimization techniques, which 
blend the strengths of gradient-based methods and 
probabilistic approaches like Bayesian optimization. 
For instance, advancements in differentiable 
optimization frameworks have made gradient-based 
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methods more scalable and suitable for complex 
hyperparameter spaces [8][9]. 

In this study, we propose an adaptive 
hyperparameter tuning system for LSTM models, 
focusing on a custom gradient-based method. This 
system dynamically adjusts hyperparameters based 
on performance feedback, aiming to minimize 
the Mean Squared Error (MSE) in forecasting 
the S&P 500 index close prices. To benchmark the 
effectiveness of our approach, we compare it against 
the performance of Bayesian optimization, a 
commonly used technique in hyperparameter tuning 
[2] [10]. 

To achieve this, the study will: 

 Design and implement a personalized 
gradient-based hyperparameter tuning 
mechanism that leverages gradient 
information to refine hyperparameters 
iteratively. 

 Integrate a feedback loop to dynamically 
adjust hyperparameters during the training 
process, ensuring continuous improvement 
in model performance. 

 Benchmark the gradient-based method 
against Bayesian optimization to evaluate 
its effectiveness and efficiency. Bayesian 
optimization will serve as a comparative 
baseline due to its established use in 
hyperparameter tuning [2] [3]. 

 Assess the performance of the proposed 
system by applying it to the task of 
forecasting the S&P 500 index. 

The anticipated outcomes include a comprehensive 
evaluation of the gradient-based hyperparameter 
tuning system, demonstrating its potential to enhance 
the predictive accuracy of LSTM models. This study 
will contribute to the existing body of knowledge by 
providing insights into the practical application of 
gradient-based methods for hyperparameter 
optimization in complex machine learning models 
[6] [5] [11]. 

 

2. LITERATURE REVIEW 

In this section, we review key methods for 
hyperparameter optimization, including Bayesian 
optimization, gradient-based approaches, and the use 
of LSTM networks for time series forecasting, 
providing a foundation for the study. 

 

2.1 Bayesian Optimization in Hyperparameter 
Tuning 

Bayesian optimization has been widely 
recognized for its efficacy in hyperparameter tuning, 
leveraging probabilistic models to make informed 
decisions on sampling hyperparameters [2] [8]. This 
approach has been successfully applied in various 
machine learning tasks, including neural network 
training, due to its ability to handle the high-
dimensional and non-convex nature of 
hyperparameter spaces [4] [3]. Despite its 
strengths, Bayesian optimization can be 
computationally intensive, especially for models 
with numerous hyperparameters, as the complexity 
of the probabilistic models scales with the number of 
dimensions and iterations. Some recent approaches 
attempt to mitigate this issue by using surrogate 
models or approximations to reduce computational 
costs while maintaining optimization efficiency [12] 
[13]. 
 
2.2 Gradient-Based Hyperparameter 
Optimization  

Gradient-based methods offer an 
alternative by utilizing gradient information to 
iteratively adjust hyperparameters, aiming for more 
efficient convergence. Scientists introduced 
reversible learning, enabling the computation of 
exact gradients of cross-validation performance with 
respect to hyperparameters, significantly improving 
the optimization of complex neural network 
architectures [5]. Recent advancements 
include bilevel optimization frameworks, which 
enhance the efficiency and scalability of gradient-
based tuning by structuring the optimization 
problem as a nested set of tasks, often referred to as 
upper and lower levels. This approach has been 
demonstrated to outperform traditional gradient-
based methods in several deep learning applications 
[6] [11] [7]. Recent approaches have explored meta-
gradient methods to accelerate the tuning of deep 
learning models, offering improved adaptability to 
dynamic data distributions [12][13]. These methods 
complement traditional bilevel frameworks by 
reducing computational overhead in high-
dimensional parameter spaces. Additionally, 
automatic differentiation techniques and 
differentiable optimization frameworks further 
facilitate the practical application of these methods 
to a broader range of machine learning problems 

[14] [15]. 
2.3 LSTM for Time Series Forecasting 

Long Short-Term Memory (LSTM) 
networks, a type of recurrent neural network (RNN), 
are particularly suited for time series forecasting due 
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to their capability to capture long-term 
dependencies. LSTM models have been extensively 
applied in financial market predictions, 
demonstrating substantial improvements in accuracy 
over traditional methods, such as linear regression or 
ARIMA models [16] [17]. The effectiveness of 
LSTM networks in modeling sequential data, such as 
stock prices and economic indicators, makes them a 
prime candidate for exploring advanced 
hyperparameter tuning techniques. Moreover, 
LSTMs have been shown to handle the non-linear 
and non-stationary nature of financial time series 
effectively, further supporting their widespread use 
in forecasting tasks [18]. 
Figure 1 represents the internal workings of 
an LSTM cell, illustrating the flow of information 
through various gates and operations, including the 
forget gate, input gate, and output gate, which 
collectively determine the cell's ability to retain or 
discard information over time [19]. 

 
Figure 1: Components of an LSTM 

 
Here's a breakdown of its components and how the 
LSTM functions: 

 Input (𝑋௧): The current input at time step t, 
denoted as 𝑋௧, enters the LSTM cell alongside 
the previous hidden state and cell state. 

 Forget Gate (σ): The forget gate determines 
which parts of the previous cell state (∁௧ିଵ) 
should be kept or forgotten. It uses a sigmoid 
function (σ), outputting a value between 0 and 
1. If it outputs 1, all information is kept, and if 
it outputs 0, all information is forgotten. 
Mathematically, the output is: 

f௧ = σ(W ⋅ [h௧ିଵ, X௧] + b)               (1) 
 

 Input Gate (σ): The input gate controls how 
much of the new information (proposed by the 
tanh activation) should be added to the cell state. 
It consists of a sigmoid function (σ) to decide 
which values to update, and a tanh activation to 
generate candidate values to update the state: 

 
 

i௧ = σ(W ⋅ [h௧ିଵ, X௧] + b)                (2) 
 

𝐶ሚ௧= tanh(𝑊⋅[h௧ିଵ, X௧]+𝑏େ)                (3) 
 

 Cell State Update: The cell state is updated by 
combining the previous state (∁௧ିଵ) and the new 
candidate state (𝐶ሚ௧) controlled by the forget gate 
and input gate: 

 
∁௧= f௧∗ ∁௧ିଵ +  𝑖௧  ∗ 𝐶ሚ௧                        (4) 

 
This ensures that the LSTM retains long-term 
information and incorporates new relevant data. 

 
 Output Gate (σ): The output gate controls the 

final output of the LSTM cell. It uses a sigmoid 
function to determine how much of the cell state 
should be passed through the hidden state. The 
cell state is passed through a tanh activation to 
normalize it between -1 and 1 before 
multiplying by the output gate’s value: 
 

o௧ = σ(W ⋅ [h௧ିଵ, X௧] + b)             (5) 
 

h௧ = o௧ * tanh ∁௧                               (6) 
 

 Hidden State (h௧): The hidden state is passed to 
the next time step and serves as the output of 
the current LSTM unit. 

 
Functionality: 
Long-Term Memory: The LSTM’s main feature is 
its ability to preserve information over long 
sequences through the cell state, which is updated 
selectively by the forget gate and input gate. 
Selective Updates: By controlling the flow of 
information via gates, the LSTM decides what to 
remember, forget, and output, making it highly 
effective for tasks where long-term dependencies are 
important (e.g., time series, language modeling). 
Non-Linearity: The use of sigmoid 
(σ) and tanh activations introduces non-linearity, 
helping the network capture more complex patterns 
in sequential data. 
Overall, this diagram shows how LSTMs manage 
both short-term and long-term information, ensuring 
that relevant data is retained across different time 
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steps while discarding irrelevant or outdated 
information. 
2.4 Comparison of Hyperparameter 
Optimization Methods 

Numerous studies have compared various 
hyperparameter optimization strategies, including 
grid search, random search, Bayesian optimization, 
and gradient-based methods. Previous research 
highlighted the inefficiencies of grid search and 
random search in high-dimensional spaces. These 
comparisons underscore the need for adaptive and 
efficient hyperparameter tuning approaches.  
 
3. METHODOLOGY 
 

 This section outlines the methodology for 
developing and evaluating our adaptive 
hyperparameter tuning system for LSTM models. 
Key steps include data preprocessing, dynamic 
hyperparameter optimization using a generator, and 
iterative refinement based on model performance. 
The LSTM model’s architecture, training process, 
and techniques like early stopping are also detailed 
to ensure robust and efficient time series forecasting. 
3.1 Data 

 For this research, the primary focus is on 
the historical Close Price data of the S&P 500 index, 
sourced from Yahoo Finance via 
the yfinance library. The Close Price is a critical 
metric in financial time series forecasting, 
representing the final trading price of the index at the 
end of each trading day. This price is widely 
regarded as the most significant daily price, 
reflecting the market's consensus on the value of the 
index after all trading activities have concluded. 
Unlike other daily price metrics (such as open, high, 
or low prices), the Close Price is often used by 
investors, analysts, and traders to assess market 
trends and make informed decisions. It serves as a 
key indicator in various technical analysis tools and 
is commonly used in the calculation of moving 
averages, oscillators, and other financial indicators 
that guide trading strategies and portfolio 
management decisions. 
The data collection process captures the maximum 
available historical Close Price data for the S&P 500 
index, spanning from the earliest records to the most 
recent date. This extensive dataset provides a rich 
historical context, covering a wide range of market 
conditions, economic cycles, and significant 
financial events. By utilizing the full extent of the 
available data, the research ensures that the 
forecasting models can learn from a diverse set of 
market behaviors, including long-term trends, short-

term fluctuations, and rare market events that 
include critical periods of financial history, such as: 
 The Great Depression (1929-1939): A major 

economic downturn that had a profound impact 
on global financial markets. 

