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ABSTRACT 
 

Cardiovascular diseases, including heart disease, remain a significant global health concern. Early detection 
and accurate prediction of heart disease risk factors are crucial for effective prevention and intervention. 
This research paper uses a metaheuristic approach with genetic algorithms (GAs) to optimize 
hyperparameter settings to improve predictive accuracy of heart disease models. Using genetic algorithms 
as a metaheuristic approach, this research article aims to improve the accuracy and generalizability of heart 
disease prediction models. The primary objective is to converge towards optimal model parameters, 
ultimately maximizing accuracy or minimizing error. The study investigates the effectiveness of combining 
genetic algorithms with machine learning in improving heart disease prediction, with a focus on enhancing 
accuracy, generalizability, and scalability. Through comparison with traditional methods, the research 
assesses the superiority of the proposed approach and its potential contributions to heart disease diagnosis 
and treatment. Notably, the research stands out for its use of genetic algorithms in conjunction with cross-
validation to optimize hyperparameters, identify optimal model parameters, and evaluate performance by 
minimizing errors. The application of the Support Vector Machine (SVM) classifier with optimized 
hyperparameters yielded a significant 97% improvement in accuracy with the heart disease dataset, 
surpassing results from previous studies. This research thus highlights the promise of genetic algorithms in 
enhancing heart disease prediction models and advancing healthcare analytics 

Keywords: Metaheuristic Approach, Genetic Algorithm, Hyperparameter Optimization, Support Vector 
Machine, Heart Disease Prediction 

 
1. INTRODUCTION  
 

Heart disease is an important global health 
concern, being the leading cause of mortality 
worldwide, which represents a substantial burden 
on individuals, families, and healthcare systems [1]. 
Cardiovascular disease accounts for 40% of all 
deaths in China and is the leading cause of death 
worldwide, according to data provided by the 
country's national mortality surveillance system [2]. 
It is crucial to prioritize research and interventions 
to effectively address this public health problem. 

The escalating cardiovascular disease epidemic is 
a global issue of great concern. If allowed to 
escalate without intervention, the resulting 
morbidity, mortality, and economic repercussions 
could have far-reaching effects worldwide. Efforts 

to address this epidemic must involve a multi-
faceted approach, including promoting healthy 
lifestyle habits, increasing awareness about 
cardiovascular disease risk factors, and improving 
access to quality healthcare services. Governments, 
healthcare providers, and individuals must work 
together to implement prevention and management 
strategies to combat this growing crisis. With 
coordinated action and an emphasis on early 
detection and treatment, we can strive to reduce the 
burden of cardiovascular disease and ultimately 
save lives.  

Early detection and accurate prediction of heart 
disease risk factors are crucial because they allow 
timely intervention and prevention strategies. 
Identifying individuals who are at increased risk of 
developing heart disease allows for targeted 
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interventions, such as lifestyle modifications and 
medication, which can significantly reduce the 
likelihood of developing the disease. Additionally, 
accurate prediction of heart disease risk factors can 
help healthcare providers allocate resources more 
efficiently and effectively, leading to better patient 
outcomes.  

This research seeks to assess the efficacy of 
combining genetic algorithms with machine 
learning techniques in predicting heart disease, 
evaluating enhancements in predictive accuracy, 
generalizability, and scalability. It plays a crucial 
role in advancing healthcare analytics by 
investigating novel approaches to improving the 
precision and efficiency of heart disease prediction 
models. By comparing results between genetic 
algorithms combined with machine learning 
algorithms and traditional optimization methods, 
researchers can ascertain the superiority of these 
advanced techniques. This exploration will inform 
how such advanced methods may aid in the 
diagnosis and treatment of heart disease. 

The remainder of this paper is organized as 
follows. Section 2 provides an overview of the 
relevant research conducted on the topic. Section 3 
of this research focuses on the methodology used, 
which includes collecting data, preparing the data, 
and doing a thorough analysis of hyperparameter 
optimization using genetic algorithms and SVM 
classification algorithms. Moreover, it provides 
detailed information about the methodology of 
decoding a binary chromosome, the procedure of 
selecting parents, the use of crossover to produce 
future generations and random mutations of 
individuals. In Section 4, the results of all 
experiments are analyzed and discussed in detail, 
including the various metrics used in machine 
learning models. In Section 5, the conclusion and 
future direction of the research work have been 
explored in detail. 

2. RELATED WORK 

AI algorithms can effectively identify patterns 
and indicators of heart disease at an early stage, 
enabling timely intervention and treatment [3]. The 
effectiveness of AI in detecting cardiovascular-
related diseases from wearable devices has been 
systematically reviewed, with meta-analyzed 
sensitivity and specificity reaching high levels, 
indicating the potential for accurate detection and 
diagnosis [4]. The potential of AI in the early 
detection of heart disease has also been explored 
through machine learning approaches, with studies 

focusing on the development of AI models for the 
accurate and reliable detection of heart disease.  

Current heart disease prediction models often 
face challenges in achieving high predictive 
accuracy and generalizability. This is due to the 
complexity and variability of heart disease risk 
factors, as well as the limitations of traditional 
optimization methods. However, the use of genetic 
algorithms as a metaheuristic approach to 
hyperparameter tuning can address these 
challenges. Genetic algorithms can search through a 
large space of hyperparameters and find the optimal 
combination that maximizes the model's 
performance. This can help overcome the 
limitations of traditional methods and improve the 
accuracy and generalization ability of heart disease 
prediction models.  

Genetic algorithms are used by researchers in the 
classification and accurate diagnosis of diseases in 
medical fields, such as acute coronary syndrome, 
breast cancer, and diabetes [5]. Authors in [6] 
combined a genetic algorithm and neural network to 
create a system for complex categorization 
problems, with the aim of a classification accuracy 
of 94.17. The final weights of the system are used 
to predict the risk of heart disease. Furthermore, the 
study by [7] supports the idea of using genetic 
algorithms and the Adaptive Neuro-Fuzzy Inference 
System (GA-ANFIS) to create a simplified structure 
of the ANFIS model for detecting heart disease, 
reducing the number of costly tests and datasets. 
This hybrid technique shows high accuracy in 
predicting heart disease in both primary and 
secondary datasets, making it suitable for other 
datasets on heart disease and healthcare issues.  

