
 Journal of Theoretical and Applied Information Technology
15th May 2024. Vol.102. No 9

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3972

DESIGN AND IMPLEMENTATION OF A CONTAINER
ORCHESTRATION SYSTEM FOR DISTRIBUTED
REINFORCEMENT LEARNING DATA ANALYSIS

SEOK JAE MOON, SEO YEON GU†

 Department of Artificial Intelligence, Institute of Information Technology, Kwangwoon University,

Korea
†Department of Computer Science, Kwangwoon University, Seoul, Korea. (Corresponding author)

E-mail: msj80386@kw.ac.kr, ksy06136@gmail.com

ABSTRACT

Recently, reinforcement learning has shown excellent performance in solving complex data analysis
problems in the real world, and many companies are actively introducing it. However, as the diversity and
complexity of corporate business processes continues to increase, existing reinforcement learning
approaches have limitations in solving complex problems. To cope with this, more sophisticated algorithms
have been developed, but these algorithms require high computational resources. As a result, many
enterprises seek to obtain the computing resources they need by leveraging distributed environments such
as the cloud. However, as the diversity and complexity of enterprise business processes increase, the
workload that cloud service providers must manage becomes more complex. Therefore, container
orchestration mechanisms are becoming more complex and resource utilization is becoming more difficult.
Therefore, in this study, we propose a container orchestration system for distributed reinforcement learning
data analysis. This proposed system consists of User Interface, Task Processing Layer, and Infrastructure.
In addition, through performance comparison experiments with existing centralized processing methods,
that the proposed system is suitable for data analysis in a distributed environment.

Keywords: Container Orchestration, Distributed Reinforcement Learning, Data Analysis

1. INTRODUCTION

Recently, numerous companies and data scientists
have been exploring various machine learning (ML)
algorithms, including supervised learning,
unsupervised learning, and reinforcement learning,
to glean valuable insights from big data [1].
Reinforcement learning, in particular, has
demonstrated its efficacy in addressing real-world
challenges such as stock trading, robot control, and
natural language processing, leading to its
widespread adoption by many companies [2].
However, as the diversity and complexity of
corporate business processes increase, existing
reinforcement learning algorithms encounter
limitations in tackling intricate problems [3]. To
address this, more sophisticated algorithms like
DQN, A3C, and IMPALA [4] have been
investigated. Yet, executing these complex
algorithms demands substantial computational
resources, necessitating high-performance
computing infrastructure [5]. While large enterprises

develop and utilize independent infrastructure for
data analysis, smaller companies find it
economically and temporally challenging to build
such infrastructure, leading many to adopt cloud
environments instead [6].

Many data centers and corporate infrastructures
are now hosted in the cloud, where computing
resources are provisioned as cluster computing over
the network [7]. Cloud service providers leverage
virtualization technologies such as virtual machines
(VMs) and containers in distributed infrastructures
to facilitate automated application deployment [8].
Containers, which isolate processes at the operating
system (OS) level, offer a lighter and more space-
efficient alternative to VMs, which virtualize
resources at the hardware level [20]. Additionally,
containers streamline data analysis services by
encapsulating datasets and analysis software into
portable containers, offering convenience to
developers, especially in small businesses [9].
However, as the complexity of corporate business
processes continues to grow, managing the workload
handled by cloud service providers in terms of both

 Journal of Theoretical and Applied Information Technology
15th May 2024. Vol.102. No 9

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3973

quantity and quality becomes challenging [8, 10],
significantly complicating container orchestration
mechanisms and hindering small businesses' ability
to manage the data analysis process effectively.

Research on policy optimization for efficient
workload management in container orchestration is
ongoing, with many studies emphasizing the need
for behavioral modeling and prediction of
multidimensional performance indicators using RL
[2, 8]. The integration of RL enables efficient
orchestration, including maximizing application
processing and ensuring fair resource allocation.
However, existing research lacks a systematic
approach to building a framework fully optimized
for RL, highlighting the need for further
investigation in this area [8].

