
 Journal of Theoretical and Applied Information Technology
15th May 2024. Vol.102. No 9

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4137

A HYBRID MALWARE DETECTION FRAMEWORK
WITH DRIFT ADAPTATION FOR TIMESTAMPED DATA

HARINADH VARIKUTI1 , VALLI KUMARI VATSAVAYI2
1,2Department of Computer Science and Systems Engineering, Andhra University college of

Engineering, Visakhapatnam, India

E-mail: 1varikutiharinadh@gmail.com, 2vallikumari@gmail.com

ABSTRACT

As technology is growing rapidly, new malware variants are evolving. Attackers are generating new
malware patterns using code obfuscation and mutation techniques to escape from anti-malware engines and
traditional models. Models built over historical malware data cannot perform well in detecting or
classifying dynamic or real-time malware data. The Evolution of new malware patterns may lead to
concept drift. Static models built over historical data trained from scratch whenever new data arrives which
is time-consuming, so models with adaptive nature are used. Adaptive machine learning models are used to
identify the drift in data and perform appropriate changes dynamically to the models over time. In this
paper, a hybrid model is proposed which is the combination of Leveraging bagging and AdaBoost methods
for incremental ensemble learning. Dynamic weights are assigned to the models used in the ensemble
learning to increase the adaptivity. The use of boosting and bagging methods adds error adoption and
diversity to the model respectively. Experiments also show the proposed model outperforms all the state-
of-the-art drift adaption methods such as ADWIN Bagging, ADWIN Boosting, SRP Classifier, etc.

Keywords: Concept drift, Machine learning, Malware, drift detection, Bagging, Boosting

1. INTRODUCTION

Every year anti-malware models are created
to detect malicious programs, but the changing
nature of malware patterns escape the detection.
Attackers use malware programs to perform
unethical operations such as stealing sensitive data,
manipulating system data, privacy violations,
encrypting resources, denial of service, etc. The
cyber security research community is working
rigorously to strengthen security and avoid
malicious attacks. On the other side, attackers use
artificial intelligence, code obfuscation techniques,
encryption, and various methods to create new
malware family variants to perform attacks. There
are various types of malware families like viruses,
trojan horses, ransomware, backdoors, worms,
botnets, and rootkits. Every malware attack
depends on the core functionality of its family.

In the war situation between Israeli and
Hamas groups (1) , Distributed Denial of Service
(DDoS) cyber-attacks were carried out. Hamas
performed a DDoS attack on Israeli websites to
stop the alert news of rocket attacks. According to

Statista (2), ransomware attacks affect over 72% of
businesses worldwide in 2023. Around 17% of
attacks increased from 2018-2023. According to
the AV test report (3), every day 450,000 new
malicious programs are detected. Feature patterns
are extracted from these new malware files and
saved for future detection purposes. As per the
malware statistics and incidents happening around
the world, malware operations have grown
exponentially over the years. According to
Malware analysis market statistics (4), the global
malware analysis market is expected to reach
$24.15 billion by 2026. Every human has to be
aware of malware attacks to safeguard the things
around them. Due to the rapid increase of
technology, attackers use few technical tools to
create malware programs in less time and inject
them into the target systems. Sometimes victim are
not aware of the background malware activities
such as data theft, unauthorized access, and
keylogging happening on their devices.

A few years ago, anti-malware engines have
been used to perform malware detection. These
engines used signature and heuristic-based

 Journal of Theoretical and Applied Information Technology
15th May 2024. Vol.102. No 9

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4138

techniques to detect the malware. In the signature-
based method, known malware is identified by
matching the signatures present in the anti-
malware database. Unknown malware is not
detected by the engines which limits its capability.
The heuristic-based method is the process of
investigating the source code for apprehensive
action. Polymorphic malware and zero-day
malware have been detected using the heuristic
methods. However, there is a problem of getting
false positives and false negatives with this
method. False positive, which identifies benign
files as malware and doesn’t affect costly, whereas
false negatives identify malware files as benign
which destructs badly to the system.