Genetic algorithms can improve the accuracy of 
breast cancer diagnosis using a wrapper approach 
for feature selection [8]. Researchers [9] introduced 
the potential applications of the genetic algorithm in 
various medical specialties, including radiology, 
oncology, pediatrics, cardiology, endocrinology, 
surgery, obstetrics, pulmonology, orthopedics, 
neurology, pharmacotherapy, and healthcare 
management. In [10], the authors have conducted 
an investigation and presented an approach that 
integrates genetic algorithms and decision trees to 
optimize hyperparameters for C-SVMs. The study 
focuses on searching for optimal values for the 
regularization parameter, the cost of classes, and the 
parameters of the RBF kernel function for SVM. 
[11] offers an exhaustive review of cutting-edge 
research in evolutionary computation pertaining to 
feature selection. A common strategy in genetic 
algorithms (GA), genetic programming (GP), and 
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particle swarm optimization (PSO) involves 
enhancing the representation to concurrently select 
features and optimize classifiers, such as support 
vector machines (SVM).  

Despite AI algorithms' tremendous promise for 
detecting patterns and symptoms of heart disease 
via wearable devices, current heart disease 
prediction models have problems obtaining high 
predictive accuracy and generalizability. These 
issues are due to the complexity and variability of 
heart disease risk variables, as well as limitations in 
existing optimization methods.  

While genetic algorithms have been 
identified as a viable metaheuristic strategy for 
hyperparameter tuning, notably in medical 
diagnostics, there is still a gap in the use of genetic 
algorithms specifically designed for optimizing 
heart disease prediction models. Thus, the task at 
hand is to design and assess an optimal heart 
disease prediction model employing genetic 
algorithms to improve predictive accuracy and 
generalizability, thereby facilitating early detection 
and intervention techniques. Research Question: 
How does integrating genetic algorithms with 
machine learning algorithms enhance the 
performance of heart disease prediction models 
compared to traditional optimization methods? 

 
3. METHOD 

In this research we applied the Support 
Vector Machines classifier and employed a 
Metaheuristics approach, specifically utilizing 
Genetic Algorithms for Hyperparameter 
optimization. Metaheuristics are optimization 
algorithms that are used to solve complex problems 
that cannot be easily solved using traditional 
methods. In the context of heart disease prediction, 
metaheuristics can be used to optimize the 
performance of predictive models by searching for 
the best combination of hyperparameters. The SVM 
algorithm involves numerous parameters, with 
Kernel, Degree, C, and Gamma being the four most 
commonly utilized hyperparameters. In our 
research, we specifically focus on the C and 
Gamma hyperparameters. C functions as a 
regularization parameter, influencing the accuracy 
of the hyperplanes in data separation. It manages 
the balance between minimizing the error in the 
training data and maximizing the weight norm. 
However, Gamma is a parameter associated with 
the Gaussian kernel, determining the reach of 
influence for a single training observation. Lower 
values indicate a broader influence, signifying 
distance, while higher values indicate a more 

localized influence, signifying proximity. We have 
implemented genetic algorithms using the Python 
programming language, and we have developed the 
algorithm without relying developed the algorithm 
without relying on any external libraries. 

 
3.1 Data Collection  

The Cardiovascular Disease Dataset [12] 
is used for this research from the Mendeley 
database. This dataset was obtained from a 
multispecialty hospital in India. With more than 14 
common features as shown in Table 1, it is one of 
the most comprehensive heart disease dataset 
available for research purposes to date. Comprising 
1000 subjects and 14 characteristics, this dataset is 
valuable for developing early-stage heart disease 
detection systems and generating predictive 
machine learning models. 

 
3.2 Preprocessing of data   

Data cleaning is a crucial step in the data 
preprocessing pipeline, ensuring the quality and 
reliability of the dataset used for analysis or 
machine learning models. One key aspect is 
handling missing values, where the goal is to 
identify and address gaps in the data by either 
filling them in with appropriate values or removing 
the instances with missing information. 
Additionally, removing duplicates is essential to 
prevent biases in models caused by identical rows, 
maintaining the diversity and accuracy of the 
dataset. Another essential data preprocessing step 
involves identifying and eliminating outliers. 
Outliers are data points that deviate significantly 
from the expected pattern, and their presence can 
adversely affect the performance of your model 
[13].   

The next critical step involves examining 
whether the data are appropriately scaled, 
particularly in the context of variables related to 
heart disease, such as age and cholesterol levels. 
For example, age might be represented by two 
digits, while cholesterol levels could span two or 
three digits. Currently, cholesterol's larger 
numerical values might disproportionately 
influence the model, potentially overshadowing the 
true impact of age on predicting heart disease 
outcomes. However, in reality, age might have a 
more substantial impact than cholesterol levels. To 
address this, we standardize all variables on a 
consistent scale, typically between zero and one. 
This normalization ensures that each variable 
contributes equally to the heart disease prediction 
model, avoiding skewed influence based on their 
original numeric ranges [14]. 
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Table 1: DATASET FEATURE INFORMATION  
 

S.No
. 

Attribute  Description Unit Type 

1 patientid  Patient Identification Number  Number Numeric 
2 age Age In Years Numeric 
3 
4 
 
 

5    
6 
7 
 

8 
 
 
 
 
 

9 
10 
11 
12  

 
13 
14     

gender 
chestpain 
 
 
restingBP 
serumcholestrol 
fastingbloodsugar 
 
restingrelectro 
 
 
 
 
 
maxheartrate 
exerciseangia 
oldpeak 
slope 
 
noofmajorvessels 
target 

Gender 
Chest pain type 
 
 
Resting blood pressure 
Serum cholesterol 
Fasting blood sugar 
 
Resting electrocardiogram results 
 
 
 
 
 
Maximum heart rate achieved 
Exercise induced angina 
Oldpeak =ST 
Slope of the peak exercise ST 
segment 
Number of major vessels 
Classification 

0, 1 (0-Female,1-Male) 

0,1,2,3 (0 – typical angina,    
1 – atypical angina, 
2 – non-anginal pain,    
3 – asymptomatic) 

