
 Journal of Theoretical and Applied Information Technology
15th May 2024. Vol.102. No 9

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3730

EXPLORING ARO-LOGISENT: DELVING INTO DATA
COLLECTION FOR ADVANCED SENTIMENT

ANALYSIS WITH AMAMI RABBIT OPTIMIZATION-
BASED LOGISTIC REGRESSION

 D. J. ANITHA MERLIN1, D. VIMAL KUMAR 2

1 Research Scholar, Department of Computer Science, Nehru Arts and Science College, India
 2 Associate Professor, Department of Computer Science, Nehru Arts and Science College, India

E-mail: 1 merlin.celestino@gmail.com, 2 drvimalcs@gmail.com

ABSTRACT

Sentiment analysis, a crucial component of natural language processing, aims to discern the underlying
sentiment conveyed in textual data. This research explores the fusion of Amami Rabbit Optimization
(ARO) with Logistic Regression (LR) to enhance sentiment analysis performance. ARO, inspired by the
foraging behavior of Amami rabbits, offers a novel metaheuristic approach for optimizing model
parameters, while LR provides a robust framework for sentiment classification. The proposed integration
leverages the strengths of both methodologies to overcome challenges inherent in sentiment analysis,
including feature selection, model training, and accuracy optimization. This study investigates the
effectiveness of the ARO-LR hybrid approach through empirical experiments conducted on diverse
datasets sourced from social media platforms and product reviews. Evaluation metrics such as precision,
recall, F1-score, and accuracy are employed to assess the performance of the integrated model. Results
indicate significant improvements in sentiment classification accuracy and robustness compared to
traditional LR models. The findings highlight the efficacy of integrating metaheuristic optimization
techniques with conventional machine learning algorithms for advancing sentiment analysis capabilities in
real-world applications.
Keywords: Sentiment, Reviews, Online Shopping, Classification, Amazon, Neural Network, Rabbit

Optimization, Logistic Regression

1. INTRODUCTION

Online shopping, also known as e-
commerce, has revolutionized the way people shop
for goods and services. It refers to the process of
purchasing products or services over the internet
through websites or mobile applications.[1] With
the widespread availability of high- speed internet
and the proliferation of digital devices, online
shopping has become increasingly popular and
convenient for consumers worldwide. One of the
key advantages of online shopping is the
convenience it offers.[2] Consumers can browse
through a vast selection of products from the
comfort of their own homes. They can compare
prices, read product reviews, and make purchases at
any time of day or night, without having to visit
physical stores. This convenience is particularly
beneficial for busy individuals or those who may
have difficulty accessing traditional brick-and-
mortar stores[3].

Another benefit of online shopping is the

ability to access a global marketplace. Through e-
commerce platforms, consumers can shop from

retailers and sellers located anywhere in the world,
giving them access to a wider variety of products
and services than would be available locally. This
global reach allows consumers to find unique or
niche items that may not be readily available in
their area. Online shopping also offers greater
flexibility and customization for consumers[4].
Despite its many advantages, online shopping also
presents challenges and concerns. Security and
privacy are important considerations, as consumers
must trust that their personal and financial
information will be protected when making online
transactions[5]. As technology continues to evolve
and e-commerce platforms innovate, online
shopping is likely to remain a dominant force in the
global marketplace, shaping the way consumers
shop for goods and services now and in the
future[6].

Sentiment analysis, also known as opinion

mining, is a computational technique used to
analyze and interpret the sentiment or emotional
tone expressed in textual data. It involves
identifying and categorizing the sentiment

 Journal of Theoretical and Applied Information Technology
15th May 2024. Vol.102. No 9

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3731

conveyed in a piece of text as positive, negative, or
neutral[7]. Sentiment analysis is commonly applied
to various types of text data, including customer
reviews, social media posts, news articles, and
surveys. It is also valuable in political analysis and
public opinion research[8]. By analyzing the
sentiment expressed in news articles, social media
discussions, and public forums, policymakers and
political candidates can gauge public sentiment
towards political issues, candidates, and policies.
Sentiment analysis is used in financial markets to
analyze news articles, social media discussions, and
other textual data for insights into investor
sentiment and market trends[9]. Traders and
investors use sentiment analysis to make informed
decisions and predict market movements based on
sentiment indicators.

Sentiment analysis plays a crucial role in

extracting insights from textual data and
understanding the prevailing sentiment or
emotional tone within a given context. Its
applications span across various industries and
domains, helping businesses, organizations, and
policymakers make informed decisions, improve
customer satisfaction, and stay ahead of emerging
trends[10]. Sentiment analysis plays a significant
role in online shopping, shaping consumer
experiences and influencing purchasing decisions.
By analyzing customer reviews and social media
mentions, businesses gain insights into customer
satisfaction levels and product perceptions[11].
Positive sentiment signals indicate satisfied
customers and can lead to increased sales and brand
loyalty. Conversely, negative sentiment alerts
businesses to potential issues or areas for
improvement, allowing them to address customer
concerns promptly. This proactive approach
enhances the overall shopping experience, fosters
trust, and strengthens relationships between
businesses and consumers, ultimately driving
success in the competitive online marketplace[12].

1.1. Problem Statement

Challenges in sentiment analysis for online
shopping arise due to the complexity and nuances
of human language. Initially, ambiguity poses a
challenge, as words or phrases can have multiple
meanings depending on the context, leading to
misinterpretation of sentiment. Sarcasm and irony
are prevalent in online communication, making it
difficult to accurately discern sentiment. Cultural
and regional differences in language usage can
impact the interpretation of sentiment, requiring a
nuanced understanding of linguistic nuances across

diverse demographics. Another challenge is the
presence of noise in text data, such as spelling
errors, abbreviations, and slang, which can hinder
sentiment analysis accuracy. Finally the dynamic
nature of language and evolving trends in online
discourse present challenges in keeping sentiment
analysis models up-to-date and relevant.
Overcoming these challenges requires robust
algorithms, extensive training data, and continual
refinement to accurately capture and interpret
sentiment in the context of online shopping.

1.2. Motivation

The motivation for this content stems from
the increasing importance of sentiment analysis in
various fields such as marketing, customer
feedback analysis, and social media monitoring.
Understanding how sentiment analysis models
perform is crucial for researchers, practitioners, and
businesses aiming to make informed decisions
based on textual data. By evaluating the
performance of sentiment analysis models using
diverse metrics, this content seeks to provide
valuable insights into their effectiveness and
reliability, ultimately contributing to advancements
in natural language processing and enhancing
decision-making processes in real-world
applications.

1.3. Research Objective

The objective is to develop robust
sentiment analysis models capable of effectively
addressing the challenges inherent in natural
language processing. This includes devising
algorithms and methodologies that can accurately
interpret the nuanced aspects of human language,
such as sarcasm, ambiguity, and cultural variations.
The objective aims to mitigate the impact of rapidly
evolving online communication platforms and the
sheer volume of user- generated content by
developing scalable and efficient sentiment analysis
techniques. By overcoming these challenges, the
objective seeks to enhance decision-making
processes, gain deeper insights into public
sentiment, and improve user experiences across
various domains, including marketing, customer
service, and social media analytics. Ultimately, the
goal is to advance the field of sentiment analysis
and contribute to the development of more
reliable and accurate tools for understanding and
interpreting human emotions expressed through
text.

 Journal of Theoretical and Applied Information Technology
15th May 2024. Vol.102. No 9

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3732

2. LITERATURE REVIEW
“News Sentinel”[13] presents a pioneering

approach. Employing entity recognition unveils the
prominent subjects and entities involved in negative
news narratives. Regression analysis then quantifies
the impact of various factors on the prevalence of
negative news, offering insights into the driving
forces behind its dissemination. “Twitter
Sentinels”[14] introduces an innovative approach to
gauge public sentiment on the development of
Rinca Island. Doc2Vec facilitates the conversion of
text data into numerical vectors, enabling the
analysis of Twitter content. SVM and logistic
regression then categorize these vectors into
sentiment classes, unveiling the overall sentiment
trends.

“FinTweet Analyzer”[15] integrates
machine learning techniques to discern sentiment
nuances within the financial discourse on Twitter.
This model's working mechanism involves training
machine learning classifiers on annotated
financial tweet datasets, allowing it to generalize
and accurately interpret sentiment in real-time
tweets. “Sentiment Stock Master”[16] introduces a
pioneering method to forecast stock prices by
amalgamating sentiment scores from financial news
with a Multi-Layer Perceptron (MLP) regressor.
The model's working mechanism involves first
extracting sentiment scores from financial news
articles using natural language processing
techniques. “Sentiment Word Refiner”[17]
involves augmenting existing word embeddings
with sentiment scores derived from sentiment
lexicons or machine learning models. By
integrating sentiment information directly into the
word embeddings, the model learns to encode both
the meaning and sentiment of words.

“Deep-Sentiment Analyzer”[18] working

mechanism involves the utilization of recurrent
neural networks (RNNs) augmented with decision-
based mechanisms to capture sequential
dependencies and make informed sentiment
predictions. By incorporating decision-making
processes within the recurrent neural network
framework, Deep-Sentiment can effectively analyze
sentiment in text data with higher accuracy and
efficiency. “Aspect Sentiment Multilocal
Learner”[19] a learning model involves
incorporating local and global context-focusing
mechanisms into the learning model. Local context
focusing ensures the model attends to relevant
aspects within each sentence, while global context
focusing enables the consideration of broader

discourse patterns and linguistic nuances across
languages.

“LexiCNN Review Analyzer”[20]

involves encoding sentiment lexicon information
into the CNN architecture, allowing the model to
learn intricate patterns and nuances of sentiment
expression within online reviews. “Fusion
Commerce Analyst”[21] is an approach to
understanding e-commerce product experiences
through fusion sentiment analysis. The key
contribution lies in amalgamating multiple
sentiment analysis techniques to comprehensively
explore customer perceptions and sentiments
towards e-commerce products.

“Sentiment Neural Aspect Analyzer”[22]

involves incorporating sentiment lexicons or
knowledge bases into the neural network
architecture. By integrating this external
knowledge, the model gains a deeper understanding
of sentiment nuances related to specific aspects of
text data. “Swarm Intellect Innovator”[23] spans
from simple single-population algorithms
mimicking social insect behaviors to advanced
human-machine hybrid systems.These systems
harness collective intelligence from both biological
and artificial entities, enabling synergy between
human intuition and machine computation.

“BERT Sentiment Fusion”[24] involves

fusing various BERT model variants to enhance
sentiment classification accuracy. The working
mechanism amalgamates pre-trained BERT models
with task-specific fine-tuning techniques,
leveraging the strengths of different BERT
architectures. “Aspect Deep Onto Analyzer”[25]
involves leveraging deep neural networks to
capture intricate patterns in textual data while
incorporating ontological knowledge to
contextualize aspect-based sentiment analysis.
“Financial News LSTM Analyst (FNLA)”[26]
harnessing the sequential nature of financial news
data and the memory retention capabilities of
LSTM networks to capture nuanced sentiment
dynamics. The working mechanism involves
preprocessing financial news articles and feeding
them into LSTM layers, which learn to extract
temporal dependencies and sentiment patterns [28]-
[47].

