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ABSTRACT 
 

Quantum Flying Ad Hoc Networks (Q-FANETs) present a unique paradigm for communication, leveraging 
quantum principles to enable secure and efficient data transmission. However, routing in Q-FANETs poses 
significant challenges due to dynamic topology changes and limited communication resources. This paper 
proposes a novel routing approach utilizing the Mamdani Fuzzy Inference Enhanced Dijkstra’s Algorithm 
(MFI-EDA) tailored for Q-FANET environments. The working mechanism of MFI-EDA involves 
integrating fuzzy logic with Dijkstra’s algorithm to intelligently adapt routing decisions based on 
environmental conditions, such as node mobility and energy levels, and network dynamics, such as link 
quality and traffic congestion. This hybrid approach enhances traditional routing algorithms by incorporating 
fuzzy logic to provide robustness and adaptability in Q-FANETs. The essential contribution lies in the 
seamless integration of fuzzy inference, which enables MFI-EDA to dynamically adjust routing paths based 
on real-time environmental feedback, resulting in improved energy efficiency and reliability. The 
performance of MFI-EDA in Q-FANET scenarios is evaluated through extensive simulation experiments, 
demonstrating its effectiveness in achieving energy-efficient and reliable routing. Results indicate that MFI-
EDA outperforms traditional routing approaches, offering promising prospects for efficient communication 
in quantum-enabled ad hoc networks. 
Keywords: Quantum Network, Q-FANETs, Mamdani Fuzzy Inference, Dijkstra’s Algorithm, Routing  
 
1. INTRODUCTION  
 

Quantum Flying Ad Hoc Networks (Q-
FANETs) represent a revolutionary approach to 
wireless communication, seamlessly integrating 
quantum principles with ad hoc networking. These 
networks enable communication between mobile 
nodes without relying on a fixed infrastructure, 
making them well-suited for dynamic and remote 
environments such as aerial or space-based scenarios 
[1]. In Q-FANETs, quantum bits (qubits) encode and 
transmit information, offering unparalleled security 
through principles such as quantum key distribution 
and entanglement. Quantum entanglement, in 
particular, enables instantaneous communication 
between entangled qubits over long distances, 
presenting exciting possibilities for long-range 
communication without the need for physical 
infrastructure [2]. Meanwhile, Q-FANETs hold 
immense promise for applications such as secure 
military communication, environmental monitoring, 

and space exploration, overcoming technical 
challenges related to maintaining quantum 
coherence, developing efficient routing algorithms, 
and ensuring security remains essential for realizing 
their full potential [3], [4]. 
 

Routing in Q-FANETs presents unique 
challenges due to the dynamic and unpredictable 
nature of quantum communication combined with 
the mobility of nodes. Unlike classical ad hoc 
networks, where routing decisions are primarily 
based on metrics like distance or signal strength, Q-
FANET routing must consider quantum properties 
such as superposition and entanglement [5]. 
Traditional routing protocols may not be suitable for 
Q-FANETs due to their inability to handle quantum 
states or exploit quantum phenomena. Therefore, 
specialized routing algorithms tailored for Q-
FANET environments are necessary. These 
algorithms must adapt to the dynamic topology 
changes, node mobility, and varying environmental 
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conditions characteristic of Q-FANETs [6]. 
Additionally, they must ensure efficient and secure 
transmission of quantum information while 
minimizing energy consumption and latency. 
Quantum-inspired routing approaches, such as those 
leveraging quantum entanglement for instantaneous 
communication or quantum superposition for multi-
path routing, hold promise for enhancing routing 
performance in Q-FANETs [7]–[9]. 

 
Mamdani fuzzy inference is vital in various 

applications, particularly in decision-making 
systems where input data is imprecise or uncertain 
[10]. By utilizing fuzzy logic, Mamdani inference 
allows for interpreting and processing vague or 
ambiguous input variables, providing a flexible and 
adaptive framework for making informed decisions. 
In routing algorithms based on graph theory, such as 
Dijkstra’s Algorithm, Mamdani fuzzy inference can 
enhance the algorithm’s performance by enabling it 
to handle uncertain or dynamic network conditions 
more effectively [11]. By incorporating fuzzy 
inference into Dijkstra’s Algorithm, routing 
decisions can be dynamically adjusted based on real-
time environmental feedback, improving 
adaptability and robustness in changing network 
environments [12]. This integration of fuzzy logic 
with graph theory offers a powerful approach for 
optimizing routing decisions in various networking 
contexts, ensuring efficient and reliable 
communication while minimizing resource 
consumption and latency [13]. 
 

The problem statement revolves around 
optimizing energy consumption in routing within Q-
FANETs. Traditional routing algorithms may not 
effectively manage energy resources in dynamic Q-
FANET environments, leading to suboptimal 
performance and reduced network lifespan. 
Addressing this issue requires developing energy-
efficient routing solutions explicitly tailored for Q-
FANETs. The problem statement explores novel 
routing approaches that can adapt to changing 
network conditions and minimize energy 
consumption while ensuring reliable 
communication. By identifying and addressing 
energy consumption challenges in Q-FANET 
routing, this research aims to enhance the overall 
efficiency and sustainability of quantum-enabled ad 
hoc networks. 

 
This research aims to develop and evaluate 

energy-efficient routing solutions for Q-FANETs 
that effectively manage limited energy resources 
while ensuring reliable communication. The study 

addresses the challenges posed by the dynamic and 
unpredictable nature of Q-FANET environments, 
including node mobility and fluctuating energy 
levels. Specific objectives include designing and 
implementing novel routing algorithms tailored for 
Q-FANETs, leveraging techniques such as dynamic 
adaptation and optimization based on real-time 
environmental feedback. The research seeks to 
evaluate the performance of these routing solutions 
through extensive simulation experiments, 
considering metrics such as energy consumption, 
latency, and reliability. By achieving these 
objectives, the research aims to contribute to the 
development of efficient and sustainable 
communication protocols for quantum-enabled ad 
hoc networks, facilitating their practical deployment 
in various applications such as disaster response, 
environmental monitoring, and space exploration. 

 
2. LITERATURE REVIEW 

 
“Deep Quantum Routing Agent (DQRA)” 

[14] introduces an approach to entanglement routing 
in quantum networks. By leveraging deep learning 
techniques, DQRA offers a novel solution for 
optimizing routing decisions based on quantum 
entanglement. This contribution represents a 
significant advancement in the field, as it addresses 
the complex challenges of routing in quantum 
networks by harnessing the power of deep learning 
algorithms. “Shortest Path Finding (SPF)” [15] 
introduces a groundbreaking method with quasi-
linear complexity for finding the shortest path in 
quantum networks. This contribution represents a 
significant advancement in the field by addressing 
the challenge of efficiently computing shortest paths 
in quantum networks. It focuses on scalable and 
efficient solutions, enabling rapid computation of 
shortest paths while minimizing computational 
resources. Bio-inspired Optimization also plays a 
major role in identifying the best route [16]–[35], 
[36]. 

 
“Multiuser Entanglement Distribution” 

[37] proposes an approach for entanglement 
distribution in quantum networks through multi-path 
routing. This contribution marks a significant 
advancement in the field by addressing the challenge 
of efficiently distributing entanglement among 
multiple users in quantum networks. By leveraging 
multi-path routing techniques, the proposed method 
optimizes entanglement distribution, enhancing the 
scalability and reliability of quantum 
communication. “Modular Quantum Compilation 
Framework” [38] presents an innovative approach to 
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quantum compilation tailored for distributed 
quantum computing environments. This 
contribution marks a significant advancement in the 
field by addressing the complex challenges of 
compiling quantum programs in distributed settings. 
It offers modularity, enabling seamless integration of 
compilation processes across distributed quantum 
processors. “Swapping-Based Entanglement 
Routing Design” [39] introduces an innovative 
approach to mitigate congestion in quantum 
networks. This contribution offers a novel solution 
for optimizing entanglement routing paths by 
leveraging swapping-based techniques. It effectively 
reduces congestion in quantum networks, enhancing 
quantum communication’s efficiency and reliability.  
 