94-200 (in mm HG) 
126-564 (in mg/dl) 
0,1 > 120 mg/dl 
(0-False,1-true) 

0,1,2 (0 – Normal, 
1 – having ST-T wave 
abnormality (T wave 
inversions and/or ST elevation 
or depression of >0.05 mV) 
2 – showing probable or 
definite left ventricular 
hypertrophy by Estes’ criteria) 

71-202 
0,1(0-no,1-yes) 

0-6.2 
1,2,3 (1-unsloping, 
2-flat,3-downsloping)   
0,1,2,3 
0,1(0 – Absence of Heart 
Disease, 1 – Presence of Heart 
Disease) 

Binary 
Nominal 
 
 
Numeric 
Numeric 
Binary 
 
Nominal 
 
 
 
 
 
Numeric 
Binary 
Numeric 
 
Nominal 
Numeric 
Binary 
Binary 

 
 
Here is a brief explanation of how the scaling 
works: 

 
For each feature, the minimum and 

maximum values are computed during the fitting 
process. Then, each data point in the feature is 
transformed according to the formula: 

 

 
 

where X is the original value, XMin is the 
minimum value of the feature, and XMax is the 
maximum value of the feature. After this 
transformation, the scaled data can be used for 
machine learning algorithms and ensures that each 
feature contributes equally to the model training 
process without being disproportionately influenced 
by its original scale [15].  

In the final preprocessing step, the data were 
normalized, and subsequently, divided into two 
subsets referred to as training and testing data. The 
split was carried in a way in which 70% of the total 
data was designated for training, while the 
remaining 30% was allocated for testing. This 
division enabled the training and evaluation of the 
machine learning classifier, allowing its accuracy to 
be tested on the same dataset, during both the 
training and testing phases. 

 
 
3.3 Support vector machine 

Support vector machines (SVMs) are a powerful 
supervised learning algorithm used for 
classification and regression tasks [16]. They are 
effective in high-dimensional spaces, making them 
suitable for tasks with large features, particularly in 
fields like bioinformatics and text classification. 
SVMs are less prone to overfitting and can handle 
non-linear decision boundaries. They can be 
versatile, using the kernel trick to map input data 
into high-dimensional feature spaces. SVMs also 
have global optimization, making them less 
dependent on initialization and more reliable. They 
are effective in small sample sizes, memory-
efficient, and can model complex decision 
boundaries using different kernel functions. 
However, the choice of algorithm depends on the 
specific characteristics of the data and the task. 

Additionally, SVM models can be 
computationally expensive and require careful 
tuning of hyperparameters to achieve optimal 
performance [17]. The algorithm operates by 
maximizing the margin between the classes, as 
delineated in the feature space. Furthermore, SVM 
models may struggle with handling imbalanced 
datasets, where the number of positive cases (heart 
disease patients) is significantly smaller than the 
number of negative cases (healthy individuals). 
These limitations should be taken into consideration 
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when evaluating the potential of SVM for heart 
disease detection. 

3.4 Hyperparameter Optimization 
Hyperparameter optimization is crucial in 

machine learning algorithms because it involves 
tuning the configuration settings of a model, known 
as hyperparameters, to achieve the best 
performance [18]. Hyperparameters are parameters 
that are not learned from the training data but are 
set prior to training. They significantly impact the 
model's learning process and its ability to generalize 
well to unseen data. It improves performance by 
enhancing accuracy, reducing overfitting, and 
generalizing to new data. It also aids in time and 
resource efficiency by automating the search for 
optimal hyperparameter values. Well-tuned 
hyperparameters contribute to model robustness, as 
they are less sensitive to input data variations and 
perform consistently across different datasets. They 
also help avoid underfitting and overfitting by 
striking the right balance between hyperparameter 
values.  

Common techniques for hyperparameter 
optimization include grid search, random search, 
and more advanced methods such as Bayesian 
optimization and genetic algorithms. The choice of 
method depends on factors like the size of the 
hyperparameter search space, available computing 
resources, and the specific characteristics of the 
problem at hand. [19] introduces a proficient 
machine learning (ML) diagnosis system designed 
to detect heart disease. Prior to model 
implementation, optimal accuracy is achieved by 
employing the GridsearchCV hyperparameter 
method and the five-fold cross-validation technique.  

Grid Search is a hyperparameter optimization 
technique employed in machine learning to 
systematically explore various combinations of 
hyperparameter values within predefined ranges. In 
the context of Support Vector Machines (SVM), a 
popular classification algorithm, Grid Search 
involves the exhaustive evaluation of different sets 
of hyperparameters. For SVM, two crucial 
hyperparameters are the regularization parameter 
(C) and the kernel coefficient (gamma). As an 
example, if we consider C values of [10, 100, 1000] 
and gamma values of [0.001, 0.01], the Grid Search 
would systematically test all possible combinations, 
resulting in the evaluation of six sets: [10, 0.001], 
[10, 0.01], [100, 0.001], [100, 0.01], [1000, 0.001], 
and [1000, 0.01]. This exhaustive search process 
aids in identifying the combination of 
hyperparameters that optimally enhance the model's 

performance, ensuring a comprehensive exploration 
of the hyperparameter space. 

By employing this grid search approach, the 
ability to identify the most optimized parameters for 
achieving the highest accuracy is constrained due to 
the limitation imposed on exploring only a 
predefined set of combinations. One might 
contemplate expanding the search space by 
considering every conceivable combination, such as 
setting C from 1 to 10,000 and Gamma from 0.001 
to 0.9999. This method is referred to as brute force, 
wherein every potential combination is 
systematically tested, and the combination yielding 
the highest accuracy is selected. However, this 
approach is characterized by its exhaustive nature, 
making it impractical and time-consuming. Not 
only does it take an extensive amount of time to 
execute, but it also fails to guarantee the discovery 
of the truly optimal solution, rendering it 
impractical for practical use [20]. 