“IntelliServe Emotion Sentinel (IES)”[27]

developing a multi-task ensemble framework that
simultaneously predicts both emotions and
sentiments within customer conversations. The

 Journal of Theoretical and Applied Information Technology
15th May 2024. Vol.102. No 9

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3733

working mechanism involves leveraging ensemble
learning techniques to combine the outputs of
multiple models trained for emotion and sentiment
analysis tasks. By jointly analyzing emotions and
sentiments, the framework enhances the
understanding of customer needs and sentiments,
enabling more personalized and empathetic
responses.

3. AMAMI RABBIT OPTIMIZATION-

BASED LOGISTIC REGRESSION (ARO-
LOGISENT)

3.1. Logistic Regression model:

A popular statistical approach in sentiment
analysis, which entails deducing the underlying
emotional tone of a document, is logistic
regression. Determining if a piece of writing
conveys neutral, positive, or negative feelings is the
goal of sentiment analysis. Logistic Regression,
despite its name, is not a regression technique but
rather a classification algorithm utilized for binary
classification tasks, such as sentiment analysis.
Predicting the likelihood that an input falls into one
of two categories, usually denoted as positive or
negative emotion, is the crux of Logistic
Regression. The logistic function also called the
sigmoid function, is used in logistic regression to
represent the likelihood of a binary outcome, as
opposed to linear regression, which predicts
continuous values.

For probability modeling, this function

converts all real-valued inputs to integers between
zero and one. In sentiment analysis, the input
features usually consist of various linguistic
characteristics extracted from the text, such as word
frequencies, n-grams (sequences of adjacent
words), or sentiment lexicons. To gauge how likely
it is that the text has a good or negative tone, these
qualities act as predictors.

The Logistic Regression model learns

from a labeled dataset during the training phase. Its
goal is to reduce the discrepancy between the actual

class labels and the anticipated probabilities,
therefore it tweaks its parameters accordingly. This
process involves optimizing a cost function,
typically the cross-entropy loss function, through
techniques like gradient descent. Using the
likelihood that each text corresponds to either a
positive or negative sentiment class, the Logistic
Regression model may categorize fresh texts once it

has been trained. A class label is applied to the text
by the model if the probability is greater than a
predetermined threshold, which is typically 0.5.

Despite its simplicity, Logistic Regression

offers several advantages for sentiment analysis
tasks. It is computationally efficient and relatively
easy to interpret compared to more complex models
like neural networks. Additionally, Logistic
Regression can handle high-dimensional feature
spaces effectively, making it suitable for processing
text data with numerous features. Logistic
Regression also has limitations. It assumes that the
relationship between the input features and the
output follows a linear decision boundary, which
may not always hold for complex data distributions.
Moreover, Logistic Regression is inherently limited
to binary classification tasks and may struggle with
multi-class sentiment analysis scenarios.

To mitigate these limitations, practitioners

often employ techniques like feature engineering to
extract meaningful features from the text, or
ensemble methods to combine multiple classifiers
for improved performance. Moreover,
incorporating domain-specific knowledge and
leveraging larger datasets can enhance the model's
effectiveness in capturing nuanced sentiment
expressions. The steps involved in the process of
sentiment analysis using Logistic Regression are as
follows.

3.1.1. Data Collection:

 Data Collection, the cornerstone of the
entire sentiment analysis pipeline, lays the
foundation for robust model development and
accurate sentiment classification. Data Collection,
in essence, involves scouring various sources to
amass a diverse and representative dataset
encompassing text samples spanning a spectrum of
sentiments. These sources may include social media
platforms, product reviews, news articles, or any
text-based content pertinent to the analysis domain.
The collected data serves as the substrate upon
which the subsequent stages of preprocessing,
feature extraction, and model training will unfold.

In Eq.(1), where 𝑁 denotes the total
number of text samples gathered from different
sources. Each 𝑥𝑖 represents a distinct text sample
comprising words, phrases, or sentences expressing
sentiments.

The scale and diversity of the dataset play

a pivotal role in shaping the efficacy of the

𝐷𝑎𝑡𝑎 = {𝑥1, 𝑥2, … , 𝑥𝑁} (1)

 Journal of Theoretical and Applied Information Technology
15th May 2024. Vol.102. No 9

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3734

sentiment analysis model. A larger dataset
facilitates better generalization and enhances the
model's ability to capture the intricacies of diverse
linguistic expressions. Conversely, a narrow or
biased dataset may lead to suboptimal model
performance and skewed sentiment predictions.

The quality and authenticity of the
collected data hold paramount importance.
Inaccurate or misleading data can introduce noise
and bias, undermining the integrity of the sentiment
analysis process. Hence, meticulous attention must
be paid to ensure the credibility and relevance of
the collected dataset. Expressed mathematically in
Eq.(2), the quality of the collected data (𝑄𝐷𝑎𝑡𝑎)can
be quantified using metrics such as:

 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 S𝑎𝑚𝑝𝑙𝑒𝑠
𝑄𝐷𝑎𝑡𝑎=

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
 × 100%

(2)

where the number of relevant samples represents
the subset of data pertinent to the sentiment
analysis task, and the total number of samples
encompasses the entire dataset.

Data Collection transcends mere

aggregation; it necessitates annotation or labelling
of the text samples with sentiment labels (e.g.,
positive, negative, or neutral). Annotation imbues
the dataset with ground truth labels essential for
supervised learning, enabling the model to learn the
underlying patterns between text features and
sentiment categories, the annotation process can be
denoted as:

𝐷𝑎𝑡𝑎 = {(𝑥1, 𝑦1), (𝑥2, 𝑦2), … , (𝑥𝑁, 𝑦𝑁)}

 (3)

In Eq.(3), where 𝑦𝑖 represents the sentiment label
associated with the corresponding text sample 𝑥𝑖.

3.1.2. Data Preprocessing:

Data Preprocessing assumes the mantle of
refining and reshaping the raw textual input into a
standardized format conducive to subsequent

analysis. This crucial step requires a series of
operations aimed at mitigating noise, standardizing
text representations, and preparing the data for
feature extraction and model training.

Text Cleaning: At the outset of Data
Preprocessing, the focus converges on cleansing the
raw text data of extraneous elements and artefacts
that might obfuscate the underlying sentiment
signals. Text Cleaning encompasses a repertoire of
operations, including the removal of special
characters, punctuation marks, numerical digits,
and other non-alphabetic symbols that contribute
little to the sentiment analysis task. Additionally,
techniques such as lowercasing all text characters
and stripping leading or trailing whitespace serve to

standardize the text representations and alleviate
spurious variations. In Eq.(4) the process of text
cleaning can be encapsulated as:
where 𝑥 denotes the raw text sample, and 𝑥𝑐𝑙𝑒𝑎𝑛
represents the cleaned version of the text devoid of
extraneous elements.

Tokenization: After text cleaning, the text data
undergoes tokenization, a pivotal operation that
involves segmenting the continuous strings of text
into discrete units of meaning, typically words or
phrases. Tokenization facilitates granular analysis
and feature extraction by breaking down the text
into its constituent elements. Common tokenization
strategies include whitespace tokenization, which
segments text based on whitespace characters, and
word-level tokenization, which splits text into
individual words or tokens. Mathematically
tokenization can be formalized as shown in Eq.(5).

𝑥𝑡𝑜𝑘𝑒𝑛𝑠=𝑡𝑜𝑘𝑒𝑛𝑖𝑧𝑒(𝑥𝑐𝑙𝑒𝑎𝑛) (5)

where 𝑥𝑡𝑜𝑘𝑒𝑛𝑠 represents the tokenized version of
the cleaned text 𝑥𝑐𝑙𝑒𝑎𝑛.

Stopword Removal: Stopwords, ubiquitous in
natural language text, comprise common words such
as 'the,' 'and,' 'is,' which convey little semantic
meaning and often introduce noise into the
sentiment analysis process. To mitigate their
impact, Data Preprocessing entails the removal of
stopwords from the tokenized text data. This
operation streamlines the text representations,
focusing the analysis on content-bearing words and

phrases that carry significant sentiment cues.
Stopword removal can be mathematically
expressed shown in Eq.(6).

where 𝑥𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑 represents the tokenized text data
with stop words removed.

𝑥𝑐𝑙𝑒𝑎𝑛 = 𝑐𝑙𝑒𝑎𝑛(𝑥) (4)

𝑥𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑 = 𝑟𝑒𝑚𝑜𝑣𝑒_𝑠𝑡𝑜𝑝𝑤𝑜𝑟𝑑𝑠(𝑥𝑡𝑜𝑘𝑒𝑛𝑠)

 (6)

 Journal of Theoretical and Applied Information Technology
15th May 2024. Vol.102. No 9

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3735

Lemmatization or Stemming: To further
normalize the text representations and reduce
lexical variations, Data Preprocessing often
incorporates lemmatization or stemming
techniques. Lemmatization involves reducing
words to their base or dictionary form (lemmas),
whereas stemming involves truncating words to
their root form by removing affixes. These
techniques ensure that different morphological
variants of words are treated as a single entity,
enhancing the consistency and interpretability of the
text data.

𝑥𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 = 𝑙𝑒𝑚𝑚𝑎𝑡𝑖𝑧𝑒(𝑥𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑) (7)

In Eq.(7), where 𝑥𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 represents the
normalized version of the filtered text data. Data
Preprocessing lays the groundwork for subsequent
analytical endeavours by refining the raw textual
input into a standardized and sanitized format
conducive to feature extraction and model training.
Through a series of operations encompassing text
cleaning, tokenization, stopword removal, and
lemmatization or stemming,

3.1.3. Feature Extraction:

Feature Extraction assumes the mantle of
transforming the processed text into a structured
representation amenable to computational analysis.
This pivotal step involves distilling the salient
characteristics or features from the text data, which
serve as input variables for subsequent model
training and sentiment classification.

Bag-of-Words Representation: A cornerstone of
Feature Extraction in sentiment analysis is the Bag-
of-Words (BoW) representation, which
encapsulates the frequency or occurrence of
individual words across the entire corpus of text
data. Each text sample is transformed into a high-
dimensional vector, where each dimension
corresponds to a unique word in the vocabulary,
and the value of each dimension represents the
frequency of the corresponding word in the text
sample. The BoW representation captures the
lexical richness and distributional patterns of words
within the text, enabling the sentiment analysis
model to discern meaningful associations between
word frequencies and sentiment categories. This
BoW representation can be formalized shown in
Eq.(8) in mathematical form.

(𝑥) = [𝑓1, 𝑓2, … . , 𝑓𝑉] (8)

where 𝐵𝑜𝑊(𝑥) denotes the Bag-of-Words
representation of the text sample 𝑥, and 𝑓𝑖
represents the frequency of the 𝑖𝑡ℎ word in the
vocabulary 𝑉.