“Fidelity-Guaranteed Entanglement 
Routing” [40] presents a novel approach to ensure 
high fidelity in entanglement routing within 
quantum networks. By guaranteeing fidelity, this 
contribution enhances the reliability and security of 
quantum communication. The proposed routing 
scheme offers a robust solution for maintaining the 
integrity of entangled states during transmission, 
thereby minimizing the risk of information loss or 
corruption. Decentralized Dynamic Congestion 
Avoid Routing (DDCAR)” [41] introduces a 
pioneering approach to mitigate congestion in large-
scale quantum networks. This contribution offers a 
novel solution for dynamically avoiding congestion 
in quantum routing by employing decentralized 
techniques. The DDCAR scheme effectively 
manages network resources, ensuring efficient and 
reliable quantum communication even in highly 
congested environments. “Fast and Secure Routing 
Algorithms” [42] presents innovative routing 
algorithms optimized for quantum key distribution 
(QKD) networks. This contribution offers novel 
routing algorithms explicitly tailored for QKD 
networks by prioritizing speed and security. The 
proposed algorithms ensure rapid and secure 
transmission of quantum keys, enhancing the 
efficiency and reliability of QKD networks. “  
 

“Distributed Transport Protocols” [43] 
introduces pioneering protocols tailored for 
distributed quantum data networks. It offers efficient 
and reliable transport protocols for quantum data 
transmission by leveraging distributed techniques. It 
ensures seamless communication across distributed 
quantum nodes, enhancing the scalability and 
robustness of quantum data networks. Entanglement 
Routing Design Over Quantum Networks” [44] 
presents a framework for optimizing entanglement 
routing in quantum networks. By leveraging 

advanced routing algorithms, this contribution offers 
a novel solution for efficiently distributing 
entanglement among quantum nodes. It attempts to 
enhance the scalability and reliability of 
entanglement-based communication, facilitating the 
implementation of complex quantum applications. 

 

3. MAMDANI FUZZY INFERENCE 
ENHANCED DIJKSTRA’S ALGORITHM 
(MFI-EDA) 

Mamdani Fuzzy Inference Enhanced 
Dijkstra's Algorithm (MFI-EDA) is a hybrid routing 
approach that integrates fuzzy logic principles with 
Dijkstra's algorithm. By incorporating fuzzy 
inference, MFI-EDA adapts routing decisions based 
on real-time environmental feedback, such as node 
mobility and energy levels, and network dynamics, 
such as link quality and traffic congestion. This 
adaptive mechanism enhances traditional routing 
algorithms by providing robustness and adaptability 
in dynamic network environments. MFI-EDA 
leverages fuzzy logic to dynamically adjust routing 
paths, resulting in improved energy efficiency and 
reliability, making it a promising solution for 
optimizing routing in complex networks. 

 
3.1. Fuzzification 

Fuzzification is crucial in the Mamdani 
Fuzzy Inference Enhanced Dijkstra’s Algorithm 
(MFI-EDA), where crisp input parameters are 
transformed into fuzzy sets using appropriate 
membership functions. This process enables the 
algorithm to handle imprecise and uncertain 
information, creating a foundation for fuzzy logic-
based decision-making. Membership functions are 
pivotal in mapping crisp input parameters to fuzzy 
sets. These functions measure the input’s 
membership level in a fuzzy set by assigning 
membership degrees to each linguistic variable. Let 
𝑥 be an explicit input parameter in the context of 
MFI-EDA, and 𝜇 stands for the degree of 
membership in a fuzzy set. The Gaussian 
membership function is often employed as Eq.(1). 

𝜇 (𝑥) = 𝑒
( )

 (1) 

where 𝐴 is the fuzzy set, 𝑐 is the mean or peak point, 
and 𝜎 controls the width of the membership function. 

Fuzzy sets need to be initialized before 
applying fuzzification to the input parameters. This 
involves defining linguistic variables and their 
corresponding membership functions. In MFI-EDA, 
let 𝐷 represent the fuzzy set for distance and 𝑊 for 
edge weights. The initialization consists of 
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specifying the linguistic terms 𝑙𝑜𝑤, 𝑚𝑒𝑑𝑖𝑢𝑚, and 
ℎ𝑖𝑔ℎ. 

𝐷 = {𝑙𝑜𝑤, 𝑚𝑒𝑑𝑖𝑢𝑚, ℎ𝑖𝑔ℎ} 
𝑊 = {𝑙𝑜𝑤, 𝑚𝑒𝑑𝑖𝑢𝑚, ℎ𝑖𝑔ℎ} 

(2) 

 
Once the fuzzy sets are initialized, the 

fuzzification process transforms crisp input 
parameters, such as distances and edge weights, into 
fuzzy values. Let 𝑑 be the crisp distance, 𝑤 be the 
crisp edge weight, and 𝐷 , 𝐷 , 𝐷  
represent the membership degrees for the linguistic 
terms 𝑙𝑜𝑤, 𝑚𝑒𝑑𝑖𝑢𝑚 and ℎ𝑖𝑔ℎ for distance. 
Similarly, 𝑊 , 𝑊 , 𝑊  represent the 
membership degrees for edge weights. Fuzzification 
of Distance (𝐷) and Fuzzification of Edge Weight 
(𝑊) is provided in Eq.(3.2) and Eq.(3.3). 

𝐷 = 𝑒  
(3) 

𝑊 = 𝑒
 

 
(4) 

 
3.2. Fuzzy Logic Rule Base 

The fuzzified input parameters are then 
used in the fuzzy logic rule base, where linguistic 
rules are defined to guide the decision-making 
process. These rules express the relationship 
between fuzzy input variables and the desired fuzzy 
output. In MFI-EDA, let 𝑅 represent a fuzzy rule, 𝐷 
be the fuzzy distance, and 𝑊 be the fuzzy edge 
weight. 

𝑅: 𝐼𝐹 𝐷  𝐴𝑁𝐷 𝑊   
𝑇𝐻𝐸𝑁 𝐷 𝑖𝑠 𝑙𝑜𝑤 

𝑅: 𝐼𝐹 𝐷  𝐴𝑁𝐷 𝑊  
𝑇𝐻𝐸𝑁 𝐷 𝑖𝑠 𝑚𝑒𝑑𝑖𝑢𝑚 

𝑅: 𝐼𝐹 𝐷  𝐴𝑁𝐷 𝑊   
𝑇𝐻𝐸𝑁 𝐷 𝑖𝑠 ℎ𝑖𝑔ℎ 

(5) 

 
These fuzzy rules guide the algorithm in 

updating the tentative distances based on the fuzzy 
input parameters. 
 
3.2. Rule Base Creation 

Rule-based creation is pivotal in the 
Mamdani Fuzzy Inference Enhanced Dijkstra’s 
Algorithm (MFI-EDA). This step establishes a set of 
fuzzy rules to guide the decision-making process 
based on the fuzzified input parameters. These rules 
define the relationships between fuzzy input 
variables and the desired fuzzy output, facilitating 
the algorithm’s ability to handle imprecise and 
uncertain information. 

Fuzzy rules form the foundation of MFI-
EDA, providing a logical structure to interpret the 
fuzzified input parameters. Each rule typically 
follows an “IF-THEN” structure, expressing 
conditions for updating tentative distances in the 
algorithm. Let 𝑅 represent a fuzzy rule, 𝐷 be the 
fuzzy distance, and 𝑊 be the fuzzy edge weight. 

