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ABSTRACT 

 
As technology is growing rapidly, new malware variants are evolving. Attackers are generating new 
malware patterns using code obfuscation and mutation techniques to escape from anti-malware engines and 
traditional models. Models built over historical malware data cannot perform well in detecting or 
classifying dynamic or real-time malware data. The Evolution of new malware patterns may lead to 
concept drift. Static models built over historical data trained from scratch whenever new data arrives which 
is time-consuming, so models with adaptive nature are used. Adaptive machine learning models are used to 
identify the drift in data and perform appropriate changes dynamically to the models over time. In this 
paper, a hybrid model is proposed which is the combination of Leveraging bagging and AdaBoost methods 
for incremental ensemble learning. Dynamic weights are assigned to the models used in the ensemble 
learning to increase the adaptivity. The use of boosting and bagging methods adds error adoption and 
diversity to the model respectively.  Experiments also show the proposed model outperforms all the state-
of-the-art drift adaption methods such as ADWIN Bagging, ADWIN Boosting, SRP Classifier, etc. 
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1. INTRODUCTION  
 

Every year anti-malware models are created 
to detect malicious programs, but the changing 
nature of malware patterns escape the detection. 
Attackers use malware programs to perform 
unethical operations such as stealing sensitive data, 
manipulating system data, privacy violations, 
encrypting resources, denial of service, etc. The 
cyber security research community is working 
rigorously to strengthen security and avoid 
malicious attacks. On the other side, attackers use 
artificial intelligence, code obfuscation techniques, 
encryption, and various methods to create new 
malware family variants to perform attacks. There 
are various types of malware families like viruses, 
trojan horses, ransomware, backdoors, worms, 
botnets, and rootkits. Every malware attack 
depends on the core functionality of its family. 
 

In the war situation between Israeli and 
Hamas groups (1) , Distributed Denial of Service 
(DDoS) cyber-attacks were carried out. Hamas 
performed a DDoS attack on Israeli websites to 
stop the alert news of rocket attacks. According to 

Statista (2), ransomware attacks affect over 72% of 
businesses worldwide in 2023. Around 17% of 
attacks increased from 2018-2023. According to 
the AV test report (3), every day 450,000 new 
malicious programs are detected. Feature patterns 
are extracted from these new malware files and 
saved for future detection purposes. As per the 
malware statistics and incidents happening around 
the world, malware operations have grown 
exponentially over the years. According to 
Malware analysis market statistics (4), the global 
malware analysis market is expected to reach 
$24.15 billion by 2026. Every human has to be 
aware of malware attacks to safeguard the things 
around them. Due to the rapid increase of 
technology, attackers use few technical tools to 
create malware programs in less time and inject 
them into the target systems. Sometimes victim are 
not aware of the background malware activities 
such as data theft, unauthorized access, and 
keylogging happening on their devices. 
 

A few years ago, anti-malware engines have 
been used to perform malware detection. These 
engines used signature and heuristic-based 
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techniques to detect the malware. In the signature-
based method, known malware is identified by 
matching the signatures present in the anti-
malware database. Unknown malware is not 
detected by the engines which limits its capability. 
The heuristic-based method is the process of 
investigating the source code for apprehensive 
action. Polymorphic malware and zero-day 
malware have been detected using the heuristic 
methods. However, there is a problem of getting 
false positives and false negatives with this 
method. False positive, which identifies benign 
files as malware and doesn’t affect costly, whereas 
false negatives identify malware files as benign 
which destructs badly to the system. 

Malware analysis is performed by using two 
approaches static approach and dynamic approach. 
In static analysis, significant features are extracted 
without executing the original malware file. In 
dynamic analysis, initially, an isolated and 
protected environment is set up. Original malware 
files are executed in an isolated environment to 
extract the behavioral features. These features give 
information about the malware file's interaction 
with the computer system. In this work, static 
features are considered to identify malware 
patterns. Static features such as byte histogram, 
byte entropy, imported functions, exported 
functions, general information, section 
information, string information, and header 
information are considered for malware detection.  
 