In this study, we propose and design a container
orchestration system tailored for distributed
reinforcement learning data analysis. The proposed
system comprises three layers: User Interface, Task
Processing Layer, and Infrastructure. When a user
initiates a process, the Distributed RL Engine
extracts the RL component and converts it into an
application, which is then containerized. Upon
deployment and execution of the container in a
cluster, the execution results are relayed to the
Distributed RL Engine, which aggregates multiple
results and visualizes the data for user review. The
Container Orchestration module is responsible for
resource monitoring, task scheduling, cluster
management, low latency, and distributed data
storage. The low-latency overcoming module
utilizes the Safe Proper Time (SPT) method to
mitigate the impact of network latency [11].

This paper is organized into five chapters. Chapter
2 discusses related research, Chapter 3 provides an
overview of the proposed system and its
components, and Chapter 4 conducts experiments to
analyze the system's performance. Finally, Chapter
5 presents conclusions and outlines future research
directions.

2. RELATED WORK

2.1 Distributed Reinforcement Learning

Figure 1: Distributed reinforcement learning approach

Distributed reinforcement learning involves
multiple agents learning their own action policies for
individual or shared goals while interacting with a
common environment. These agents may learn
policies for competitive or collaborative actions
depending on their objectives. Unlike single-agent
reinforcement learning, distributed reinforcement
learning considers interactions not only between the

agent
and

its

environment but also between multiple agents [12].
It treats a single problem as multiple local problems
based on its distributed nature. In distributed
reinforcement learning, the experience of
performing a single action can be viewed as multiple
vectors, allowing for the acquisition and utilization
of large amounts of learning data from a single
sampling, thereby enhancing learning efficiency.
Furthermore, various action policies learned by
individual agents can be shared among agents,
facilitating the generalization of action policies [12].
The advantage of distributed reinforcement learning
lies in its ability to enable large-scale learning,
thereby enhancing the performance of state-of-the-
art reinforcement learning algorithms such as A3C
and IMPALA [4].

2.2 Cloud Computing and Orchestration

High Throughput Computing (HTC) is a
computing paradigm aimed at enhancing throughput
by maximizing the utilization of idle computer
resources [7]. HTC encompasses both cluster
computing and cloud computing, with orchestration
and virtualization serving as core technologies in
each computing paradigm. Many data centers are
structured as clouds utilizing virtualization, and
computing resources provided through the cloud can
be leveraged for cluster computing purposes [7].

 Journal of Theoretical and Applied Information Technology
15th May 2024. Vol.102. No 9

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3974

Figure 2: Container and VM configuration

Virtualization involves the abstraction of
computer resources, with containers and virtual
machines (VMs) serving as representative
technologies. Containers virtualize resources at the
operating system (OS) level, sharing the OS kernel
with the host and offering greater resource efficiency
and environment consistency compared to VMs [8].
The advantages of containers have led to a shift in
distributed system infrastructure from being VM-
centric to container-centric [8]. Consequently, there
is an increasing demand for container orchestration
research to automate the deployment, maintenance,
management, and autoscaling of containerized
applications. Particularly, there is active research on
integrating machine learning (ML) for efficient
container orchestration, with a focus on
orchestrating business processes and managing
workload units effectively [13].

3. CONTAINER ORCHESTRATION

SYSTEM FOR DISTRIBUTED
REINFORCEMENT LEARNING

3.1 The Overview of the Proposed System

Figure 3: Overview of the proposed system

The overview of the system proposed in this paper
is depicted in Figure 3. When a user requests a data
analysis process, (1) the Distributed RL Engine
receives the process execution request along with the
dataset and model from the data storage (2, 3).
Subsequently, the container orchestration sends the
received dataset and model for execution (4).
Container orchestration containerizes the received
resources and distributes them to each cluster to
ensure the requested process runs smoothly (5).
Upon completion of the process, the results are
returned (6), and the user can review the desired
outcomes (7).

3.2 Components of the proposed system

Figure 4: Components of the proposed system

Figure 4 illustrates the configuration of the
proposed system, which comprises three layers: the
User Interface, Task Processing Layer, and
Infrastructure.

User Interface serves as the interface between the
user and the Task Processing Layer. It encompasses
modules such as Job Management and Dashboard
Service.