𝑅: 𝐼𝐹 𝐷   𝐴𝑁𝐷 𝑊   
𝑇𝐻𝐸𝑁 𝐷 𝑖𝑠 𝑙𝑜𝑤 

𝑅: 𝐼𝐹 𝐷  𝐴𝑁𝐷 𝑊  
𝑇𝐻𝐸𝑁 𝐷 𝑖𝑠 𝑚𝑒𝑑𝑖𝑢𝑚 

𝑅: 𝐼𝐹 𝐷   𝐴𝑁𝐷 𝑊   
𝑇𝐻𝐸𝑁 𝐷 𝑖𝑠 ℎ𝑖𝑔ℎ 

(6) 

 
These rules capture the linguistic 

relationships between fuzzy input variables and the 
desired output, guiding the algorithm’s decision-
making process. In MFI-EDA, linguistic variables 
and terms are crucial in formulating fuzzy rules. 
These variables represent the characteristics of the 
fuzzy sets involved in decision-making. Let 𝐴 
represent a linguistic variable, and 
𝐴 , 𝐴 , 𝐴 denote the linguistic terms 
associated with 𝐴. 

𝐴 = 𝐴 , 𝐴 , 𝐴  (7) 

 
The rule base is developed based on expert 

knowledge or system requirements, translating 
qualitative information into actionable rules. For 
each linguistic variable involved, rules are crafted to 
guide the algorithm in updating tentative distances. 
In MFI-EDA, let 𝐷 represent the fuzzy distance 
variable, 𝑊 denote the fuzzy edge weight variable, 
and 𝑅 signify a fuzzy rule. 

𝑅: 𝐼𝐹 𝐷  𝐴𝑁𝐷 𝑊   
𝑇𝐻𝐸𝑁 𝐷 𝑖𝑠 𝑣𝑒𝑟𝑦 𝑙𝑜𝑤 

𝑅: 𝐼𝐹 𝐷  𝐴𝑁𝐷 𝑊  
𝑇𝐻𝐸𝑁 𝐷 𝑖𝑠 𝑚𝑒𝑑𝑖𝑢𝑚 

𝑅: 𝐼𝐹 𝐷  𝐴𝑁𝐷 𝑊   
𝑇𝐻𝐸𝑁 𝐷 𝑖𝑠 𝑣𝑒𝑟𝑦 ℎ𝑖𝑔ℎ 

(8) 

 
These rules form the basis for decision-

making, encompassing the linguistic relationships 
between fuzzy input parameters and the desired 
fuzzy output. As the complexity of the problem 
domain increases, the rule base may need to be 
extended to capture additional nuances. This 
extension involves introducing more rules or 
refining existing ones to accommodate a broader 
range of scenarios. The goal is to ensure that the rule 
base adequately represents the fuzzy logic system’s 
knowledge and can effectively guide the algorithm 
through various situations. 
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3.3. Initialization of Fuzzy Sets 
In the Mamdani Fuzzy Inference Enhanced 

Dijkstra’s Algorithm (MFI-EDA), the Initialization 
of Fuzzy Sets marks a crucial stage where linguistic 
variables are defined, and fuzzy sets are initialized 
with appropriate membership functions. This step 
sets the stage for subsequent fuzzification, enabling 
the algorithm to handle imprecise and uncertain 
information in the context of Dijkstra’s Algorithm. 
Linguistic variables play a pivotal role in the 
initialization of fuzzy sets. These variables represent 
the characteristics or attributes associated with the 
input parameters of the algorithm. In MFI-EDA, let 
𝐷 denote the linguistic variable for distance, and 𝑊 
define the linguistic variable for edge weights. 

𝐷 = 𝐷 , 𝐷 , 𝐷  (9) 

where 𝐷 and 𝑊 are discretized into fuzzy sets with 
linguistic terms 𝑙𝑜𝑤, 𝑚𝑒𝑑𝑖𝑢𝑚, and ℎ𝑖𝑔ℎ, providing 
a foundation for the subsequent fuzzification 
process. 
 

To further define the fuzzy sets, appropriate 
membership functions are employed. The Gaussian 
membership function is a commonly used choice due 
to its versatility and ability to capture a wide range 
of fuzzy relationships. For a linguistic term 𝐴 (where 
𝐴 can be 𝐷 or 𝑊), the Gaussian membership 
function is expressed as Eq.(10). 

𝜇 (𝑥) = 𝑒
 
( )

 (10) 

where 𝐶  represents the mean or peak point, and 𝜎  
controls the width of the membership function for 
the linguistic variable 𝐴. 
 

The linguistic variable 𝐷 is associated with 
the fuzzy sets 𝐷 , 𝐷  and 𝐷 . The 
Gaussian membership functions for these fuzzy sets 
are defined as Eq.(11)-Eq.(13). 

𝜇𝐷 (𝑑) = 𝑒
 

 
(11) 

𝜇𝐷 (𝑑) = 𝑒
 

 
(12) 

𝜇𝐷 (𝑑) = 𝑒
 

 
(13) 

 
The linguistic variable 𝑊 is associated with 

the fuzzy sets 𝑊 , 𝑊 and 𝑊 . The 
Gaussian membership functions for these fuzzy sets 
are defined as Eq.(14)-Eq.(16). 

𝜇𝐷 (𝑤) = 𝑒
 

 
(14) 

𝜇𝐷 (𝑤) = 𝑒
 

 
(15) 

𝜇𝐷 (𝑤) = 𝑒
 

 
(16) 

 
3.4. Current Node Selection 

In MFI-EDA, selecting the current node is 
a critical step that initiates finding the shortest path 
in a graph. Finding the node from the unexplored 
ones with the shortest tentative distance is the first 
stage in this process. Before selecting the current 
node, it is essential to calculate the tentative 
distances for all nodes based on the information 
gathered so far in the algorithm’s execution. Let 
𝑑(𝑣) represent the tentative distance for node 𝑣, and 
𝑒(𝑢, 𝑣) denote the weight of the edge connecting 
nodes 𝑢 and 𝑣. The tentative distance for node 𝑣 is 
updated as Eq.(17). This equation calculates the 
tentative distance for node 𝑣 by considering the 
tentative distance for its neighbouring node 𝑢 and the 
weight of the edge connecting them. 

𝑑(𝑣) = 𝑚𝑖𝑛 𝑑(𝑣), 𝑑(𝑢) + 𝑒(𝑢, 𝑣)  (17) 

The unvisited nodes set comprises nodes 
that have not yet been visited during the algorithm’s 
execution. Initially, this set includes all nodes in the 
graph. As the algorithm progresses, nodes are 
removed from this set once they are visited until all 
nodes have been visited. 

𝑈𝑛𝑖𝑣𝑖𝑠𝑖𝑡𝑒𝑑𝑁𝑜𝑑𝑒𝑠 = {𝑣 , 𝑣 , … , 𝑣 } (18) 

where 𝑣 , 𝑣 , … , 𝑣  represent the nodes in the graph. 
 

The current node selection algorithm 
involves iterating over the unvisited nodes set to 
identify the node with the smallest tentative distance. 
Let 𝑣  represent the current node selected by 
the algorithm. Eq.(19) selects the node 𝑣  from 
the unvisited nodes set based on the minimum 
tentative distance 𝑑(𝑣) among all nodes. 

𝑣 = 𝑑(𝑣)
∈

 (19) 

 
Once the current node is selected, its status 

is updated to reflect that it has been visited. This 
update ensures that the algorithm progresses towards 
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exploring neighbouring nodes from the selected 
current node. Eq.(20) removes the current node 
𝑣 from the unvisited nodes set, indicating that 
it has been visited. 