Malware analysis is performed by using two
approaches static approach and dynamic approach.
In static analysis, significant features are extracted
without executing the original malware file. In
dynamic analysis, initially, an isolated and
protected environment is set up. Original malware
files are executed in an isolated environment to
extract the behavioral features. These features give
information about the malware file's interaction
with the computer system. In this work, static
features are considered to identify malware
patterns. Static features such as byte histogram,
byte entropy, imported functions, exported
functions, general information, section
information, string information, and header
information are considered for malware detection.

Concept drift is one of the major challenges
in machine learning models. Models built on
historical malware data suffer from performance
degradation when testing with the new variants.
This happens due to the data distributional changes
that occur with time. It is challenging to identify
the evolving nature of malware patterns. Mostly
static machine learning models suffer from
performance degradation due to concept drift.
Concept drift is the situation where the statistical
properties of class variables vary as time changes
in a machine learning model. There are different
ways in which concept drift may occur. They are
gradual drift, sudden drift, and recurring drift as
explained below:

 Gradual drift: It happens due to the
changes that occur slowly or gradually in the target
class over time. These types of changes occur in
situations such as changes in interest rates, the
launch of alternative products, etc.

 Sudden drift: It happens due to a sudden
change in the target class distribution. Here
detecting the drift and adapting the model is crucial

to maintain the effectiveness of the model. A
typical example is covid-19 pandemic which has
suddenly changed daily human life.

 Recurring drift: This type of drift
happens as seasonal changes over time. Old
concepts reoccur after some time. Situations such
as business patterns on weekdays and weekends
happen alternatively imitating the recurring drift.

The drifting nature of the data degrades the
model performance and its applicability in
malware detection. if there is any drift identified,
sometimes it leads to the detection of malware
files as benign. These mistakenly detected benign
files destroy the system with its malicious
operations. To overcome these situations, drift
adaptation techniques are used. Nowadays
machine learning models are applied to various
timestamped datasets. The data is divided into
time frames like yearly and monthly. Models are
trained on initial time data points and testing is
performed with later data points. Malware samples
used in testing change feature patterns and hence
escape detection. Identification of drift gives
information that the attacker changes the malware
code pattern using various techniques such as code
obfuscation and mutation methods. Drift detection
is identified by using various algorithms such as
ADWIN (5), KSWIN, DDM, and Page Hinkley.

2. RELATED WORK

This section discusses the research work
published in the field of malware detection and
how concept drift affects model performance. As
anti-malware engines and traditional models
identify the known malware files effectively,
malware authors changed the malicious code
patterns to evade detection. These timely changing
malware variants cause concept drift. The
occurrence of concept drift degrades the
performance of the model. Concept drift detection
methods are classified into three categories (6).
Error-rate-based drift detection algorithms are one
of the categories that give an alarm if there is a
statistical change in error rate, either it increased or
decreased at some time series data points. Data
distribution-based drift detection comes under the
second category, drift occurs due to distributional
change of an input variable data over the
timestamped data. Multiple hypothesis test drift
detection is the third category which uses variant
hypothesis tests to detect concept drift. J.Lu et.al
(7) suggested that the concept drift challenge can
be resolved by using adaption techniques and

 Journal of Theoretical and Applied Information Technology
15th May 2024. Vol.102. No 9

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4139

ensemble models. The retraining technique slowed
down model performance.