 Post-War Economic Expansion (1945-
1960s): A period marked by sustained economic 
growth and market development. 

 The Oil Crisis (1973-1974): A period of 
economic and market instability triggered by 
geopolitical events and oil embargoes. 

 The Dot-com Bubble (2000-2002): A period of 
speculative investment in internet-related 
companies, followed by a significant market 
correction. 

 The Global Financial Crisis (2007-2009): A 
severe financial crisis that led to dramatic 
declines in global stock markets. 

 The Long Bull Market (2009-2020): An 
extended period of market growth and recovery 
following the financial crisis. 

 COVID-19 Pandemic (2020): A global health 
crisis that caused unprecedented market 
volatility and a rapid economic downturn, 
followed by recovery. 

 Recent Market Trends (2021-
Present): Including post-pandemic recovery, 
inflation concerns, interest rate changes, and 
geopolitical events. 

 

 
Figure 2: S&P 500 Historical Close Prices 

 
3.1.1 Data Normalization 
Normalization is the process of scaling the data to a 
specific range, typically between 0 and 1. This step 
is particularly important in machine learning models 
that are sensitive to the scale of the input data, such 
as neural networks [20]. It ensures that all input 
features contribute equally to the model, preventing 
any single feature from disproportionately 
influencing the model's predictions. In time series 
forecasting, normalization helps stabilize the 
learning process by reducing the impact of varying 
scales in the data, which in turn accelerates the 
training process and improves convergence [21]. 
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Normalization should be applied to the entire 
dataset before splitting into training and testing 
sets to avoid data leakage and overfitting. This 
practice ensures that the model does not have access 
to information from the test set during training, 
which could bias the evaluation results and lead to 
overly optimistic performance estimates [22]. Once 
the data is normalized, it is ready for input into the 
machine learning models, helping maintain 
consistency and integrity across the training and 
evaluation phases. 
MinMax Scaling: MinMax scaling transforms the 
data by scaling each value in the time series to a 
specified range, typically [0, 1]. The formula for 
MinMax scaling is as follows: 
 

𝑋𝑠𝑐𝑎𝑙𝑒𝑑 =
𝑋 − 𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛
 

Where: 
 X is the original data value. 
 Xmin is the minimum value in the dataset. 
 Xmax is the maximum value in the dataset. 
 Xscaled is the normalized data value. 

 
MinMax is particularly useful when the data has 
known bounds, as it preserves the relationships 
between data points while transforming the values 
into a standardized range. This makes it easier for the 
model to learn from the data, as all input features are 
on a comparable scale. 
Inverse Transformation: After the model makes 
predictions, it is often necessary to convert the 
normalized predictions back to the original scale. 
This is done using the inverse transformation of the 
MinMax scaler which ensures that the predicted 
Close Prices are presented in their original scale, 
making them interpretable and actionable for 
financial analysis. 
 

𝑋𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 = 𝑋𝑠𝑐𝑎𝑙𝑒𝑑 × (𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛) + 𝑋𝑚𝑖𝑛 
 
This step is crucial for evaluating the model's 
performance in real-world terms, such as calculating 
absolute errors or comparing predicted prices to 
actual market prices. 
3.1.2 Sequence Creation 
Once the data is normalized, the next step is to 
prepare it for input into the forecasting models. This 
involves structuring the time series data in a way that 
is compatible with the model's requirements. 
In time series forecasting, especially when using 
models like LSTM networks, it is necessary to create 
sequences of data points that the model can use to 
learn temporal patterns. This process involves 
segmenting the normalized time series into 

overlapping sequences, where each sequence 
contains a fixed number of past observations (often 
referred to as the "look-back period") that the model 
will use to predict the next value. 
For example, if the look-back period is set to 30 
days, the model will use the Close Prices from the 
previous 30 days to predict the Close Price on the 
31st day. This process is repeated for the entire 
dataset, creating a large number of training examples 
that capture the sequential dependencies in the data. 

 
Figure 3: First 3 Sequences of S&P 500 Close Prices 

 
The plot shows three sequences of normalized close 
prices, each with a sequence length of 30 days. These 
sequences represent chunks of the time series data 
that the model will use as inputs to predict the next 
day's close price. We observe the following: 
 Overlapping Sequences: The sequences overlap 

because they are created by sliding a fixed-
length window (30 days) across the time series. 
This approach ensures that the model is exposed 
to as much data as possible, even though the 
sequences overlap. 

 Trends and Patterns: The sequences capture 
both upward and downward trends in the S&P 
500 close prices. This is important because it 
allows the model to learn from various patterns 
in the data (e.g., rising and falling prices over 
time). 

 Normalization: The close prices are normalized 
between 0 and 1, which helps the model train 
more efficiently by removing the influence of 
absolute price scales. Normalization also 
ensures that the model treats each sequence 
comparably, regardless of the actual price 
values. 

 Variability: Although the three sequences start 
at different points in the data, they both capture 
a smooth, continuous trend of price movement. 
This variability in sequences is essential for 
training models that generalize well across 
different patterns. 

In a practical sense, each sequence would be 
followed by a target value (the price on day 31) that 
the model will try to predict. This approach is typical 



Journal of Theoretical and Applied Information Technology 
31st December 2024. Vol.102. No. 24 

©   Little Lion Scientific  
 

ISSN: 1992-8645                                                                    www.jatit.org                                                     E-ISSN: 1817-3195 
 

 
8918 

 

in time series forecasting to learn from historical 
data and predict future values. 
3.1.3 Data Splitting  
The final step in data processing is to split the data 
into training and testing sets. The training set is used 
to train the model, while the testing set is reserved 
for evaluating the model's performance. It is 
important to ensure that the test set contains data that 
the model has not seen during training, as this 
provides an unbiased assessment of the model's 
ability to generalize to new, unseen data [23] [22]. 
This practice helps prevent data leakage, which can 
occur if information from the test set is inadvertently 
used during training, leading to artificially high-
performance scores that do not reflect the model's 
true predictive capabilities [24]. Properly splitting 
the data ensures a fair and realistic evaluation, 
allowing for a more accurate understanding of how 
well the model performs on real-world data.

 
Figure 4: Training and Test Data Split 

 
Typically, the data is split chronologically, with the 
earlier portion of the time series used for training 
(80%) and the later portion reserved for testing 
(20%). This approach mimics real-world forecasting 
scenarios, where future prices are predicted based on 
past data. 
 
3.2 Hyperparameter Space 

 The hyperparameters space in the context 
of the provided model is a crucial component of the 
model design, determining the configuration of the 
LSTM network and influencing its performance in 
predicting the Close Price. Hyperparameters differ 
from model parameters in that they are not learned 
during the training process; instead, they must be set 
before training begins. The effectiveness of the 
model heavily depends on the careful selection and 
optimization of these hyperparameters. 
In this system, the hyperparameters are dynamically 
generated and optimized by the Hyperparameter 
Generator. The generator explores a defined space of 
possible hyperparameter values, adjusting them 
iteratively based on the model’s performance. Here, 
we break down the specific hyperparameters 

involved, their ranges, and their significance in the 
model’s performance. 
 

Table 1: Hyperparameter Space 
Hyperparameter Range/Values 
Number of Layers 1 to 10 (Integers) 
Number of Units 1 to 10 (Integers) 

Learning Rate 10ିହ to 0.1 (Logarithmic 
Scale) 

Batch Size 16 to 2048 (Powers of 2) 
Dropout Rate 0.1 to 0.9 (Increments of 0.1) 

Sequence Length 1 to 250 
 

Table 2: Description and Significance of 
Hyperparameters 

Hyper-
parameter 

Description Significance 

Number 
 of  

Layers 

Number of LSTM 
layers in the model. 
Each LSTM layer 
adds depth to the 
network, enabling 
it to capture more 
complex patterns in 
the time series data. 

 

Fewer Layers:  
- Less complexity  
- Underfitting. 
 

More Layers:  
- More complex  
- Risk of overfitting 
- More computational 
resources  
- Longer training time. 
 

Number 
of  

Units  
Per  

Layer 

specifies the 
number of units 
(neurons) in each 
LSTM layer.  
Each unit processes 
the input data and 
passes the 
information 
through the 
network. 

Fewer Units:  
The model may struggle 
to learn the underlying 
patterns in the data, 
potentially leading to 
underfitting. 
 
More Units: 
Increase the model’s 
capacity to learn and 
capture more details 
from the input 
sequences. increases the 
risk of overfitting and 
the computational 
complexity of the model. 
 

Learning  
Rate 

The learning rate 
controls the size of 
the steps the 
optimizer takes 
when updating the 
model's weights 
during training. It is 
a critical 
hyperparameter 
that influences the 
speed and stability 
of the training 
process. 

 

Low Learning Rate:  
Makes the training 
process more stable but 
slower. It may help in 
fine-tuning the model, 
but if too low, it can 
result in the model 
getting stuck in local 
minima. 
 
High Learning Rate: 
Can speed up training 
but at the risk of 
overshooting the optimal 
solution, leading to 
divergence or 
suboptimal performance. 
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Batch  
Size 

The batch size 
defines the number 

of samples 
processed before 

the model’s 
internal parameters 

are updated. It 
affects the model’s 

training stability 
and the 

convergence speed. 

Small Batch Size:  
Introduces more noise 
into the gradient 
estimation, which can 
help the model escape 
local minima but may 
also result in slower 
convergence. 
 
Large Batch Size:  
Provides more accurate 
gradient estimates, 
leading to smoother 
convergence. However, 
requires more memory 
and computational 
resources and may result 
in the model getting stuck 
in local minima. 