 𝑈𝑛𝑣𝑖𝑠𝑖𝑡𝑒𝑑𝑁𝑜𝑑𝑒𝑠 =
𝑈𝑛𝑣𝑖𝑠𝑖𝑡𝑒𝑑𝑁𝑜𝑑𝑒𝑠 − {𝑣 } 

(20) 

 
3.5. Fuzzy Rule Evaluation 

Fuzzy rule evaluation is a critical step in 
MFI-EDA where the fuzzy logic rules defined in the 
rule base are applied to the fuzzified input 
parameters. This process involves assessing the 
degree to which each rule is satisfied based on the 
membership degrees of the input variables. The first 
step in fuzzy rule evaluation is determining the 
degree to which each fuzzy rule is activated, given 
the fuzzified input parameters. Let 𝑅  represent the 
𝑖th fuzzy rule, 𝐴 denote the linguistic variable 
associated with the antecedent, and 𝜇  represent the 
membership function for the linguistic variable 𝐴. 
Eq.(21) computes the activation level of the 𝑖th fuzzy 
rule based on the minimum membership degree 
among the fuzzy sets associated with the antecedents 
of the rule. 

𝐴𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛(𝑅 ) = 

𝑚𝑖𝑛 𝜇 (𝑥 ), 𝜇 (𝑥 ), … , 𝜇 (𝑥 )  
(21) 

 
Once the activation levels of all fuzzy rules 

are determined, the next step is to evaluate the 
consequence of each rule. The result represents the 
effect of the rule on the output variable. Let 𝐵 denote 
the linguistic variable associated with the 
consequent of the 𝑖th rule. Eq.(22) represents the 
consequence of the 𝑖th fuzzy rule, which is 
determined by the membership function of the 
linguistic variable associated with the consequent. 

𝐶𝑜𝑛𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒(𝑅 ) = 𝜇 (𝑦) (22) 

 
After evaluating the consequence of each 

rule, the next step is to aggregate the consequences 
to obtain a comprehensive fuzzy output. This 
involves combining the effects of all activated rules 
on the output variable. Eq.(23) aggregates the 
implications of all activated rules by taking the 
maximum value of the consequences. 

𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒𝑑𝐶𝑜𝑛𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒(𝑦) = 

𝑚𝑎𝑥

𝐶𝑜𝑛𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒(𝑅 ),

𝐶𝑜𝑛𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒(𝑅 ), … . ,
𝐶𝑜𝑛𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑅

 
(23) 

 
Once the aggregated consequence is 

obtained, the final step is to denazify the fuzzy 

output to obtain a crisp value. Defuzzification 
involves determining a single value representing the 
centroid or centre of gravity of the aggregated fuzzy 
output set. Eq.(24) computes the defuzzified output 
by calculating the centroid of the aggregated fuzzy 
output set. 

𝐷𝑒𝑓𝑢𝑧𝑧𝑖𝑓𝑖𝑒𝑑𝑂𝑢𝑡𝑝𝑢𝑡 = 
∫ 𝑦. 𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒𝑑𝑐𝑜𝑛𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒(𝑦)𝑑𝑦

∫ 𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒𝑑𝑐𝑜𝑛𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒(𝑦)𝑑𝑦
 

(24) 

 
3.6. Aggregation of Fuzzy Output 

In MFI-EDA, aggregation of fuzzy output 
is a crucial step where the effects of multiple 
activated fuzzy rules are combined to derive a 
comprehensive fuzzy output. This process involves 
integrating the consequences of individual rules to 
obtain a unified representation of the output variable. 
Aggregation in fuzzy production is to combine the 
consequences of all activated fuzzy rules. Let 𝐵 
denote the linguistic variable associated with the 
output variable, and 𝐶   represent the consequence of 
the 𝑖th activated rule. Eq.(25) aggregates the 
consequences of all activated rules by taking the 
maximum value of the individual consequences. 

𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒𝑑𝐶𝑝𝑚𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒(𝐵) = 
𝑚𝑎𝑥(𝐶 , 𝐶 , … , 𝐶 ) 

(25) 

 
Once the consequences are aggregated, the 

next step is representing the aggregated fuzzy output 
using a membership function. This function 
describes the degree to which the output variable 
belongs to each linguistic term. 

𝜇 (𝑦) = 

𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒𝑑𝐶𝑜𝑛𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒(𝐵) 
(26) 

where 𝜇  represents the membership 

function for the aggregated fuzzy output variable 
𝐵 , and 𝑦 represents the crisp output value. 
 

After obtaining the aggregated fuzzy 
output, the final step is to defuzzify the fuzzy output 
to derive a crisp output value. Defuzzification 
involves determining a single representative value 
for the fuzzy output set. This is achieved by 
computing the aggregated fuzzy output set’s 
centroid or centre of gravity. Eq.(27) calculates the 
defuzzified output by computing the weighted 
average of the crisp output values based on the 
aggregated fuzzy output membership function. 

𝐷𝑒𝑓𝑢𝑧𝑧𝑖𝑓𝑖𝑒𝑑𝑂𝑢𝑡𝑝𝑢𝑡 = 
∫ 𝑦. 𝜇 (𝑦)𝑑𝑦

∫ 𝜇 (𝑦)𝑑𝑦
 

(27) 
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The weighted average calculation may 
sometimes be used as an alternative defuzzification 
method. This involves computing the weighted 
average of the crisp output values based on the 
aggregated fuzzy output membership function. 
Eq.(28) calculates the weighted average of the crisp 
output values using the aggregated fuzzy output 
membership function. 

𝐷𝑒𝑓𝑢𝑧𝑧𝑖𝑓𝑖𝑒𝑑𝑂𝑢𝑡𝑝𝑢𝑡 = 
∑ 𝑦. 𝜇 (𝑦)

∑ 𝜇 (𝑦)
 

(28) 

 
3.7. Defuzzification (Centroid Method) 

Defuzzification is the process of 
transforming the combined fuzzy output into a 
distinct value. The centroid method is a popular 
defuzzification technique that finds the fuzzy output 
set’s centre of gravity and uses that information to 
produce a crisp, representative output value. When 
all fuzzy outputs are combined, the one in the centre 
is called the centroid. The membership degrees of 
the fuzzy output set as weights are calculated by 
finding the weighted average of the crisp output 
values.  

𝐶𝑒𝑛𝑡𝑟𝑜𝑖𝑑 =
∫ 𝑦. 𝜇𝐵(𝑦)𝑑𝑦

∫ 𝜇𝐵(𝑦)𝑑𝑦
 (29) 

where 𝜇𝐵(𝑦) represents the membership function of 
the aggregated fuzzy output variable 𝐵, and 𝑦 
represents the crisp output value. 
 

To compute the centroid, it is necessary to 
determine the appropriate integration limits for the 
fuzzy output set. These limits define the range over 
which the fuzzy output variable is defined and 
influence the calculation of the centroid where 
𝑚𝑖𝑛(𝑦) and 𝑚𝑎𝑥(𝑦) represent the minimum and 
maximum values of the crisp output variable 𝑦, 
respectively. 

𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑖𝑜𝑛 𝐿𝑖𝑚𝑖𝑡𝑠 = 
[𝑚𝑖𝑛(𝑦), 𝑚𝑎𝑥(𝑦)] 

(30) 

 
The numerator of the centroid equation 

computes the weighted sum of the crisp output 
values, where each value is weighted by its 
corresponding membership degree in the fuzzy 
output set. This integral represents the weighted sum 
of the crisp output values, considering the 
membership degrees of the fuzzy output set. 

𝑁𝑢𝑚𝑒𝑟𝑎𝑡𝑜𝑟 = 𝑦. 𝜇𝐵(𝑦)𝑑𝑦 (31) 

 
The denominator of the centroid equation 

computes the total area under the membership 

function curve, representing the total membership 
degree of the fuzzy output set. This integral 
represents the total area under the membership 
function curve, indicating the total membership 
degree of the fuzzy output set. 

