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ABSTRACT 
 

Recently, reinforcement learning has shown excellent performance in solving complex data analysis 
problems in the real world, and many companies are actively introducing it. However, as the diversity and 
complexity of corporate business processes continues to increase, existing reinforcement learning 
approaches have limitations in solving complex problems. To cope with this, more sophisticated algorithms 
have been developed, but these algorithms require high computational resources. As a result, many 
enterprises seek to obtain the computing resources they need by leveraging distributed environments such 
as the cloud. However, as the diversity and complexity of enterprise business processes increase, the 
workload that cloud service providers must manage becomes more complex. Therefore, container 
orchestration mechanisms are becoming more complex and resource utilization is becoming more difficult. 
Therefore, in this study, we propose a container orchestration system for distributed reinforcement learning 
data analysis. This proposed system consists of User Interface, Task Processing Layer, and Infrastructure. 
In addition, through performance comparison experiments with existing centralized processing methods, 
that the proposed system is suitable for data analysis in a distributed environment. 

Keywords: Container Orchestration, Distributed Reinforcement Learning, Data Analysis 
 

1. INTRODUCTION 
 

Recently, numerous companies and data scientists 
have been exploring various machine learning (ML) 
algorithms, including supervised learning, 
unsupervised learning, and reinforcement learning, 
to glean valuable insights from big data [1]. 
Reinforcement learning, in particular, has 
demonstrated its efficacy in addressing real-world 
challenges such as stock trading, robot control, and 
natural language processing, leading to its 
widespread adoption by many companies [2]. 
However, as the diversity and complexity of 
corporate business processes increase, existing 
reinforcement learning algorithms encounter 
limitations in tackling intricate problems [3]. To 
address this, more sophisticated algorithms like 
DQN, A3C, and IMPALA [4] have been 
investigated. Yet, executing these complex 
algorithms demands substantial computational 
resources, necessitating high-performance 
computing infrastructure [5]. While large enterprises 

develop and utilize independent infrastructure for 
data analysis, smaller companies find it 
economically and temporally challenging to build 
such infrastructure, leading many to adopt cloud 
environments instead [6]. 

Many data centers and corporate infrastructures 
are now hosted in the cloud, where computing 
resources are provisioned as cluster computing over 
the network [7]. Cloud service providers leverage 
virtualization technologies such as virtual machines 
(VMs) and containers in distributed infrastructures 
to facilitate automated application deployment [8]. 
Containers, which isolate processes at the operating 
system (OS) level, offer a lighter and more space-
efficient alternative to VMs, which virtualize 
resources at the hardware level [20]. Additionally, 
containers streamline data analysis services by 
encapsulating datasets and analysis software into 
portable containers, offering convenience to 
developers, especially in small businesses [9]. 
However, as the complexity of corporate business 
processes continues to grow, managing the workload 
handled by cloud service providers in terms of both 
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quantity and quality becomes challenging [8, 10], 
significantly complicating container orchestration 
mechanisms and hindering small businesses' ability 
to manage the data analysis process effectively. 

Research on policy optimization for efficient 
workload management in container orchestration is 
ongoing, with many studies emphasizing the need 
for behavioral modeling and prediction of 
multidimensional performance indicators using RL 
[2, 8]. The integration of RL enables efficient 
orchestration, including maximizing application 
processing and ensuring fair resource allocation. 
However, existing research lacks a systematic 
approach to building a framework fully optimized 
for RL, highlighting the need for further 
investigation in this area [8]. 

In this study, we propose and design a container 
orchestration system tailored for distributed 
reinforcement learning data analysis. The proposed 
system comprises three layers: User Interface, Task 
Processing Layer, and Infrastructure. When a user 
initiates a process, the Distributed RL Engine 
extracts the RL component and converts it into an 
application, which is then containerized. Upon 
deployment and execution of the container in a 
cluster, the execution results are relayed to the 
Distributed RL Engine, which aggregates multiple 
results and visualizes the data for user review. The 
Container Orchestration module is responsible for 
resource monitoring, task scheduling, cluster 
management, low latency, and distributed data 
storage. The low-latency overcoming module 
utilizes the Safe Proper Time (SPT) method to 
mitigate the impact of network latency [11]. 