The Task Processing Layer forms the core of the
system, responsible for processing user request
processes. It consists of two main components:
Container Orchestration and Distributed RL Engine.

The Container Orchestration component includes
modules like Resource Monitor, Task Scheduler,
Cluster Management, Low-latency Management,
and Distributed Data Storage.

The Infrastructure layer serves as the data
collection source and encompasses elements such as
cloud services, devices, sensors, and more.

3.2 User Interface

 Journal of Theoretical and Applied Information Technology
15th May 2024. Vol.102. No 9

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3975

Figure 5: User Interface workflow

User Interface layer specifies process

requirements and presents data visualization tools to
facilitate informed decision-making by users. It
comprises two modules: Job Management and
Dashboard Service.

Job Management module serves as an interface
between the user and the Distributed RL Engine,
transmitting user-defined process information to the
Distributed RL Engine for execution.

Meanwhile, Dashboard Service module furnishes
a dashboard environment for monitoring resource
utilization and execution outcomes, including CPU
and network metrics for each cluster. This capability
enables the system to monitor inadvertent resource
consumption, identify rapid system alterations, and
promptly respond to uphold operational consistency
within the system.

3.3 Task Processing Layer

Distributed RL Engine generates multiple

applications to enable multiple clusters to process
user-requested tasks, while Container Orchestration
oversees the smooth operation of each cluster.

Comprising the RL Processor, Reward Module,
and Action Module, Distributed RL Engine carries
out various functions. RL Processor identifies
processes, extracts components requiring query and
RL analysis, and analyzes these components to
determine an appropriate RL algorithm. It then
solicits the Distributed Data Storage for the RL
model and dataset corresponding to the selected
algorithm. Subsequently, it partitions the entire
dataset into N subsets and generates N applications
containing these subsets. Upon application creation,
the Distributed RL Engine dispatches the

applications to the Container Orchestration.
Clusters that deploy application containers from

Container Orchestration execute the applications and
relay the execution outcomes in the form of actions
to Distributed RL Engine. The Action Module
manages these actions, while the Reward Module
computes rewards based on the actions of each
cluster and determines whether to initiate the
learning process anew.

Container Orchestration, comprising the Resource
Monitor, Task Scheduler, Cluster Management, and
Low-latency Management modules, handles various
tasks.

Resource Monitor tracks real-time resource
consumption metrics for each active node in the
clusters. When Task Scheduler seeks access to
cluster information, Resource Monitor retrieves
executable cluster node information from Cluster
Management and provides it. Cluster Management
oversees the addition or removal of cluster nodes.

Task Scheduler, responsible for containerizing N
applications received from Distributed RL Engine
and

Figure 6: Task Processing Layer workflow

assigning containers to clusters, compares the cluster
resource information obtained from Resource
Monitor with the application's resource requirements.
It then maps them to maximize cluster resource

 Journal of Theoretical and Applied Information Technology
15th May 2024. Vol.102. No 9

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3976

utilization.
Upon transferring containers to clusters, they

undergo Low-latency Management. This module
minimizes the impact of network latency and
employs Safe Proper Time (SPT) protocol during
data transmission. SPT selects one of the batch,
sequential, or integrated methods based on the data
size [11].

Algorithm 1 and Algorithm 2 depict the execution
algorithms of the Distributed RL Engine and
Container Orchestration, respectively.

Algorithm 1: Distributed RL Engine execution

algorithm
ALGORITHM: Distributed RL Engine

INPUT: request of process
OUTPUT: Apps
BEGIN

Extract the RL parts and load the data.
RLpart := ExtractRL(Process);
reqData := ChooseData(RLpart);
dataSource := Distributed Data Storage

<- RequestData(reqData);
#N = number of datasets
NumDataSet = DataSource / N;
Split the dataset.
BEGIN
for i in range(N + 1):
if (i == 0):

dataset[i] =DataSource[i : NumDataSet + 1];
else:

dataset[i] = DataSource[i * NumDataSet +

1：(i+1) *NumDataSet +1];

ENDFOR
Creating the application and transmitting it
through Container Orchestration