The genetic algorithm elevates the concept of 
grid search to a higher plane. While grid search 
systematically explores numerous combinations to 
determine the optimal parameters for the best 
accuracy in a dataset, the genetic algorithm takes 
this a step further. It not only tests a multitude of 
combinations but also refines its search by 
extracting promising combinations and attempting 
to generate even better ones from them. In essence, 
the genetic algorithm surpasses grid search by not 
only exploring a more extensive set of 
combinations but also evolving over time. It 
operates through generations, where a diverse set of 
combinations or solutions from one generation is 
used to spawn the next. This evolutionary process 
aims to converge towards an optimal solution [21]. 
The genetic algorithm, therefore, stands out for its 
breadth and depth compared to the simplicity and 
ease of implementation of grid search.  

 

3.5 Support Genetic Algorithm (GA) 
Hyperparameter Optimization 
Genetic algorithms work exactly as real life 

does [22] as shown in Figure 1. It starts with an 
initial random population, where each individual 
has a set of characteristics or traits. These 
individuals undergo selection, where only the fittest 
individuals are chosen to reproduce. Through 
crossover and mutation, new offspring with traits 
from their parents are created. This process is 
repeated over multiple generations, allowing the 
population to evolve and adapt to their 
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Figure 1 : FLOWCAHRT OF GENETIC ALGORITHM 

environment, mimicking the principles of natural 
selection. 

Consider a minimization problem defined over 
a set of feasible solutions, denoted as S, with a 
corresponding cost function f: S → R, applicable to 
all s ε S. The conventional approach involves 
computing the objective function for each s and 
selecting the minimum. However, practical real-life 
problems often entail an extensive S, rendering this 
direct approach impractical. This necessity for 
handling large solution spaces is where 
metaheuristics come into play. In our research, we 
specifically employ the Genetic Algorithm, a 
widely utilized metaheuristic, to address this 
challenge. 

Genetic Algorithm – Parameter Notations 

M – number of generations 
 
N – population size 
 
pc – probability of crossover 
 
pm - probability of mutation 
 
k – tournament selection 
 
3.6 Integration of SVM and GA 

In this research endeavor, our primary 
objective is to determine optimal values for the 
gamma and C hyperparameters in our support 
vector machine algorithm, focusing on a selected 

dataset. However, a crucial preliminary step 
involves understanding the process of calculating 
the objective function value. In the context of 
discussing genetic algorithm operators and 
techniques, particularly in the context of parent 
selection for crossover, it is essential to emphasize 
the significance of identifying optimal parents for 
the process. When selecting three, four, or five 
random solutions, the criterion for determining the 
best among them is crucial. In this context, "best" 
refers to the chromosome or solution that exhibits 
the highest accuracy. Each solution is a result of a 
combination of C and Gamma values, and this 
combination determines the accuracy of the 
solution.  

This selection process is not only pertinent to 
parent selection but is also applicable when 
determining the final answer. To make informed 
decisions, it is imperative to calculate the objective 
function value or fitness value. This computation 
allows us to ascertain the accuracy and fitness of 
the chromosome. However, before delving into 
accuracy or fitness value calculations, a critical 
initial step involves decoding or translating the 
binary representation (zeros and ones) of the 
chromosome into actual numerical values. When 
preparing to input a chromosome into the support 
vector machine, it is impractical to feed it in binary 
form. Therefore, understanding the decoding 
process is pivotal to transform binary information 
into meaningful numerical data for effective 
integration into the support vector machine. 
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Decoding the chromosome in the context of genetic 
algorithms involves translating a binary 
representation within a specified range (a, b) into a 
meaningful numerical value [23]. The chromosome 
length, denoted as l, determines the precision of this 
decoding process. 

 
Range (a, b) 
Chromosome length, l 

 
 

 
            Precision is calculated as in (1), indicating 
the granularity of the possible values. The decoding 
equation (2) is fundamental to the conversion. Here, 
'bit' represents each binary digit in the chromosome, 
and 'i' denotes its position. The summation captures 
the cumulative contribution of each bit to the 
overall value. Multiplying by precision scales the 
sum to fit within the specified range and adding 'a' 
ensures the final decoded value falls within the 
desired interval (a, b). This systematic approach 
allows genetic algorithms to interpret and 
manipulate binary representations of potential 
solutions within a defined numerical context. 
 

The high-level pseudocode in Algorithm 1 
outlines the optimization process for 
hyperparameters in a Support Vector Machine 
(SVM) using a genetic algorithm. This includes 
decoding a binary chromosome, calculating 
hyperparameter values, performing k-fold cross-
validation, training SVM models, and returning the 
optimized hyperparameters along with the average 
error. The main program initializes the 
chromosome and obtains the best hyperparameters. 
 
 
Algorithm 1: Decoding a binary chromosome 
 
Input: x, y, chromosome 
Output: c_hyperparameter, 
gamma_hyperparameter, avg_error 
 
1: Define lower and upper bounds for 
hyperparameters 
2: Calculate precision for hyperparameters 
3: Initialize variables for decoding binary 
chromosome 
4: Decode binary chromosome for hyperparameter 
C 
5: Initialize variables for decoding binary 
chromosome (gamma) 

6: Decode binary chromosome for hyperparameter 
gamma 
7: Calculate hyperparameter values 
8: Initialize KFold cross-validation 
9: Initialize sum_of_error variable 
10: Perform cross-validation 
11: Calculate average error across folds 
12: Return tuned hyperparameter values and 
average error 
 
In the genetic algorithm methodology, particularly 
when employing tournament selection, roulette 
wheel, or any other selection mechanism, the 
process involves choosing pairs of parents for 
crossover, leading to the generation of two 
offspring. Subsequently, these offspring undergo 
mutation, resulting in two mutated children, and 
this iterative cycle continues. The crux of the matter 
lies in the precise method used to select parents 
from the population, whether it be the initial 
population or one from a specific generation. 
 
           In the case of tournament selection, for 
instance, the procedure entails randomly selecting 
three or four solutions (chromosomes) from the 
existing population. Each of these solutions is 
represented by a binary sequence of zeros and ones. 
The next step involves evaluating the accuracy or 
error for each of these three randomly chosen 
chromosomes. The parent is then determined by 
selecting the one with either the highest accuracy or 
the lowest error among the three, in our case we are 
using the lowest error. 
 