This paper is organized into five chapters. Chapter 
2 discusses related research, Chapter 3 provides an 
overview of the proposed system and its 
components, and Chapter 4 conducts experiments to 
analyze the system's performance. Finally, Chapter 
5 presents conclusions and outlines future research 
directions. 
 
2. RELATED WORK 
 
2.1 Distributed Reinforcement Learning 
 
Figure 1: Distributed reinforcement learning approach 

Distributed reinforcement learning involves 
multiple agents learning their own action policies for 
individual or shared goals while interacting with a 
common environment. These agents may learn 
policies for competitive or collaborative actions 
depending on their objectives. Unlike single-agent 
reinforcement learning, distributed reinforcement 
learning considers interactions not only between the 

agent 
and 

its 

environment but also between multiple agents [12]. 
It treats a single problem as multiple local problems 
based on its distributed nature. In distributed 
reinforcement learning, the experience of 
performing a single action can be viewed as multiple 
vectors, allowing for the acquisition and utilization 
of large amounts of learning data from a single 
sampling, thereby enhancing learning efficiency. 
Furthermore, various action policies learned by 
individual agents can be shared among agents, 
facilitating the generalization of action policies [12]. 
The advantage of distributed reinforcement learning 
lies in its ability to enable large-scale learning, 
thereby enhancing the performance of state-of-the-
art reinforcement learning algorithms such as A3C 
and IMPALA [4]. 
 
2.2 Cloud Computing and Orchestration 

High Throughput Computing (HTC) is a 
computing paradigm aimed at enhancing throughput 
by maximizing the utilization of idle computer 
resources [7]. HTC encompasses both cluster 
computing and cloud computing, with orchestration 
and virtualization serving as core technologies in 
each computing paradigm. Many data centers are 
structured as clouds utilizing virtualization, and 
computing resources provided through the cloud can 
be leveraged for cluster computing purposes [7]. 
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Figure 2: Container and VM configuration 

Virtualization involves the abstraction of 
computer resources, with containers and virtual 
machines (VMs) serving as representative 
technologies. Containers virtualize resources at the 
operating system (OS) level, sharing the OS kernel 
with the host and offering greater resource efficiency 
and environment consistency compared to VMs [8]. 
The advantages of containers have led to a shift in 
distributed system infrastructure from being VM-
centric to container-centric [8]. Consequently, there 
is an increasing demand for container orchestration 
research to automate the deployment, maintenance, 
management, and autoscaling of containerized 
applications. Particularly, there is active research on 
integrating machine learning (ML) for efficient 
container orchestration, with a focus on 
orchestrating business processes and managing 
workload units effectively [13]. 

 
3. CONTAINER ORCHESTRATION 

SYSTEM FOR DISTRIBUTED 
REINFORCEMENT LEARNING 
 

3.1 The Overview of the Proposed System 

 

Figure 3: Overview of the proposed system 
 

The overview of the system proposed in this paper 
is depicted in Figure 3. When a user requests a data 
analysis process, (1) the Distributed RL Engine 
receives the process execution request along with the 
dataset and model from the data storage (2, 3). 
Subsequently, the container orchestration sends the 
received dataset and model for execution (4). 
Container orchestration containerizes the received 
resources and distributes them to each cluster to 
ensure the requested process runs smoothly (5). 
Upon completion of the process, the results are 
returned (6), and the user can review the desired 
outcomes (7). 
 

3.2 Components of the proposed system 

Figure 4: Components of the proposed system 

Figure 4 illustrates the configuration of the 
proposed system, which comprises three layers: the 
User Interface, Task Processing Layer, and 
Infrastructure. 

User Interface serves as the interface between the 
user and the Task Processing Layer. It encompasses 
modules such as Job Management and Dashboard 
Service. 

The Task Processing Layer forms the core of the 
system, responsible for processing user request 
processes. It consists of two main components: 
Container Orchestration and Distributed RL Engine. 

The Container Orchestration component includes 
modules like Resource Monitor, Task Scheduler, 
Cluster Management, Low-latency Management, 
and Distributed Data Storage. 