BEGIN
for i in range(N + 1):
app[i] := WrapData(dataset[i]);
Container Orchestration < - TransferApps(App);
ENDFOR

END

Algorithm 2: Container Orchestration execution algorithm

ALGORITHM: Container Orchestration
INPUT: Apps
OUTPUT: Containers
BEGIN

containers := ContainerizeApps(Apps);
Resource Monitor <- AccessInfo();
Cluster Management <- AskResource();

clusterInfo := Clusters <- CheckNodes();
Low_latency_Management <-

DeployContainers(containers
);

Clusters <- ApplySPT(containers);
END

3.4 Network latency and error handling methods

Cases where network latency and failures may
occur in the proposed system are as follows:

- Case 1: In the event of a network error within the
cluster, where the application execution results fail
to reach the Distributed RL Engine successfully.
- Case 2: If a cluster node encounters an error during
application execution, rendering normal application
execution impossible.

For Case 1, let's assume that the cluster has
completed the application execution, but due to
temporary network instability, the results are not
being returned. The fault handling mechanism for
Case 1 is divided into two approaches depending on
whether network recovery is possible.

If the cluster fails to transmit the execution results
to Distributed RL Engine, Distributed RL Engine
reports the issue to Container Orchestration.
Subsequently, Container Orchestration waits for
network connectivity recovery for 5 minutes. If the
network is restored, as depicted in Figure 7,
Container Orchestration requests the cluster to
resend the execution results. If the network remains

unrecovered, as shown in Figure 8, Container
Orchestration disconnects from the existing cluster
and creates a new one. Then, it redeploys the
containerized application and handles the execution
within the new cluster, ensuring the results are
successfully transmitted afterward.

 Journal of Theoretical and Applied Information Technology
15th May 2024. Vol.102. No 9

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3977

Figure 7: Handling failure in Case 1: network recovery

Figure 8: Handling failure in Case 1: network

unrecoverable

Figure 9: Handling failure in Case 2

When error resolution is requested for a cluster
due to network errors on a cluster node in Case 2,
Cluster Management module of Container
Orchestration receives information about the faulty
cluster node. It then proceeds to disconnect the
network connection of the malfunctioning node
within the cluster and initiates the creation of a new
node. Subsequently, the malfunctioning application
is assigned to the newly created node for execution.
Users can monitor this error resolution process in
real-time through User Interface.

3.5 Execution process

Figure 10: Sequence diagram of the proposed system

Figure 10 shows the overall flow of the proposed
system as a sequence diagram.
- RequestProcess() : Request process execution
- RequestData() : Request data for RL analysis

- SendData() : Send the requested dataset and RL
model data
- MakeApps() : Create applications according to the

number of divided datasets
- SendApps() : Send N applications to Container
Orchestration
- ContainerizeApps() : Containerizes applications
- AccessInfo() : Access the cluster resource
information
- AskResource() : Request resource information
- CheckNodes() : Checks viable cluster nodes
- SendNodeInfo() : Send node resource information
- DeployContainers() : Deploy containers
- ApplySPT() : Apply the SPT protocol
- RunApps() : Run the applications
- SendResults() : Send execution results
- MergeResults() : Merge N results in one result
- Visualize() : Visualize application execution
results

4. EXPERIMENTS AND DISCUSSION

4.1 Experiments and results

In this study, we conducted two experiments to
evaluate the performance of the proposed system.
Firstly, we measured the response failure rate based
on the number of cluster nodes. The response failure
rate was defined as cases where the Distributed RL
Engine did not receive the execution results properly
after the applications were executed in the clusters.
Five different clusters were configured, and the
response failure rate was recorded for each cluster
node count. Through this initial experiment, we
aimed to determine the optimal number of cluster
nodes that would maximize system performance.

The second experiment involved comparing the
processing time between the proposed system and a
centralized processing method. Building upon the
results of the first experiment, where we identified
the optimal number of nodes, we proceeded to
measure and compare the processing time of the

 Journal of Theoretical and Applied Information Technology
15th May 2024. Vol.102. No 9

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3978

proposed system with that of a centralized
processing approach, where all data processing
occurs on a single server.