Drift detection (8) can be performed by
popular state-of-the-art detection techniques such
as ADWIN (9), KSWIN, DDM, and Page Hinkley.
ADWIN is an Adaptive Window-based drift
detection method (10). It is used to identify the
drift and give drift warnings, then perform the
adaption on machine learning models. The
algorithm considers an adaptive sliding window
(11) and the window grows as long as no concept
drift is detected. Once the drift is detected, it cuts
the older data samples present in the sliding
window. ADWIN effectively identifies the gradual
drift, because of dynamic sliding window size.
DDM (12) is also a popular drift detection method
that defines two thresholds such as warning level
and drift level. The significant increase in model
error rate and variance indicates the occurrence of
concept drift. DDM is not efficient in identifying
the gradual drifts, because long-term gradual drifts
require a greater number of data samples to store
(13). Page Hinkley is a statistical technique used to
detect concept drift (14). Page Hinkley doesn’t
give drift warnings, it only changes the detections.
It computes the mean value for the observed
values up to the current moment. If the mean is
greater than the threshold value, concept drift is
detected. The Kolmogorov-Smirnov windowing
(KSWIN) (15) drift detection method is performed
by using the Kolmogorov-Smirnov statistical test.
It is used to compare the data distribution of the
samples to identify the drift.

 Drift can be identified by using the above
drift detection algorithms, now we have to
implement drift adaption algorithms to maintain a
more effective model. Drift adaption algorithms
are classified into two categories such as
incremental learning models and ensemble
learning models (16). In incremental learning, the
decision tree algorithm called the Hoeffding tree is
used for adapting the data streams. Hoeffding
bound is used to find the number of samples used
to select the split node in the decision tree
construction. whenever new samples come, the
tree updates its node by adapting to the newly
arrived data. There exists another algorithm called
Extremely Fast Decision Tree (EFDT) (17) which
splits the node as it reaches the confidence
threshold value. It is more adaptive to concept
drifts when compared to the Hoeffding tree.

In ensemble models, there are two categories
such as block based and online ensemble learners.
While using block-based models, initially data is
divided into fixed size blocks and trained using
base learners using each block. Every time when
new block arrives, the base model is evaluated and
updated. The limitation in block-based model is
fixed block size. Algorithms such as Streaming
Ensemble Algorithm (SEA), Accuracy Weighted
Ensemble (AWE), and Accuracy Updated
Ensemble (AUE) come under block-based
methods and among them, AUE gives better
results (18). Online ensemble models such as
Adaptive Random Forest (ARF), and Streaming
Random Patches (SRP) integrate incremental
learning models such as the Hoeffding tree for
better performance. H. M. Gomes et.al (19)
proposed ARF with the Hoeffding tree as a base
learner and ADWIN as a drift detector. As it
resembles a random forest algorithm, ARF gives
better performance with its adaptability to various
types of drifts. SRP (20) uses a similar strategy as
ARF, like detecting the drifts and its adaptability
to drifts. SRP considers global subspace
randomization where as ARF uses local subspace
randomization which improves the diversity of
base learners.

3. SYSTEM OVERVIEW

In this work, we considered the BODMAS
benchmark dataset (21) which is timestamped data
to perform malware detection. Generally, malware
files can be detected by using anti-malware
models, to evade this detection attackers
continuously change the pattern. New malware
patterns cause concept drift while changing the
time. To study the concept drift and implement a
better drift adaption algorithm, this timestamped
benchmark dataset is considered.
3.1 BODMAS Dataset

BODMAS stands for Blue Hexagon Open
Dataset for Malware Analysis. The Researchers
performed joint work with Blue Hexagon to
produce timestamped malware data. In this dataset,
timestamped malware file data along with its
related malware family information is provided by
the researchers. The dataset also provides meta
information on malware files and 2,351 features
with values extracted from all the files. The feature
types and their counts are given in Table 1. The
dataset contains eight feature groups, each of
which is described in more detail below.

Header Information: It includes COFF header
information such as timestamp, target machine,

 Journal of Theoretical and Applied Information Technology
15th May 2024. Vol.102. No 9

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4140

and characteristics. Optional information includes
subsystem, DLL_Characteristics, file_magic,
major and minor image versions, linker versions,
major and minor operating system versions, sub-
system versions, and the header, code and commit
sizes.

Byte Histogram: It contains byte value
features from 00 to FF (a total of 256 features). it
counts the frequency of each byte value in the file.

Byte Entropy Histogram: These features give
the frequency distribution of byte entropy values
over the file. Entropy measures the randomness of
each byte value in the file.