𝐷𝑒𝑛𝑜𝑚𝑖𝑛𝑎𝑡𝑜𝑟 = 𝜇𝐵(𝑦)𝑑𝑦 (32) 

 
3.8. Tentative Distance Update 

The update of tentative distances is a 
significant step in determining the shortest path in a 
graph. This step involves revising the tentative 
distances for neighbouring nodes based on the fuzzy 
inference conducted in earlier steps of the algorithm. 
Before updating the tentative distances, it is essential 
to calculate the initial tentative distances for all 
nodes in the graph. At the outset, all nodes, except 
for the source node, have their tentative distances set 
to infinity from the source. 

𝑑(𝑣) =
0,     𝑖𝑓 𝑣 = 𝑠𝑜𝑢𝑟𝑐𝑒 𝑛𝑜𝑑𝑒

∞,                        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (33) 

where 𝑑(𝑣) represents the tentative distance from 
the source node to the node  
 

After conducting fuzzy inference to 
determine the aggregated fuzzy output, the next step 
is to integrate the fuzzy inference results into the 
algorithm. This involves updating the tentative 
distances for neighbouring nodes based on the 
aggregated fuzzy output obtained from the fuzzy rule 
evaluation step. Eq.(34) updates the tentative 
distance for node 𝑣 based on the tentative distance 
for its neighbouring node 𝑢 and the weight of the 
edge connecting nodes 𝑢 and 𝑣. 

𝑑(𝑣) = 𝑚𝑖𝑛 𝑑(𝑣), 𝑑(𝑢) + 𝑒(𝑢, 𝑣)  (34) 

 
The update of tentative distances ensures 

that the algorithm progresses towards finding the 
shortest path in the graph. By selecting the minimum 
tentative distance among all neighbouring nodes, the 
algorithm identifies the next node to explore in its 
search for the shortest path. 

𝑑 = 𝑚𝑖𝑛 𝑑(𝑣 ), 𝑑(𝑣 ), … . . , 𝑑(𝑣 )  (35) 

where 𝑑   represents the minimum tentative 
distance among all neighbouring nodes. 

 
The tentative distance update algorithm 

iterates over all neighbouring nodes of the current 
node and updates their tentative distances based on 
the fuzzy inference results. This systematic approach 
ensures that the algorithm progresses efficiently 
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towards finding the shortest path in the graph. 
Eq.(36) updates the tentative distance for node 𝑣 
based on the tentative distance for its neighbouring 
node 𝑢 and the weight of the edge connecting nodes 
𝑢 and 𝑣. 

𝑑(𝑣) = 𝑚𝑖𝑛 𝑑(𝑣), 𝑑(𝑢) + 𝑒(𝑢, 𝑣)  (36) 

 
3.9. Mark as Visited 

The “Mark as Visited” step is important for 
keeping track of the nodes that have been explored 
during the algorithm’s execution. This step ensures 
that each node is visited only once, preventing the 
algorithm from unnecessarily revisiting nodes. 
Before the algorithm executes, the visited node set is 
initialized to an empty set. As the algorithm 
progresses and nodes are visited, they are added to 
this set to indicate that they have been explored as 
Eq.(37). 

𝑉𝑖𝑠𝑖𝑡𝑒𝑑𝑁𝑜𝑑𝑒𝑠 = {} (37) 

 
During the algorithm’s execution, when a 

node is selected as the current node, it is marked as 
visited to prevent revisiting. This ensures that the 
algorithm explores each node only once and 
progresses efficiently towards finding the shortest 
path in the graph. Eq.(38) adds the current node 
𝑣   to the set of visited nodes. 

𝑉𝑖𝑠𝑖𝑡𝑒𝑑𝑁𝑜𝑑𝑒𝑠 = 𝑉𝑖𝑠𝑖𝑡𝑒𝑑𝑁𝑜𝑑𝑒𝑠 
∪  {𝑣 } 

(38) 

 
After marking the current node as visited, 

the algorithm checks for unvisited neighbours of the 
current node. Unvisited neighbours are nodes not yet 
explored during the algorithm’s execution. Eq.(39) 
identifies the unvisited neighbours of the current 
node 𝑣   Select nodes from its neighbour set 
that are not present in the set of visited nodes. 

𝑈𝑛𝑣𝑖𝑠𝑖𝑡𝑒𝑑𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 = 
{𝑣 ∈ 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 (𝑣 )|𝑣 

∉ 𝑉𝑖𝑠𝑖𝑡𝑒𝑑 𝑁𝑜𝑑𝑒𝑠} 
(39) 

 
If unvisited neighbours are found, the 

algorithm explores them by updating their tentative 
distances and selecting one of them as the next 
current node. This ensures that the algorithm 
progresses towards finding the shortest path by 
systematically exploring the graph. Eq.(40) selects 
the next node to explore from the set of unvisited 
neighbours of the current node. 

𝑣 = 
𝑆𝑒𝑙𝑒𝑐𝑡𝑁𝑒𝑥𝑡𝑁𝑜𝑑𝑒(𝑈𝑛𝑣𝑖𝑠𝑖𝑡𝑒𝑑𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠) 

(40) 

3.10. Select Next Node 
The next node to explore is determined 

after marking the current node as visited. This step 
involves selecting the node with the smallest 
tentative distance among the unvisited neighbours of 
the current node, ensuring that the algorithm 
progresses towards finding the shortest path in the 
graph. The first step in selecting the next node is to 
compare the tentative distances of the unvisited 
neighbours of the current node. The tentative 
distance represents the estimated distance from the 
source node to each neighbour, considering the path 
through the current node. 

𝑇𝑒𝑛𝑡𝑎𝑡𝑖𝑣𝑒𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑣) (41) 

where 𝑇𝑒𝑛𝑡𝑎𝑡𝑖𝑣𝑒𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑣) represents the 
tentative distance for node 𝑣. 
 

After comparing the tentative distances of 
the unvisited neighbours, the next step is to select the 
node with the smallest tentative distance as the next 
node to explore. This ensures that the algorithm 
progresses towards finding the shortest path by 
prioritizing nodes closer to the source node. Eq.(42) 
selects the node 𝑣  from the set of unvisited 
neighbours based on the minimum tentative distance 
among all neighbours. 

𝑣 = 
(𝑇𝑒𝑛𝑡𝑎𝑡𝑖𝑣𝑒𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑣))

∈  
(42) 

 
In cases where multiple nodes have the 

same minimum tentative distance, tie-breaking 
criteria may be employed to select the next node. 
Common tie-breaking criteria include selecting the 
node with the smallest node ID or selecting the node 
with the highest priority based on additional criteria 
such as node importance. Eq.(43) selects the node 
𝑣   from the set of unvisited neighbours based on 
the minimum tentative distance and additional tie-
breaking criteria. 

𝑣 = 
𝑇𝑒𝑛𝑡𝑎𝑡𝑖𝑣𝑒𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑣),
𝐴𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑎(𝑣)

∈

 
(43) 

 
Once the next node is selected, it becomes 

the new current node for the algorithm to explore. 
This update ensures that the algorithm progresses 
towards finding the shortest path by systematically 
exploring the graph. Eq.(44) updates the current 
node 𝑣  to the selected next node 𝑣 . 

𝑣 = 𝑣  (44) 
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3.11. Repeat Step 
This Repeat step is crucial for iterating 

through the algorithm until all nodes have been 
visited and their tentative distances finalized. This 
iterative process ensures that the algorithm 
systematically explores the graph to find the shortest 
path from the source node to all other nodes. Before 
proceeding with the repetition of the algorithm, it is 
essential to establish a termination condition to 
determine when to stop the iteration. The 
termination condition is typically based on whether 
any unvisited nodes remain in the graph. 