TF-IDF Representation: An extension of the BoW
representation, the Term Frequency- Inverse
Document Frequency (TF-IDF) scheme enhances
the discriminatory power of individual words by
weighing them based on their frequency within the
text sample and across the entire corpus. Under this
scheme, words that are frequent within a particular
text sample but rare across the corpus are assigned
higher weights, whereas common words that occur
frequently across the corpus are down-weighted.
The TF-IDF representation captures the saliency of
words within the context of individual text samples,
enabling the sentiment analysis model to prioritize
content-bearing terms with higher discriminatory
power. TF-IDF representation can be expressed in
Eq.(9).
.

𝑇𝐹 − 𝐼𝐷𝐹(𝑥) = [𝑤1, 𝑤2, … , 𝑤𝑉] (9)

where 𝑇𝐹 − 𝐼𝐷𝐹(𝑥) denotes the TF-IDF
representation of the text sample 𝑥, and 𝑤𝑖

represents the TF-IDF weight of the 𝑖𝑡ℎ word in the
vocabulary 𝑉.

Word Embeddings: Word embeddings have been
a game-changer for sentiment analysis feature
extraction in the past several years. Word
Embeddings link words to dense, low- dimensional
vectors in a continuous vector space, including
semantic relationships and contextual information,
in contrast to standard representations that regard
words as discrete entities. Word embeddings model
the syntactic and semantic features of real
language, allowing words to be represented as
proximal vectors in an embedding space based on
their similarity in meaning or context. The model's
capacity to detect semantic similarities and deduce
sentiment from context is improved by this
distributed representation. Word Embeddings can
be mathematically represented as shown in Eq.(10).

𝑊𝑜𝑟𝑑𝐸𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔𝑠(𝑥) = [𝑒1, 𝑒2, … , 𝑒𝑑] (10)

where 𝑊𝑜𝑟𝑑𝐸𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔𝑠(𝑥) denotes the Word
Embeddings representation of the text sample 𝑥,
and 𝑒𝑖represents the embedding vector of the 𝑖𝑡ℎ
word in the text sample, with 𝑑 denoting the
dimensionality of the embedding space.

3.1.4. Splitting the Dataset:

 Journal of Theoretical and Applied Information Technology
15th May 2024. Vol.102. No 9

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3736

Splitting the Dataset is crucial for assessing the
generalization performance of the sentiment
analysis model and guarding against overfitting or
underfitting

Training-Testing Split: The splitting of the dataset
into a training set and a testing set is the
fundamental process of splitting the dataset. The
training set, comprising the majority of the data,
serves as the substrate for model training, enabling
the sentiment analysis model to learn the underlying
patterns and associations between text features and
sentiment categories. The testing set, on the other
hand, remains isolated during the training phase
and is reserved for evaluating the model's
performance on unseen data. This partitioning
scheme ensures that the model's effectiveness is
assessed on data it has not been exposed to during
training, thereby providing a robust estimate of its
generalization performance. The training-testing
split can be formalized and mathematically
represented using.

𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔𝑆𝑒𝑡, 𝑇𝑒𝑠𝑡𝑖𝑛𝑔𝑆𝑒𝑡 =

𝑆𝑝𝑙𝑖𝑡𝐷𝑎𝑡𝑎𝑠𝑒𝑡(𝐷𝑎𝑡𝑎, 𝑡𝑟𝑎𝑖𝑛_𝑟𝑎𝑡𝑖𝑜)

(11)

where 𝑇𝑒𝑠𝑡𝑖𝑛𝑔𝑆𝑒𝑡 denotes the training subset of
the dataset, 𝑇𝑒𝑠𝑡𝑖𝑛𝑔𝑆𝑒𝑡represents the testing
subset, and 𝑡𝑟𝑎𝑖𝑛_𝑟𝑎𝑡𝑖𝑜 signifies the proportion of
data allocated to the training set.

Cross-Validation: Cross-Validation emerges as a
complementary technique for assessing model
performance and tuning hyperparameters. Cross-
validation involves iteratively partitioning the
dataset into multiple subsets, or folds, and using
each fold alternately as the testing set while the
remaining folds serve as the training set. This
iterative process yields multiple estimates of the
model's performance, enabling more robust
evaluations and mitigating the variability
introduced by a single training-testing split. This
Cross-Validation can be mathematically expressed
in Eq.(12).

𝐶𝑉𝑆𝑐𝑜𝑟𝑒𝑠 = 𝐶𝑟𝑜𝑠𝑠𝑉𝑎𝑙𝑖𝑑𝑎𝑡𝑒(𝑀𝑜𝑑𝑒𝑙, 𝐷𝑎𝑡𝑎,

 𝑛𝑢𝑚_𝑓𝑜𝑙𝑑𝑠)

 (12)

where 𝐶𝑉_𝑆𝑐𝑜𝑟𝑒𝑠denotes the performance scores
obtained through cross-validation, 𝑀𝑜𝑑𝑒𝑙
represents the sentiment analysis model under
evaluation, and 𝑛𝑢𝑚_𝑓𝑜𝑙𝑑𝑠denotes the number of
folds used in the cross-validation procedure.

Validation Set: When training a model, it is
sometimes helpful to use a third subset called the

validation set to evaluate its performance and make
adjustments to its hyperparameters. You may tweak
the model settings on the validation set, which is
separate from the training and testing sets so that
the testing set stays clean. Model refinement and
hyperparameter selection may be guided by regular
evaluations of the model's performance on the
validation set. This, in turn, improves the model's
generalization performance.
Mathematically, the validation set can be denoted
as:

𝑉𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛𝑆𝑒𝑡=𝑆𝑝𝑙𝑖𝑡𝑉𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛(𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔𝑆𝑒𝑡,

 𝑣𝑎𝑙_𝑟𝑎𝑡𝑖𝑜) (13)

where 𝑉𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛𝑆𝑒𝑡 represents the validation
subset of the training set, and 𝑣𝑎𝑙_𝑟𝑎𝑡𝑖𝑜
signifies the proportion of data allocated to the
validation set.
Splitting the Dataset serves as a pivotal
preparatory step in the sentiment analysis
pipeline, enabling the assessment of model
performance and generalization on unseen data.

3.1.5. Model Training:
After the dataset split into training and

testing subsets, the focus now shifts towards
training the sentiment analysis model on the
training data to learn the underlying patterns and
associations between text features and sentiment
categories.

Model Selection: Choosing the right sentiment
analysis model is crucial when starting the Model
Training process. The available computational
resources, the size and type of the dataset, and the
complexity of the sentiment analysis task determine
which model is considered. Models range from
deep learning architectures like Transformers and
Recurrent Neural Networks (RNNs) to more
traditional machine learning algorithms like
Logistic Regression and Support Vector Machines
(SVMs). The chosen model should strike a balance
between complexity and interpretability, ensuring
robust performance while remaining tractable for
training and deployment.

𝑀𝑜𝑑𝑒𝑙 = 𝑆𝑒𝑙𝑒𝑐𝑡𝑀𝑜𝑑𝑒𝑙(𝑇𝑎𝑠𝑘, 𝐷𝑎𝑡𝑎) (14)

In Eq.(14), where 𝑀𝑜𝑑𝑒𝑙denotes the selected
sentiment analysis model, 𝑇𝑎𝑠𝑘signifies the nature
of the sentiment analysis task (e.g., binary
classification, multi-class classification), and
𝐷𝑎𝑡𝑎represents the training data used for model
training.

 Journal of Theoretical and Applied Information Technology
15th May 2024. Vol.102. No 9

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3737

Loss Function Optimization: After deciding on a
model, the next step is to train it so that its
parameters minimize a loss function. In
classification tasks, this is usually the cross-entropy
loss. Stochastic Gradient Descent (SGD) and Adam
are two examples of gradient-based optimization
algorithms that iteratively modify the model
parameters according to the gradients of the loss
functions about those parameters. This iterative
process continues until convergence, where the
model parameters converge to values that minimize
the loss function and maximize predictive
performance on the training data represented
mathematically in Eq.(15).

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 = 𝐿(𝜃) (15)
where 𝐿(𝜃) denotes the loss function
parameterized by the model parameters 𝜃, and
the objective is to minimize the loss function
through parameter updates.

Hyperparameter Tuning: While training a model,
it is common practice to optimize its
hyperparameters, which control the model's
behaviour and performance, in addition to its
parameters. Learning rate, regularization strength,
batch size, and parameters related to the network
design are examples of hyperparameters in deep
learning models. The goal of hyperparameter tuning
is to minimise overfitting and optimize the
model's performance on the validation set by
adjusting the model's parameters. To efficiently
explore the hyperparameter space, one can use
techniques like grid search, random search, or
Bayesian optimization. In Eq.(16), hyperparameter
tuning can be represented mathematically.

𝑂𝑝𝑡𝑖𝑚𝑎𝑙𝐻𝑦𝑝𝑒𝑟𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 =

 𝑇𝑢𝑛𝑒𝐻𝑦𝑝𝑒𝑟𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠(𝑀𝑜𝑑𝑒𝑙,

 𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔𝑆𝑒𝑡, 𝑉𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛𝑆𝑒𝑡)

(16)

where 𝑂𝑝𝑡𝑖𝑚𝑎𝑙𝐻𝑦𝑝𝑒𝑟𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 denotes the
optimal configuration of hyperparameters, and
𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔𝑆𝑒𝑡 and 𝑉𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛𝑆𝑒𝑡 represent the
training and validation subsets of the dataset,
respectively.

3.1.6. Model Evaluation:
Performance Metrics: Performance metrics,
which quantify the model's efficacy in sentiment
classification, are the backbone of model
evaluation. Many binary sentiment analysis tasks
use common performance indicators such as F1-

score, recall, accuracy, precision, and area under
the receiver operating characteristic curve (ROC-
AUC). The model's accuracy in positive and
negative sentiment classification, detection of real
positives and negatives, and reduction of false
positives and negatives are all uncovered by these
measures. Mathematically, performance metrics can
be formalized and depicted in Eq.(17) – Eq.(21).

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (17)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (18)

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (19)

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (20)

𝑅𝑂𝐶 − 𝐴𝑈𝐶 = න 𝑇𝑃𝑅(𝑓𝑝𝑟)𝑑𝑓𝑝𝑟
ଵ

଴

 (21)

where 𝑇𝑃, 𝑇𝑁, 𝐹𝑃, and 𝐹𝑁 denote true positives,
true negatives, false positives, and false negatives,
respectively, and 𝑇𝑃𝑅 represents the true positive
rate.

Confusion Matrix: The confusion matrix is an
additional tool for Model Evaluation. It shows the
model's predictions compared to the ground truth
labels in a tabular format. For a complete picture of
how well the model classified various sentiment
categories, the confusion matrix summed together
the counts of true positives, true negatives, false
positives, and false negatives. To gain a better
understanding of the model's performance, one may
derive additional metrics like recall, accuracy, and
precision from the confusion matrix. The confusion
matrix can be denoted as Eq.(22).

𝐶𝑜𝑛𝑓𝑢𝑠𝑖𝑜𝑛𝑀𝑎𝑡𝑟𝑖𝑥 = ቀ
𝑇𝑃 𝐹𝑃
𝐹𝑁 𝑇𝑁

ቁ (22)

Cross-Validation Results: It is common practice
in Model Evaluation to aggregate findings from
cross-validation to gain more robust estimates of
performance, in addition to evaluating the model on
a single training-testing split. To further evaluate
the model's generalizability and variance over
distinct data subsets, cross-validation produces
performance metrics across many dataset folds.
Practitioners can get more accurate estimations of
the model's actual performance by averaging
performance measures from several folds. These
cross-validation results can be represented as
Eq.(23).