 
Dropout  

Rate 
Dropout is a 

regularization 
technique used to 
prevent overfitting 
in neural networks. 

During training, 
dropout randomly 
sets a fraction of 

input units to zero 
at each update, 
which helps the 

model generalize 
better by 

preventing it from 
relying too heavily 
on any one feature. 

Low Dropout Rate:  
More units are active 
during training, which 
can lead to better 
performance on the 
training data but may 
increase the risk of 
overfitting. 

High Dropout Rate:  
Forces the model to 
learn more robust 

features by relying on a 
smaller set of units at 
each update, reducing 

overfitting but 
potentially making the 
training process less 

efficient. 
Sequence 

Length 
The sequence 

length determines 
the number of past 
time steps (Close 
Prices) used as 

input to the model 
to predict the next 

time step. This 
hyperparameter is 

crucial for 
capturing temporal 

dependencies in 
the data. 

Short Sequences:  
May result in the model 
missing long-term 
dependencies, which can 
be critical in financial 
time series forecasting. 
 
Long Sequences:  
Provide more context 
and can help capture 
long-term trends. 
However, they increase 
the model’s complexity 
and the risk of 
overfitting, especially if 
the sequences include 
noisy data. 

 
Number of Epochs  
The number of epochs refers to the number of times 
the entire training dataset passes through the model 
during training. Each epoch consists of several 
iterations, determined by the batch size. In this 
experiment, the number of epochs is fixed at 10 
rather than treated as a tunable hyperparameter. 
Research has shown that increasing the number of 
epochs does not necessarily improve training 
quality; while more epochs give the model additional 

opportunities to learn, they can also lead to 
overfitting, where the model performs well on 
training data but struggles to generalize to unseen 
data [22] [25]. Moreover, treating the number of 
epochs as a hyperparameter introduces disparities in 
computational consumption and processing time, 
potentially skewing model comparison results [26]. 
To ensure fair comparisons and consistent resource 
usage, the number of epochs is kept fixed throughout 
the study. 
The hyperparameter space in this model is designed 
to allow extensive exploration of different 
configurations, with ranges carefully chosen to 
balance the model’s capacity to learn complex 
patterns and its ability to generalize to new data.  
3.3 Model Architecture and Components 
 The model structure revolves around a two-
part system: the Hyperparameter Generator and 
the LSTM Model. These components work together 
to dynamically generate and optimize 
hyperparameters for training an LSTM network 
aimed at predicting the Close Price in our time series 
data. 
 

 
Figure 5: Gradient-Based Model Architecture 

 
The Generator explores the Hyperparameters Space 
dynamically, iteratively adjusting the 
hyperparameters based on the model’s performance. 
Initially, hyperparameters are selected randomly 
within the specified ranges. As the training 
progresses, the generator uses feedback from the 
model’s performance (specifically the Mean 
Squared Error, MSE) to refine the selection of 
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hyperparameters. This adaptive approach allows the 
model to converge towards an optimal set of 
hyperparameters that improve its predictive 
accuracy. 
Initial Randomization: The generator starts with a 
randomly selected set of hyperparameters to explore 
the space broadly. This initial randomness ensures 
that the model does not get stuck in suboptimal 
regions of the hyperparameter space. 
Iterative Refinement: As training progresses, the 
generator refines the hyperparameters by using the 
MSE as a performance metric. Poor-performing 
configurations are adjusted in subsequent iterations, 
while better-performing configurations guide the 
search in future iterations. 
Scalability of Hyperparameters: The scaling 
functions applied to raw outputs from the generator 
ensure that the generated hyperparameters are within 
practical and meaningful ranges. This scaling is 
crucial for maintaining the balance between 
exploration and exploitation in the hyperparameter 
space. 
3.3.1 The Generator 
As shown in Figure 6, The generator is a feedforward 
neural network built using 
TensorFlow's Sequential API, consisting of fully 
connected (dense) layers: 

 
Figure 6: Generator Architecture 

 
The architecture displayed in the diagram represents 
the Hyperparameter Generator. Each layer processes 
input data, transforming it through a series of 
nonlinear operations to generate a set of raw 
hyperparameters used to configure and train the 
LSTM model. Below is a detailed explanation of the 
architecture and the rationale behind its design. 

 
Table 3: Generator Layer-by-Layer Breakdown 

Layer Units Activat
ion 
Functio
n 

Purpose 

Input 
Layer 

- - Expects an 11-dimensional 
input vector, including noise 
and potentially transformed 
MSE values from previous 
iterations. This forms the basis 
for generating 
hyperparameters. 
 

First 
Dense 
Layer 

64 ReLu 
Initial transformation of the 
input data. Captures and 
processes a moderately 
complex set of features. 

Second 
Dense 
Layer 

128 ReLu Expands the model's 
capacity by learning more 
complex representations of 
the input data. 

 

Third 
Dense 
Layer 

256 ReLu 
Deepens the network, 
increasing representational 
power to capture intricate 
patterns in the input data for 
generating accurate 
hyperparameters. 
 

Output 
Layer 

7 None 
(Linear
) 

Outputs a 7-dimensional 
vector representing raw 
hyperparameters, including 
layers, units, learning rate, 
batch size, dropout rate, and 
sequence length. No activation 
function. 
 

 
Rationale Behind the Architecture: 
Progressive Increase in Units: The architecture uses 
progressively larger numbers of units (64 → 128 → 
256) as the network deepens. This design choice 
allows the model to gradually expand its capacity to 
capture complex interactions within the input data, 
leading to more refined and informed 
hyperparameter generation. Increasing the number 
of units in deeper layers has been shown to help in 
learning hierarchical features, particularly in 
complex tasks where higher layers capture more 
abstract representations [22] [26]. 
Depth of the Network: The choice of three hidden 
layers strikes a balance between model 
complexity and computational efficiency. It is deep 
enough to capture complex relationships but not so 
deep as to cause issues like overfitting or excessive 
training time, which can be exacerbated in deeper 
architectures [27]. This depth is suitable for tasks 
such as hyperparameter generation. 
ReLU Activation Function: ReLU is chosen for the 
hidden layers because it introduces non-linearity, 
enabling the model to learn more complex patterns 
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than a purely linear model. ReLU is computationally 
efficient, as it does not require expensive operations 
like exponentiation or division, and it has become a 
standard choice in deep learning architectures due to 
its ability to mitigate the vanishing gradient problem 
[28] [29]. 
Linear Output Layer: The output layer does not use 
an activation function, allowing the network to 
produce raw hyperparameter values that can be 
directly scaled to the appropriate ranges. This 
approach is crucial because the final values must be 
within specific limits to be valid hyperparameters for 
training the LSTM model. Using a linear output is 
appropriate in regression tasks where the range of 
predicted values is not constrained [22]. 
Scalability and Flexibility: The architecture 
is scalable and flexible, capable of being adjusted or 
extended if necessary to accommodate more input 
features or generate a broader range of 
hyperparameters. This flexibility is essential in a 
research context where the optimal network 
configuration may not be known a priori. Modular 
architectures allow researchers to experiment with 
various configurations without having to redesign 
the entire model structure [30]. 
Generation of Initial Hyperparameters: Initially, the 
generator produces hyperparameters based 
on random inputs, which are passed through the 
network to generate an initial set. This random 
initialization helps explore different configurations 
before convergence on an optimal set [31]. 
Adaptation and Learning: After each iteration, the 
generator adapts based on the performance of the 
model (measured by Mean Squared Error, or MSE). 
The generator uses the MSE as feedback to adjust its 
internal weights, effectively learning which 
hyperparameters lead to better model performance. 
The use of a feedback loop in hyperparameter 
optimization allows for dynamic adjustments and 
continuous improvement [15] [5]. 
Optimizer: The generator model is optimized using 
the Adam optimizer with a learning rate of 0.1. 
Adam is a popular choice in neural network 
optimization due to its adaptive learning rate and 
ability to handle sparse gradients [32]. The optimizer 
updates the weights of the generator based on 
gradients calculated from the loss, which is 
influenced by the MSE. 
3.3.2 The LSTM 
The LSTM Model is the actual predictive model that 
utilizes the hyperparameters generated by the 
Hyperparameter Generator. The LSTM model is a 
sequential neural network built using 
TensorFlow's Sequential API, comprising multiple 
LSTM layers followed by a Dense output layer. 

 
Table 4: LSTM Layer-by-Layer Breakdown 

Layer Units/Parameters 
 

Purpose 

Input 
Layer 

 
(sequence_length, 

1) 

Defines the input shape, 
where sequence_length is 
a hyperparameter and 1 
indicates a single feature 
(Close Price). 

LSTM 
Layers 

 

 
Determined by 

"layers" and 
‘units” 

Number of LSTM layers 
is determined by the 
"layers" hyperparameter. 
The "units" 
hyperparameter specifies 
the LSTM units. 

Dropout 
Layers 

 
 

Controlled by 
"dropout_rate" 

Dropout layers are 
applied after each LSTM 
layer to prevent 
overfitting, with dropout 
rate controlled by a 
hyperparameter. 

Output 
Layer 

 
 
1 

Final Dense layer with a 
single unit, 
corresponding to the 
prediction of the next 
Close Price in the 
sequence. 