Concept drift is one of the major challenges 
in machine learning models. Models built on 
historical malware data suffer from performance 
degradation when testing with the new variants. 
This happens due to the data distributional changes 
that occur with time. It is challenging to identify 
the evolving nature of malware patterns. Mostly 
static machine learning models suffer from 
performance degradation due to concept drift. 
Concept drift is the situation where the statistical 
properties of class variables vary as time changes 
in a machine learning model. There are different 
ways in which concept drift may occur. They are 
gradual drift, sudden drift, and recurring drift as 
explained below: 

 Gradual drift: It happens due to the 
changes that occur slowly or gradually in the target 
class over time. These types of changes occur in 
situations such as changes in interest rates, the 
launch of alternative products, etc. 

 Sudden drift: It happens due to a sudden 
change in the target class distribution. Here 
detecting the drift and adapting the model is crucial 

to maintain the effectiveness of the model. A 
typical example is covid-19 pandemic which has 
suddenly changed daily human life. 

 Recurring drift: This type of drift 
happens as seasonal changes over time. Old 
concepts reoccur after some time. Situations such 
as business patterns on weekdays and weekends 
happen alternatively imitating the recurring drift. 
 

The drifting nature of the data degrades the 
model performance and its applicability in 
malware detection. if there is any drift identified, 
sometimes it leads to the detection of malware 
files as benign. These mistakenly detected benign 
files destroy the system with its malicious 
operations. To overcome these situations, drift 
adaptation techniques are used. Nowadays 
machine learning models are applied to various 
timestamped datasets.  The data is divided into 
time frames like yearly and monthly. Models are 
trained on initial time data points and testing is 
performed with later data points. Malware samples 
used in testing change feature patterns and hence 
escape detection. Identification of drift gives 
information that the attacker changes the malware 
code pattern using various techniques such as code 
obfuscation and mutation methods. Drift detection 
is identified by using various algorithms such as 
ADWIN (5), KSWIN, DDM, and Page Hinkley.  
 
2. RELATED WORK 
 

This section discusses the research work 
published in the field of malware detection and 
how concept drift affects model performance. As 
anti-malware engines and traditional models 
identify the known malware files effectively, 
malware authors changed the malicious code 
patterns to evade detection. These timely changing 
malware variants cause concept drift. The 
occurrence of concept drift degrades the 
performance of the model. Concept drift detection 
methods are classified into three categories (6). 
Error-rate-based drift detection algorithms are one 
of the categories that give an alarm if there is a 
statistical change in error rate, either it increased or 
decreased at some time series data points. Data 
distribution-based drift detection comes under the 
second category, drift occurs due to distributional 
change of an input variable data over the 
timestamped data. Multiple hypothesis test drift 
detection is the third category which uses variant 
hypothesis tests to detect concept drift. J.Lu et.al 
(7) suggested that the concept drift challenge can 
be resolved by using adaption techniques and 
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ensemble models. The retraining technique slowed 
down model performance.  
 

Drift detection (8) can be performed by 
popular state-of-the-art detection techniques such 
as ADWIN (9), KSWIN, DDM, and Page Hinkley. 
ADWIN is an Adaptive Window-based drift 
detection method (10). It is used to identify the 
drift and give drift warnings, then perform the 
adaption on machine learning models. The 
algorithm considers an adaptive sliding window 
(11) and the window grows as long as no concept 
drift is detected. Once the drift is detected, it cuts 
the older data samples present in the sliding 
window. ADWIN effectively identifies the gradual 
drift, because of dynamic sliding window size. 
DDM (12) is also a popular drift detection method 
that defines two thresholds such as warning level 
and drift level. The significant increase in model 
error rate and variance indicates the occurrence of 
concept drift. DDM is not efficient in identifying 
the gradual drifts, because long-term gradual drifts 
require a greater number of data samples to store 
(13). Page Hinkley is a statistical technique used to 
detect concept drift (14). Page Hinkley doesn’t 
give drift warnings, it only changes the detections. 
It computes the mean value for the observed 
values up to the current moment. If the mean is 
greater than the threshold value, concept drift is 
detected. The Kolmogorov-Smirnov windowing 
(KSWIN) (15) drift detection method is performed 
by using the Kolmogorov-Smirnov statistical test. 
It is used to compare the data distribution of the 
samples to identify the drift. 
 