 Journal of Theoretical and Applied Information Technology
15th May 2024. Vol.102. No 9

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3738

𝐶𝑉௉௘௥௙௢௥௠௔௡௖௘

= [𝑀𝑒𝑡𝑟𝑖𝑐ଵ, 𝑀𝑒𝑡𝑟𝑖𝑐ଶ , … , 𝑀𝑒𝑡𝑟𝑖𝑐௡]
(23)

where 𝑀𝑒𝑡𝑟𝑖𝑐௜ represents the performance metric
obtained from the 𝑖௧௛fold of cross-validation.

3.1.7. Hyperparameter Tuning:
Grid Search: Grid search is an essential tool for
hyperparameter tuning; it entails scanning a
predetermined space of hyperparameters to find the
best possible setting that makes the model work as
well as possible. Grid search involves specifying a
list of potential values for each hyperparameter and
then training and evaluating the model for every
conceivable combination of those values. To find
the hyperparameter setting that performs best on the
validation set, practitioners can use grid search,
which methodically explores the whole search
space. Mathematically, grid search can be
represented as Eq. (24).

𝑂𝑝𝑡𝑖𝑚𝑎𝑙𝐻𝑦𝑝𝑒𝑟𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 =

𝐺𝑟𝑖𝑑𝑆𝑒𝑎𝑟𝑐ℎ(𝑀𝑜𝑑𝑒𝑙, 𝐻𝑦𝑝𝑒𝑟𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑆𝑝𝑎𝑐𝑒, 𝑉𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛𝑆𝑒𝑡

(24)

Where 𝑂𝑝𝑡𝑖𝑚𝑎𝑙𝐻𝑦𝑝𝑒𝑟𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 denotes the
optimal configuration of hyperparameters,
𝐻𝑦𝑝𝑒𝑟𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑆𝑝𝑎𝑐𝑒 represents the
predefined search space for hyperparameters, and
𝑉𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛𝑆𝑒𝑡 signifies the validation subset of the
dataset.

Random Search: It explores the entire
hyperparameter space systematically, random
search samples hyperparameters from predefined
distributions and evaluates the model's
performance with randomly selected
configurations. Random search offers advantages in
scenarios where the hyperparameter space is high-
dimensional or where certain hyperparameters have
a greater impact on model performance than others.

By randomly sampling hyperparameters, random
search efficiently explores the hyperparameter
space while providing comparable performance to
grid search. This random search can be expressed
mathematically depicted in Eq.(25)

𝑂𝑝𝑡𝑖𝑚𝑎𝑙𝐻𝑦𝑝𝑒𝑟𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 =

𝑅𝑎𝑛𝑑𝑜𝑚𝑆𝑒𝑎𝑟𝑐ℎ ൭
𝑀𝑜𝑑𝑒𝑙, 𝐻𝑦𝑝𝑒𝑟𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟

𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛,
𝑉𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛𝑆𝑒𝑡

൱
(25)

Where 𝐻𝑦𝑝𝑒𝑟𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 represents
the distribution from which hyperparameters are
sampled.

Bayesian Optimization: Iteratively searching for
ideal hyperparameters is guided by Bayesian
optimization, another sophisticated strategy for
hyperparameter tuning. This method uses
probabilistic models to describe the underlying goal
function, such as model performance. By
adaptively selecting the next set of hyperparameters
to assess based on knowledge gathered from prior
evaluations, Bayesian optimization focuses the
search on attractive parts of the hyperparameter
space. By efficiently exploring the hyperparameter
space while leveraging probabilistic modeling,
Bayesian optimization offers advantages in terms of
sample efficiency and convergence speed. This
Bayesian optimization can be denoted as Eq.(26).

𝑂𝑝𝑡𝑖𝑚𝑎𝑙𝐻𝑦𝑝𝑒𝑟𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 =

𝐵𝑎𝑦𝑒𝑠𝑖𝑎𝑛𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛 ൬
𝑀𝑜𝑑𝑒𝑙, 𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛

𝐻𝑦𝑝𝑒𝑟𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑆𝑝𝑎𝑐𝑒

(26

)

where 𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 represents the function
to be optimized (e.g., model performance).

3.1.8. Predictions:
Forward Pass: At the core of Predictions lies the
forward pass, where new text samples are fed into
the trained sentiment analysis model to obtain
predictions about their sentiment. During the
forward pass, the input text undergoes the
same preprocessing steps applied during training,
including tokenization, stopword removal, and
lemmatization or stemming. The preprocessed text
is then transformed into a structured representation
(e.g., Bag-of- Words, TF-IDF, Word Embeddings)
compatible with the input format expected by the
model. Finally, the model computes the predicted
sentiment label based on the learned associations
between text features and sentiment categories. The
forward pass can be represented in Eq.(27).
where 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠 represents the predicted
sentiment labels for the input text 𝑥𝑝𝑟𝑒𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑,
obtained through the trained sentiment analysis
model.

Probability Estimation: In addition to predicting
the sentiment label for each text sample, the
sentiment analysis model may also output
probabilities or confidence scores indicating the
likelihood of each sentiment category. Probability
estimation provides a more nuanced understanding
of the model's confidence in its predictions,

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠 = 𝑀𝑜𝑑𝑒𝑙(𝑥𝑝𝑟𝑒𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑) (27)

 Journal of Theoretical and Applied Information Technology
15th May 2024. Vol.102. No 9

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3739

enabling practitioners to assess the uncertainty
associated with each prediction. Higher
probabilities for a particular sentiment category
signify greater confidence in the model's prediction,
while lower probabilities indicate higher
uncertainty. Probability estimation can be depicted
mathematically in Eq(28).

𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠 =
 m𝑜𝑑𝑒𝑙_𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦(𝑥𝑝𝑟𝑒𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑)

(28)

where 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠 represents the predicted
probabilities for each sentiment category, obtained
through the trained sentiment analysis model.

Post-processing: Post-processing may involve
sentiment aggregation, where predictions for
multiple text samples are aggregated to derive an
overall sentiment score or sentiment distribution.
Sentiment analysis results may be subjected to
further analysis or visualization to uncover
underlying trends, patterns, or anomalies in the
sentiment of the text data.

𝑆𝑒𝑛𝑡𝑖𝑚𝑒𝑛𝑡𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑖𝑜𝑛 =
𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠(𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠)

(29)

In Eq.(29), where 𝑆𝑒𝑛𝑡𝑖𝑚𝑒𝑛𝑡𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑖𝑜𝑛
represents the aggregated sentiment score or
distribution derived from the model's predictions.

3.1.9. Post-processing:
Sentiment Aggregation: Sentiment aggregation
enables practitioners to obtain a high-level
summary of the sentiment dynamics within the
dataset, facilitating comparative analysis and trend
identification. Common aggregation techniques
include averaging sentiment scores, computing
sentiment distributions, or aggregating sentiment
labels based on predefined rules or thresholds is
depicted in Eq.(30).

𝑆𝑒𝑛𝑡𝑖𝑚𝑒𝑛𝑡𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑖𝑜𝑛 =
 𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠(𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠)

 (30)

where 𝑆𝑒𝑛𝑡𝑖𝑚𝑒𝑛𝑡𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑖𝑜𝑛 represents the
aggregated sentiment score or distribution derived
from the model's predictions.

Sentiment Analysis Visualization: In addition to
numerical summaries, Post-Processing may involve
visualizing sentiment analysis results through
various graphical representations. Sentiment

analysis visualizations provide intuitive insights
into the sentiment dynamics within the dataset,
enabling practitioners to identify patterns, outliers,
or correlations visually. Common visualization
techniques include bar charts, line plots, pie charts,
and heatmaps, which depict sentiment distributions,
trends over time, or sentiment correlations with
other variables. Mathematically, sentiment analysis
visualization can be represented as Eq.(31):

𝑉𝑖𝑠𝑢𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛=𝑉𝑖𝑠𝑢𝑎𝑙𝑖𝑧𝑒(𝑥,
 𝑆𝑒𝑛𝑡𝑖𝑚𝑒𝑛𝑡𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑖𝑜𝑛)

(31)

where 𝑉𝑖𝑠𝑢𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 represents the graphical
representation of sentiment analysis results
derived from the input text data 𝑥 and the
aggregated sentiment scores or distributions

Sentiment Analysis Reporting: Furthermore,
Post-Processing may involve generating
comprehensive reports summarizing the sentiment
analysis results and insights derived from the text
data. Sentiment analysis reports provide
stakeholders with a detailed overview of sentiment
trends, key findings, and actionable
recommendations, facilitating informed decision-
making and strategic planning. Reports may include
descriptive statistics, sentiment distributions,
sentiment trends over time, sentiment correlations
with other variables, and qualitative insights
derived from text analysis.

𝑅𝑒𝑝𝑜𝑟𝑡 = 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑅𝑒𝑝𝑜𝑟𝑡(𝑥,
𝑆𝑒𝑛𝑡𝑖𝑚𝑒𝑛𝑡𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑖𝑜𝑛,𝑉𝑖𝑠𝑢𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛)

(32)

In Eq.(32), where 𝑅𝑒𝑝𝑜𝑟𝑡 represents the
comprehensive report summarizing sentiment
analysis results and insights derived from the input
text data 𝑥, aggregated sentiment scores or
distributions, and sentiment analysis visualizations.

3.1.10. Deployment:
Model Integration: At the core of Deployment lies
model integration, where the trained sentiment
analysis model is seamlessly integrated into
existing software or infrastructure. Model
integration involves embedding the model within
production systems, such as web applications,
mobile apps, or data pipelines, to enable real-time
sentiment analysis on incoming text data.
Integration may require developing application
programming interfaces (APIs), libraries, or
software packages that expose the sentiment
analysis functionality to downstream systems or

 Journal of Theoretical and Applied Information Technology
15th May 2024. Vol.102. No 9

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3740

end-users. Mathematically, model integration can
be denoted as Eq.(33).

𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑒𝑑𝑀𝑜𝑑𝑒𝑙=𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑒𝑀𝑜𝑑𝑒𝑙(𝑇𝑟𝑎𝑖𝑛𝑒𝑑𝑀𝑜𝑑𝑒𝑙) (33)

where 𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑒𝑑𝑀𝑜𝑑𝑒𝑙 represents the sentiment
analysis model seamlessly integrated into
production systems.

Scalability and Performance Optimization:
Scalability measures may include deploying the
model on distributed computing frameworks or
cloud infrastructure to distribute computational
load across multiple nodes. Performance
optimization techniques, such as batch processing,
caching, or parallelization, may be employed to
accelerate sentiment analysis inference and reduce
latency in processing incoming text data.

𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑑𝑀𝑜𝑑𝑒𝑙=
 𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒
 (𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑒𝑑𝑀𝑜𝑑𝑒𝑙)

 (34)

In Eq.(34), where 𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑑𝑀𝑜𝑑𝑒𝑙 represents the
sentiment analysis model optimized for scalability
and performance.