Imported functions: These functions are
called from external modules to perform various
actions on the victim's system such as executing
specific tasks, accessing the resources, and
interacting with the system.

Exported Functions: These functions are
present in the malware binaries and used by the
other modules.

Section Information: It contains properties
about each section such as name, size, entropy,
virtual size, and string characteristics of each
section.

String Information: It includes printable
characters that are at least five characters long. It
also contains strings that indicate file paths, URL
links, HKEY_ which indicates a registry key, and
the occurrences of MZ string that represents the
Windows executable file.

Table 1. Feature Categories present in the

BODMAS dataset

Feature Categories No of features
Header Information 62
General file
Information

10

Byte Histogram 256
Byte Entropy
Histogram

256

Imported functions 1280
Exported functions 128
String Information 104
Section Information 255
Total 2351

The BODMAS data set consists of 1,34,435

timestamped data samples from the year 2007 to

2020, which includes both benign and malware
samples. However, we considered only 2019 and
2020 years data to perform the malware drift
analysis i.e, 1,23,793 samples. The frequency
distribution of the data is shown in the Figure 1.

Figure 1 Frequency Distribution of data samples

4. PROPOSED METHODOLOGY

In this paper, drift adaption algorithms have
been implemented on the bodmas malware dataset,
and handling the concept drifts in timestamped
data or data streams is the main contribution in this
paper. Among the various drift detection and
adaption algorithms, In this analysis, ADWIN
Boosting, ADWIN Bagging, Leveraging Bagging,
SRP classifier, and Adaboost algorithms have been
used to perform malware detection. To Identify the
drifts, drift detection methods such as ADWIN,
KSWIN, and Page Hinkley are used as discussed
in the related work section.

While building models, we considered base
learners to better understand the drift points and
handle it. The base learner is the one referred to as
a predictive model trained on the initial data. while
giving the initial data to the baseline model, it
monitors when the accuracy of the model starts to
degrade representing the drift nature. When new
data is applied to the base model, there is a chance
of occurring deviation in outcomes. Drift detection
methods perform the statistical difference function
on predictions and original outcomes, and gives an
alert if significant drift is detected. when drift is
detected, perform drift adaption techniques which
involve retraining the base model on the most

 Journal of Theoretical and Applied Information Technology
15th May 2024. Vol.102. No 9

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4141

recent data and analysing that the model is
efficient in handling the drifts. Based on the
severity of the drift, update the model by using
online incremental algorithms for adopting the
changes in the data. base learner gives the drift
analysis in the data which helps build the robust
models. In this work, the Hoeffding tree is
considered as a base classifier for all the models
used.

4.1 Models Used in Drift Detection

Hoeffding tree: hoeffding tree is an
incremental decision tree algorithm used for
learning the data streams. It uses Hoeffding bound
for constructing and analyzing the tree. It also
assumes that the distribution of data doesn’t
change over time. Information gain has been used
to select the best attributes for the tree
construction. after selecting the best attribute, a
test is performed using new data whether the
selected attribute gives better results than other
attributes. The attribute that is effective in the tests
used for splitting the node for the growth of the
tree.

ADWIN Boosting: It is an ensemble

incremental learning algorithm used to adapt the
drifts that occur in the data. It uses ADWIN as a
drift detection algorithm. The concept of boosting
is to build a robust model from the number of
weak models. Combining boosting with ADWIN
forms an algorithm that can adapt to distributional
changes occurring in the data. initially, a model is
built with some data and checks the efficiency.
The misclassification that occurred in the first
model is corrected and build the second model.
Continue the creation of new models until all the
training data samples are predicted correctly.
Boosting improves the accuracy by combining all
the weak models by averaging or voting method. It
reduces the overfitting issues because of the high
weightage given to the misclassified data.
imbalanced dataset can also be handled effectively
by boosting technique.