The Infrastructure layer serves as the data 
collection source and encompasses elements such as 
cloud services, devices, sensors, and more. 
 
3.2 User Interface 
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Figure 5: User Interface workflow 

 
User Interface layer specifies process 

requirements and presents data visualization tools to 
facilitate informed decision-making by users. It 
comprises two modules: Job Management and 
Dashboard Service. 

Job Management module serves as an interface 
between the user and the Distributed RL Engine, 
transmitting user-defined process information to the 
Distributed RL Engine for execution. 

Meanwhile, Dashboard Service module furnishes 
a dashboard environment for monitoring resource 
utilization and execution outcomes, including CPU 
and network metrics for each cluster. This capability 
enables the system to monitor inadvertent resource 
consumption, identify rapid system alterations, and 
promptly respond to uphold operational consistency 
within the system. 

 
3.3 Task Processing Layer 

 
Distributed RL Engine generates multiple 

applications to enable multiple clusters to process 
user-requested tasks, while Container Orchestration 
oversees the smooth operation of each cluster. 

Comprising the RL Processor, Reward Module, 
and Action Module, Distributed RL Engine carries 
out various functions. RL Processor identifies 
processes, extracts components requiring query and 
RL analysis, and analyzes these components to 
determine an appropriate RL algorithm. It then 
solicits the Distributed Data Storage for the RL 
model and dataset corresponding to the selected 
algorithm. Subsequently, it partitions the entire 
dataset into N subsets and generates N applications 
containing these subsets. Upon application creation, 
the Distributed RL Engine dispatches the 

applications to the Container Orchestration. 
Clusters that deploy application containers from  

Container Orchestration execute the applications and 
relay the execution outcomes in the form of actions 
to Distributed RL Engine. The Action Module 
manages these actions, while the Reward Module 
computes rewards based on the actions of each 
cluster and determines whether to initiate the 
learning process anew. 

Container Orchestration, comprising the Resource 
Monitor, Task Scheduler, Cluster Management, and 
Low-latency Management modules, handles various 
tasks. 

Resource Monitor tracks real-time resource 
consumption metrics for each active node in the 
clusters. When Task Scheduler seeks access to 
cluster information, Resource Monitor retrieves 
executable cluster node information from Cluster 
Management and provides it. Cluster Management 
oversees the addition or removal of cluster nodes. 

Task Scheduler, responsible for containerizing N 
applications received from Distributed RL Engine 
and  

Figure 6: Task Processing Layer workflow 

assigning containers to clusters, compares the cluster 
resource information obtained from Resource 
Monitor with the application's resource requirements. 
It then maps them to maximize cluster resource 
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utilization. 
Upon transferring containers to clusters, they 

undergo Low-latency Management. This module 
minimizes the impact of network latency and 
employs Safe Proper Time (SPT) protocol during 
data transmission. SPT selects one of the batch, 
sequential, or integrated methods based on the data 
size [11]. 

Algorithm 1 and Algorithm 2 depict the execution 
algorithms of the Distributed RL Engine and 
Container Orchestration, respectively. 

 
Algorithm 1:  Distributed RL Engine execution 

algorithm 
ALGORITHM: Distributed RL Engine 

INPUT: request of process 
OUTPUT: Apps 
BEGIN 

# Extract the RL parts and load the data. 
RLpart := ExtractRL(Process); 
reqData := ChooseData(RLpart); 
dataSource := Distributed Data Storage  

<- RequestData(reqData); 
#N = number of datasets 
NumDataSet = DataSource / N;  
# Split the dataset. 
BEGIN 
for i in range(N + 1): 
if (i == 0): 

dataset[i] =DataSource[i : NumDataSet + 1]; 
else: 

dataset[i] = DataSource[i * NumDataSet + 

1：(i+1) *NumDataSet +1];  

ENDFOR 
# Creating the application and transmitting it 
through Container Orchestration 
 
BEGIN         
for i in range(N + 1): 
app[i] := WrapData(dataset[i]); 
Container Orchestration < - TransferApps(App); 
ENDFOR 
 