            This selection process is iteratively 
performed, where another set of three solutions is 
randomly chosen, and the competition is repeated 
to identify the second parent as shown in Algorithm 
2. Therefore, when formulating the function for 
selecting parents, it is imperative to incorporate a 
mechanism that allows for the random selection of 
three, four, or any specified number of solutions to 
ensure the diversity and effectiveness of the genetic 
algorithm. The initiation of a genetic algorithm 
necessitates the creation of an initial population. 
This initial population is best generated through a 
randomized approach, wherein zeros and ones are 
randomly selected to form the binary representation 
of individuals within the population. This 
randomness ensures diversity and unpredictability 
in the initial set of solutions, laying the foundation 
for the subsequent genetic algorithm iterations. 
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Algorithm 2: Selecting Parents based on fitness 
value 
 
Input: x, y, Population 
Output: 
parent_1: First selected parent. 
parent_2: Second selected parent. 
 
1: Initialize parents as an empty matrix 
2: for i in range(2) do 
3: Generate a list of 3 random indices without 
replacement 
4: Obtain possible parents using the randomly 
chosen indices 
5: Compute objective function values for each 
possible parent 
6: Find the minimum objective function value 
among the possible parents 
7: Select the parent with the minimum objective 
function value 
8: Update the parents matrix with the selected 
parent 
9: end for 
10: Extract the first and second selected parents 
from the parents matrix 

The probability of crossover is a crucial 
parameter governing the frequency with which 
genetic material from two parents is combined to 
generate offspring. This probability is a user-
defined parameter, and it can range from 0 to 100 
percent. Opting for a probability of 100 percent 
implies a consistent application of crossover in 
every reproduction cycle, ensuring a continual 
exchange of genetic information between parents. 
However, users have the flexibility to adjust this 
probability to lower values, such as 90 or 85 
percent, if a less frequent occurrence of crossover is 
desired. 

Maintaining a probability of crossover at 
100 percent implies an unwavering commitment to 
the recombination of parental genetic material, 
resulting in crossover events transpiring in every 
reproduction iteration. Consequently, it is 
imperative to explore the mechanisms by which 
crossover is executed in the context of this full 
probability setting. 

To effectuate crossover between two 
parents, a two-point crossover method is employed. 
The initial step involves the random selection of 
two integers to determine the positions at which the 
crossover will transpire. It is noteworthy that if the 

two randomly selected indices happen to be 
identical, a reselection process is initiated to ensure 
distinct indices are chosen. This precautionary 
measure is implemented to guarantee the efficacy 
of the crossover operation. 

Subsequently, the crossover process 
unfolds as follows: the genetic material preceding 
the first selected index from Parent one is combined 
with the genetic material succeeding the second 
selected index from Parent two to form the genetic 
makeup of Child one. In parallel, the genetic 
material preceding the first selected index from 
Parent two is paired with the genetic material 
succeeding the second selected index from Parent 
one to produce the genetic composition of Child 
two. This two-point crossover strategy thus 
facilitates the continual generation of diverse 
offspring by recombining genetic material from 
both parents in a systematic and reproducible 
manner as mentioned in Algorithm 3. 
 
Algorithm 3: Crossover to produce the next 
generation 
 
Input: 
parent_1: First parent for crossover. 
parent_2: Second parent for crossover. 
prob_crsvr: Probability of crossover (default value 
is 1). 
Output: 
child_1: Offspring resulting from crossover with 
parent_1 and parent_2. 
child_2: Offspring resulting from crossover with 
parent_1 and parent_2. 
 
1: Initialize empty matrices for child_1 and child_2 
2: Generate a random number to determine whether 
to perform crossover 
3: if rand_num_to_crsvr_or_not < prob_crsvr: 
4: Generate two random indices for crossover 
points, ensuring they are different 
5: Identify the smaller and larger index to define the 
crossover segments 
6: Obtain segments from both parents before, 
between, and after the crossover points 
7: Create child_1 by combining segments of 
parent_1 and parent_2 
8: Create child_2 by combining segments of 
parent_2 and parent_1 
9: else: 
10: Set child_1 to be the same as parent_1 
11: Set child_2 to be the same as parent_2 
12: Return child_1 and child_2 as output 
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Now that we have completed the crossover 
operation section and obtained two children from 
the two parents, it's time to introduce some variety 
and diversify our solutions. To achieve this, we 
have implemented the mutation operator. This 
operator acts on a specific child with a certain 
probability, causing alterations in its binary 
representation (zeros and ones). If a one is 
encountered, it will transform into a zero, and vice 
versa, based on a random number comparison. 

When applying the mutation operator to a 
child, we iterate through its genes or alleles one by 
one. Starting with the first gene, we initialize an 
empty array with the same length as the child to 
store the mutated version. This array is sorted at 
index zero, as we proceed through the genes 
sequentially. The mutation occurs if the random 
number generated is less than the mutation 
probability. In such cases, a zero may become a one 
or a one may become a zero as depicted in 
Algorithm 4. However, if the random number 
exceeds the mutation probability, no mutation takes 
place for that particular gene. 
 
Algorithm 4: Random Mutation of individuals 
 
Input: 
child_1: First child for mutation. 
child_2: Second child for mutation. 
prob_mutation: Probability of mutation (default 
value is 0.2). 
Output: 
mutated_child_1: Offspring resulting from 
mutation on child_1. 
mutated_child_2: Offspring resulting from 
mutation on child_2. 
 
1: Initialize empty matrices for mutated_child_1 
and mutated_child_2 
2: Initialize a variable t to 0 
3: for each element i in child_1 do 
4: Generate a random number to determine whether 
to perform mutation on child_1 
5: if rand_num_to_mutate_or_not_1 < 
prob_mutation: 
6: if child_1[t] is 0, set it to 1; if it is 1, set it to 0 
7: Update mutated_child_1 with the modified 
child_1 
8: Increment t by 1 
9: else: 

10: Update mutated_child_1 without modification 
11: Increment t by 1 
12: Repeat step 2-11 for child_2 
13: Return mutated_child_1 and mutated_child_2 
as output 
 
 

4. RESULTS AND ANALYSIS 

This research investigated the optimization 
of hyperparameters for an SVM machine learning 
model using a genetic algorithm with the 
Cardiovascular Heart Disease Dataset, sourced 
from the Mendeley database. To achieve favorable 
outcomes, Genetic Algorithms (GA) typically 
necessitate a sizable population size to guarantee 
ample variability within the elements present in the 
gene pool. For GA-Support Vector Machines 
(SVM), we opt for a population size of 50 and 100 
generations as our objective is to identify the 
optimal solution for each generation. It is essential 
to maintain a record of the best-performing entity 
within each generation. This compilation of the 
best-performing individuals is crucial as, upon 
completion of 100 generations, we create a 
comprehensive list or array. This array encapsulates 
the elite representatives from each generation. For 
example, the first entry corresponds to the best 
chromosome from the initial generation, and 
subsequent entries mirror the most exceptional 
mutants or offspring from subsequent generations. 
Ultimately, the last entry in this collection 
represents the pinnacle of achievement, embodying 
the finest chromosome or most adeptly mutated 
progeny from the final generation. 