ADWIN Bagging: Bagging or Bootstrap
Aggregation is also an ensemble learning
algorithm that uses multiple models constructed by
different subsets considered from the training data.
integrating the ADWIN drift detection and
Bagging method improves the model performance
and adapting to the drift i.e., if any distributional
changes occur in the data. In the bagging
technique, random subsets of data are selected
with replacements from the training data, and

generate a model with every data subset. In this
method, parallel training of models happens
independently and generates an outcome. Now
aggregation is performed such as majority or
average function applied on all the outcomes.

SRP Classifier: Streaming Random Patches
(SRP) Classifier is a batch learning ensemble
method that considers random samples and
random feature subspaces. These combinations of
random samples and feature subspaces are named
random patches. Here bagging method is used for
batch training where whereas online streaming
data online bagging method is used. Online
bagging is robust to concept drift and adopting the
distributional changes that occurred to the model.

Leveraging Bagging: It uses the bagging

method to select the data and leverage the
performance with two improvements such as
increasing resampling and using output detection
codes. Poisson distribution is used to perform the
resampling with replacement and assign weights to
the samples.

AdaBoost: Adaboost is an ensemble learning

algorithm to combines predictions of multiple
learning models as a robust and accurate model. It
performs various iterations to assign weights to the
samples in training the model. The initial weak
learner is analyzed and samples that are
misclassified are given a high weightage in the
successive learning model.

4.2 Hybrid Model
The hybrid model performs incremental

learning in detecting the malware data samples
with the adoption of identified drifts. Incremental
learning is the way of training the model
continuously over time and including the new data
with the model by avoiding the retraining of the
entire dataset from scratch. Incremental learning
models are useful in analyzing time-stamped data,
i.e., data that is continuously arriving over time.
This approach is essential for malware detection
because of the evolving nature of the
malware. Attackers are continuously adapting new
techniques to create new malware variants and
escape traditional malware detection systems. The
behavior and characteristics of new malware
variants may cause drift. This drift causes various
challenges in identifying the newly evolving
malware using traditional models. Incremental
learning models are used to mitigate drift
efficiently. Periodically updating the models using

 Journal of Theoretical and Applied Information Technology
15th May 2024. Vol.102. No 9

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4142

new malware data reduces the drift challenge and
increases the effectiveness of the
model. Ensembling the models also reduces the
drift challenge in malware detection.

In the proposed method, a hybrid model is
constructed by ensembling the boosting and
bagging techniques to perform malware detection
on timestamped data (assumed as a data stream).
AdaBoost and Leveraging Bagging algorithms are
two state-of-the-art drift adaption methods
considered as base learners in the model
construction. ADWIN drift detection method is
used in the base learners to detect the changes that
occurred in the data. In the hybrid model, boosting
focuses on error adaption on difficult instances
whereas bagging gives diversity by training on
various random data. This model is powerful and
efficient in scenarios where diversity and
adaptability are desired. Ensemble model
construction aims to perform efficient drift
detection and apply an adaptive nature to the
model if the drift value exceeds the threshold. The
proposed hybrid malware detection framework is
shown in Figure 2.

Figure 2 shows the proposed hybrid malware
detection framework

Initially, the data set is divided into various
bins, such as Dt, Dt+1, Dt+2, Dt+3 ……. based on
timestamps. The data sample Dt is used to train the
hybrid model. Then each data sample from the
remaining bins (Dt+1, Dt+2, Dt+3….. etc.) is
given to the hybrid model, which contains
Adaboost and Leveraging bagging

models. Individually, both models take the data

sample and get the prediction probabilities of both
the benign and malware classes. The Hoeffding
tree is used as a base model for both models. Base
models are considered foundation models in drift
detection algorithms. These models understand the
pattern changes identified by the drift detection
methods and adopt them. To deal with the drifts,
the ADWIN drift detection method is used to
monitor the performance of the classifier on the
upcoming data samples. If any drift occurs, a new
classifier is replaced with the old model to perform
prediction.