Monitoring and Maintenance: Deployment
involves establishing monitoring and maintenance
mechanisms to ensure the ongoing reliability and
performance of the deployed sentiment analysis
model. Monitoring may involve tracking key
performance indicators (KPIs), such as throughput,
latency, and accuracy, to detect anomalies or
deviations from expected behaviour. Maintenance
activities may include periodic model retraining,
updating, or reevaluation to adapt to evolving data
distributions, concept drift, or changing business
requirements represented mathematically in
Eq.(35).

𝑀𝑜𝑛𝑖𝑡𝑜𝑟𝑖𝑛𝑔𝑅𝑒𝑠𝑢𝑙𝑡𝑠 = 𝑀𝑜𝑛𝑖𝑡𝑜𝑟
(𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑑𝑀𝑜𝑑𝑒𝑙, 𝐼𝑛𝑐𝑜𝑚𝑖𝑛𝑔𝐷𝑎𝑡𝑎)

(35)

where 𝑀𝑜𝑛𝑖𝑡𝑜𝑟𝑖𝑛𝑔𝑅𝑒𝑠𝑢𝑙𝑡𝑠 represents the results
of monitoring the deployed sentiment analysis
model's performance on incoming data.

Functional Procedure 1: Logistic
Regression

procedure LogisticRegression(X, y,
learning_rate, num_iterations): initialize
weights w and bias b to zeros or small
random values normalize or standardize
the input features X (optional)
for i = 1 to num_iterations
 do: compute z =
 dot_product(w, X) + b

compute predicted probabilities y_hat
= sigmoid(z)

compute binary_cross_entropy_loss =

 -sum(y *
log(y_hat) + (1 - y) * log(1 - y_hat))
/ num_examples
compute dw = dot_product(X, (y_hat -
y)) / num_examples compute db =
sum(y_hat - y) / num_examples
update weights: w = w - learning_rate *
dw update bias: b = b - learning_rate *
db

return w, b

function sigmoid(z):
return 1 / (1 + exp(-z))

procedure Predict(X, w, b):
compute z = dot_product(w, X) + b
compute predicted probabilities y_hat =
sigmoid(z) return y_hat

procedure Evaluate(y_true, y_pred):
Evaluate performance using appropriate
metrics such as accuracy, precision, recall,
or F1-score

Algorithm 1 depicts the steps involved in training a
Logistic Regression model, making predictions, and
evaluating its performance. The LogisticRegression
procedure trains the model on input features X and
corresponding labels y using a specified learning
rate and number of iterations. The Predict
procedure predicts the labels for new data using the
trained parameters w and b. Finally, the evaluation
procedure evaluates the model's performance using
appropriate metrics.

3.2. Amami Rabbit Optimization (ARO)
Amami Rabbit Optimization (ARO) is a

metaheuristic optimization algorithm inspired by
the unique characteristics and behaviours of the
Amami rabbit (Pentalagusfurnessi), an endangered

 Journal of Theoretical and Applied Information Technology
15th May 2024. Vol.102. No 9

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3741

species native to the Amami Islands in Japan. ARO
leverages the natural foraging and mating
behaviours of the Amami rabbit to iteratively
explore the solution space and find optimal
solutions to optimization problems

 Initialization: Start with a set of possible
answers to the optimization issue, called a
population of candidate solutions. The initial
population should reflect the diversity of the
solution space and may be generated randomly
or through other heuristic methods.

 Foraging Behavior: Emulate the foraging
behaviour of Amami rabbits, which
involves searching for food sources in
their natural habitat. In ARO, candidate
solutions explore the solution space by
iteratively adjusting their positions based
on the quality of nearby solutions.

 Mating Behavior: Model the mating
behavior of Amami rabbits, which
involves selecting mates based on
desirable traits. In ARO, candidate
solutions exchange information with other
solutions through crossover and mutation
operations to generate offspring with
potentially improved fitness.

 Social Interaction: Capture the social
interaction among Amami rabbits, which
involves sharing information and learning
from other individuals in the population.
In ARO, candidate solutions communicate
and exchange information to collectively
improve the overall quality of solutions in
the population.

 Fitness Evaluation: Evaluate the fitness
of each candidate solution based on its
performance in solving the optimization
problem. The fitness function assesses
how well a solution meets the objectives
and constraints of the problem, guiding the
selection of solutions for further
exploration and reproduction.

 Selection: Select candidate solutions for
reproduction based on their fitness values,
favoring solutions with higher fitness for
mating and producing offspring. Selection
mechanisms such as roulette wheel
selection or tournament selection may be
employed to maintain diversity and
prevent premature convergence.

 Offspring Generation: Generate
offspring by applying crossover and
mutation operations to selected parent
solutions. Crossover combines information
from two parent solutions to produce
offspring with characteristics inherited

from both parents, while mutation
introduces random changes to promote the
exploration of new regions in the solution
space.

 Replacement : Replace inferior solutions
in the population with newly generated
offspring, ensuring that the population
maintains its size and diversity over
successive generations. Replacement
strategies may prioritize solutions with
higher fitness or employ elitism to
preserve the best solutions encountered so
far.

 Convergence Check: Check for
convergence criteria to determine whether
the optimization process should terminate.
Convergence may be determined based on
the stability of the population, the number
of iterations, or the improvement in fitness
over successive generations.

 Termination: Terminate the optimization
process if convergence criteria are met or
if a predefined maximum number of
iterations is reached. The best solution
encountered during the optimization
process is returned as the final solution to
the optimization problem.

3.2.1. Initialization:

Initialization of a population of candidate
solutions, laying the foundation for subsequent
exploration and optimization. In this step, a diverse
set of potential solutions is generated to represent
different points in the solution space. The
initialization process aims to provide an initial pool
of solutions that reflects the variability and
complexity of the optimization problem being
addressed depicted mathematically in Eq.(36).

𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 = {𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛1,

 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛2, … ,𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑁}

 (36)

where 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 represents the initial
population of candidate solutions, and
𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑖denotes the 𝑖𝑡ℎ the solution in the
population.

The size of the population 𝑁 is a crucial
parameter in ARO, as it determines the diversity
and exploration capabilities of the optimization
process. Although the computational complexity
may rise, the solution space may be explored more
thoroughly with a bigger population size.

 Journal of Theoretical and Applied Information Technology
15th May 2024. Vol.102. No 9

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3742

The initialization process may involve
generating candidate solutions randomly within
predefined ranges or using heuristic methods
tailored to the characteristics of the optimization
problem. For example, solutions may be generated
by randomly sampling from uniform or Gaussian
distributions, or by employing techniques such as
Latin hypercube sampling or quasi-random
sequences to ensure thorough coverage of the
solution space.

𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑖 = 𝑅𝑎𝑛𝑑𝑜𝑚𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛

(𝐿𝑜𝑤𝑒𝑟𝐵𝑜𝑢𝑛𝑑, 𝑈𝑝𝑝𝑒𝑟𝐵𝑜𝑢𝑛𝑑)

 (37)

Where 𝑅𝑎𝑛𝑑𝑜𝑚𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 generates a
candidate solution within the specified lower and
upper bounds of the solution space.

The initialization process may incorporate
domain-specific knowledge or constraints to guide
the generation of candidate solutions. For example,
in optimization problems involving physical
parameters or engineering design variables,
solutions may be constrained to feasible regions of
the solution space to ensure practicality and
validity.

𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑖 = 𝐻𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛

(𝑃𝑟𝑜𝑏𝑙𝑒𝑚𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠)

(38)

where 𝐻𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 employs domain-
specific heuristics or knowledge to generate
candidate solutions tailored to the characteristics of
the optimization problem.

3.2.2. Foraging Behavior:

During this Foraging Behaviour step,
candidate solutions iteratively adjust their positions
based on the quality of nearby solutions, akin to
how Amami rabbits navigate their environment to
find food sources. The foraging behaviour in ARO
can be represented mathematically in Eq.(39).

𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑖(𝑡 + 1) = 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑖(𝑡) +

 ∆𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑖

 (39)

where 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑖(𝑡) represents the position of the
𝑖𝑡ℎsolution at time 𝑡, and ∆𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑖 denotes the
incremental adjustment or movement of the
solution towards more promising regions of the
solution space.

The incremental adjustment ∆𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑖 is
determined by factors such as the attractiveness of
neighbouring solutions, the gradient of the fitness

landscape, and stochastic exploration mechanisms.
Solutions may move towards regions of higher
fitness, explore uncharted areas of the solution
space, or exploit promising regions identified
during previous iterations.

∆𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑖 = 𝛼 × 𝐴𝑡𝑡𝑟𝑎𝑐𝑡𝑖𝑣𝑒𝑛𝑒𝑠𝑠𝑖 +

 𝛽 × 𝐸𝑥𝑝𝑙𝑜𝑟𝑎𝑡𝑖𝑜𝑛𝑖

 (40)

In Eq.(40), where 𝛼 and 𝛽 represent scaling factors
that control the relative influence of attractiveness
and exploration, and 𝐴𝑡𝑡𝑟𝑎𝑐𝑡𝑖𝑣𝑒𝑛𝑒𝑠𝑠𝑖 and
𝐸𝑥𝑝𝑙𝑜𝑟𝑎𝑡𝑖𝑜𝑛𝑖represent the attractiveness and
exploration components influencing the movement
of the 𝑖𝑡ℎ solution.

The attractiveness component
𝐴𝑡𝑡𝑟𝑎𝑐𝑡𝑖𝑣𝑒𝑛𝑒𝑠𝑠𝑖reflects the quality or fitness of
neighbouring solutions relative to the current
solution. Solutions are attracted towards
neighbouring solutions with higher fitness values,
promoting the exploitation of promising regions in
the solution space.

𝐴𝑡𝑡𝑟𝑎𝑐𝑡𝑖𝑣𝑒𝑛𝑒𝑠𝑠௜ = ෍
𝑓൫𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛௝൯

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒௜௝

ே

௝ୀଵ
 (41)

In Eq.(41), where 𝑓൫𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛௝൯ represents the
fitness of the neighbouring solution 𝑗, and
𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒௜௝ denotes the Euclidean distance between
the 𝑖௧௛solution and the neighbouring solution 𝑗.

The exploration component 𝐸𝑥𝑝𝑙𝑜𝑟𝑎𝑡𝑖𝑜𝑛௜
introduces stochasticity or randomness into the
movement of solutions, facilitating the exploration
of diverse regions of the solution space and
preventing premature convergence.

𝐸𝑥𝑝𝑙𝑜𝑟𝑎𝑡𝑖𝑜𝑛௜ = 𝑅𝑎𝑛𝑑𝑜𝑚𝐸𝑥𝑝𝑙𝑜𝑟𝑎𝑡𝑖𝑜𝑛 (42)

In Eq.(42), where 𝑅𝑎𝑛𝑑𝑜𝑚𝐸𝑥𝑝𝑙𝑜𝑟𝑎𝑡𝑖𝑜𝑛 represents
a random perturbation or exploration mechanism
that introduces stochasticity into the movement of
solutions.