Ultimately, if there is no inclination to 
examine the final result of our genetic algorithm's 
convergence, a straightforward approach is 
selecting the very best mutated child observed 
throughout all generations. This involves a 
systematic process wherein, at the conclusion of 
each generation, we meticulously identify and 
preserve the chromosome possessing the least error. 
In essence, as the algorithm progresses, the superior 
chromosome from each generation—characterized 
by the minimal error—is diligently stored. 
Consequently, if the genetic algorithm fail to 
converge to a desirable solution, recourse is readily  
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Figure 2: OPTIMIZED PARAMETER CONFIGURATION FOR MINIMIZED ERROR VALUE 

 

available by revisiting the compilation of the best-
performing entities from each generation. By 
selecting the optimal chromosome with the lowest 
recorded error, one can effectively pinpoint a robust 
solution. 

Our objective is to identify the optimal 
solution among the mutated children in the 100th 
generation. This entails pinpointing the solution 
toward which the algorithm converges or reaches at 
the conclusion of all 100 generations. A genetic 
algorithm converges, it implies that the algorithm 
has identified a solution that meets the optimization 
criteria, and further iterations may not result in 
substantial improvements [24]. However, our 
interest extends beyond merely the best solution in 
the final generation; rather, we aim to ascertain the 
best solution across all generations. In essence, we 
seek two chromosomes as shown in Figure 2: the 
one representing the optimal solution at the 
algorithm's convergence point and the other 
representing the best solution observed throughout 
generations 1 to 100. The accuracy of the latter can 
be calculated by subtracting the objective function 
value from one. 

 
We used the best value of C and Gamma 

to create the model and then evaluated the model 
using the confusion matrix as shown in Figure 3. It  
generates four outcomes: TP (True Positive), TN 
(True Negative), FP (False Positive), and FN (False 
Negative). 
 
 

 
 
 
 

 
 

Figure 3: CONFUSION MATRIX 

We then use these measures to calculate accuracy, 
sensitivity, and specificity which can be defined as 
follows: 

Accuracy: This is the proportion of correctly 
classified instances (both true positives and true 
negatives) among the total number of instances. 
 

 
 

 

 
Sensitivity (Recall): This is the proportion of true 
positives that are correctly identified, out of all 
actual positives. 
 

Final Solution (Convergence): [0. 0. 0. 0. 1. 0. 1. 0. 1. 1. 0. 1. 1. 0. 1. 0. 1. 0. 1. 1. 1. 1. 1. 1.] 
Encoded C (Convergence): [0. 0. 0. 0. 1. 0. 1. 0. 1. 1. 0. 1. 1.] 
Encoded Gamma (Convergence): [0. 1. 0. 1. 0. 1. 1. 1. 1. 1. 1.] 
Final Solution (Best): [0. 0. 0. 0. 0. 1. 1. 0. 0. 0. 0. 1. 1. 0. 1. 0. 0. 1. 0. 0. 1. 0. 0. 0.] 
Encoded C (Best): [0. 0. 0. 0. 0. 1. 1. 0. 0. 0. 0. 1. 1.] 
Encoded Gamma (Best): [0. 1. 0. 0. 1. 0. 0. 1. 0. 0. 0.] 
 
Decoded C (Convergence): 675.07692 
Decoded Gamma (Convergence): 0.04278 
Obj Value - (Convergence): 0.966 
 
Decoded C (Best): 646.30769 
Decoded Gamma (Best): 0.02443 
Obj Value - (Best): 0.97 
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Specificity: This is the proportion of true negatives 
that are correctly identified, out of all actual 
negatives. 

 

 

 
Precision: This is the proportion of true 

positives out of all instances classified as positive. 
 

 
 

 
 

 
F1-score: This is the harmonic mean of precision 
and recall, giving a balance between the two 
metrics. 
 

 

 

 
The area under the ROC curve (AUC-ROC) is a 
commonly used metric to quantify the overall 
performance of a binary classification model. A 
higher AUC-ROC value (closer to 1) indicates 
better discrimination ability of the model across 
different threshold settings as shown in Figure 4. 
 

 
Figure 4: ROC CURVE 

By comparing the results of the proposed model 
with existing ones, benchmarking provides valuable 
insights into the strengths and weaknesses of each 
approach. This approach helps determine whether 
the proposed method outperforms existing ones and 
enhances accuracy. Table 2 illustrates the 
comparison between different models and our 
proposed method. The proposed method employs 
an SVM classifier along with optimal 
hyperparameters determined by Genetic Algorithm. 
These results demonstrate the effectiveness of our 
approach in accurately predicting heart disease in 
patients when compared to existing models. 
 
Gupta & Seth [25]  vs. Bhowmick et al. [26] studies 
utilize the UCI Heart Disease dataset with the same 
number of samples (303) and features (13). Gupta 
& Seth achieved a higher accuracy of 86.89%, 
compared to Bhowmick et al. who achieved 83%. 
This suggests that Gupta & Seth's model 
outperformed Bhowmick et al.'s model in terms of 
accuracy on the UCI Heart Disease dataset. Assegie 
et al.[27] and Abdar et al. also used the UCI Heart 
Disease dataset, but Abdar et al.[28] additionally 
used the Mendeley Heart Disease dataset. Assegie 
et al. achieved an accuracy of 85.2%, while Abdar 
et al. achieved a slightly higher accuracy of 
86.05%. The proposed model (Mendeley Heart 
Disease dataset) achieved the highest accuracy of 
97%.  
 