The experimental setup for both experiments is
detailed in Table 1 below.

Table 1: Experiment environment and system
specifications

Distributed
RL Engine

Server

OS Ubuntu 22.04

CPU
Intel(R) Core(TM)

i7-6850K CPU @ 3.60
GHz

GPU
GeForce STX
1080Ti x 4

RAM 64 GB

Storage
SSD 256 GB
HDD 2 TB

Container
Orchestration

Kubernetes, Docker

Database
MongoDB

Community 6.0

Node
Configuration

OS
VMware virtual

machine, Ubuntu 22.04

RAM 16 GB

Stora
ge

32 GB

In the first experiment, following the execution of

applications in the clusters, the resulting execution
data was transmitted to Distributed RL Engine in h5
format. Table 2 presents the response failure rates
observed with an incremental increase in the number
of nodes per cluster, ranging from 3 to 10. The
response failure rate represents the average of
measurements obtained from 40 experiments, with
10 trials conducted for each node count. As depicted
in Table 2, the response failure rate demonstrates an
upward trend with the increase in the number of
nodes. This observation is anticipated, as the
transmission of execution results from the clusters to
Distributed RL Engine is influenced by network
conditions, necessitating time for the determination
and adjustment of cluster resource information.

Table 2: Response failure rate (%) based on the cluster

node count

Cluster name

C1 C2 C3 C4 C5

Node
Count

3 0.64 0.32 0.85 0.54 0.77

5 1.54 1.28 2.02 1.33 1.89

7 3.62 3.23 4.08 3.86 3.99

10 6.54 5.82 6.31 6.42 6.75

The second experiment entails a comparison of

processing speeds between the proposed system and
a centralized processing approach. Building upon the
findings of the first experiment, which indicated that
clusters comprising three nodes exhibited the lowest
response failure rate, we formed three clusters, each
consisting of three nodes. Table 3 presents the
execution times for each cluster as well as the
centralized processing method. The execution time
is defined as the duration from the initiation of
application execution in the clusters to the
completion of data return Distributed RL Engine.

Table 3: Performance comparison between the proposed

system and the centralized processing approach

Cluster
name

Execution
time

Average
execution

time

Proposed system
Cluster 1 1,012.98s

1,220.70s Cluster 2 645.02s
Cluster 3 2,004.12s

Centralized
processing

method
- - 37,691s

In Table 3, the average execution time of the

proposed system represents the mean of the
execution durations for Clusters 1, 2, and 3. The
average execution time in the proposed system was
approximately 1,220 seconds, whereas the
centralized processing method required 37,691
seconds, equivalent to approximately 10 hours and
40 minutes. This is because during the learning
process in the centralized processing approach,
significant CPU time is consumed by other processes
aside from the learning process itself. In fact, as the
number of epochs increases in the centralized
processing approach, the memory occupancy of the
learning process rises, resulting in longer execution
times for the learning process. Additionally,
scheduling issues exacerbate the situation, leading to
a substantial increase in the execution time of the
learning process. Therefore, it is evident that the
proposed system exhibits significantly faster
processing capabilities compared to the centralized
processing method.

4.2 Comparison analysis

The system proposed in this paper enables data

 Journal of Theoretical and Applied Information Technology
15th May 2024. Vol.102. No 9

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3979

analysis even with limited resources by
containerizing and performing cluster distributed
analysis of data analysis applications. Since the
proposed system utilizes low-spec computing
resources as cluster nodes, it may be somewhat
challenging to run services other than container
applications. Therefore, the proposed system is
configured to exclusively execute container
applications. In this section, we compared existing
ML systems such as RapidMiner [14], Dataiku [15],
and KRAKEN based on criteria including workload
support, interface convenience, infrastructure
environment, application deployment unit, ML
support, and initial installation cost [13].