𝑇𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 = 
𝑈𝑛𝑣𝑖𝑠𝑖𝑡𝑒𝑑𝑁𝑜𝑑𝑒𝑠 ≠ {} 

(45) 

where 𝑈𝑛𝑣𝑖𝑠𝑖𝑡𝑒𝑑𝑁𝑜𝑑𝑒𝑠 represents the set of 
unvisited nodes in the graph. 
 

During each iteration of the “Repeat” step, 
the algorithm progresses through various steps, 
including current node selection, fuzzy rule 
evaluation, tentative distance update, marking as 
visited, and selecting the next node. This iterative 
process continues until the termination condition is 
met, indicating that all nodes have been visited and 
their tentative distances finalized. 

𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑁𝑜𝑑𝑒𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛 → 
𝐹𝑢𝑧𝑧𝑦𝑅𝑢𝑙𝑒𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛 → 

𝑇𝑒𝑛𝑡𝑎𝑡𝑖𝑣𝑒𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑈𝑝𝑑𝑎𝑡𝑒 → 
𝑀𝑎𝑟𝑘𝐴𝑠𝑉𝑖𝑠𝑖𝑡𝑒𝑑 → 
𝑆𝑒𝑙𝑒𝑐𝑡𝑁𝑒𝑥𝑡𝑁𝑜𝑑𝑒 

(46) 

 
As the algorithm progresses through each 

iteration, the set of visited nodes is updated to reflect 
those visited during the execution. This update 
ensures that the algorithm tracks the progress of 
node exploration and prevents revisiting nodes 
unnecessarily. 

𝑉𝑖𝑠𝑖𝑡𝑒𝑑𝑁𝑜𝑑𝑒𝑠 = 𝑉𝑖𝑠𝑖𝑡𝑁𝑜𝑑𝑒𝑠
∪ {𝑣 } 

(47) 

where 𝑣   represents the current node being 
visited. 
 

Once the termination condition is met, 
indicating that all nodes have been visited and their 
tentative distances finalized, the algorithm proceeds 
to the finalization step. At this point, the algorithm 
has discovered the shortest path from the starting 
node to every other node in the network, and the 
approximate lengths between each node are 
finalized.  

𝑇𝑒𝑛𝑡𝑎𝑡𝑖𝑣𝑒𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑠𝐹𝑖𝑛𝑎𝑙𝑖𝑧𝑒𝑑 = 𝑇𝑟𝑢𝑒 (48) 

 
 

3.12. Result Extraction 
Finding the shortest path from the starting 

node to any other node in the graph is the job of the 
“Result Extraction” stage of the MFI-EDA. After the 
preliminary distances and visited nodes have been 
finalized, the next step is to get the shortest path and 
accompanying distance between the source and 
destination nodes. Finding the shortest route 
between the two nodes is the initial stage of result 
extraction. This is accomplished by retracing your 
steps from the final target node back to the starting 
point and following the edges that link the nodes 
with the shortest tentative distances.  

𝑆ℎ𝑜𝑟𝑡𝑒𝑠𝑡𝑃𝑎𝑡ℎ = {𝑣 , 𝑣 , … , 𝑣 , 𝑣 } (49) 

 
In this case, the source node is 𝑣  and the 

destination node is 𝑣 . On the shortest path, the 
nodes in the middle stand in for the intermediate 
nodes. After finding the shortest route, the following 
step determines how far it is from the starting node 
to the ending node. This distance is computed by 
summing the weights of the edges along the shortest 
path. 

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 𝑒(𝑣 , 𝑣 ) (50) 

where, 𝑒(𝑣 , 𝑣 ) represents the weight of the edge 
connecting the node 𝑣  node 𝑣 . 
 

After calculating the shortest path and its 
distance, the result extraction process is finalized by 
presenting the shortest route and its corresponding 
distance as the algorithm’s output. 

𝑆ℎ𝑜𝑟𝑡𝑒𝑠𝑡𝑃𝑎𝑡ℎ = {𝑣 , 𝑣 , … , 𝑣 , 𝑣 } (51) 

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 𝑒(𝑣 , 𝑣 ) (52) 

 
In cases where the destination node is 

unreachable from the source node, the result 
extraction process should handle this scenario 
appropriately. This may involve indicating that the 
destination node is unavailable or returning a null 
value for the shortest path and distance. 

𝑆ℎ𝑜𝑟𝑡𝑒𝑠𝑡𝑃𝑎𝑡ℎ = {} (53) 

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 𝐼𝑛𝑓𝑖𝑛𝑖𝑡𝑦 (54) 

 
4. SIMULATION SETTINGS 

 
In the domain of Q-FANET, the NS3 

simulation framework is a potent tool for evaluating 
network performance and protocol efficiency. 
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Leveraging NS3, researchers can model the intricate 
dynamics of Q-FANETs, encompassing factors such 
as node mobility, quantum communication 
protocols, and energy consumption patterns. 
Through NS3’s modular architecture, custom Q-
FANET scenarios can be instantiated, allowing for 
the examination of various routing strategies, 
quantum error models, and network topologies. 
NS3’s extensive library of modules facilitates the 
integration of quantum-specific functionalities, 
enabling the simulation of entanglement-based 
routing protocols and quantum channel models. 
NS3’s robust visualization capabilities enable 
researchers to comprehensively analyze network 
behavior and protocol interactions. By harnessing 
the power of NS3, researchers can gain valuable 
insights into the performance and scalability of Q-
FANET protocols, driving advancements in 
quantum communication and networking 
technologies without resorting to plagiarism. 
 

Table 1: Simulation Parameters And Values 
Grid Network Size 7000m x 7000m x 5000m 
Network Topology Random geometric graph 
Number of UAVs 60, 120, 180, 240, 300 
Transmission Range 20 m/s 
Mobility Model Gauss-Markov 
Quantum Channel 
Model 

Amplitude damping 
channel 

Quantum Data Rate 50 Qubits/second 
Quantum Channel 
Capacity 

0.5 Qubits/second 

Energy Model Battery-powered 
Energy Consumption 
Model 

Transmission energy 

Routing Protocol 
Quantum-adaptive 

routing 
Quantum Error Model Depolarizing noise model 
Quantum Memory 
Size 

128 Qubits 

Simulation Time 1000 
Security Level Medium 

 
5. RESULTS AND DISCUSSIONS 
5.1. Energy Consumption Evaluation 

Energy consumption evaluation is pivotal 
in network protocols, especially in unmanned aerial 
vehicles (UAVs), where energy resources are 
limited. This section scrutinizes the energy 
consumption depicted in Figure 1, delineating the 
energy utilization for three distinct routing protocols, 
DQRA, SPF, and MFI-EDA, under varying UAV 
counts. Figure 1 elucidates the energy consumption 
evaluation findings, juxtaposing the number of 
UAVs against energy consumption. The x-axis 
delineates the count of UAVs deployed in the 

network, while the y-axis signifies the energy 
consumption in percentage (%). Each routing 
protocol undergoes scrutiny under differing UAV 
counts to gauge its efficacy concerning energy 
efficiency. 
 

DQRA displayed energy consumption 
values ranging from 42.626% to 68.290% across 
UAV counts. DQRA’s notable disadvantage is its 
susceptibility to quantum noise and errors, which 
can impede efficient routing decisions and escalate 
energy consumption. Quantum networks, owing to 
their inherent sensitivity to environmental 
perturbations, are particularly vulnerable to quantum 
noise, especially in scenarios with increased UAV 
counts where quantum noise becomes more 
pronounced. Consequently, DQRA may exhibit 
higher energy consumption due to heightened 
quantum error correction requirements and the 
consequent overhead. 
 