Table 2: Benchmarking Of The Proposed Solution With Existing Heart Disease Prediction  
 

S.No. Authors  Dataset No. of Samples No. of Features Accuracy 
1 
2 

Gupta & Seth, 2023[25] 
Bhowmick et al., 2022[26] 

UCI Heart Disease 
UCI Heart Disease  

303 
303 

13 
13 

86.89% 
83% 

3 
4 
5 

Assegie et al., 2022 [27] 
Abdar et al., 2015[28] 
Proposed Model 

UCI Heart Disease 
UCI Heart Disease 
Mendeley Heart Disease 

303 
271 
1000 

11 
13 
12 

85.2% 
86.05% 
97% 
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5. CONCLUSION  

 
In conclusion, this research has 

underscored the significance of integrating genetic 
algorithms with machine learning techniques to 
enhance the predictive accuracy, generalizability, 
and scalability of heart disease prediction models. 
This research paper uses a metaheuristics approach 
with genetic algorithms to improve the predictive 
accuracy of heart disease models. The method 
involves optimizing hyperparameters and 
minimizing errors. The goal is to converge towards 
a specific value or accuracy, with the emphasis on 
minimizing error to enhance performance. By 
minimizing error and maximizing accuracy, the 
SVM classifier with optimized hyperparameters 
using a genetic algorithm has demonstrated its 
potential to significantly improve disease prediction 
accuracy. The SVM classifier with optimized 
hyperparameters showed a 97% improvement in 
accuracy when applied to the heart disease dataset, 
outperforming previous studies. This success in the 
heart disease dataset suggests that further 
exploration of different disease datasets could yield 
even more promising results, ultimately leading to 
more accurate diagnoses and better treatment 
outcomes for patients. Overall, this research 
contributes to advancing the field of cardiovascular 
disease prediction by introducing a novel approach 
that effectively optimizes machine learning models 
using genetic algorithms, ultimately improving the 
accuracy and reliability of heart disease prediction.  
 

Future research could explore various 
disease datasets to improve disease prediction 
accuracy. By applying the model to different 
disease datasets, researchers can gain insights into 
the model's generalizability and potential 
limitations. Additionally, exploring various disease 
datasets can help identify patterns and correlations 
that may not be apparent in a single dataset, further 
improving disease prediction accuracy and 
treatment outcomes. 
 
ACKNOWLEDGEMENTS 

We gratefully acknowledge the support 
provided by the “Visvesvaraya PhD Scheme for 
Electronics & IT.” We extend our sincere 
appreciation for the opportunities and resources 
made available through this scheme, which have 
significantly contributed to the success of our 
research endeavors. 
 

DECLARATIONS 
 
CONFLICT OF INTEREST 

No conflict of interest in this manuscript 
 
ETHICAL APPROVAL 

This research involved the data obtained 
from an online source 
https://data.mendeley.com/datasets/dzz48mvjht/1. 
The use of this data was in accordance with the 
terms of use specified by the data provider and 
adhered to all relevant ethical guidelines for the use 
of secondary data. No additional ethical approval 
was required for this study as it involved the 
analysis of pre-existing, anonymized data. 
 
FUNDING 

This research did not receive any external 
funding. 

 
AVAILABILITY OF DATA AND 
MATERIALS 
The dataset analyzed during the current study is 
available online at  
https://data.mendeley.com/datasets/dzz48mvjht/1 

 

REFERENCES:  
[1] J. A. Finegold, P. Asaria, and D. P. Francis, 

“Mortality from ischaemic heart disease by 
country, region, and age: Statistics from 
World Health Organisation and United 
Nations,” Int. J. Cardiol., vol. 168, no. 2, pp. 
934–945, 2013, doi: 
10.1016/j.ijcard.2012.10.046. 

[2] W. Wang et al., “Mortality and years of life 
lost of cardiovascular diseases in China, 
2005–2020: Empirical evidence from national 
mortality surveillance system,” Int. J. 
Cardiol., vol. 340, pp. 105–112, 2021, doi: 
10.1016/j.ijcard.2021.08.034. 

[3] J. P. Li, A. U. Haq, S. U. Din, J. Khan, A. 
Khan, and A. Saboor, “Heart Disease 
Identification Method Using Machine 
Learning Classification in E-Healthcare,” 
IEEE Access, vol. 8, no. Ml, pp. 107562–
107582, 2020, doi: 
10.1109/ACCESS.2020.3001149. 

[4] S. Lee, Y. Chu, J. Ryu, Y. J. Park, S. Yang, 
and S. B. Koh, “Artificial Intelligence for 
Detection of Cardiovascular-Related Diseases 
from Wearable Devices: A Systematic 
Review and Meta-Analysis,” Yonsei Med. J., 
vol. 63, pp. S93–S107, 2022, doi: 



 Journal of Theoretical and Applied Information Technology 
15th May 2024. Vol.102. No 9 

©   Little Lion Scientific  
 

ISSN: 1992-8645                                                                    www.jatit.org                                                    E-ISSN: 1817-3195 

 
3880 

 

10.3349/ymj.2022.63.S93. 
[5] N. Salari, S. Shohaimi, F. Najafi, M. 

Nallappan, and I. Karishnarajah, “A novel 
hybrid classification model of genetic 
algorithms, modified k-nearest neighbor and 
developed backpropagation neural network,” 
PLoS One, vol. 9, no. 11, pp. 1–50, 2014, doi: 
10.1371/journal.pone.0112987. 

[6] N. G. B. Amma, “Cardiovascular disease 
prediction system using genetic algorithm and 
neural network,” 2012 Int. Conf. Comput. 
Commun. Appl. ICCCA 2012, 2012, doi: 
10.1109/ICCCA.2012.6179185. 

[7] W. Rajab and V. Sharma, “A Hybrid AI 
approach based on Genetic Algorithm and 
ANFIS for Heart Disease Diagnosis,” no. 
July, 2018. 

[8] S. Aalaei, H. Shahraki, A. Rowhanimanesh, 
and S. Eslami, “Feature selection using 
genetic algorithm for breast cancer diagnosis: 
Experiment on three different datasets,” Iran. 
J. Basic Med. Sci., vol. 19, no. 5, pp. 476–
482, 2016. 