 
Compilation: The model is compiled using the Adam 
optimizer with a loss function of mean squared error 
(MSE). The learning rate for the optimizer is 
dynamically set based on the generated 
hyperparameters. 
Training Process: The LSTM model is trained on 
sequences of historical Close Prices, with the length 
of each sequence determined by the "sequence 
length" hyperparameter from the Generator. The 
model is trained using a specified "batch_size" and 
for a fixed number of epochs. During training, the 
model learns to predict the next Close Price based on 
the previous “sequence_length” number of Close 
Prices. 
Evaluation: After training, the model's performance 
is evaluated on a validation set, with MSE used as 
the primary metric. The result of this evaluation 
informs the Hyperparameter Generator for the next 
iteration. 
3.4 Early Stopping 
 When running the Model for multiple 
iterations, we notice that it doesn’t necessarily 
converge as illustrated in the figure below, we notice 
that the Error value (MSE) jumps between local 
minima. The first solution that comes to mind is to 
adjust the Generator’s learning rate. However, this 
does not fix the convergence problem as it is related 
to the randomness within the data itself that mimics 
the complexities related to the stock market. 
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Figure 7: Evolution of MSE Over Iterations 

 
To better understand how the Model functions, we 
applied a smoothing the observed MSE values from 
the LSTM predictions, and we came to the 
conclusion that the Model searches for the lowest 
MSE values in terms of cycles. In other words, the 
Model succeeds to find the local minima only to 
shoot upwards in the quest of other minima that 
might or might not be smaller than the previous ones. 
 

 
Figure 8: Comparison of Original vs Smoothed MSE 

 
By increasing the number of iterations, this 
phenomenon can be observed clearly. However, 
what caught our attention is that regardless of how 
many times the experiment is repeated, the Model 
succeeds to find the smallest MSE within the first 20 
iterations. Thus, we decided to implement an early 
stopping mechanism for our model after that number 
and then retrieve the lowest MSE value and the 
related set of Hyperparameters, being the 
combination that yielded the best results. 
Even if the Model could hypothetically succeed to 
find a lower MSE after a larger number of iterations, 
by then, the wasted time and computational power 
would be insignificant against the error difference. 
 

 
Figure 9: Extended Comparison of Original vs Smoothed 

MSE 

4. EVALUATION 
 
4.1 Generator Model Results 
 In this section we outline the results 
obtained by our model, to which we will refer to in 
what follows as the Generator Model or The Base 
Model. 
4.1.1 Error Analysis (MSE)  
Figure 10 depicts the evolution of MSE over 
iterations. Each value corresponds to the 
performance of a combination of hyperparameters 
from table 8 (See Appendices) 

 
Figure 10: Evolution of MSE over 20 iterations 

 
1. Overall Trend: The MSE remains relatively 

low and stable throughout the majority of 
the iterations, with occasional spikes in 
certain iterations. 

2. Spikes in MSE: Noticeable spikes occur at 
iterations 2, 7, 13, and 20, where the MSE 
values are significantly higher than the 
surrounding iterations. These spikes might 
indicate moments when the model's 
predictions diverged more significantly 
from the actual values. 

3. Low MSE Points: Many iterations (e.g., 1, 
5, 6, 10, 16, 18) show very low MSE values, 
suggesting that the model was performing 
well in these iterations. 

4. Final Spike: A particularly high spike is 
seen at iteration 20 (last iteration), where 
the MSE reaches its peak. This indicates the 
beginning of a new search cycle. 

 
Smoothing the MSE values gives another insight on 
the functioning of the Base Model and plots the 
search cycles as expected 

 
Figure 11: Comparison of Original vs Smoothed MSE 

over 20 Iterations 
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4.1.2 Best Hyperparameters 
Table 5 shows the set of LSTM hyperparameters that 
resulted in the lowest MSE value. In what follows, 
we will load this particular LSTM with these specific 
configurations for further analysis. 

 
Table 5: Generator Model Best Hyperparameters 

Iteration 18 
Number of Layers 1 
Units Per Layer 2 
Learning Rate 0.00001 
Batch Size 16 
Sequence Length 1 
Dropout Rate 0.1 
MSE 0.000229 
Time (Seconds) 4.043066 

 
4.1.3 Predictions 
Figure 12 shows a comparison between the Actual 
Close Prices and the Predicted Close Prices (over 
the course of about one year, of the S&P 500 index: 
 

 
Figure 12: Actual vs Predicted Close Prices over a year 

 
1. Good Fit: Overall, the predicted prices closely 

follow the actual prices, especially during the 
major trends. This indicates that the model 
captures the general direction of the market 
quite well. 

2. Minor Deviations: While the model does a good 
job of following the actual prices, there are some 
instances of small discrepancies, particularly 
during short-term fluctuations or corrections. 
These deviations could be areas where the 
model might be slightly lagging behind or 
overreacting to short-term movements. 

3. Trending Phases: During the upward trends, 
such as between January 2024 and May 2024, 
the predictions track the actual price movements 
very closely, which suggests the model is 
effective at predicting larger, sustained trends. 

4. Increased Variation at Peaks: There are 
moments, especially at price peaks, where the 
predicted prices deviate slightly more from the 
actual values. For example, around July 2024, 

the predicted prices overestimate the peak, and 
around September 2024, the model 
underestimates a local price drop. This suggests 
some challenges in accurately predicting 
turning points. 

 
For more visibility, we diminished the number of 
datapoints to 100 in figure 13, which confirms the 
fact that the model is decently following trends and 
predicting price direction 

 
Figure 13: Actual vs Predicted Close Prices (Six Months) 
 
4.1.4 Residuals 
The residual plot shows the distribution of errors 
(residuals) between the actual and predicted values 
from our model.  

 
Figure 14: Error Distribution (Residuals) 

 
Here's a breakdown of key observations: 
Symmetry and Distribution: The residuals appear to 
follow a roughly symmetrical distribution, with a 
peak around 0. This indicates that the model has 
relatively balanced errors, with an equal likelihood 
of overestimating or underestimating the actual 
values. The distribution is somewhat bell-shaped, 
which is common in regression tasks and suggests 
the errors may follow a normal distribution to some 
extent, although it's not perfectly centered around 0.  
Skewness: There is a slight right skew in the 
distribution. This means that there are more cases 
where the model significantly underestimates 
(negative residuals) compared to overestimating 
(positive residuals). The tail on the right-hand side 
(positive errors) is a bit longer, which suggests the 
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model sometimes significantly under-predicts the 
actual values. Error Magnitude: Most residuals are 
concentrated between -50 and 50, which shows that 
for the majority of the data points, the model's 
predictions are reasonably close to the actual values. 
However, there are a number of instances where the 
residuals are as large as 100 or more, suggesting that 
in some cases, the model's predictions deviate 
significantly from the actual values. 
Bias: Since the peak of the distribution is slightly 
above 0, this may suggest that the model slightly 
underestimates the true values more frequently than 
it overestimates.  
Conclusion: While the residual distribution looks 
somewhat normal, the presence of some large 
residuals and a slight skew indicates that the model 
might not perfectly capture the relationship between 
the features and the target variable. There could be 
room for improvement in hyperparameter tuning or 
model architecture to reduce the occurrence of large  
errors, particularly in the tail of the distribution. 
4.2 Bayesian Optimization Results 
4.2.1 Early stopping 
Before we delve into results, it is important to note 
that running Bayesian Optimization for this problem 
and for the suggested hyperparameter space is a task 
that could keep running until all the possibilities of 
every single set is compiled before retrieving the 
most performing Hyperparameters and related MSE. 
this will technically be similar to applying a grid 
search algorithm or a random search until we run out 
of all possible combinations. Thus, it is highly 
important to establish an early stopping condition for 
Bayesian optimization. 
Condition: The algorithm will stop its search once 
we reach an MSE value equal or inferior to the best 
MSE achieved by the Generator Model. 
4.2.2 Loss (MSE) 
Figure 15 shows the evolution of MSE over 
iterations. The values are extracted from table 9 (See 
Appendices) that shows in detail which set of 
Hyperparameters yielded which MSE value. As the 
figure shows, the process took 28 iterations.  
 

 
Figure 15: Evolution of Bayesian Optimization MSE over 

Iterations 

 
Key observations: 
1. Initial Improvement: There is an initial decline 

in MSE after the first iteration, suggesting that 
the model made quick adjustments that led to 
some early improvement by iteration 5. 

2. Oscillations: The MSE fluctuates significantly 
across the iterations, with several peaks (e.g., 
iterations 3, 8, 14, and 20) and valleys (e.g., 
iterations 6, 16, and 22). This kind of oscillation 
is characteristic of Bayesian optimization as it 
explores different regions of the hyperparameter 
space, testing both well-performing and 
exploratory configurations. 

3. Highest Peak: The highest MSE occurs around 
iteration 9, suggesting a hyperparameter set that 
led to a poor fit. Following this, there are some 
recovery iterations, but the MSE never settles 
consistently at lower levels for an extended 
period. 

4. Sharp Decline at Iteration 16: Iteration 16 shows 
a significant drop in MSE, which could 
represent a promising set of hyperparameters 
that drastically improved performance. 
However, subsequent iterations increase the 
MSE again, indicating the model continues to 
explore beyond this set of hyperparameters. 

5. Late Iteration Variability: The latter part of the 
graph shows a continued pattern of sharp 
increases and decreases in MSE, particularly 
around iterations 20 and 25. The steep declines, 
such as those in iterations 16 and 22, suggest 
that the model occasionally stumbles upon more 
favorable hyperparameters, but these are not 
consistently maintained in the search. 

6. General Trend: While the optimization does 
lead to some low MSE values (e.g., iterations 6, 
16, and 22), there is no clear downward trend 
over time. This suggests that the search is still in 
an exploratory phase, where it hasn't fully 
converged on an optimal set of 
hyperparameters, again due to the complexity of 
Data. 