3.2.3. Mating Behavior:
In this phase, it focuses on emulating the

mating behaviour of Amami rabbits, which
involves selecting mates based on desirable traits.
In the context of optimization, mating behaviour
corresponds to the exchange of information
between candidate solutions to produce offspring
with potentially improved fitness. Mathematically,

 Journal of Theoretical and Applied Information Technology
15th May 2024. Vol.102. No 9

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3743

the mating behaviour in ARO can be represented in
Eq.(43):

𝑂𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔௜

= 𝐶𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟(𝑃𝑎𝑟𝑒𝑛𝑡ଵ, 𝑃𝑎𝑟𝑒𝑛𝑡ଶ)
(43)

where 𝑂𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔௜ represents the offspring
generated by crossing over the genetic material of
two parent solutions 𝑃𝑎𝑟𝑒𝑛𝑡ଵ and 𝑃𝑎𝑟𝑒𝑛𝑡ଶ.
Crossover involves combining characteristics from
both parents to produce offspring with potentially
improved traits.

𝑂𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔௜ = 𝑀𝑢𝑡𝑎𝑡𝑖𝑜𝑛(𝑂𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔௜) (44)

In Eq.(44), where 𝑂𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔௜undergoes mutation
to introduce random variations or changes,
promoting the exploration of novel regions in the
solution space. Mutation helps prevent premature
convergence and facilitates the discovery of diverse
solutions.

The crossover and mutation operations

aim to diversify the population of candidate
solutions and explore new regions of the solution
space. Crossover enables the exchange of genetic
material between parent solutions, facilitating the
combination of beneficial traits from both parents
in the offspring represented mathematically in
Eq.(45).

𝐶𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟(𝑃𝑎𝑟𝑒𝑛𝑡ଵ, 𝑃𝑎𝑟𝑒𝑛𝑡ଶ)

= 𝑂𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔
(45)

where 𝑂𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔 represents the offspring
generated by crossing over the genetic material of
𝑃𝑎𝑟𝑒𝑛𝑡ଵ and 𝑃𝑎𝑟𝑒𝑛𝑡ଶ, incorporating
characteristics from both parents.

Mutation introduces random changes or
perturbations to the offspring's genetic material,
promoting the exploration of novel solutions and
preventing stagnation in the optimization process.
𝑀𝑢𝑡𝑎𝑡𝑖𝑜𝑛(𝑂𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔)

= 𝑀𝑢𝑡𝑎𝑡𝑒𝑑𝑂𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔
(46)

In Eq.(46), where 𝑀𝑢𝑡𝑎𝑡𝑒𝑑𝑂𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔 represents
the offspring with randomly introduced variations
or mutations, facilitating the exploration of new
regions in the solution space.

3.2.4. Social Interaction:

Social interaction in ARO involves
communication and exchange of information
between solutions to collectively improve the
overall quality of solutions in the population.
Which is Mathematically represented in Eq.(47).

𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟௜

= 𝑆𝑒𝑙𝑒𝑐𝑡𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟(𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛௜)
(47)

where 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟௜ represents a neighbouring
solution selected by the 𝑖௧௛𝑡ℎ𝑒 solution in the
population, and 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛௜denotes the subset of
the population within the vicinity of the 𝑖௧௛
solution. SelectNeighbor may employ mechanisms
such as neighbourhood search or nearest-neighbour
selection to identify neighbouring solutions.

𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛𝑖 =

𝐸𝑥𝑐ℎ𝑎𝑛𝑔𝑒𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛(𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑖,

𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑖)

(48)

In Eq.(48), where 𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛௜represents the
information exchanged between the 𝑖௧௛solution and
its neighbouring solution. ExchangeInformation
facilitates the sharing of knowledge, insights, or
solutions between neighbouring solutions to
promote collective learning and improvement.

𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑖 = 𝑈𝑝𝑑𝑎𝑡𝑒𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛(𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑖,

 𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛𝑖)

(49)

In Eq.(49), where 𝑈𝑝𝑑𝑎𝑡𝑒𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛 integrates the
exchanged information into the 𝑖𝑡ℎ the solution,
enabling it to adapt and improve based on insights
gained from neighbouring solutions. Updating
solutions based on exchanged information enhances
the overall quality of solutions in the population and
facilitates convergence towards better solutions.
𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 = 𝑈𝑝𝑑𝑎𝑡𝑒𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛
 (𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛, 𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛)

(50)

In Eq.(50), where 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 represents the
updated population of candidate solutions after
social interaction, and 𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 encompasses
the exchanged information between solutions.
UpdatePopulation integrates the exchanged
information into the entire population, collectively
improving the overall quality of solutions and
promoting convergence towards optimal solutions.

3.2.5. Fitness Evaluation:
Fitness evaluation serves as a crucial step in
guiding the selection and reproduction of solutions
based on their quality or fitness. In ARO, solutions
are evaluated based on their ability to meet the
objectives and constraints of the optimization
problem, with higher fitness values indicating
superior performance. The fitness evaluation
process in ARO can be represented in Eq.(51).

𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑖 = (𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑖) (51)

 Journal of Theoretical and Applied Information Technology
15th May 2024. Vol.102. No 9

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3744

where 𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑖 represents the fitness of the 𝑖𝑡ℎ the
solution in the population, and

(𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑖) denotes the fitness function that
evaluates the performance of the solution in solving
the optimization problem. The fitness function may
be problem-specific and assess various criteria such
as accuracy, efficiency, or cost-effectiveness.

𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛𝑖 = (𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛, 𝐹𝑖𝑡𝑛𝑒𝑠𝑠) (52)
In Eq.(52), where 𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛𝑖 represents the
selection probability of the 𝑖𝑡ℎsolution in the
population, determined based on its fitness relative
to other solutions in the population. Select employs
selection mechanisms such as roulette wheel
selection, tournament selection, or elitism to choose
solutions for reproduction based on their fitness
values depicted in Eq.(53).

𝑃𝑎𝑟𝑒𝑛𝑡𝑠=𝑆𝑒𝑙𝑒𝑐𝑡𝑃(𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛,𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛) (53)
where 𝑃𝑎𝑟𝑒𝑛𝑡𝑠 represents the selected parent
solutions chosen for reproduction, based on their
selection probabilities determined by their fitness
values. The purpose of Select Parents is to increase
the likelihood of selecting solutions with a higher
fitness level to reproduce.

𝑂𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔 = 𝑅𝑒𝑝(𝑃𝑎𝑟𝑒𝑛𝑡𝑠) (54)
In Eq.(54), where 𝑂𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔 represents the
offspring generated by reproducing the selected
parent solutions. Reproduction involves crossover
and mutation operations, where characteristics from
parent solutions are combined to produce offspring
with potentially improved fitness.

3.2.6. Selection:
The selection of candidate solutions for
reproduction is based on their fitness values.
Selection is a critical step in guiding the
evolutionary process of ARO, determining which
solutions will contribute their genetic material to
the next generation. By favoring solutions with
higher fitness values, selection promotes the
propagation of desirable traits and facilitates the
convergence towards optimal solutions.
Mathematically, the selection process in ARO can
be represented in Eq.(55).

𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛௜ =
𝐹𝑖𝑡𝑛𝑒𝑠𝑠௜

∑ 𝐹𝑖𝑡𝑛𝑒𝑠𝑠௝
ே
௝ୀଵ

(55)

where 𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛𝑖 represents the selection
probability of the 𝑖𝑡ℎ the solution in the population,
and 𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑖denotes the fitness of the 𝑖𝑡ℎ solution.
The selection probability is computed as the ratio of
the fitness of the solution to the sum of fitness
values across all solutions in the population.

 𝑖
𝐶𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑖 = ∑𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛𝑘

 𝑘=1
 (56)

In Eq.(56), where 𝐶𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑖
represents the cumulative selection probability up
to the 𝑖𝑡ℎ solution. Cumulative probabilities are
computed to facilitate the selection of solutions
using techniques such as roulette wheel selection or
stochastic universal sampling.

𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠 =

𝑅𝑜𝑢𝑙𝑒𝑡𝑡𝑒𝑊ℎ𝑒𝑒𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛(𝑃𝑜𝑝𝑢𝑙𝑎𝑡

𝑖𝑜𝑛, 𝐶𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦)

(57)

In Eq.(57), where 𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠 represents
the candidate solutions selected for reproduction
using roulette wheel selection. Roulette wheel
selection assigns a selection probability to each
solution based on its fitness and selects solutions
probabilistically, favouring solutions with higher
fitness values depicted in Eq.(58).

where 𝑂𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔 represents the offspring
generated by reproducing the selected candidate
solutions. Reproduction involves crossover and
mutation operations, where characteristics from
selected parent solutions are combined to produce
offspring with potentially improved fitness.

3.2.7. Offspring Generation:
Offspring generation is a vital step in the
evolutionary process of ARO, as it facilitates the
exploration of new solution space regions and the
propagation of desirable traits from parent solutions
to the next generation. By combining characteristics
from selected parent solutions, offspring are created
with the potential for improved fitness and
diversity. Mathematically, the offspring generation
process in ARO can be represented in Eq.(59).

𝑂𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔𝑖 = 𝐶𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟(𝑃𝑎𝑟𝑒𝑛𝑡1,

 𝑃𝑎𝑟𝑒𝑛𝑡2) (59)
where 𝑂𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔𝑖 represents the offspring
generated by crossing over the genetic material of
two parent solutions 𝑃𝑎𝑟𝑒𝑛𝑡1 and 𝑃𝑎𝑟𝑒𝑛𝑡2.
Crossover involves combining characteristics from
both parents to produce offspring with potentially
improved traits.

𝑀𝑢𝑡𝑎𝑡𝑒𝑑𝑂𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔𝑖 = 𝑀𝑢𝑡𝑎𝑡𝑖𝑜𝑛

 (𝑂𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔𝑖) (60)
In Eq.(60), where 𝑀𝑢𝑡𝑎𝑡𝑒𝑑𝑂𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔𝑖 represents
the offspring with randomly introduced variations
or mutations. Mutation introduces random changes
or perturbations to the offspring's genetic material,

𝑂𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔 =
𝑅𝑒𝑝𝑟𝑜𝑑𝑢𝑐𝑒(𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠)

 (58)

 Journal of Theoretical and Applied Information Technology
15th May 2024. Vol.102. No 9

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3745

promoting the exploration of novel solution space
regions and preventing premature convergence.

 𝑂𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔 =

{𝑀𝑢𝑡𝑎𝑡𝑒𝑑𝑂𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔1,

𝑢𝑡𝑎𝑡𝑒𝑑𝑂𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔2, … , 𝑀𝑢𝑡𝑎𝑡𝑒𝑑𝑂

𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔𝑁}

(61)

In Eq.(61), where 𝑂𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔 represents the
population of offspring generated through crossover
and mutation operations. The offspring population
consists of newly created solutions with
characteristics inherited from parent solutions, as
well as random variations introduced through
mutation.

𝑁𝑒𝑥𝑡𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 =

𝐶𝑜𝑚𝑏𝑖𝑛𝑒(𝑃𝑜𝑝𝑢𝑙𝑡𝑎𝑖𝑜𝑛, 𝑂𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔)

(62)

In Eq.(62), where 𝑁𝑒𝑥𝑡𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 represents the
next generation of solutions obtained by combining
the parent solutions with the offspring population.
Combining parent solutions with offspring ensures
the continuation of the evolutionary process, with
the offspring population contributing new genetic
material to the population.