In terms of workload support, both RapidMiner
and Dataiku support workload automation, whereas
KRAKEN does not. The proposed system partially
supports workloads. All four systems have GUI-
based interfaces, ensuring user accessibility. While
RapidMiner and Dataiku can be deployed in cloud,
fog, and edge infrastructure environments,
KRAKEN is only feasible in a cloud environment.
The proposed system is initially deployed in a cloud
environment but can be expanded to fog or edge
environments. RapidMiner allows application
deployment via VMs and containers, whereas
Dataiku and KRAKEN only deploy applications via
VMs, potentially leading to less resource efficiency
compared to container deployment. The proposed
system is deployed via containers, allowing efficient
resource utilization similar to RapidMiner, enabling
collaboration among various companies.

The ML functionalities supported by each system
are summarized in Table 4. Although RapidMiner
supports a wide range of ML functionalities, its
initial setup is challenging, and it is not widely
adopted by companies in South Korea. Similarly,
Dataiku incurs significant initial installation costs,
making it less suitable for small-scale companies.
However, the proposed system is easy to set up and
has low initial installation costs, making it suitable
for adoption by small-scale companies. Table 4
summarizes the characteristics and differences
among the four systems.

Table 4: Comparison of features between the existing ML

system and the proposed system

RapidM

in-er
[14]

Dataiku
[15]

Kraken
proposed
system

Workload
Support

Automa
t-able

Automat-

able

Not

Automat-
able

Partial
Workload
Support

Interface
Convenie

nc-e

Easily
Accessi

ble
through

GUI

Easily
Accessible

through
GUI

Intuitive
Interface
Design

Intuitive
GUI-based
Interface

Infrastruct
ure

Environm
ent

Cloud,
Fog,
Edge

Cloud,
Fog, Edge

Cloud
Expandable

to Fog,
Edge

Applicatio
n

Deployme
nt Unit

VM,
Contain

er
VM VM Container

ML

Support

Model
Predicti

on,
Resourc

e
Provisi
oni-ng,

ML
Orchest
rat-ion

Model-
specific

Training,
Data

Pipeline

Simultan-
eous

Explorati
on of ML
Algorith-

ms

Distributed
Reinforcem

-ent
Learning

Initial
Installatio

n Cost
(small-
scale

businesses
)

Difficul
ty in

Initial
Setup

High
Initial

Installatio
n Costs

Easy
Initial
Setup

Easy Initial
Setup

5. CONCLUSION

 Journal of Theoretical and Applied Information Technology
15th May 2024. Vol.102. No 9

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3980

This paper proposes a container orchestration
system for distributed reinforcement learning to
facilitate efficient reinforcement learning data
analysis applications. Among the components of the
proposed system, Distributed RL Engine serves as
an engine optimized for distributed reinforcement
learning, allowing for dataset partitioning and
application automation without the need for users to
directly consider the distributed processing, thus
offering advantages. Container Orchestration sets
idle computing resources as cluster nodes, enabling
the utilization of low-spec computing resources,
leading to cost savings and increased resource
utilization and efficiency. Additionally, the Low-
latency Management module of Container
Orchestration adapts transmission methods based on
the size of the data to mitigate network latency,
enabling relatively fast data transmission.

Through experimentation and comparative
analysis, the performance of the proposed system
was evaluated. The results indicate that the proposed
system offers advantages in terms of ease of system
setup compared to existing ML systems, particularly
in terms of initial installation costs. Moreover, it
demonstrates superior performance improvements in
data analysis time differences compared to
centralized processing methods. Thus, the container
orchestration system for distributed reinforcement
learning proposed in this paper can be considered a
suitable solution for business process analysis in
small-scale enterprises.

Although this paper aimed to build a system
optimized for reinforcement learning by
incorporating the Distributed RL Engine, it
acknowledges limitations regarding the
implementation of analysis extraction functionalities
within the Distributed RL Engine. Furthermore, as
containers pass through the Low-latency
Management module upon deployment in the cluster,
the SPT method of this module presents security
concerns related to data encryption, necessitating
research to address network security issues.

REFERENCES

[1] C.W. Tsai, C.-F. Lai, H.-C. Chao, and A. V.
Vasilakos, “Big data analytics: a survey,”
Journal of Big Data, vol. 2, no. 1. Springer
Science and Business Media LLC, Oct. 01,
2015, doi: https://doi.org/10.1186/s40537-015-
0030-3.