 Dynamic weights are assigned to the two base
learners Adaboost and Leveraging bagging instead
of static weights. Considering the data
M={(x1,y1),(x2,y2)…..(xn,yn)} where x1,x2,…..xn

represents the data sample with features and
y1,y2,……yn represents the respective class labels
The target class estimated by the hybrid model for
the data sample x is given by following equation:

𝑦 = 𝑎𝑟𝑔𝑚𝑎𝑥 ∈{ , }

∑
 (1)

Where n represents the number of base

learners used, n = 2 in the proposed hybrid model.
pn (y = k | x) represents the predicted probability of
a target class k by using the nth base learner on the
data sample x. hn represents the weight of the nth

base learner. Malware detection has been
performed here, so k = 2 and y ϵ {0,1}. Data
samples are processed one by one as a stream to
improve the model. After processing each data
sample, the error rate is calculated by dividing the
number of misclassified samples by total number
of samples taken. The weight of base classifiers hn

is calculated by following the equation:

ℎ =
∈

 (2)

Eb represents the real-time error rate. To avoid

the denominator value being equal to zero, a small
constant value is represented with the notation ϵ.

 Journal of Theoretical and Applied Information Technology
15th May 2024. Vol.102. No 9

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4143

Compared to other state-of-the-art ensemble
models used to mitigate drifts in malware detection
problems, the hybrid model performed better in
handling false positives. Fasle positive means the
model is predicting a benign sample as malware.
Due to this, various challenges arise, such as
disruption of benign file operations, computational
time wasted in identifying these misclassified files,
and loss of trust in the malware detection systems.
The dynamic weight is considered in the proposed
model for reducing the sample error rate when
compared with static weights used by the ensemble
models. It performs better to detect drifts present
in the data and ease of adapting to the drifts that
occurred.

5. RESULTS AND EVALUATION

The proposed framework was implemented

by using Python 3.10 by extending the river
package [5] on a system with an i7-10750H
processor with 16GB memory. This section
provides an experimental evaluation of the
proposed hybrid model in the Bodmas malware
dataset. The proposed model is an ensemble
incremental learning that adopts the concept of
drift effectively and performs malware detection.

Figure 3. shows the accuracy of the proposed
hybrid model. The X-axis represents the number of
samples and the Y-axis represents the accuracy
percentage. The overall accuracy of the
timestamped malware dataset used to perform
malware detection is 98.6%.

Figure 3 Accuracy of the Proposed hybrid model in
BODMAS Malware dataset

5.1 Comparison with State-of-Art Models

In this work, hybrid model performance is

compared with the other State-of-Art learning
models and shows how it outperformed the all
considered models such as ADWIN Boosting,
ADWIN Bagging, SRP classifer, AdaBoost and
Leveraging Bagging. Ensembling the various
models gives a more efficient model by
aggregating the model's decision on the data. Table
2 gives the data which shows the performance
metrics such as Accuracy, Precision, Recall and
F1-score for all the models studied. Formally
accuracy, Precision, Recall and F1-score are
defined as follows:

accuracy =

Precision =

Recall =

F1-score = 2 x

Table 2 Performance Comparison of State-of-the-

art models with the proposed model

6. CONCLUSION AND FUTURE WORK

This paper presents a robust and effective
model to perform malware detection in a time-
stamped dataset. Malware programmers
unethically create new patterns of malicious files,
which affect the victims badly because of the
escaping nature of the malware. This escaping
nature occurs sometimes due to distributional
changes, i.e., concept drift in the malware data.

Method

 BODMAS Malware
Accuracy
(%)

Precision
(%)

Recall
(%)

F1-
score
(%)

ADWIN
Bagging

93.75 93.84 93.65 93.72

ADWIN
Boosting

92.79 92.9 92.67 92.75

SRP
Classifier

96.93 96.94 96.91 96.92

AdaBoost 97.22 97.23 97.19 97.21
Leveraging
Bagging

98.21 98.21 98.21 98.21

Proposed
hybrid
model

98.6 98.64 98.4 98.52

 Journal of Theoretical and Applied Information Technology
15th May 2024. Vol.102. No 9

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4144

Using the drift adoption ensemble algorithms,
these types of drifts can be easily identified and
adopted into the learning models to detect malware
samples in the future. According to the
performance evaluation, the proposed model
outperforms all the state-of-the-art models
explained above with an accuracy of 98.6%. A
future direction of research work is to use dynamic
features to detect malware. Instead of depending
exclusively on the static features, extracting the
dynamic features by executing the malware files in
an isolated environment is future research.