END 
 

Algorithm 2: Container Orchestration execution algorithm 

ALGORITHM: Container Orchestration 
INPUT: Apps  
OUTPUT: Containers 
BEGIN 

containers := ContainerizeApps(Apps); 
Resource Monitor <- AccessInfo(); 
Cluster Management <- AskResource(); 

clusterInfo := Clusters <- CheckNodes(); 
Low_latency_Management <-

DeployContainers(containers
); 

Clusters <- ApplySPT(containers); 
END 

 
3.4 Network latency and error handling methods 
 

Cases where network latency and failures may 
occur in the proposed system are as follows: 
 
- Case 1: In the event of a network error within the 
cluster, where the application execution results fail 
to reach the Distributed RL Engine successfully. 
- Case 2: If a cluster node encounters an error during 
application execution, rendering normal application 
execution impossible. 
 

For Case 1, let's assume that the cluster has 
completed the application execution, but due to 
temporary network instability, the results are not 
being returned. The fault handling mechanism for 
Case 1 is divided into two approaches depending on 
whether network recovery is possible. 

If the cluster fails to transmit the execution results 
to Distributed RL Engine, Distributed RL Engine 
reports the issue to Container Orchestration. 
Subsequently, Container Orchestration waits for 
network connectivity recovery for 5 minutes. If the 
network is restored, as depicted in Figure 7, 
Container Orchestration requests the cluster to 
resend the execution results. If the network remains 

unrecovered, as shown in Figure 8, Container 
Orchestration disconnects from the existing cluster 
and creates a new one. Then, it redeploys the 
containerized application and handles the execution 
within the new cluster, ensuring the results are 
successfully transmitted afterward. 
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Figure 7: Handling failure in Case 1: network recovery 
 

 
Figure 8: Handling failure in Case 1: network 

unrecoverable 
 

 

Figure 9: Handling failure in Case 2 

When error resolution is requested for a cluster 
due to network errors on a cluster node in Case 2, 
Cluster Management module of Container 
Orchestration receives information about the faulty 
cluster node. It then proceeds to disconnect the 
network connection of the malfunctioning node 
within the cluster and initiates the creation of a new 
node. Subsequently, the malfunctioning application 
is assigned to the newly created node for execution. 
Users can monitor this error resolution process in 
real-time through User Interface. 
 
3.5 Execution process 

 
 

Figure 10: Sequence diagram of the proposed system 
 

Figure 10 shows the overall flow of the proposed 
system as a sequence diagram. 
- RequestProcess() : Request process execution 
- RequestData() : Request data for RL analysis 

- SendData() : Send the requested dataset and RL 
model data 
- MakeApps() : Create applications according to the 

number of divided datasets 
- SendApps() : Send N applications to Container 
Orchestration 
- ContainerizeApps() : Containerizes applications 
- AccessInfo() : Access the cluster resource 
information 
- AskResource() : Request resource information 
- CheckNodes() : Checks viable cluster nodes 
- SendNodeInfo() : Send node resource information 
- DeployContainers() : Deploy containers 
- ApplySPT() : Apply the SPT protocol 
- RunApps() : Run the applications 
- SendResults() : Send execution results 
- MergeResults() : Merge N results in one result 
- Visualize() : Visualize application execution 
results 
 
4. EXPERIMENTS AND DISCUSSION 

 
4.1 Experiments and results  

In this study, we conducted two experiments to 
evaluate the performance of the proposed system. 
Firstly, we measured the response failure rate based 
on the number of cluster nodes. The response failure 
rate was defined as cases where the Distributed RL 
Engine did not receive the execution results properly 
after the applications were executed in the clusters. 
Five different clusters were configured, and the 
response failure rate was recorded for each cluster 
node count. Through this initial experiment, we 
aimed to determine the optimal number of cluster 
nodes that would maximize system performance. 

The second experiment involved comparing the 
processing time between the proposed system and a 
centralized processing method. Building upon the 
results of the first experiment, where we identified 
the optimal number of nodes, we proceeded to 
measure and compare the processing time of the 
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proposed system with that of a centralized 
processing approach, where all data processing 
occurs on a single server. 

The experimental setup for both experiments is 
detailed in Table 1 below. 
 