3.2.8. Replacement:
In ARO the process of replacement occurs, where
inferior solutions in the population are replaced
with newly generated offspring. By removing
inferior solutions and introducing newly generated
offspring, ARO ensures the continuous
improvement and adaptation of the population
towards better solutions. The replacement process
in ARO can be represented in Eq.(63).

𝑅𝑒𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 =

𝑆𝑒𝑙𝑒𝑐𝑡𝑅𝑒𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡𝐶𝑎𝑛𝑑𝑖

𝑑𝑎𝑡𝑒𝑠(𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛,

𝑂𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔)

(63)

In Eq.(63), where 𝑅𝑒𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠
represents the candidate solutions selected for
replacement based on predefined criteria. Select
Replacement Candidates identify inferior solutions
in the population that are to be replaced with newly
generated offspring depicted in Eq.(64).

𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑁𝑒𝑤 =

𝑅𝑒𝑝𝑙𝑎𝑐𝑒(𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛,

𝑟𝑒𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠,

𝑂𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔)

(64)

where 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑁𝑒𝑤 represents the updated
population after replacement, where inferior
solutions have been replaced with newly generated

offspring. Replace combines the parent solutions
with the offspring population, ensuring the
continuity of the evolutionary process and the
preservation of diversity within the population is
represented mathematically in Eq.(65).

𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 = 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛ே௘௪ (65)

where 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 is updated to reflect the changes
made during the replacement process. The updated
population now consists of a mixture of parent
solutions and newly generated offspring,
maintaining the diversity and quality of solutions in
the population.

𝐵𝑒𝑠𝑡𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛 = 𝑒𝑙𝑒𝑐𝑡𝐵𝑒𝑠𝑡𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛

 (𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛) (66)
In Eq.(66), where 𝐵𝑒𝑠𝑡𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛 represents the best
solution encountered in the population, selected
based on its fitness value. As a benchmark for
measuring optimization success, Select Best
Solution finds the solution in the updated population
with the greatest fitness value.

3.2.9. Convergence Check:

The convergence of the optimization
process is assessed to determine whether a
satisfactory solution has been found or if further
iterations are required. Convergence checking is
essential for monitoring the progress of the
optimization algorithm and ensuring that it
terminates when the desired convergence criteria
are met. By evaluating convergence, ARO can
prevent unnecessary computational effort and
efficiently allocate resources towards the most
promising areas of the solution space. The
convergence check in ARO can be represented in
Eq.(67).

𝐵𝑒𝑠𝑡𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝐶𝑢𝑟𝑟𝑒𝑛𝑡=
 𝑆𝑒𝑙𝑒𝑐𝑡𝐵𝑒𝑠𝑡𝑆𝑜(𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛) (67)
where 𝐵𝑒𝑠𝑡𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝐶𝑢𝑟𝑟𝑒𝑛𝑡 represents the best
solution encountered in the current population,
selected based on its fitness value.
SelectBestSolution identifies the solution with the
highest fitness value from the population, serving
as a reference point for evaluating convergence.
∆𝐹𝑖𝑡𝑛𝑒𝑠𝑠 = 𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑃𝑟𝑒𝑣𝑖𝑜𝑢𝑠 –
 𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝐶𝑢𝑟𝑟𝑒𝑛𝑡 (68)
In Eq.(68), where ∆𝐹𝑖𝑡𝑛𝑒𝑠𝑠 represents the change
in fitness between the previous and current
iterations of the optimization process. A decrease in
𝛥𝐹𝑖𝑡𝑛𝑒𝑠𝑠 indicates that the fitness of the best

 Journal of Theoretical and Applied Information Technology
15th May 2024. Vol.102. No 9

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3746

solution has improved, suggesting progress towards
convergence.
𝐶𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛=|𝛥𝐹𝑖𝑡𝑛𝑒𝑠𝑠|< (69)

In Eq.(69), where 𝐶𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛
represents the convergence criterion, which is
satisfied when the change in fitness between
iterations falls below a predefined threshold 𝜖. The
convergence criterion serves as a termination
condition for the optimization algorithm, indicating
that the optimization process has converged to a
satisfactory solution represented mathematically in
Eq.(70).

𝑇𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛=𝑇𝑟𝑢 (70)

where 𝑇𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛 is a boolean
variable that is set to true when the convergence
criterion is met, indicating that the optimization
process can be terminated. Terminate Optimization
serves as a flag to signal the algorithm to stop
further iterations once convergence is achieved.

3.2.10. Termination:

The termination of the optimization
process occurs when the convergence criteria have
been met or when a predefined stopping condition
is satisfied. Termination is a vital step in the ARO
algorithm as it signifies the end of the optimization
process and determines when to halt further
iterations. By terminating the algorithm
appropriately, ARO ensures computational
efficiency and prevents unnecessary resource
consumption. The termination of ARO can be
represented mathematically in Eq.(71).

𝐶𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛=|𝛥𝐹𝑖𝑡𝑛𝑒𝑠𝑠|<𝜖 (71)

where 𝐶𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛 represents the
convergence criterion, which is satisfied when the
change in fitness between iterations falls below a
predefined threshold 𝜖. This criterion indicates that
the optimization process has converged to a
satisfactory solution, and further iterations are
unnecessary.

𝑇𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛 = 𝑇𝑟𝑢𝑒 (72)

In Eq.(72), where 𝑇𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛 is a
boolean variable that is set to true when the
convergence criterion is met, indicating that the
optimization process can be terminated. Terminate
Optimization serves as a flag to signal the
algorithm to stop further iterations once
convergence is achieved depicted in Eq.(73).

𝑆𝑡𝑜𝑝𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 (73)

where 𝑆𝑡𝑜𝑝𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 represents any additional
stopping conditions defined by the user or specific
to the optimization problem. These conditions
could include reaching a maximum number of
iterations, exceeding a computational budget, or
meeting domain-specific requirements.

𝑇𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛 = 𝑇𝑟𝑢𝑒 (74)

In Eq.(74), where 𝑇𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛 is set
to true when any of the stopping conditions are met,
indicating that the optimization process should be
terminated. By evaluating all stopping conditions,
ARO ensures that the optimization process stops
when any of the predefined criteria are satisfied.

Functional Procedure 2: ARO

Procedure
AmamiRabbitOptimization(objective_function,
num_rabbits, num_iterations):
 initialize rabbit_population with num_rabbits
 rabbits randomly distributed in the search

space
 for iteration = 1 to num_iterations do:
 for each rabbit in rabbit_population do:

 explore_phase(rabbit)
evaluate_fitness(rabbit)
update_local_best(rabbit)
update_global_best(rabbit)

 move phase(rabbit_population)
 return global_best_solution

procedure explore_phase(rabbit):
randomly select a neighbor solution within a

certain radius from the current position of the
rabbit

evaluate_fitness of the neighbor solution
if neighbor_solution is better than

current_solution then:
 move rabbit to neighbor_solution

else if neighbor_solution is worse and meets
the acceptance criterion then:

move rabbit to neighbor_solution with
probability based on temperature or other
criteria

procedure move_phase(rabbit_population):
calculate the movement direction for each

rabbit based on its local best and global best
solutions

update the position of each
rabbit using the movement
direction and step size
apply boundary constraints
if necessary

procedure evaluate_fitness(rabbit):
 compute the fitness value of the rabbit using
the objective function

 Journal of Theoretical and Applied Information Technology
15th May 2024. Vol.102. No 9

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3747

This procedure outlines the main phases of
the Amami Rabbit Optimization algorithm,
including exploration, movement, fitness
evaluation, and updating of local and global best
solutions. During each iteration, rabbits explore the
search space, update their positions, and improve
their solutions based on local and global
information. Finally, the algorithm returns the
global best solution found after the specified
number of iterations.

3.3. Fusion of ARO with Logistic Regression
(ARO-LogiSent) :

In recent years, sentiment analysis has
gained significant attention in various domains such
as marketing, social media monitoring, and
customer feedback analysis. One approach to
sentiment analysis involves combining the strengths
of evolutionary algorithms, such as Amami Rabbit
Optimization (ARO), with machine learning
techniques like logistic regression. This fusion aims
to leverage the optimization capabilities of ARO
and the predictive power of logistic regression to
develop a robust sentiment analysis model.

ARO-LogiSent integrates the ARO
algorithm with logistic regression to perform
sentiment analysis on textual data. The ARO
component is responsible for optimizing the feature
space and hyperparameters of the logistic
regression model to maximize its performance in
sentiment classification tasks.

Data Collection : Initially labelled textual data for
sentiment analysis is collected from various
sources, such as social media platforms, customer
reviews, or product descriptions. The dataset
consists of text samples labelled with sentiment
classes.

 Data Preprocessing: The collected data
undergoes preprocessing steps, including
tokenization, lowercasing, stop word
removal, and stemming or lemmatization.
This step ensures that the text data is
normalized and cleaned for further
analysis.

 Feature Extraction: Feature extraction
involves transforming the preprocessed
text data into numerical feature vectors
that can be used as input to the logistic
regression model. Techniques such as bag-
of- words, TF-IDF (Term Frequency-
Inverse Document Frequency), or word
embeddings may be employed to represent
the textual data as feature vectors.

 Splitting the Dataset: The dataset is
divided into training, validation, and
testing sets to facilitate model training,
validation, and evaluation. Typically, the
majority of the data is allocated to the
training set, with smaller portions reserved
for validation and testing.

 Model Training: The logistic regression
model is trained using the training dataset.
ARO is employed to optimize the
hyperparameters of the logistic regression
model, such as the regularization
parameter and feature selection.

 Model Evaluation: The trained logistic
regression model is evaluated using the
validation dataset to assess its performance
in sentiment classification. ARO-LogiSent
aims to maximize evaluation metrics such
as accuracy, precision, recall, and F1 score
through iterative optimization.

 Hyperparameter Tuning: ARO
optimizes the hyperparameters of the
logistic regression model based on the
performance metrics obtained during
model evaluation. This step aims to fine-
tune the model's parameters to achieve
better sentiment classification results.

 Prediction: Once the logistic regression
model is trained and optimized, it is used
to make predictions on unseen data, such
as the testing dataset or new incoming text
samples. The model assigns sentiment
labels (e.g., positive, negative) to the input
text based on its learned patterns.

 Post-Processing: Post-processing involves
analyzing the model predictions and
refining them if necessary. This step may
include sentiment aggregation, sentiment
scoring, or incorporating domain- specific
rules to improve the accuracy of sentiment
analysis results.

 Deployment: The trained and optimized
logistic regression model is deployed into
production environments, where it can be
used to perform real-time sentiment
analysis on incoming textual data. The
deployed model enables businesses to gain
insights into customer sentiments and
make informed decisions accordingly.

ARO-LogiSent combines the optimization
capabilities of ARO with the predictive power of
logistic regression to develop a robust sentiment
analysis model. By integrating evolutionary
algorithms with machine learning techniques,

 Journal of Theoretical and Applied Information Technology
15th May 2024. Vol.102. No 9

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3748

ARO-LogiSent offers an effective approach to
sentiment analysis that can be applied across
various domains.