REFERENCES

[1] Omar Yoachimik. CloudFlare. [Online].; 2023
[cited 2024 January 5. Available from:
https://blog.cloudflare.com/cyber-attacks-in-
the-israel-hamas-war.

[3] Statista. [Online].; 2023 [cited 2024 January
6. Available from:
https://www.statista.com/statistics/204457/bus
inesses-ransomware-attack-rate/.

[5] AVTEST. [Online].; 2024 [cited 2024 January
6. Available from: https://www.av-
test.org/en/statistics/malware/.

[7] Allied Market Research. [Online].; 2020
[cited 2024 January 7. Available from:
https://www.alliedmarketresearch.com/malwa
re-analysis-market-A05963.

[9] Riverml. [Online].; 2019 [cited 2024 January
6. Available from:
https://riverml.xyz/latest/api/drift/ADWIN/.

[11] Mayaki MZAaRM. Autoregressive based
Drift Detection Method. In 2022 International
Joint Conference on Neural Networks
(IJCNN); 2022.

[12] Zhang JLaALaFDaFGaJGaG. Learning under
Concept Drift: A Review. IEEE Transactions
on Knowledge and Data Engineering. 2019;
31: 2346-2363.

[13] Tracking concept drift in malware families. In
ACM workshop on Security and artificial
intelligence; 2012. p. 81-92.

[14] Bifet AaGR. Learning from Time-Changing
Data with Adaptive Windowing. In 7th SIAM
International Conference on Data Mining;
2007.

[15] Barddal JPaGHMaEF. Advances on Concept
Drift Detection in Regression Tasks Using
Social Networks Theory. In International
Journal of Natural Computing Research; 2015.
p. 26-41.

[16] 11. [22] Grulich PaSRaTJaBSaRTaMV.
Scalable Detection of Concept Drifts on Data

Streams with Parallel Adaptive Windowing.
In ; 2018.

[17] Gama JaMPaCGaRP. Learning with Drift
Detection. In Intelligent Data Analysis; 2004.
p. 286-295.

[18] Wares SaIJaEE. Data stream mining: methods
and challenges for handling concept drift. SN
Applied Sciences. 2019; 1.

[19] K. Handling Concept Drift for Predictions in
Business Process Mining. CoRR. 2020;
abs/2005.05810.

[20] Schleif CRaMHaF}. Reactive Soft Prototype
Computing for Concept Drift Streams. CoRR.
2020; abs/2007.05432.

[21] Yang LaMDMaSA. PWPAE: An Ensemble
Framework for Concept Drift Adaptation in
IoT Data Streams. In IEEE Global
Communications Conference (GLOBECOM);
2021. p. 01-06.

[22] Chaitanya Manapragada and Webb.
Extremely fast decision tree. In 24th ACM
SIGKDD International Conference on
Knowledge Discovery and Data Mining;
2018. p. 1953-1962.

[23] Sun Y WZLHDCYJ. Online Ensemble Using
Adaptive Windowing for Data Streams with
Concept Drift. International Journal of
Distributed Sensor Networks. 2016.

[24] Gomes HMBARJBJPEFPBHGAT. Adaptive
random forests for evolving data stream
classification. Machine Learning. 2017.

[25] Gomes HMaRJaBA. Streaming Random
Patches for Evolving Data Stream
Classification. In ; 2019. p. 240-249.

[26] Wang LYaACaILaAAaG. BODMAS: An
Open Dataset for Learning based Temporal
Analysis of PE Malware. In 2021 IEEE
Symposium on Security and Privacy
Workshops, SPW 2021; 2021. p. 78-84.