Table 1:  Experiment environment and system 
specifications 

Distributed 
RL Engine 

Server 

OS Ubuntu 22.04 

CPU 
Intel(R) Core(TM) 

i7-6850K CPU @ 3.60 
GHz 

GPU 
GeForce STX 
1080Ti  x 4 

RAM 64 GB 

Storage 
SSD 256 GB 
HDD 2 TB 

Container 
Orchestration 

Kubernetes, Docker 

Database 
MongoDB 

Community 6.0 

Node 
Configuration 

OS 
VMware virtual 

machine, Ubuntu 22.04 

RAM 16 GB 

Stora
ge 

32 GB 

 
In the first experiment, following the execution of 

applications in the clusters, the resulting execution 
data was transmitted to Distributed RL Engine in h5 
format. Table 2 presents the response failure rates 
observed with an incremental increase in the number 
of nodes per cluster, ranging from 3 to 10. The 
response failure rate represents the average of 
measurements obtained from 40 experiments, with 
10 trials conducted for each node count. As depicted 
in Table 2, the response failure rate demonstrates an 
upward trend with the increase in the number of 
nodes. This observation is anticipated, as the 
transmission of execution results from the clusters to 
Distributed RL Engine is influenced by network 
conditions, necessitating time for the determination 
and adjustment of cluster resource information. 

 
Table 2: Response failure rate (%) based on the cluster 

node count 

 
Cluster name 

C1 C2 C3 C4 C5 

Node  
Count 

3 0.64 0.32 0.85 0.54 0.77 

5 1.54 1.28 2.02 1.33 1.89 

7 3.62 3.23 4.08 3.86 3.99 

10 6.54 5.82 6.31 6.42 6.75 

 
The second experiment entails a comparison of 

processing speeds between the proposed system and 
a centralized processing approach. Building upon the 
findings of the first experiment, which indicated that 
clusters comprising three nodes exhibited the lowest 
response failure rate, we formed three clusters, each 
consisting of three nodes. Table 3 presents the 
execution times for each cluster as well as the 
centralized processing method. The execution time 
is defined as the duration from the initiation of 
application execution in the clusters to the 
completion of data return Distributed RL Engine. 

 
Table 3: Performance comparison between the proposed 

system and the centralized processing approach 

 
Cluster 
name 

Execution 
time 

Average 
execution 

time 

Proposed system 
Cluster 1 1,012.98s 

1,220.70s Cluster 2 645.02s 
Cluster 3 2,004.12s 

Centralized 
processing 

method 
- - 37,691s 

  
In Table 3, the average execution time of the 

proposed system represents the mean of the 
execution durations for Clusters 1, 2, and 3. The 
average execution time in the proposed system was 
approximately 1,220 seconds, whereas the 
centralized processing method required 37,691 
seconds, equivalent to approximately 10 hours and 
40 minutes. This is because during the learning 
process in the centralized processing approach, 
significant CPU time is consumed by other processes 
aside from the learning process itself. In fact, as the 
number of epochs increases in the centralized 
processing approach, the memory occupancy of the 
learning process rises, resulting in longer execution 
times for the learning process. Additionally, 
scheduling issues exacerbate the situation, leading to 
a substantial increase in the execution time of the 
learning process. Therefore, it is evident that the 
proposed system exhibits significantly faster 
processing capabilities compared to the centralized 
processing method. 
 
 
 
 
4.2 Comparison analysis 

The system proposed in this paper enables data 
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analysis even with limited resources by 
containerizing and performing cluster distributed 
analysis of data analysis applications. Since the 
proposed system utilizes low-spec computing 
resources as cluster nodes, it may be somewhat 
challenging to run services other than container 
applications. Therefore, the proposed system is 
configured to exclusively execute container 
applications. In this section, we compared existing 
ML systems such as RapidMiner [14], Dataiku [15], 
and KRAKEN based on criteria including workload 
support, interface convenience, infrastructure 
environment, application deployment unit, ML 
support, and initial installation cost [13]. 