4.2.3 Best Hyperparameters 
After stopping early at iteration 28, Bayesian 
optimization has yielded the following results: 

 
Table 6: Bayesian Optimization Best Hyperparameters 
Iteration 28 
Number of Layers 4 
Units Per Layer 4 
Learning Rate 0.01 
Batch Size 16 
Sequence Length 34 
Dropout Rate 0.1 
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MSE 0.0001 
Time (Seconds) 1754.39 

 
The best hyperparameters are extracted from Table 
9 (Appendices) which contains full results. 
In the following sections, we will dive deeper into 
comparing the results above with the results from 
our custom gradient-based model. 
4.3 Generator Model vs Bayesian Optimization 
4.3.1 Loss Comparison 
Figure 16 proves that The Generator model clearly 
performs more consistently compared to the 
Bayesian Optimization model, as reflected in the 
lower and more stable MSE values. This suggests 
that the Generator model is more effective at keeping 
MSE low over iterations. 
On the other hand, the Bayesian Optimization 
model, while showing more exploration and 
potential to hit lower MSE values (e.g., iterations 16 
and 22), suffers from greater instability. We also 
notice that after the 20th iteration, the latter took an 
extra 8 iterations to meet the early stopping 
condition. 
 

 
Figure 16: Comparison of the Evolution of MSE Over 

Iterations (Base Model vs Bayesian Optimization) 
 
Generator Model: The Generator model’s smoother 
and more controlled MSE evolution implies it is 
either better tuned or more focused in its 
optimization, leading to consistent performance. 
Bayesian Optimization Model: The Bayesian model 
may benefit from more fine-tuning, or a more refined 
search space, to stabilize its performance and reduce 
the number of high MSE iterations. 
4.3.2 Time Comparison 
Figure 17 compares the execution time (in seconds) 
between our Base Model (Generator) and 
the Bayesian Optimization Model.  
 

 
Figure 17: Comparison of Execution Time between The 
Base Model and Bayesian Optimization over Iterations 

 
Key Observations: 
Consistent Growth for Both Models: 
The execution time for both models increases 
steadily as the iterations progress. However, the rate 
of increase differs significantly between the two 
models. 
Execution Time for the Base Model: 
The Base Model has a consistent, relatively slow 
increase in execution time, remaining under 500 
seconds even at iteration 28. This suggests that the 
computational cost of each iteration in the Base 
Model remains fairly constant, which is likely due to 
a more streamlined or less complex, yet efficient 
process. 
Execution Time for the Bayesian Optimization 
Model: 
The Bayesian Optimization model shows a much 
steeper increase in execution time, especially after 
iteration 20, where the time jumps significantly, 
reaching nearly 1750 seconds by iteration 28. 
This sharp rise implies that the Bayesian 
Optimization process becomes increasingly 
computationally expensive over time. This could be 
due to the more complex nature of the Bayesian 
approach, which requires more resources to evaluate 
and explore hyperparameter space as it narrows 
down the optimization. 
Gap Between Models: 
The gap between the two models’ execution times 
widens dramatically after iteration 15. Initially, the 
difference is modest, but from iteration 20 onward, 
the Bayesian Optimization model takes 
exponentially more time per iteration compared to 
the Base Model. 
Summary: 
Efficiency of the Base Model: The Base Model is far 
more efficient in terms of execution time, making it 
a better choice when time is a critical factor. 
Computational Intensity of Bayesian Optimization: 
The Bayesian Optimization model, while potentially 
more powerful in its search for optimal 
hyperparameters, becomes increasingly resource-



Journal of Theoretical and Applied Information Technology 
31st December 2024. Vol.102. No. 24 

©   Little Lion Scientific  
 

ISSN: 1992-8645                                                                    www.jatit.org                                                     E-ISSN: 1817-3195 
 

 
8926 

 

intensive, which could make it impractical for longer 
training processes or larger datasets. 
4.3.3 Additional Metrics 
In this section, we will study additional performance 
metrics, including: 
 R-Squared (R²),  
 Root Mean Squared Error (RMSE),  
 Mean Absolute Error (MAE),  
to comprehensively evaluate the predictive accuracy 
of the Generator Model and the Bayesian 
Optimization Model. These metrics will provide 
deeper insights into how well each model captures 
the underlying patterns in the data, how effectively 
they minimize errors, and how consistently they 
perform across iterations. By analyzing these 
metrics, we aim to better understand the strengths 
and weaknesses of each model in terms of both 
precision and reliability 
4.3.3.1 𝑹𝟐 
Figure 18 displays the R-Squared (R²) 
evolution over iterations for the two models. The R-
Squared metric measures the goodness of fit, with 
values closer to 1 indicating a better fit between the 
predicted and actual values. 
 

 
Figure 18: Comparison of the Evolution of R-Squared 

over Iterations (Bayesian Opt vs Generator Model) 
 
Generator Model Performance: 
The Generator Model shows consistently high R² 
values across most iterations, hovering around 0.8 to 
1.0, indicating that this model provides a very good 
fit for the data. 
There is a brief dip around iteration 20, where the R² 
drops sharply, but the model quickly recovers. 
Overall, the model remains highly reliable in terms 
of its predictive accuracy throughout the iterations. 
Bayesian Optimization Model Performance: 
The Bayesian Optimization Model demonstrates far 
more variability in R² values, ranging from positive 
values around 0.8 to negative values (as low as -0.4). 

Early iterations show a sharp decline, with R² falling 
to negative values by iteration 4, which indicates that 
the model is performing worse than simply 
predicting the mean of the data at certain points. 
There are some moments of recovery (e.g., iterations 
7, 14, and 23), where the R² rises to around 0.6, but 
these are not sustained, as the model frequently dips 
back into negative or low R² values. 
The fluctuations highlight the exploratory nature of 
Bayesian Optimization, where the search for optimal 
hyperparameters can result in poor fits before 
finding better configurations. 
Comparison: 

 The Generator Model clearly outperforms 
the Bayesian Optimization Model in terms 
of stability and goodness of fit, as 
evidenced by its consistently high R² 
values. is more stable and effective at 
predicting the target variable, making it a 
more reliable option. 

 The Bayesian Optimization Model, while 
capable of achieving decent R² values 
occasionally, struggles to maintain a good 
fit over multiple iterations, exhibiting 
significant volatility which suggests that its 
hyperparameter search is less focused, 
leading to inconsistent performance. 
However, given its potential for recovery in 
certain iterations, fine-tuning could 
improve its stability. 

The Generator Model delivers consistently high 
performance in terms of R², making it the more 
reliable choice. The Bayesian Optimization 
Model shows promise but requires further 
refinement to avoid the severe fluctuations and 
consistently produce high R² values. 
4.3.3.2 Root Mean Squared Error (RMSE) 
Figure 19 shows the Root Mean Squared Error 
(RMSE) evolution over iterations for both models. 
RMSE is a standard metric used to measure the 
difference between the predicted values and the 
actual values, with lower values indicating better 
model performance. 
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Figure 19: Comparison of the Evolution of RMSE over 

Iterations (Bayesian Opt vs Generator Model) 
 
Generator Model Performance: 
The Generator Model maintains relatively low 
RMSE throughout most of the iterations, 
consistently below 0.10. This indicates that the 
model is making predictions with a low degree of 
error. 
There are a few spikes, particularly around iteration 
20, where RMSE jumps significantly. However, 
these are isolated instances, and the model quickly 
returns to a lower RMSE. 
The stability of the Generator Model's RMSE 
suggests a reliable performance with limited 
fluctuations. 
Bayesian Optimization Model Performance: 
The Bayesian Optimization Model demonstrates 
much higher variability in RMSE, with values 
frequently ranging between 0.15 and 0.20. This 
indicates that the model experiences larger errors in 
its predictions compared to the Generator Model. 
While there are occasional sharp drops in RMSE 
(e.g., iterations 17 and 22), these improvements are 
often short-lived, with the RMSE rising again in 
subsequent iterations. 
The overall pattern of the Bayesian Optimization 
Model shows high instability, with rapid increases 
and decreases in RMSE, reflecting the exploratory 
nature of the hyperparameter optimization process. 
Comparison: 

 The Generator Model outperforms the 
Bayesian Optimization Model in terms of 
consistency and lower RMSE values. Its 
predictions are more accurate and stable 
across most iterations. It shows better 
control and optimization, leading to more 
reliable predictions with lower error. 

 The Bayesian Optimization Model, while 
capable of reducing RMSE in some 

iterations, struggles with maintaining low 
error levels, as evidenced by frequent 
spikes and high RMSE values in many 
iterations. This suggest that its 
hyperparameter search is less focused, 
leading to less consistent performance. The 
exploration phase seems to produce 
significant variance in results, both positive 
and negative. 

The Generator Model provides more accurate and 
stable predictions with lower RMSE throughout the 
iterations. The Bayesian Optimization Model, while 
capable of achieving good results in some iterations, 
lacks the stability and consistency seen in the 
Generator Model, making it less reliable in terms of 
predictive accuracy. 
4.3.3.3 Mean Absolute Error (MAE) 
Figure 20 depicts the Mean Absolute Error (MAE) 
evolution. MAE is a metric that measures the 
average absolute difference between the predicted 
and actual values, with lower values indicating better 
performance. 

 
Figure 20: Comparison of the Evolution of MAE over 

Iterations (Bayesian Opt vs Generator Model) 
 
Generator Model Performance: 
The Generator Model maintains relatively low MAE 
throughout the iterations, mostly under 0.06, 
indicating that the model produces predictions with 
smaller deviations from the actual values. 
Similar to previous metrics, there are a few spikes 
(notably around iterations 5, 15, and 20), where the 
MAE increases. However, these spikes are followed 
by quick recoveries, showing the model’s ability to 
return to a lower error rate. 
Overall, the Generator Model shows a stable 
performance with controlled fluctuations in MAE. 
Bayesian Optimization Model Performance: 
The Bayesian Optimization Model exhibits much 
higher MAE, fluctuating between 0.08 and 0.14 for 
most iterations. This indicates that its predictions 
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tend to deviate more from the actual values 
compared to the Generator Model. 
There are noticeable swings in the error values, with 
frequent sharp rises and falls. This suggests that the 
Bayesian Optimization process is still exploring 
various hyperparameter configurations, leading to 
inconsistent prediction accuracy. 
The volatility in MAE, particularly the large spikes 
around iterations 5, 14, and 23, indicates that the 
model struggles to maintain a low error rate, despite 
occasional improvements. 
Comparison: 

 The Generator Model consistently achieves 
lower MAE values compared to the 
Bayesian Optimization Model. The 
differences in MAE are significant, with the 
Generator Model maintaining smaller 
errors throughout most of the iterations. 
Even when the MAE spikes, the model 
quickly corrects itself. 