 Drift can be identified by using the above 
drift detection algorithms, now we have to 
implement drift adaption algorithms to maintain a 
more effective model. Drift adaption algorithms 
are classified into two categories such as 
incremental learning models and ensemble 
learning models (16). In incremental learning, the 
decision tree algorithm called the Hoeffding tree is 
used for adapting the data streams. Hoeffding 
bound is used to find the number of samples used 
to select the split node in the decision tree 
construction. whenever new samples come, the 
tree updates its node by adapting to the newly 
arrived data. There exists another algorithm called 
Extremely Fast Decision Tree (EFDT) (17) which 
splits the node as it reaches the confidence 
threshold value. It is more adaptive to concept 
drifts when compared to the Hoeffding tree. 
 

In ensemble models, there are two categories 
such as block based and online ensemble learners. 
While using block-based models, initially data is 
divided into fixed size blocks and trained using 
base learners using each block. Every time when 
new block arrives, the base model is evaluated and 
updated. The limitation in block-based model is 
fixed block size. Algorithms such as Streaming 
Ensemble Algorithm (SEA), Accuracy Weighted 
Ensemble (AWE), and Accuracy Updated 
Ensemble (AUE) come under block-based 
methods and among them, AUE gives better 
results (18). Online ensemble models such as 
Adaptive Random Forest (ARF), and Streaming 
Random Patches (SRP) integrate incremental 
learning models such as the Hoeffding tree for 
better performance. H. M. Gomes et.al (19) 
proposed ARF with the Hoeffding tree as a base 
learner and ADWIN as a drift detector. As it 
resembles a random forest algorithm, ARF gives 
better performance with its adaptability to various 
types of drifts. SRP (20) uses a similar strategy as 
ARF, like detecting the drifts and its adaptability 
to drifts. SRP considers global subspace 
randomization where as ARF uses local subspace 
randomization which improves the diversity of 
base learners.  
 
3. SYSTEM OVERVIEW 
 

In this work, we considered the BODMAS 
benchmark dataset (21) which is timestamped data 
to perform malware detection. Generally, malware 
files can be detected by using anti-malware 
models, to evade this detection attackers 
continuously change the pattern. New malware 
patterns cause concept drift while changing the 
time. To study the concept drift and implement a 
better drift adaption algorithm, this timestamped 
benchmark dataset is considered.  
3.1 BODMAS Dataset 

BODMAS stands for Blue Hexagon Open 
Dataset for Malware Analysis. The Researchers 
performed joint work with Blue Hexagon to 
produce timestamped malware data. In this dataset, 
timestamped malware file data along with its 
related malware family information is provided by 
the researchers. The dataset also provides meta 
information on malware files and 2,351 features 
with values extracted from all the files. The feature 
types and their counts are given in Table 1. The 
dataset contains eight feature groups, each of 
which is described in more detail below. 

Header Information: It includes COFF header 
information such as timestamp, target machine, 



 Journal of Theoretical and Applied Information Technology 
15th May 2024. Vol.102. No 9 

©   Little Lion Scientific  
 

ISSN: 1992-8645                                                                    www.jatit.org                                                    E-ISSN: 1817-3195 

 
4140 

 

and characteristics. Optional information includes 
subsystem, DLL_Characteristics, file_magic, 
major and minor image versions, linker versions, 
major and minor operating system versions, sub-
system versions, and the header, code and commit 
sizes. 
 

Byte Histogram: It contains byte value 
features from 00 to FF (a total of 256 features). it 
counts the frequency of each byte value in the file. 
 

Byte Entropy Histogram: These features give 
the frequency distribution of byte entropy values 
over the file. Entropy measures the randomness of 
each byte value in the file. 
 

Imported functions: These functions are 
called from external modules to perform various 
actions on the victim's system such as executing 
specific tasks, accessing the resources, and 
interacting with the system. 
 

Exported Functions: These functions are 
present in the malware binaries and used by the 
other modules. 
 

Section Information: It contains properties 
about each section such as name, size, entropy, 
virtual size, and string characteristics of each 
section. 
 

String Information: It includes printable 
characters that are at least five characters long. It 
also contains strings that indicate file paths, URL 
links, HKEY_ which indicates a registry key, and 
the occurrences of  MZ string that represents the 
Windows executable file. 