In terms of workload support, both RapidMiner 
and Dataiku support workload automation, whereas 
KRAKEN does not. The proposed system partially 
supports workloads. All four systems have GUI-
based interfaces, ensuring user accessibility. While 
RapidMiner and Dataiku can be deployed in cloud, 
fog, and edge infrastructure environments, 
KRAKEN is only feasible in a cloud environment. 
The proposed system is initially deployed in a cloud 
environment but can be expanded to fog or edge 
environments. RapidMiner allows application 
deployment via VMs and containers, whereas 
Dataiku and KRAKEN only deploy applications via 
VMs, potentially leading to less resource efficiency 
compared to container deployment. The proposed 
system is deployed via containers, allowing efficient 
resource utilization similar to RapidMiner, enabling 
collaboration among various companies. 

The ML functionalities supported by each system 
are summarized in Table 4. Although RapidMiner 
supports a wide range of ML functionalities, its 
initial setup is challenging, and it is not widely 
adopted by companies in South Korea. Similarly, 
Dataiku incurs significant initial installation costs, 
making it less suitable for small-scale companies. 
However, the proposed system is easy to set up and 
has low initial installation costs, making it suitable 
for adoption by small-scale companies. Table 4 
summarizes the characteristics and differences 
among the four systems. 
 
 
 
 
 
 
 
 
 
Table 4: Comparison of features between the existing ML 

system and the proposed system 

 
RapidM

in-er 
[14] 

Dataiku 
[15] 

Kraken  
proposed 
system 

Workload 
Support 

 
Automa
t-able 

 
Automat-

able 

 
Not 

Automat-
able 

Partial 
Workload 
Support 

Interface 
Convenie

nc-e 

Easily 
Accessi

ble 
through 

GUI 

Easily 
Accessible 

through 
GUI 

Intuitive 
Interface 
Design 

Intuitive 
GUI-based 
Interface 

Infrastruct
ure 

Environm
ent 

Cloud, 
Fog, 
Edge 

Cloud, 
Fog, Edge 

Cloud 
Expandable 

to Fog, 
Edge 

Applicatio
n 

Deployme
nt Unit 

VM, 
Contain

er 
VM VM Container 

 
ML 

Support 

Model 
Predicti

on, 
Resourc

e 
Provisi
oni-ng, 

ML 
Orchest
rat-ion  

Model-
specific 

Training, 
Data 

Pipeline 

Simultan-
eous 

Explorati
on of ML 
Algorith-

ms 

Distributed 
Reinforcem

-ent 
Learning 

Initial 
Installatio

n Cost 
(small-
scale 

businesses
) 

Difficul
ty in 

Initial 
Setup 

 
High 
Initial 

Installatio
n Costs 

 
Easy 
Initial 
Setup 

Easy Initial 
Setup 

 
 
 
 
 
 
5. CONCLUSION 
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This paper proposes a container orchestration 
system for distributed reinforcement learning to 
facilitate efficient reinforcement learning data 
analysis applications. Among the components of the 
proposed system, Distributed RL Engine serves as 
an engine optimized for distributed reinforcement 
learning, allowing for dataset partitioning and 
application automation without the need for users to 
directly consider the distributed processing, thus 
offering advantages. Container Orchestration sets 
idle computing resources as cluster nodes, enabling 
the utilization of low-spec computing resources, 
leading to cost savings and increased resource 
utilization and efficiency. Additionally, the Low-
latency Management module of Container 
Orchestration adapts transmission methods based on 
the size of the data to mitigate network latency, 
enabling relatively fast data transmission. 

Through experimentation and comparative 
analysis, the performance of the proposed system 
was evaluated. The results indicate that the proposed 
system offers advantages in terms of ease of system 
setup compared to existing ML systems, particularly 
in terms of initial installation costs. Moreover, it 
demonstrates superior performance improvements in 
data analysis time differences compared to 
centralized processing methods. Thus, the container 
orchestration system for distributed reinforcement 
learning proposed in this paper can be considered a 
suitable solution for business process analysis in 
small-scale enterprises. 

Although this paper aimed to build a system 
optimized for reinforcement learning by 
incorporating the Distributed RL Engine, it 
acknowledges limitations regarding the 
implementation of analysis extraction functionalities 
within the Distributed RL Engine. Furthermore, as 
containers pass through the Low-latency 
Management module upon deployment in the cluster, 
the SPT method of this module presents security 
concerns related to data encryption, necessitating 
research to address network security issues. 
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