 
Figure 1: Energy Consumption Evaluation 

 
SPF manifested energy consumption values 

from 30.119% to 79.895% across diverse UAV 
counts. A distinctive disadvantage of SPF is its 
vulnerability to network congestion, precipitating 
suboptimal routing decisions and heightened energy 
consumption. In situations characterized by 
augmented UAV counts, SPF might encounter 
congestion-related routing conflicts, leading to 
increased energy consumption owing to elevated 
processing overheads and transmission retries. 
Moreover, SPF’s static nature, devoid of adaptability 
to dynamic network conditions, might exacerbate 
energy inefficiency by failing to optimize routing 
paths optimally. 
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MFI-EDA showcased energy consumption 
values oscillating from 18.064% to 41.563% across 
varying UAV counts. An inherent advantage of 
MFI-EDA lies in its adaptability to dynamic network 
conditions through fuzzy logic-based routing 
decisions. Unlike its counterparts, MFI-EDA 
leverages fuzzy inference to dynamically adjust 
routing decisions based on real-time environmental 
feedback, culminating in more efficient resource 
utilization and lower energy consumption. This 
adaptability endows MFI-EDA with the capability to 
mitigate energy consumption even in scenarios with 
heightened UAV counts. Furthermore, MFI-EDA’s 
fusion with Dijkstra’s algorithm yields deterministic 
routing paths, further optimizing energy 
consumption and bolstering network sustainability. 
 

Table 2: Energy Consumption Evaluation Findings 
Node UAVs DQRA SPF MFI-EDA 

50 42.626 30.119 18.064 
100 49.678 41.160 25.638 
150 55.911 51.459 28.099 
200 61.118 65.796 33.466 
250 68.290 79.895 41.563 

Average 55.525 53.686 29.366 
 

Table 2 offers a glimpse into the energy 
consumption performance of DQRA, SPF, and MFI-
EDA across varying UAV counts. While DQRA and 
SPF may exhibit relatively higher energy 
consumption values due to their respective 
vulnerabilities, MFI-EDA leverages its adaptability 
and efficiency through fuzzy logic-based routing 
decisions to mitigate energy consumption and 
enhance network sustainability. These insights 
underscore the significance of selecting energy-
efficient routing protocols, particularly in resource-
constrained environments like UAV networks, to 
optimize energy utilization and prolong device 
operational lifespans. 
 
5.2. Throughput Examination 

Throughput is the rate at which data is 
successfully transmitted through a communication 
system. In network protocols, throughput is typically 
measured in units such as Megabytes per second 
(Mbps). Higher throughput values indicate greater 
efficiency in data transmission. In Figure 2, the x-
axis represents the node density, while the y-axis 
shows the throughput values measured in units such 
as bps or pps. 

 
DQRA achieved throughput values ranging 

from 229.695 to 245.660. However, one of the 
unique disadvantages of DQRA is its high 

computational complexity due to quantum 
principles. This complexity results in significant 
processing overhead, leading to slower data 
transmission rates and lower throughput values. The 
quantum entanglement-based routing employed by 
DQRA requires intensive computational resources, 
which can bottleneck the throughput performance, 
particularly in scenarios with high node densities. As 
a result, DQRA may struggle to achieve optimal 
throughput values compared to classical routing 
algorithms. SPF exhibited throughput values ranging 
from 217.643 to 279.739. One of the unique 
disadvantages of SPF is its susceptibility to network 
congestion, leading to suboptimal routing decisions. 
SPF may struggle to find efficient routing paths in 
scenarios with high node densities due to increased 
network congestion, resulting in lower throughput 
values. Additionally, SPF’s inability to adapt to 
dynamic network conditions may further hinder its 
throughput performance, as it may fail to adjust 
routing paths in real time to alleviate congestion and 
optimize data transmission rates. 

 

 
Figure 2: Throughput Examination 

 
MFI-EDA demonstrated throughput values 

ranging from 283.739 to 301.558. One of the unique 
disadvantages of MFI-EDA is its limited scalability 
in large-scale networks due to the computational 
overhead of fuzzy logic. In scenarios with high node 
densities, MFI-EDA may experience performance 
degradation as the complexity of fuzzy inference 
increases with the number of nodes. This 
computational overhead can impact throughput 
performance by slowing down the routing decision-
making process and reducing data transmission 
efficiency. Despite its ability to adapt routing 
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decisions based on environmental conditions, MFI-
EDA may struggle to maintain high throughput 
values in densely populated networks due to its 
inherent computational complexity. 

 
Table 3: Throughput Examination 

No. of UAVs DQRA SPF MFI-EDA 
50 245.660 279.739 301.558 

100 242.381 271.075 297.083 
150 236.308 258.909 292.652 
200 234.602 243.129 289.873 
250 229.695 217.643 283.739 

Average 237.729 254.099 292.981 
 
5.3. Packet Delivery Assessment 

Packet delivery refers to successfully 
transmitting data packets from a source node to a 
destination node within a network. It is a crucial 
performance metric in evaluating the reliability and 
efficiency of routing protocols, indicating the 
percentage of packets successfully delivered relative 
to the total transmitted. In Figure 3, the x-axis 
represents the node density, while the y-axis shows 
the packet delivery rates measured in percentage. 

 

 
Figure 3: Packet Delivery Assessment 

 
DQRA achieved packet delivery rates 

ranging from 67.874% to 78.744%. One of the 
unique disadvantages of DQRA is its susceptibility 
to quantum noise and errors, leading to unreliable 
routing decisions. Quantum networks are inherently 
sensitive to environmental noise and quantum errors, 
which can result in packet losses and decreased 
packet delivery rates. DQRA may struggle to 
maintain high packet delivery rates in scenarios with 
high node densities due to the increased likelihood 

of quantum errors, resulting in lower reliability than 
classical routing algorithms. 

SPF exhibited packet delivery rates ranging 
from 73.357% to 88.802%. Another unique 
disadvantage of SPF is its inefficiency in handling 
non-linear and unpredictable network environments. 
SPF may encounter congestion and routing conflicts 
in scenarios with high node densities, leading to 
packet losses and decreased packet delivery rates. 
Additionally, SPF’s reliance on shortest-path 
algorithms may result in suboptimal routing 
decisions in dynamic network conditions, further 
impacting packet delivery performance. 
 

MFI-EDA demonstrated packet delivery 
rates ranging from 81.956% to 98.447%. One of the 
unique advantages of MFI-EDA is its adaptability to 
dynamic network conditions through fuzzy logic-
based routing decisions. Unlike DQRA and SPF, 
MFI-EDA leverages fuzzy inference to adapt routing 
decisions based on real-time environmental 
feedback intelligently. This adaptability enhances 
the reliability and robustness of packet delivery, 
allowing MFI-EDA to achieve higher packet 
delivery rates even in challenging network scenarios. 
Additionally, MFI-EDA’s integration with 
Dijkstra’s algorithm provides deterministic routing 
paths, further improving packet delivery 
performance and network reliability. 

 
Table 4: Packet Delivery Assessment 

No. of UAVs DQRA SPF MFI-EDA 
50 78.744 88.802 98.447 

100 77.580 85.322 93.985 
150 74.326 82.046 87.477 
200 71.215 78.891 84.643 
250 67.874 73.357 81.956 

Average 73.948 81.684 89.302 
 
5.4. Packet Loss Investigation 

Packet loss is a crucial metric in networking 
that measures the percentage of data packets that fail 
to reach their intended destination within a network. 
It is influenced by various factors such as network 
congestion, transmission errors, and packet dropping 
and serves as a critical indicator of network 
reliability and performance. In Figure 4, the x-axis 
represents the node density, indicating the number of 
nodes present in the network, while the y-axis 
represents the packet loss rates measured in 
percentage. 
 

DQRA showcased packet loss rates ranging 
from 20.872% to 31.901%. One unique disadvantage 
of DQRA is its vulnerability to quantum attacks, 
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compromising network security. Quantum networks 
are susceptible to attacks, including eavesdropping 
and quantum cloning, which can lead to packet 
losses and increased network vulnerability to 
malicious activities. DQRA may struggle to mitigate 
quantum attacks effectively in scenarios with high 
node densities, resulting in higher packet loss rates 
than classical routing algorithms. 
 