 
Table 1. Feature Categories present in the 

BODMAS dataset 
 

Feature Categories No of features 
Header Information 62 
General file 
Information 

10 

Byte Histogram 256 
Byte Entropy 
Histogram 

256 

Imported functions 1280 
Exported functions 128 
String Information 104 
Section Information 255 
Total 2351 

 
The BODMAS data set consists of 1,34,435 

timestamped data samples from the year 2007 to 

2020, which includes both benign and malware 
samples. However, we considered only 2019 and 
2020 years data to perform the malware drift 
analysis i.e, 1,23,793 samples. The frequency 
distribution of the data is shown in the Figure 1. 
  

 
 
Figure 1 Frequency Distribution of data samples 

 
 
 
4. PROPOSED METHODOLOGY 
 

In this paper, drift adaption algorithms have 
been implemented on the bodmas malware dataset, 
and handling the concept drifts in timestamped 
data or data streams is the main contribution in this 
paper. Among the various drift detection and 
adaption algorithms, In this analysis, ADWIN 
Boosting, ADWIN Bagging, Leveraging Bagging, 
SRP classifier, and Adaboost algorithms have been 
used to perform malware detection. To Identify the 
drifts, drift detection methods such as ADWIN, 
KSWIN, and Page Hinkley are used as discussed 
in the related work section.  
 

While building models, we considered base 
learners to better understand the drift points and 
handle it. The base learner is the one referred to as 
a predictive model trained on the initial data. while 
giving the initial data to the baseline model, it 
monitors when the accuracy of the model starts to 
degrade representing the drift nature. When new 
data is applied to the base model, there is a chance 
of occurring deviation in outcomes. Drift detection 
methods perform the statistical difference function 
on predictions and original outcomes, and gives an 
alert if significant drift is detected. when drift is 
detected, perform drift adaption techniques which 
involve retraining the base model on the most 
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recent data and analysing that the model is 
efficient in handling the drifts. Based on the 
severity of the drift, update the model by using 
online incremental algorithms for adopting the 
changes in the data. base learner gives the drift 
analysis in the data which helps build the robust 
models. In this work, the Hoeffding tree is 
considered as a base classifier for all the models 
used. 

 
4.1 Models Used in Drift Detection 
 

Hoeffding tree: hoeffding tree is an 
incremental decision tree algorithm used for 
learning the data streams. It uses Hoeffding bound 
for constructing and analyzing the tree. It also 
assumes that the distribution of data doesn’t 
change over time. Information gain has been used 
to select the best attributes for the tree 
construction. after selecting the best attribute, a 
test is performed using new data whether the 
selected attribute gives better results than other 
attributes. The attribute that is effective in the tests 
used for splitting the node for the growth of the 
tree. 

 
ADWIN Boosting: It is an ensemble 

incremental learning algorithm used to adapt the 
drifts that occur in the data. It uses ADWIN as a 
drift detection algorithm. The concept of boosting 
is to build a robust model from the number of 
weak models. Combining boosting with ADWIN 
forms an algorithm that can adapt to distributional 
changes occurring in the data. initially, a model is 
built with some data and checks the efficiency. 
The misclassification that occurred in the first 
model is corrected and build the second model. 
Continue the creation of new models until all the 
training data samples are predicted correctly. 
Boosting improves the accuracy by combining all 
the weak models by averaging or voting method. It 
reduces the overfitting issues because of the high 
weightage given to the misclassified data. 
imbalanced dataset can also be handled effectively 
by boosting technique.  

ADWIN Bagging: Bagging or Bootstrap 
Aggregation is also an ensemble learning 
algorithm that uses multiple models constructed by 
different subsets considered from the training data. 
integrating the ADWIN drift detection and 
Bagging method improves the model performance 
and adapting to the drift i.e., if any distributional 
changes occur in the data. In the bagging 
technique, random subsets of data are selected 
with replacements from the training data, and 

generate a model with every data subset. In this 
method, parallel training of models happens 
independently and generates an outcome. Now 
aggregation is performed such as majority or 
average function applied on all the outcomes.  
 