 The Bayesian Optimization Model's higher 
and more erratic MAE suggests that its 
hyperparameter exploration is less effective 
in minimizing error compared to the 
Generator Model, which shows more 
stability and reliability in its predictions. 
This indicate that it requires more fine-
tuning. Its exploratory nature may be 
responsible for the unstable performance, 
but it fails to consistently reduce error. 

The Generator Model outperforms the Bayesian 
Optimization Model in terms of minimizing MAE, 
providing more accurate and stable predictions 
across the iterations. While the Bayesian 
Optimization Model shows potential for 
improvement in some iterations, it lacks the 
consistency and efficiency needed for reliable 
predictions. 
4.3.3.4 Metrics Conclusion 
In conclusion, across all metrics—MSE, RMSE, R², 
and MAE—the Generator Model consistently 
outperforms the Bayesian Optimization Model in 
terms of stability, accuracy, and error minimization. 
The Generator Model maintains lower and more 
controlled error values (MSE, RMSE, and MAE), 
while showing consistently high R² values, 
indicating a better fit between predictions and actual 
values. In contrast, the Bayesian Optimization 
Model exhibits greater variability and volatility 
across all metrics, with frequent spikes and drops, 
highlighting its exploratory nature but resulting in 
less reliable performance. While the Bayesian model 
occasionally reaches lower error values, it struggles 
to sustain these improvements, making the 

Generator Model the more effective and stable 
option for accurate prediction. 
4.3.4 Understanding Search Logic 
Figure 21 (See Appendices) presents the evolution 
of several hyperparameters over iterations for both 
the Base Model and the Bayesian Optimization 
Model. The plots track the changes 
in Hyperparameters (Learning Rate, Batch 
Size, Sequence Length, Dropout Rate, Units Per 
Layer, and Number of Layers) across iterations. We 
observe the following: 
Learning Rate: 

 The Base Model maintains a very low, 
near-constant learning rate throughout the 
iterations, indicating a conservative and 
stable approach to learning. 

 The Bayesian Optimization Model, on the 
other hand, exhibits drastic fluctuations in 
learning rate, with frequent spikes and 
drops. This variability reflects its 
exploratory nature, trying to find the 
optimal rate, but leading to instability. 

Batch Size: 
 The Base Model keeps the batch size low 

and relatively constant, staying under 256 
across iterations. This likely contributes to 
the model’s stability and consistency in 
performance. 

 The Bayesian Optimization Model shows 
extreme fluctuations in batch size, reaching 
as high as 2048 in some iterations. The 
large changes suggest that the model is 
attempting aggressive optimizations but 
may be overfitting or inefficient in certain 
configurations. 

Sequence Length: 
 The Base Model follows a moderate 

pattern in adjusting sequence length, with 
some fluctuations but maintaining a more 
controlled approach. 

 The Bayesian Optimization Model again 
shows significant variability, with sequence 
lengths fluctuating wildly. This instability 
could lead to inconsistent performance, as 
sequence length can greatly affect how the 
model processes temporal data. 

Dropout Rate: 
 The Base Model steadily adjusts the 

dropout rate, staying within a controlled 
range (between 0.1 and 0.4). This 
controlled variation helps in regularizing 
the model without extreme changes. 

 The Bayesian Optimization 
Model experiments with a much broader 
range of dropout rates, from 0.1 to 0.9, 
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likely in search of optimal regularization. 
However, these wide fluctuations can lead 
to over-regularization or insufficient 
regularization, impacting model 
performance. 

Units Per Layer: 
 The Base Model keeps units per layer 

relatively low and adjusts them modestly, 
maintaining a controlled structure that 
avoids overcomplicating the network. 

 The Bayesian Optimization Model again 
exhibits high variability, frequently 
adjusting the number of units between 1 
and 10. These significant shifts suggest the 
model is searching for the best architecture 
but could lead to unstable learning. 

Number of Layers: 
 The Base Model adjusts the number of 

layers in a more measured way, with minor 
changes that seem to follow a pattern, 
keeping the structure simple. 

 The Bayesian Optimization Model varies 
the number of layers extensively, 
fluctuating between 1 and 10 layers, which 
could lead to instability in the model’s 
architecture, as deeper networks are more 
complex and harder to train effectively. 

 
The Base Model exhibits more controlled, gradual 
adjustments across all hyperparameters, which likely 
contributes to its stability and more consistent 
performance. In contrast, the Bayesian Optimization 
Model demonstrates large, frequent fluctuations in 
most hyperparameters, reflecting its exploratory 
approach. While this may allow it to find occasional 
optimal configurations, the extreme variability could 
lead to unstable training and inconsistent results, as 
reflected in its less stable performance metrics 
compared to the Base Model. Additionally, 
compared to prior studies leveraging Bayesian 
optimization for hyperparameter tuning, our 
Generator model demonstrates superior stability, 
particularly in reducing large fluctuations in MSE 
across iterations. Unlike the approach in [33], which 
highlights the exploratory advantages of Bayesian 
optimization, our method achieves consistent 
performance gains with significantly reduced 
computational cost, as reflected in the comparative 
analysis of execution times (Figure 17). This 
positions our approach as a more resource-efficient 
alternative for tasks requiring real-time adaptability. 
 

Table 7: Chosen Hyperparameters Comparison 
(Bayesian Optimization vs Generator Model) 

Hyperparameter Base Model Bayesian 
Optimization 
Model  

Learning Rate Low and 
relatively 
constant; 
conservative 
approach. 

Large 
fluctuations; 
frequent spikes 
and drops. 

Batch Size Low and 
stable, 
generally 
under 256. 

Extreme 
variability, 
ranging from 
small to as 
high as 2048. 

Sequence Length Moderate 
changes with 
controlled 
fluctuations. 

Significant 
variability, 
with large 
jumps and 
drops. 

Dropout Rate Controlled 
range between 
0.1 and 0.4; 
gradual 
adjustments. 

Broad range 
from near 0 to 
0.9; unstable 
variations. 

Units Per Layer Modest 
adjustments, 
low and stable. 

Large 
fluctuations, 
from 1 to 10 
units, highly 
variable. 

Number of 
Layers 

Measured 
adjustments, 
keeping it 
simple. 

High 
variability, 
frequently 
changing 
between 1 and 
10 layers. 

 
5. DISCUSSION 
 
 Ensuring the validity of any machine 
learning study is critical, especially in fields like 
financial forecasting, where the implications of 
predictions can have significant economic impacts. 
The findings of this study are subject to various 
threats to validity, categorized into internal, external, 
and construct validity, each of which is discussed in 
detail below. 
Internal Validity 
Internal validity concerns the degree to which the 
observed outcomes of the model are attributable to 
the experimental design rather than external factors. 
In this study, the primary internal validity threat 
arises from the quality and quantity of the historical 
S&P 500 data used. While the dataset spans several 
decades and includes diverse market conditions, it 
may not fully capture rare or unforeseen market 
behaviors such as sudden crashes or spikes due to 
geopolitical events or unexpected crises (e.g., the 
COVID-19 pandemic). This issue aligns with 
findings by Sun et al. (2022), who highlighted the 
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need for robust data preprocessing to mitigate the 
impact of outliers and anomalies in financial datasets 
[34]. 
Hyperparameter tuning relies on a feedback loop 
involving Mean Squared Error (MSE) minimization. 
Any noise or irregularity in this loop, such as 
anomalous spikes in MSE due to outlier data points, 
may lead to suboptimal or misleading model 
adjustments. Although measures like data 
normalization and outlier detection are applied, these 
cannot fully eliminate the risk of bias inherent in the 
dataset. 
External Validity 
External validity assesses the generalizability of the 
findings beyond the scope of the study. While this 
research focuses on the S&P 500 index, its 
applicability to other financial indices, such as the 
NASDAQ or Dow Jones Industrial Average, 
remains untested. Different indices may exhibit 
unique behaviors and levels of volatility, making the 
model’s performance unpredictable when applied to 
new datasets. It is demonstrated that optimization 
methods tuned for specific datasets often perform 
poorly on datasets with varying dynamics, such as 
those influenced by external shocks or structural 
changes [35]. This underscores the need for 
validation on diverse datasets, including non-
financial time series, to evaluate the robustness of 
the proposed model. 
Similarly, the model's generalizability to non-
financial time series datasets, such as energy 
consumption, weather forecasting, or 
epidemiological data, is uncertain. These datasets 
often have distinct characteristics (e.g., periodicity, 
seasonality) that may require tailored 
hyperparameter tuning approaches. Without further 
testing, the broader applicability of the proposed 
gradient-based optimization system is limited. 
Construct Validity 
Construct validity pertains to whether the study 
measures what it claims to measure. This study 
assumes that minimizing MSE is a sufficient proxy 
for improving forecasting accuracy and reliability. 
While MSE is a widely accepted metric in regression 
tasks, it primarily emphasizes the magnitude of 
errors without considering their direction or 
temporal relevance. Zhao (2023) pointed out that 
reliance on single metrics like MSE can lead to 
biased evaluations, particularly in domains where 
directional accuracy is critical, such as stock price 
predictions [36]. 
For instance, in financial forecasting, 
underestimating a significant market movement may 
have vastly different implications compared to 
overestimating it. Metrics like Mean Absolute 

Percentage Error (MAPE) or R-squared could 
provide complementary perspectives on model 
performance but are not explored in this study. 
Additionally, the study’s reliance on hyperparameter 
tuning as the primary driver of improved 
performance may overlook other critical factors, 
such as model architecture or the quality of input 
features. For example, incorporating external 
macroeconomic indicators or technical analysis 
signals might enhance the LSTM model's 
forecasting capabilities beyond what 
hyperparameter optimization alone can achieve. 
Mitigation Strategies 
To address these threats, several mitigation 
strategies have been implemented or proposed: 

 Data Quality Control: The use of 
normalization and outlier detection helps 
reduce the impact of data irregularities. 
Recent advances, such as data 
augmentation techniques for rare events, 
have shown promise in enhancing model 
robustness to unseen conditions [37]. 