 
Figure 4: Packet Loss Investigation 

 
SPF demonstrated packet loss rates ranging 

from 10.580% to 26.543%. Another unique 
disadvantage of SPF is its susceptibility to network 
congestion, leading to suboptimal routing decisions. 
In scenarios with high node densities, SPF may 
encounter congestion and routing conflicts, resulting 
in packet losses and decreased reliability of data 
transmission. Additionally, SPF’s inability to adapt 
to dynamic network conditions may exacerbate 
packet loss issues, as it may fail to optimize routing 
paths to alleviate congestion and minimize data loss. 

 
MFI-EDA exhibited packet loss rates 

ranging from 1.553% to 18.044%. One unique 
advantage of MFI-EDA is its adaptability to 
dynamic network conditions through fuzzy logic-
based routing decisions. Unlike DQRA and SPF, 
MFI-EDA leverages fuzzy inference to adapt routing 
decisions based on real-time environmental 
feedback intelligently. This adaptability enhances 
the reliability and robustness of packet delivery, 
allowing MFI-EDA to mitigate packet loss 
effectively even in challenging network scenarios. 
Additionally, MFI-EDA’s integration with 
Dijkstra’s algorithm provides deterministic routing 
paths, further minimizing packet loss and improving 
overall network performance and reliability. 

 
The results depicted in Figure 4 highlight 

the varying degrees of packet loss experienced by 
the three routing protocols under different node 
density conditions. While DQRA and SPF exhibited 
relatively higher packet loss rates than MFI-EDA, 
they also demonstrated unique disadvantages such as 
susceptibility to quantum attacks and network 
congestion. On the other hand, MFI-EDA leveraged 
its advantages in adaptability and robustness through 
fuzzy logic-based routing decisions to achieve lower 
packet loss rates and enhance network reliability. 
These findings underscore the importance of 
selecting routing protocols that effectively mitigate 
packet loss and ensure reliable data transmission in 
diverse network environments. 

 
Table 5: Packet Loss Investigation 

No. of UAVs DQRA SPF MFI-EDA 
50 20.872 10.580 1.553 

100 21.028 14.650 6.015 
150 25.358 17.791 12.523 
200 28.017 20.523 15.357 
250 31.901 26.543 18.044 

Average 25.435 18.017 10.698 
 
5.5. Delay Analysis 

Delay analysis is a critical aspect of 
evaluating the performance of routing protocols in 
networks, providing insights into the time data 
packets traverse from a source node to a destination 
node. In this section, we delve into the delay analysis 
depicted in Figure 5, which showcases the delay 
values observed for three routing protocols, DQRA, 
SPF, and MFI-EDA, under varying node density 
conditions. Figure 5 presents the delay analysis 
results for DQRA, SPF, and MFI-EDA across 
different node density scenarios. The x-axis 
represents the node density, indicating the number of 
nodes in the network, while the y-axis represents the 
delay values measured in milliseconds. Each routing 
protocol is evaluated under varying node density 
conditions to assess its performance in different 
network environments. 
 

DQRA exhibited delay values ranging from 
3490 ms to 4268 ms across different node density 
scenarios. One unique disadvantage of DQRA is its 
vulnerability to quantum noise and errors, which can 
lead to unreliable routing decisions and increased 
latency in data transmission. Quantum networks are 
inherently sensitive to environmental noise and 
quantum errors, particularly in scenarios with high 
node densities where quantum noise becomes more 
pronounced. As a result, DQRA may struggle to 

0

5

10

15

20

25

30

35

50 100 150 200 250

P
ac

ke
t 

L
os

s 
R

at
io

 (
%

)

No. of UAVs

DQRA SPF MFI-EDA



 Journal of Theoretical and Applied Information Technology 
15th May 2024. Vol.102. No 9 

©   Little Lion Scientific  
 

ISSN: 1992-8645                                                                    www.jatit.org                                                    E-ISSN: 1817-3195 

 
3721 

 

maintain low delay values under such conditions, 
contributing to higher latency compared to classical 
routing algorithms. 
 

 
Figure 5: Delay Analysis 

 
SPF demonstrated delay values ranging 

from 3152 ms to 3479 ms across varying node 
densities. One of the unique disadvantages of SPF is 
its susceptibility to network congestion, which can 
lead to suboptimal routing decisions and increased 
queuing delays. SPF may encounter congestion and 
routing conflicts in scenarios with high node 
densities, resulting in higher overall packet 
transmission times. Additionally, SPF’s inability to 
adapt to dynamic network conditions may further 
exacerbate delays, as it may fail to optimize routing 
paths to minimize latency effectively. 
 

Table 6: Delay Analysis 
Node Density DQRA SPF MFI-EDA 

50 3490 3152 1949 
100 3711 3203 2025 
150 3967 3297 2102 
200 4182 3341 2228 
250 4268 3479 2403 

Average 3923.6 3294.4 2141.4 
 

MFI-EDA showcased delay values ranging 
from 1949 ms to 2403 ms across different node 
densities. One unique advantage of MFI-EDA is its 
adaptability to dynamic network conditions through 
fuzzy logic-based routing decisions. Unlike DQRA 
and SPF, MFI-EDA leverages fuzzy inference to 
adapt routing decisions based on real-time 
environmental feedback intelligently. This 
adaptability enhances the efficiency and 
responsiveness of packet delivery, allowing MFI-

EDA to achieve lower delay values even in 
challenging network scenarios. Additionally, MFI-
EDA’s integration with Dijkstra’s algorithm 
provides deterministic routing paths, further 
minimizing delay and improving overall network 
performance and responsiveness. 
 

Figure 5 provides insights into the delay 
performance of DQRA, SPF, and MFI-EDA under 
varying node density conditions. While DQRA and 
SPF exhibited relatively higher delay values than 
MFI-EDA, they also demonstrated unique 
disadvantages such as susceptibility to quantum 
noise and network congestion. On the other hand, 
MFI-EDA leveraged its advantages in adaptability 
and efficiency through fuzzy logic-based routing 
decisions to achieve lower delay values and enhance 
network responsiveness. These findings underscore 
the importance of selecting routing protocols that 
effectively minimize delay and ensure efficient data 
transmission in diverse network environments. 
 
6. CONCLUSION 

Utilizing Mamdani Fuzzy Inference 
Enhanced Dijkstra’s Algorithm (MFI-EDA) for 
energy-efficient routing in Q-FANET presents a 
significant stride towards addressing the unique 
challenges inherent in quantum-based 
communication systems. Q-FANET, characterized 
by its dynamic topology and limited resources, 
necessitates innovative routing solutions to optimize 
energy consumption while ensuring reliable data 
transmission. MFI-EDA emerges as a promising 
solution, leveraging fuzzy logic to adapt routing 
decisions based on real-time environmental 
feedback. MFI-EDA demonstrates notable 
achievements in mitigating energy consumption 
through simulation experiments, outperforming 
traditional routing algorithms in Q-FANET 
scenarios. Its ability to dynamically adjust routing 
paths based on environmental conditions and 
network dynamics showcases its efficacy in 
enhancing energy efficiency and reliability. 
Integrating MFI-EDA into Q-FANET routing 
protocols opens avenues for further exploration and 
refinement. Future research could refine the fuzzy 
logic mechanisms within MFI-EDA to enhance 
adaptability and scalability in larger Q-FANET 
deployments. Additionally, investigating the 
integration of quantum error correction mechanisms 
could bolster the resilience of MFI-EDA in the face 
of quantum noise and errors, further optimizing 
energy utilization and advancing the capabilities of 
quantum-enabled ad hoc networks. 
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