SRP Classifier: Streaming Random Patches 
(SRP) Classifier is a batch learning ensemble 
method that considers random samples and 
random feature subspaces. These combinations of 
random samples and feature subspaces are named 
random patches. Here bagging method is used for 
batch training where whereas online streaming 
data online bagging method is used. Online 
bagging is robust to concept drift and adopting the 
distributional changes that occurred to the model.  

 
Leveraging Bagging: It uses the bagging 

method to select the data and leverage the 
performance with two improvements such as 
increasing resampling and using output detection 
codes. Poisson distribution is used to perform the 
resampling with replacement and assign weights to 
the samples.  

 
AdaBoost: Adaboost is an ensemble learning 

algorithm to combines predictions of multiple 
learning models as a robust and accurate model. It 
performs various iterations to assign weights to the 
samples in training the model. The initial weak 
learner is analyzed and samples that are 
misclassified are given a high weightage in the 
successive learning model. 

 
4.2 Hybrid Model 
The hybrid model performs incremental 

learning in detecting the malware data samples 
with the adoption of identified drifts. Incremental 
learning is the way of training the model 
continuously over time and including the new data 
with the model by avoiding the retraining of the 
entire dataset from scratch. Incremental learning 
models are useful in analyzing time-stamped data, 
i.e., data that is continuously arriving over time. 
This approach is essential for malware detection 
because of the evolving nature of the 
malware. Attackers are continuously adapting new 
techniques to create new malware variants and 
escape traditional malware detection systems. The 
behavior and characteristics of new malware 
variants may cause drift. This drift causes various 
challenges in identifying the newly evolving 
malware using traditional models. Incremental 
learning models are used to mitigate drift 
efficiently. Periodically updating the models using 
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new malware data reduces the drift challenge and 
increases the effectiveness of the 
model. Ensembling the models also reduces the 
drift challenge in malware detection. 

In the proposed method, a hybrid model is 
constructed by ensembling the boosting and 
bagging techniques to perform malware detection 
on timestamped data (assumed as a data stream). 
AdaBoost and Leveraging Bagging algorithms are 
two state-of-the-art drift adaption methods 
considered as base learners in the model 
construction. ADWIN drift detection method is 
used in the base learners to detect the changes that 
occurred in the data. In the hybrid model, boosting 
focuses on error adaption on difficult instances 
whereas bagging gives diversity by training on 
various random data. This model is powerful and 
efficient in scenarios where diversity and 
adaptability are desired. Ensemble model 
construction aims to perform efficient drift 
detection and apply an adaptive nature to the 
model if the drift value exceeds the threshold. The 
proposed hybrid malware detection framework is 
shown in Figure 2. 
 
 

 
 

Figure 2 shows the proposed hybrid malware 
detection framework 

Initially, the data set is divided into various 
bins, such as Dt, Dt+1, Dt+2, Dt+3 ……. based on 
timestamps. The data sample Dt is used to train the 
hybrid model.  Then each data sample from the 
remaining bins (Dt+1, Dt+2, Dt+3 .........….. etc.) is 
given to the hybrid model, which contains 
Adaboost and Leveraging bagging 

models. Individually, both models take the data 

sample and get the prediction probabilities of both 
the benign and malware classes. The Hoeffding 
tree is used as a base model for both models. Base 
models are considered foundation models in drift 
detection algorithms. These models understand the 
pattern changes identified by the drift detection 
methods and adopt them. To deal with the drifts, 
the ADWIN drift detection method is used to 
monitor the performance of the classifier on the 
upcoming data samples. If any drift occurs, a new 
classifier is replaced with the old model to perform 
prediction. 

 
 Dynamic weights are assigned to the two base 
learners Adaboost and Leveraging bagging instead 
of static weights. Considering the data 
M={(x1,y1),(x2,y2)…..(xn,yn)} where x1,x2,…..xn 

represents the data sample with features and 
y1,y2,……yn represents the respective class labels  
The target class estimated by the hybrid model for 
the data sample x is given by following equation: 

 

𝑦 = 𝑎𝑟𝑔𝑚𝑎𝑥 ∈{ , }

∑   
         (1) 

 
 