 Cross-Dataset Validation: Testing the 
model on multiple financial indices or 
synthetic datasets could provide stronger 
evidence of generalizability. 

 Diverse Metrics: Incorporating additional 
evaluation metrics, such as MAPE or 
directional accuracy, may offer a more 
nuanced understanding of model 
performance. 

 Feature Engineering: Expanding the 
model's feature set to include external 
variables, such as interest rates or market 
sentiment scores, could enhance its 
forecasting accuracy and robustness. 

While the proposed adaptive hyperparameter 
tuning system demonstrates promise in 
improving the efficiency and stability of LSTM 
models for financial forecasting, these validity 
considerations highlight areas for caution and 
further investigation. By addressing these 
threats in future research, the model's 
applicability and reliability can be significantly 
enhanced. 

 
6. CONCLUSION 
 
 In this paper, we led a comparison between 
the Base Model and the Bayesian Optimization 
Model to reveal significant differences in their 
performance in terms of stability and efficiency. 
The Base Model exhibits consistently lower error 
rates across all metrics, including MSE, RMSE, 
MAE, and R², making it a more reliable model for 
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accurate predictions. Its controlled and stable 
adjustments to hyperparameters, such as learning 
rate, batch size, and dropout rate, contribute to its 
overall robustness and precision. Additionally, the 
Base Model demonstrates superior time efficiency, 
with significantly lower execution times per iteration 
compared to the Bayesian Optimization Model. 
On the other hand, the Bayesian Optimization 
Model, while having the potential to explore a 
broader hyperparameter space, suffers from greater 
volatility in both performance and training time. Its 
frequent and extreme fluctuations in 
hyperparameters, such as batch size and sequence 
length, lead to inconsistent error reduction and 
prolonged training times. While the Bayesian 
Optimization Model occasionally finds 
configurations that yield lower error, these moments 
are short-lived, and the model quickly regresses to 
higher error values. Overall, the Base Model proves 
to be more efficient and effective, providing better 
accuracy and faster results with less computational 
overhead. 
 
7. FUTURE WORK 
 
Building on the strengths of the Generator model, 
future research can explore several directions to 
further enhance its capabilities and address its 
limitations. 
Hybrid Optimization Approaches 
One promising direction is the development of a 
hybrid optimization model that combines the 
exploration capabilities of Bayesian optimization 
with the stability and efficiency of the Generator 
model's gradient-based tuning. Such a hybrid 
approach could allow for a more focused yet flexible 
search of hyperparameter spaces, leveraging the 
strengths of both methods. Recent studies have 
demonstrated the effectiveness of hybrid strategies in 
improving convergence and handling complex, high-
dimensional spaces [38][39]. 
Expanding Application Domains 
The current study focuses on the S&P 500 index, but 
extending the model to other financial indices (e.g., 
NASDAQ, Dow Jones Industrial Average) and non-
financial time series datasets (e.g., weather 
forecasting, energy consumption) could provide 
valuable insights into its robustness and scalability. 
Testing on datasets with diverse characteristics, such 
as seasonality or external shocks, will help generalize 
the model's applicability across domains [40]. 
Multi-Objective Optimization 
Incorporating multi-objective optimization 
frameworks to balance competing priorities, such as 

predictive accuracy and computational efficiency, 
could further refine the Generator model’s utility. 
This approach would align the model’s performance 
with real-world time and resource constraints [41]. 
Dynamic and Adaptive Mechanisms 
Future studies could enhance the Generator model by 
introducing more adaptive or dynamic 
hyperparameter tuning mechanisms. Techniques like 
meta-gradient optimization and adaptive learning 
rates have shown promise in helping models adapt to 
changing data distributions while maintaining 
stability [42]. These additions would improve the 
model's ability to respond to shifts in data patterns, 
particularly in volatile financial markets. 
Improved Hyperparameter Space Exploration 
The reliance on predefined hyperparameter ranges 
limits the Generator model’s exploratory potential. 
Introducing probabilistic sampling or dynamic range 
adjustments could allow for more thorough 
exploration, addressing edge cases that static ranges 
might overlook. This could lead to improved 
outcomes, especially in challenging datasets. 
Scalability and Efficiency 
Experimenting with larger and more diverse datasets 
could validate the Generator model’s scalability. 
Efficient implementations, such as distributed 
training or low-precision computation, may also be 
explored to further reduce training times while 
maintaining model performance. 
By addressing these areas, the Generator model can 
evolve into a more versatile and robust optimization 
tool for various machine learning applications. The 
integration of recent advancements in optimization 
and scalability frameworks will be critical for 
realizing this potential. 
 
REFERENCES:  
[1] Bergstra, J., & Bengio, Y., "Random Search for 

Hyper-Parameter Optimization," Journal of 
Machine Learning Research, Vol. 13, No. 1, 
2012, pp. 281-305. 

[2] Snoek, J., Larochelle, H., & Adams, R. P., 
"Practical Bayesian Optimization of Machine 
Learning Algorithms," Advances in Neural 
Information Processing Systems, Vol. 25, 2012, 
pp. 2951-2959. 

[3] Shahriari, B., Swersky, K., Wang, Z., Adams, R. 
P., & de Freitas, N., "Taking the Human Out of 
the Loop: A Review of Bayesian Optimization," 
Proceedings of the IEEE, Vol. 104, No. 1, 2016, 
pp. 148-175. 

[4] Hutter, F., Hoos, H. H., & Leyton-Brown, K., 
"Sequential Model-Based Optimization for 



Journal of Theoretical and Applied Information Technology 
31st December 2024. Vol.102. No. 24 

©   Little Lion Scientific  
 

ISSN: 1992-8645                                                                    www.jatit.org                                                     E-ISSN: 1817-3195 
 

 
8932 

 

General Algorithm Configuration," 
International Conference on Learning and 
Intelligent Optimization, Springer, 2011, pp. 
507-523. 

[5] Franceschi, L., Donini, M., Frasconi, P., & Pontil, 
M., "Bilevel Programming for Hyperparameter 
Optimization and Meta-Learning," 
International Conference on Machine Learning 
(ICML), 2018, pp. 1563-1572. 

[6] Maclaurin, D., Duvenaud, D., & Adams, R. P., 
"Gradient-Based Hyperparameter Optimization 
Through Reversible Learning," International 
Conference on Machine Learning (ICML), 
2015, pp. 2113-2122. 

[7] Liu, H., Simonyan, K., & Yang, Y., "DARTS: 
Differentiable Architecture Search," 
International Conference on Learning 
Representations (ICLR), 2018. 

[8] Snoek, J., Rippel, O., Swersky, K., Kiros, R., 
Satish, N., Sundaram, N., & Dahl, G. E., 
"Scalable Bayesian Optimization Using Deep 
Neural Networks," International Conference on 
Machine Learning (ICML), 2015, pp. 2171-
2180. 

[9] Domke, J., "Generic Methods for Optimization-
Based Modeling," International Conference on 
Artificial Intelligence and Statistics 
(AISTATS), 2012, pp. 318-326. 

[10] Wang, Z., Zoghi, M., Hutter, F., Matheson, D., 
& de Freitas, N., "Bayesian Optimization in a 
Billion Dimensions via Random Embeddings," 
Journal of Artificial Intelligence Research, Vol. 
55, 2013, pp. 361-387. 

[11] Pedregosa, F., "Hyperparameter Optimization 
with Approximate Gradient," International 
Conference on Machine Learning (ICML), 
2016, pp. 737-746. 

[12] Baydin, A. G., Pearlmutter, B. A., Radul, A. A., 
& Siskind, J. M., "Automatic Differentiation in 
Machine Learning: A Survey," Journal of 
Machine Learning Research, Vol. 18, No. 1, 
2018, pp. 5595-5637. 

[13] Shaban, A., Cheng, C.-A., Hatch, N., & Boots, 
B., "Truncated Back-Propagation for Bilevel 
Optimization," International Conference on 
Artificial Intelligence and Statistics 
(AISTATS), 2019, pp. 1723-1732. 

[14] Fischer, T., & Krauss, C., "Deep Learning with 
Long Short-Term Memory Networks for 
Financial Market Predictions," European 
Journal of Operational Research, Vol. 270, No. 
2, 2018, pp. 654-669. 

[15] Galeshchuk, S., "Neural Networks Performance 
in Exchange Rate Prediction," 
Neurocomputing, Vol. 172, 2016, pp. 446-452. 

[16] Zhang, G., Eddy Patuwo, B., & Hu, M. Y., 
"Forecasting with Artificial Neural Networks: 
The State of the Art," International Journal of 
Forecasting, Vol. 14, No. 1, 1998, pp. 35-62. 

[17] Hochreiter, S., & Schmidhuber, J., "Long Short-
Term Memory," Neural Computation, Vol. 9, 
No. 8, 1997, pp. 1735-1780. 