[2] G. Rjoub, J. Bentahar, O. Abdel Wahab, and A.
Saleh Bataineh, “Deep and reinforcement
learning for automated task scheduling in large‐
scale cloud computing systems,” Concurrency
and Computation: Practice and Experience, vol.
33, no. 23. Wiley, Jul. 27, 2020, doi:
https://doi.org/10.1002/cpe.5919.

[3] S. Y. Jang, H. J. Yoon, N. S. Park, J. K. Yun,
and Y. S. Son, “Research Trends on Deep
Reinforcement Learning,” Electronics and
Telecommunications Trends, vol. 34, no. 4, pp.
1–14, Aug. 2019, doi:
https://doi.org/10.22648/ETRI.2019.J.340401

[4] S. Gronauer and K. Diepold, “Multi-agent deep
reinforcement learning: a survey,” Artificial
Intelligence Review, vol. 55, no. 2. Springer
Science and Business Media LLC, pp. 895–943,
Apr. 15, 2021, doi:
https://doi.org/10.1007/s10462-021-09996-w.

[5] K. Arulkumaran, M. P. Deisenroth, M.
Brundage, and A. A. Bharath, “Deep
Reinforcement Learning: A Brief Survey,”
IEEE Signal Processing Magazine, vol. 34, no.
6. Institute of Electrical and Electronics
Engineers (IEEE), pp. 26–38, Nov. 2017, doi:
https://doi.org/10.1109/msp.2017.2743240.

[6] S.-Y. Gu, S.-J. Moon, and B.-J. Park,
“Reinforcement learning multi-agent using
unsupervised learning in a distributed cloud
environment,” International Journal of Internet,
Broadcasting and Communication, vol. 14, no.
2, pp. 192–198, May 2022, doi:
https://doi.org/10.7236/IJIBC.2022.14.2.192.

[7] S.Y.Noh, Cloud computing for everyone, Jpub,
2022

[8] Z. Zhong, M. Xu, M. A. Rodriguez, C. Xu, and
R. Buyya, “Machine Learning-based
Orchestration of Containers: A Taxonomy and
Future Directions,” ACM Computing Surveys,
vol. 54, no. 10s. Association for Computing
Machinery (ACM), pp. 1–35, Jan. 31, 2022, doi:
https://doi.org/10.1145/3510415.

[9] Docker, https://aws.amazon.com/ko/docker/
[10] Orchestration big data platform,

http://www.riss.or.kr/
[11] S.Y.Gu, S.-J. Moon, and B.-J. Park, “Agent

with Low-latency Overcoming Technique for
Distributed Cluster-based Machine Learning,”
International Journal of Internet, Broadcasting

 Journal of Theoretical and Applied Information Technology
15th May 2024. Vol.102. No 9

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3981

and Communication, vol. 15,no. 1, pp. 157–163,
Feb. 2023, doi:
https://doi.org/10.7236/IJIBC.2023.15.1.157.

[12] B.H.Yoo, Devrani Devi, H.W.Kim, H.J.Song,
G.M.Park, and S.W.Lee, “A Survey on Recent
Advances in Multi-Agent Reinforcement
Learning,” Electronics and
Telecommunications Trends, vol. 35, no. 6, pp.
137–149, Dec. 2020,
doi:https://doi.org/10.22648/ETRI.2020.J.3506
14.

[13] M. Barika, S. Garg, A. Y. Zomaya, L. Wang, A.
V. Moorsel, and R. Ranjan, “Orchestrating Big
Data Analysis Workflows in the Cloud,” ACM
Computing Surveys, vol. 52, no. 5. Association
for Computing Machinery (ACM), pp. 1–41,
Sep. 13, 2019, doi:
https://doi.org/10.1145/3332301.

[14] Hofmann, Markus, and Ralf Klinkenberg,
eds. “RapidMiner: Data mining use cases and
business analytics applications”, CRC Press,
2016

[15] Liermann, Volker. "Overview machine
learning and deep learning frameworks." The
Digital Journey of Banking and Insurance,
Volume III: Data Storage, Data Processing and
Data Analysis, 2021, pp.187-224.