Where n represents the number of base 

learners used, n = 2 in the proposed hybrid model. 
pn (y = k | x) represents the predicted probability of 
a target class k by using the nth base learner on the 
data sample x. hn represents the weight of the nth 

base learner. Malware detection has been 
performed here, so k = 2 and y ϵ {0,1}. Data 
samples are processed one by one as a stream to 
improve the model. After processing each data 
sample, the error rate is calculated by dividing the 
number of misclassified samples by total number 
of samples taken. The weight of base classifiers hn 

is calculated by following the equation: 
 

ℎ =
∈ 

                                                (2) 

 
Eb represents the real-time error rate. To avoid 

the denominator value being equal to zero, a small 
constant value is represented with the notation ϵ.  
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Compared to other state-of-the-art ensemble 
models used to mitigate drifts in malware detection 
problems, the hybrid model performed better in 
handling false positives. Fasle positive means the 
model is predicting a benign sample as malware. 
Due to this, various challenges arise, such as 
disruption of benign file operations, computational 
time wasted in identifying these misclassified files, 
and loss of trust in the malware detection systems. 
The dynamic weight is considered in the proposed 
model for reducing the sample error rate when 
compared with static weights used by the ensemble 
models. It performs better to detect drifts present 
in the data and ease of adapting to the drifts that 
occurred. 
 
5. RESULTS AND EVALUATION 

 
The proposed framework was implemented 

by using Python 3.10 by extending the river 
package [5] on a system with an i7-10750H 
processor with 16GB memory. This section 
provides an experimental evaluation of the 
proposed hybrid model in the Bodmas malware 
dataset. The proposed model is an ensemble 
incremental learning that adopts the concept of 
drift effectively and performs malware detection. 
 

Figure 3. shows the accuracy of the proposed 
hybrid model. The X-axis represents the number of 
samples and the Y-axis represents the accuracy 
percentage. The overall accuracy of the 
timestamped malware dataset used to perform 
malware detection is 98.6%.  

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

Figure 3 Accuracy of the Proposed hybrid model in 
BODMAS Malware dataset 

 

5.1 Comparison with State-of-Art Models 
 
In this work, hybrid model performance is 

compared with the other State-of-Art learning 
models and shows how it outperformed the all 
considered models such as ADWIN Boosting, 
ADWIN Bagging, SRP classifer, AdaBoost and 
Leveraging Bagging. Ensembling the various 
models gives a more efficient model by 
aggregating the model's decision on the data. Table 
2 gives the data which shows the performance 
metrics such as Accuracy, Precision, Recall and 
F1-score for all the models studied. Formally 
accuracy, Precision, Recall and F1-score are 
defined as follows: 

  

accuracy = 
   

   
 

 

Precision = 
  

   
 

 

Recall = 
  

   
 

 

F1-score = 2 x 
  

 

 
Table 2 Performance Comparison of State-of-the-

art models with the proposed model 

 
6. CONCLUSION AND FUTURE WORK 
 

This paper presents a robust and effective 
model to perform malware detection in a time-
stamped dataset. Malware programmers 
unethically create new patterns of malicious files, 
which affect the victims badly because of the 
escaping nature of the malware. This escaping 
nature occurs sometimes due to distributional 
changes, i.e., concept drift in the malware data. 

 
 
Method 

              BODMAS Malware 
Accuracy 
(%)  

Precision 
(%) 

Recall 
(%) 

F1-
score 
(%) 

ADWIN 
Bagging 

93.75 93.84 93.65 93.72 

ADWIN 
Boosting 

92.79 92.9 92.67 92.75 

SRP 
Classifier 

96.93 96.94 96.91 96.92 

AdaBoost 97.22 97.23 97.19 97.21 
Leveraging 
Bagging 

98.21 98.21 98.21 98.21 

Proposed 
hybrid 
model 

98.6 98.64 98.4 98.52 
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Using the drift adoption ensemble algorithms, 
these types of drifts can be easily identified and 
adopted into the learning models to detect malware 
samples in the future. According to the 
performance evaluation, the proposed model 
outperforms all the state-of-the-art models 
explained above with an accuracy of 98.6%. A 
future direction of research work is to use dynamic 
features to detect malware. Instead of depending 
exclusively on the static features, extracting the 
dynamic features by executing the malware files in 
an isolated environment is future research.  
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