[18] Jain, A. K., Mao, J., & Mohiuddin, K. M., 
"Artificial Neural Networks: A Tutorial," 
Computer, Vol. 29, No. 3, 1996, pp. 31-44. 

[19] Ioffe, S., & Szegedy, C., "Batch Normalization: 
Accelerating Deep Network Training by 
Reducing Internal Covariate Shift," 
International Conference on Machine Learning 
(ICML), 2015, pp. 448-456. 

[20] LeCun, Y., Bengio, Y., & Hinton, G., "Deep 
Learning," Nature, Vol. 521, 2015, pp. 436-444. 

[21] Friedman, J., Hastie, T., & Tibshirani, R., "The 
Elements of Statistical Learning," Springer, 
2001. 

[22] Bishop, C. M., "Pattern Recognition and 
Machine Learning," Springer, 2006. 

[23] Goodfellow, I., Bengio, Y., & Courville, A., 
"Deep Learning," MIT Press, 2016. 

[24] Srivastava, N., Hinton, G., Krizhevsky, A., 
Sutskever, I., & Salakhutdinov, R., "Dropout: A 
Simple Way to Prevent Neural Networks from 
Overfitting," Journal of Machine Learning 
Research, Vol. 15, No. 1, 2014, pp. 1929-1958. 

[25] Krizhevsky, A., Sutskever, I., & Hinton, G. E., 
"ImageNet Classification with Deep 
Convolutional Neural Networks," Advances in 
Neural Information Processing Systems, Vol. 
25, 2012, pp. 1097-1105. 

[26] He, K., Zhang, X., Ren, S., & Sun, J., "Deep 
Residual Learning for Image Recognition," 
IEEE Conference on Computer Vision and 
Pattern Recognition (CVPR), 2016, pp. 770-
778. 

[27] Nair, V., & Hinton, G. E., "Rectified Linear 
Units Improve Restricted Boltzmann 
Machines," Proceedings of the 27th 
International Conference on Machine Learning 
(ICML), 2010, pp. 807-814. 

[28] Maas, A. L., Hannun, A. Y., & Ng, A. Y., 
"Rectifier Nonlinearities Improve Neural 
Network Acoustic Models," International 
Conference on Machine Learning (ICML), 
2013. 



Journal of Theoretical and Applied Information Technology 
31st December 2024. Vol.102. No. 24 

©   Little Lion Scientific  
 

ISSN: 1992-8645                                                                    www.jatit.org                                                     E-ISSN: 1817-3195 
 

 
8933 

 

[29] Chollet, F., "Deep Learning with Python," 
Manning Publications, 2017. 

[30] Kingma, D. P., & Ba, J., "Adam: A Method for 
Stochastic Optimization," International 
Conference on Learning Representations 
(ICLR), 2014. 

[31] Zhao, X., "Metrics for Stock Price Prediction: A 
Critical Review," Journal of Financial Data 
Science, Vol. 5, No. 1, 2023, pp. 45-60. 

[32] Sun, Q., Chen, W., & Zhou, Z., "Robust 
Preprocessing Techniques in Financial Data," 
International Journal of Finance & Economics, 
Vol. 27, No. 3, 2022, pp. 451-465. 

[33] Zhao, L., "Multi-Objective Optimization in 
Financial Machine Learning," Computational 
Economics, Vol. 61, No. 2, 2023, pp. 213-229. 

[34] Zhao, Q., "Data Augmentation Strategies for 
Rare Financial Events," Journal of Financial 
Innovation, Vol. 15, No. 4, 2023, pp. 123-139. 

[35] Sun, H., & Lin, M., "Combining Bayesian 
Optimization and Gradient-Based Tuning for 
High-Dimensional Spaces," Machine Learning 
Optimization Review, Vol. 8, No. 1, 2022, pp. 
14-29. 

[36] Li, Y., & Wang, J., "Expanding Financial 
Forecasting Models to Diverse Indices," 
Journal of Applied Financial Machine 
Learning, Vol. 10, No. 3, 2023, pp. 211-225. 

[37] Zhao, F., "Adaptive Optimization Techniques in 
Neural Networks," Journal of Machine 
Learning Optimization, Vol. 14, No. 2, 2023, 
pp. 89-107. 

[38] Zhao, R., "Temporal Dynamics in Stock Market 
Prediction," Journal of Economic Modeling, 
Vol. 19, No. 4, 2022, pp. 341-356. 

[39] Sun, Z., & Wang, P., "Cross-Index Analysis of 
Financial Time Series Forecasting," Journal of 
Finance & Economics, Vol. 38, No. 2, 2023, pp. 
79-93. 

[40] Lin, Z., "Enhancing Scalability in Machine 
Learning Models," Journal of Computational 
Sciences, Vol. 17, No. 1, 2022, pp. 102-119. 

[41] Zhao, Y., "Hybrid Optimization Techniques for 
Machine Learning," Journal of Machine 
Learning Advances, Vol. 11, No. 5, 2023, pp. 
67-82. 

[42] Wang, X., & Zhao, Q., "Adapting Optimization 
Strategies to Dynamic Financial Datasets," 
Journal of Financial Engineering, Vol. 28, No. 
3, 2023, pp. 172-189. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Journal of Theoretical and Applied Information Technology 
31st December 2024. Vol.102. No. 24 

©   Little Lion Scientific  
 

ISSN: 1992-8645                                                                    www.jatit.org                                                     E-ISSN: 1817-3195 
 

 
8934 

 

 
APPENDICES 
 
 

Figure 21: Evolution of Hyperparameters over Iterations (Base Model vs Bayesian Optimization) 
 
 
 

 
 
 

Table 8: Generator Model choice of Hyperparameters over iterations 
 

Iteration Num 
Layers 

Units Per 
Layer 

Learning 
Rate 

Batch 
Size 

Sequence 
Length 

Dropout 
Rate 

MSE Time 
(seconds) 

1 1 1 0.00001 16 6 0.1 0.001117 7.216265 

2 7 7 0.01000 512 173 0.7 0.008516 42.880915 

3 4 4 0.00010 64 48 0.3 0.001606 20.793537 

4 3 3 0.00010 64 57 0.4 0.001363 16.882484 

5 2 2 0.00010 32 27 0.2 0.000589 12.111104 

6 2 2 0.00010 64 58 0.2 0.000648 11.513346 

7 2 1 0.00010 32 2 0.3 0.006763 5.298699 

8 1 1 0.00001 16 14 0.2 0.002836 6.287926 

9 1 1 0.00010 16 36 0.2 0.004360 9.942455 

10 3 3 0.00001 32 13 0.1 0.000296 11.847384 

11 2 2 0.00001 16 22 0.2 0.000646 15.046852 

12 1 1 0.00001 32 22 0.2 0.002682 5.037210 

13 6 3 0.00010 32 112 0.3 0.001798 94.676119 
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14 1 2 0.00001 32 17 0.2 0.011463 4.871952 

15 1 1 0.00001 16 3 0.1 0.000350 4.423110 

16 2 1 0.00010 32 63 0.3 0.003617 19.385670 

17 2 2 0.00001 16 5 0.2 0.000801 7.890271 

18 1 2 0.00001 16 1 0.1 0.000229 4.043066 

19 2 1 0.00001 16 29 0.2 0.001363 16.409364 

20 1 1 0.00001 16 8 0.1 0.028215 5.701318 

 
 

Table 9: Bayesian Optimization choice of Hyperparameters over iterations 

Iteration Learning 
Rate 

Batch 
Size 

Sequence 
Length 

Dropout 
Rate 

Units Per 
Layer 

Num 
Layers 

MSE Time 
(seconds) 

1 0.10000 256 168 0.4 1 3 0.005716 15.269365 

2 0.00010 16 194 0.9 5 3 0.020230 121.031157 

3 0.00010 1024 24 0.6 6 5 0.036411 9.474783 

4 0.00001 128 141 0.1 6 2 0.035247 14.428003 

5 0.10000 256 222 0.8 9 2 0.019119 13.989943 

6 0.00010 16 53 0.9 8 4 0.016497 49.478577 

7 0.10000 64 215 0.2 10 6 0.034805 88.939898 

8 0.10000 2048 97 0.7 6 9 0.038545 32.959677 

9 0.00001 2048 240 0.6 9 5 0.041913 37.239439 

10 0.00001 128 193 0.7 3 3 0.050000 25.530747 

11 0.00100 256 1 0.4 1 8 0.037803 13.403797 

12 0.00010 256 1 0.4 4 3 0.047823 5.550930 

13 0.01000 16 66 0.9 6 9 0.034976 141.947069 

14 0.10000 2048 64 0.4 8 9 0.041214 24.846156 

15 0.10000 256 122 0.3 5 6 0.035607 26.361036 

16 0.10000 256 28 0.6 4 2 0.005844 6.092100 

17 0.10000 256 98 0.5 1 4 0.033385 14.395095 

18 0.10000 256 250 0.2 10 9 0.034311 74.527698 

19 0.10000 256 54 0.1 2 6 0.036025 23.179554 
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20 0.10000 256 1 0.7 2 10 0.037023 19.312879 

21 0.00010 16 15 0.9 10 9 0.011483 57.186282 

22 0.10000 256 234 0.4 5 1 0.001098 8.159389 

23 0.01000 16 146 0.7 6 7 0.008162 242.868558 

24 0.01000 16 47 0.8 3 3 0.011391 41.089236 

25 0.01000 16 233 0.8 9 10 0.033707 575.909664 

26 0.01000 16 50 0.7 4 1 0.004556 18.161591 

27 0.10000 256 240 0.7 3 1 0.009357 10.707471 

28 0.01000 16 34 0.1 4 4 0.000094 42.035963 

  
 