[9] A. Ghaheri, S. Shoar, M. Naderan, and S. S. 
Hoseini, “The applications of genetic 
algorithms in medicine,” Oman Med. J., vol. 
30, no. 6, pp. 406–416, 2015, doi: 
10.5001/omj.2015.82. 

[10] R. Guido, M. C. Groccia, and D. Conforti, “A 
hyper-parameter tuning approach for cost-
sensitive support vector machine classifiers,” 
Soft Comput., vol. 27, no. 18, pp. 12863–
12881, 2023, doi: 10.1007/s00500-022-
06768-8. 

[11] B. Xue, M. Zhang, W. N. Browne, and X. 
Yao, “A Survey on Evolutionary Computation 
Approaches to Feature Selection,” IEEE 
Trans. Evol. Comput., vol. 20, no. 4, pp. 606–
626, 2016, doi: 
10.1109/TEVC.2015.2504420. 

[12] “Cardiovascular Disease Dataset Mendeley 
Data.” 
https://data.mendeley.com/datasets/dzz48mvj
ht/1 (accessed Jan. 26, 2024). 

[13] A. O. Mocumbi, E. Lameira, A. Yaksh, L. 
Paul, M. B. Ferreira, and D. Sidi, “Challenges 
on the management of congenital heart 
disease in developing countries,” Int. J. 
Cardiol., vol. 148, no. 3, pp. 285–288, 2011, 
doi: 10.1016/j.ijcard.2009.11.006. 

[14] C. Fan, M. Chen, X. Wang, J. Wang, and B. 
Huang, “A Review on Data Preprocessing 
Techniques Toward Efficient and Reliable 
Knowledge Discovery From Building 

Operational Data,” Front. Energy Res., vol. 9, 
no. March, pp. 1–17, 2021, doi: 
10.3389/fenrg.2021.652801. 

[15] O. Russakovsky et al., “ImageNet Large 
Scale Visual Recognition Challenge,” Int. J. 
Comput. Vis., vol. 115, no. 3, pp. 211–252, 
2015, doi: 10.1007/s11263-015-0816-y. 

[16] C. Cortes and V. Vapnik, “Support-vector 
networks,” Mach. Learn., vol. 20, no. 3, pp. 
273–297, 1995, doi: 10.1007/BF00994018. 

[17] S. Lessmann, R. Stahlbock, and S. F. Crone, 
“Optimizing hyperparameters of support 
vector machines by genetic algorithms,” Proc. 
2005 Int. Conf. Artif. Intell. ICAI’05, vol. 1, 
no. May 2014, pp. 74–80, 2005. 

[18] A. M. Vincent and P. Jidesh, “An improved 
hyperparameter optimization framework for 
AutoML systems using evolutionary 
algorithms,” Sci. Rep., vol. 13, no. 1, pp. 1–
19, 2023, doi: 10.1038/s41598-023-32027-3. 

[19] N. Chandrasekhar and S. Peddakrishna, 
“Enhancing Heart Disease Prediction 
Accuracy through Machine Learning 
Techniques and Optimization,” Processes, 
vol. 11, no. 4, 2023, doi: 
10.3390/pr11041210. 

[20] I. Syarif, A. Prugel-Bennett, and G. Wills, 
“SVM Parameter Optimization using Grid 
Search and Genetic Algorithm to Improve 
Classification Performance,” TELKOMNIKA 
(Telecommunication Comput. Electron. 
Control., vol. 14, no. 4, p. 1502, 2016, doi: 
10.12928/telkomnika.v14i4.3956. 

[21] A. H. Wright, Genetic Algorithms for Real 
Parameter Optimization, vol. 1. Morgan 
Kaufmann Publishers, Inc., 1991. 

[22] S. Forrest, “Principles of Genetic 
Algorithms,” vol. 261, no. August, pp. 60–76, 
2020, doi: 10.4018/978-1-7998-1920-2.ch004. 

[23] Z. Michalewicz, “Binary or Float? BT - 
Genetic Algorithms + Data Structures = 
Evolution Programs,” Z. Michalewicz, Ed. 
Berlin, Heidelberg: Springer Berlin 
Heidelberg, 1992, pp. 75–82. 

[24] G. Rudolph, “Convergence Analysis of 
Canonical Genetic Algorithms,” IEEE Trans. 
Neural Networks, vol. 5, no. 1, pp. 96–101, 
1994, doi: 10.1109/72.265964. 

[25] P. Gupta and D. Seth, “Comparative analysis 
and feature importance of machine learning 
and deep learning for heart disease 
prediction,” Indones. J. Electr. Eng. Comput. 
Sci., vol. 29, no. 1, pp. 451–459, 2023, doi: 



 Journal of Theoretical and Applied Information Technology 
15th May 2024. Vol.102. No 9 

©   Little Lion Scientific  
 

ISSN: 1992-8645                                                                    www.jatit.org                                                    E-ISSN: 1817-3195 

 
3881 

 

10.11591/ijeecs.v29.i1.pp451-459. 
[26] A. Bhowmick, K. D. Mahato, C. Azad, and U. 

Kumar, “Heart Disease Prediction Using 
Different Machine Learning Algorithms,” 
Proc. - 2022 IEEE World Conf. Appl. Intell. 
Comput. AIC 2022, pp. 60–65, 2022, doi: 
10.1109/AIC55036.2022.9848885. 

[27] T. A. Assegie, P. K. Rangarajan, N. K. 
Kumar, and D. Vigneswari, “An empirical 
study on machine learning algorithms for 
heart disease prediction,” IAES Int. J. Artif. 
Intell., vol. 11, no. 3, pp. 1066–1073, 2022, 
doi: 10.11591/ijai.v11.i3.pp1066-1073. 

[28] M. Abdar, S. R. N. Kalhori, T. Sutikno, I. M. 
I. Subroto, and G. Arji, “Comparing 
performance of data mining algorithms in 
prediction heart diseses,” Int. J. Electr. 
Comput. Eng., vol. 5, no. 6, pp. 1569–1576, 
2015, doi: 10.11591/ijece.v5i6.pp1569-1576. 

  
 
 