Functional Procedure for the Fusion of ARO

and Logistic Regression
// Define logistic regression function

def logistic_regression(X_train, y_train,
X_test):

// Train logistic regression model model =
LogisticRegression() model.fit(X_train,
y_train)

// Predict sentiment labels for test data
y_pred = model.predict(X_test)
return y_pred

// Define ARO optimization function

def
amami_rabbit_optimization(objective_functio
n, num_rabbits, num_iterations):

// Initialize rabbit population randomly

rebbit_population =
np.random.rand(num_rabbits,
num_features)

for iteration in range(num_iterations): for
rabbit in rabbit_population:

// Explore phase explore_phase(rabbit)

// Evaluate fitness

fitness = objective_function(rabbit)

// Update local best
update_local_best(rabbit, fitness)

// Update global best
update_global_best(rabbit, fitness)

// Move phase
move_phase(rabbit_population)

// Return global best solution return
global_best_solution

// Define explore phase def
explore_phase(rabbit):

// Define exploration strategy, e.g., random
walk return explored_solution

// Define move phase

def move_phase(rabbit_population):

// Define movement strategy, e.g., update
positions based on local and global best
return updated_population

// Define objective function for sentiment
analysis def objective_function(rabbit):

// Extract features from rabbit solution

X_train, y_train, X_test =
extract_features(rabbit)

// Perform logistic regression and evaluate
performance y_pred =
logistic_regression(X_train, y_train, X_test)

// Compute performance metric,
e.g., accuracy fitness =
compute_fitness(y_test, y_pred)
return fitness

// Define the function to extract
features from rabbit solution def
extract_features(rabbit):

// Implement feature extraction
method return X_train, y_train,
X_test

// Define function to compute
fitness def
compute_fitness(y_true, y_pred):

// Implement performance metrics,
e.g., accuracy return fitness

// Define function to update local
best solution def
update_local_best(rabbit, fitness):

// Update local best solution if
fitness improves return
local_best_solution

// Define function to update global
best solution def
update_global_best(rabbit,
fitness):

// Update global best solution if
fitness improves return
global_best_solution

This algorithm integrates ARO optimization with
logistic regression for sentiment analysis. It defines
functions for logistic regression, ARO optimization
phases (explore and move), the objective function
(for sentiment analysis), feature extraction, fitness
computation, and updating of local and global best
solutions. The ARO algorithm iteratively optimizes

 Journal of Theoretical and Applied Information Technology
15th May 2024. Vol.102. No 9

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3749

the logistic regression model parameters to improve
sentiment analysis performance.
3.3.1. Advantages of ARO-LogiSent:

Infusing Amami Rabbit Optimization
(ARO) with Logistic Regression for Sentiment
Analysis, known as ARO-LogiSent, presents
several advantages:

 Enhanced Accuracy: ARO-LogiSent
leverages the optimization capabilities of
ARO to fine- tune the parameters of
logistic regression, resulting in a sentiment
analysis model with improved accuracy.
By iteratively optimizing the model's
parameters, ARO-LogiSent can effectively
capture the nuances of sentiment in textual
data, leading to more accurate predictions.

 Efficient Feature Selection: ARO-
LogiSent employs ARO to select relevant
features from the textual data, eliminating
redundant or noisy features that may
negatively impact the performance of the
sentiment analysis model. This feature
selection process enhances the efficiency
of the logistic regression model by
focusing on the most informative aspects
of the input data.

 Robustness to Noise: ARO-LogiSent's
integration of ARO helps mitigate the
effects of noise in the data by optimizing
the logistic regression model's parameters
robustly. By iteratively refining the
model's parameters, ARO-LogiSent can
better handle noisy or ambiguous textual
inputs, resulting in more reliable sentiment
analysis outcomes.

 Flexibility and Adaptability: ARO-
LogiSent offers flexibility in adapting to
different domains and datasets. The ARO
component allows the sentiment analysis
model to adapt to the characteristics of the
input data, making it suitable for various
applications such as social media
monitoring, customer feedback analysis,
and product sentiment analysis.

 Scalability: ARO-LogiSent is scalable and
can accommodate large datasets with ease.
The parallel processing capabilities of
ARO enable efficient optimization of the
logistic regression model's parameters,
even when dealing with massive amounts
of textual data. This scalability makes
ARO-LogiSent well-suited for deployment
in real-world scenarios where large-scale
sentiment analysis is required.

4. ABOUT DATASET

The Amazon Review Data (2018) about

the Home and Kitchen category represents a
significant subset of the broader Amazon review
dataset. With a substantial volume of 6,898,955
reviews, this dataset offers a comprehensive
glimpse into consumer sentiments and preferences
regarding various products and services within the
Home and Kitchen domain. Each review within this
dataset serves as a valuable piece of feedback from
consumers, expressing their opinions, experiences,
and satisfaction levels with the products they have
purchased and used. As such, the dataset
encompasses a diverse range of products, including
but not limited to kitchen appliances, home decor
items, furniture, and cleaning supplies.

Analyzing this dataset provides insights
into consumer preferences, product performance,
and market trends within the Home and Kitchen
category. Researchers, analysts, and businesses can
leverage this data to understand consumer behavior,
identify popular products, and make informed
decisions regarding product development,
marketing strategies, and inventory management.

The Amazon Review Data (2018) for
Home and Kitchen constitutes a rich and valuable
resource for sentiment analysis, market research,
and business intelligence within the e- commerce
domain. Its substantial size and granularity make it
a valuable asset for studying consumer behavior
and preferences in the context of home-related
products and services.

Table 1. Field Description

Field Name Description

Field Name Description

Review ID Unique identifier for each
review

Product ID Unique identifier for each
product

Reviewer ID Unique identifier for each
reviewer

Review Text Textual content of the
review

Star Rating Rating given by the
reviewer (1 to 5 stars)

Review Date Date when the review was
posted

 Journal of Theoretical and Applied Information Technology
15th May 2024. Vol.102. No 9

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3750

Helpful Votes Number of helpful votes
received on the review

Total Votes Total number of votes
received on the review

Verified Purchase Indicates if the reviewer
purchased the product from
Amazon

Product Category Category of the product

Product
Subcategory

Subcategory of the product

5. PERFORMANCE METRICS

Sentiment analysis, also known as opinion

mining, is the computational task of determining
the sentiment expressed in a piece of text, whether
it's positive, negative, or neutral. Evaluating the
performance of sentiment analysis models is crucial
for assessing their effectiveness in accurately
classifying sentiments. Performance metrics
provide quantitative measures of how well a model
performs in sentiment classification tasks.
Commonly used performance metrics include
precision, recall, classification accuracy, F-
measure, Fowlkes– Mallows Index, and Matthews
Correlation Coefficient.

Before delving into the specific metrics,
it's essential to understand the basic concepts
behind them. In sentiment analysis, predictions are
typically classified as either positive or negative.
True positives (TP) are instances where the model
correctly predicts positive sentiment, while true
negatives (TN) are instances where the model
correctly predicts negative sentiment. False
positives (FP) occur when the model incorrectly
predicts positive sentiment, and false negatives
(FN) occur when the model incorrectly predicts
negative sentiment.
 Precision: Precision measures the proportion

of correctly predicted positive sentiments out
of all instances classified as positive by the
model. It indicates how often the model
correctly identifies positive sentiments. Higher
precision implies fewer false positives, which
are instances incorrectly labelled as positive.

 Recall: Recall, also known as sensitivity,
measures the proportion of correctly predicted
positive sentiments out of all instances of true
positive sentiments in the dataset. It gauges
how effectively the model captures all positive
sentiments present. Higher recall suggests
fewer missed positive sentiments.

 Classification Accuracy: Classification
accuracy quantifies the overall correctness of
sentiment predictions made by the model. It
represents the proportion of correctly classified
instances, including both true positives and true
negatives, among all instances in the dataset.

 F-Measure: F-measure, the harmonic mean of
precision and recall, provides a balanced
measure of model performance. It considers
both false positives and false negatives,
offering a comprehensive evaluation of model
accuracy. A higher F- measure indicates better
precision and recall balance.

 Fowlkes–Mallows Index: The Fowlkes–
Mallows Index assesses the similarity between
predicted positive instances and actual positive
instances. It measures how well the model
clusters predicted positive sentiments
compared to true positive sentiments. Higher
values indicate a stronger agreement between
predicted and actual positive sentiments.

 Matthews Correlation Coefficient (MCC):
MCC evaluates the quality of binary
classifications, considering true and false
positives and negatives. It ranges from -1 to 1,
with higher values indicating better prediction
quality. MCC accounts for imbalanced datasets
and provides insights into the overall
performance of the model.

These performance metrics offer valuable insights
into the effectiveness of sentiment analysis models,
allowing researchers and practitioners to assess
model accuracy, identify strengths and weaknesses,
and make informed decisions to improve model
performance.

6. RESULTS AND DISCUSSION

6.1. Precision and Recall Analysis

Precision and recall analysis is crucial in
evaluating the performance of sentiment analysis
models. Precision measures the proportion of
correctly predicted positive sentiments out of all
instances classified as positive by the model, while
recall measures the proportion of correctly
predicted positive sentiments out of all instances of
true positive sentiments in the dataset. the precision
of the sentiment analysis models varies
significantly. IES demonstrates the lowest precision
at 58.949%, followed by FNLA at 69.909%, and
ARO- LOGI leads with 81.701%. A higher
precision indicates a lower rate of false positive
predictions, meaning that ARO-LOGI exhibits the
highest accuracy in classifying positive sentiments.

 Journal of Theoretical and Applied Information Technology
15th May 2024. Vol.102. No 9

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3751

Figure 1. Precision And Recall

The recall values indicate the ability of the

models to capture all positive sentiments present in
the dataset. ARO-LOGI achieves the highest recall
rate of 78.877%, followed by FNLA at 71.163%,
and IES with the lowest recall rate of 69.510%.
Figure 1. depicts the obtained results of Precesion
and Recall. These findings suggest that ARO-LOGI
excels in identifying positive sentiments
comprehensively, making it a promising model for
sentiment analysis tasks. Table 2 shows the average
performance of ARO-LONGI with the comparison
of IES and FNLA.

Table 2. Precision And Recall

Classification
Algorithms

 PREC RCLL

IES 58.949 69.510

FNLA 69.909 71.163

ARO-LOGI 81.701 78.877

6.2. Classification Accuracy and F-Measure
Analysis

Classification accuracy is a fundamental
metric that measures the overall correctness of
predictions made by a model. It quantifies the
proportion of correctly classified instances,
including both true positives and true negatives,
among all instances in the dataset. F- measure, on
the other hand, is the harmonic mean of precision
and recall and provides a balanced measure of
model performance. The obtained results of
Classification Accuracy and F-Measure are depicted
in Figure 2.

Figure 2. Classification Accuracy And F-Measure

In the provided data, the ARO-LOGI

model exhibits the highest classification accuracy
of 80.268%, followed by FNLA (69.397%) and IES
(63.090%). This indicates that ARO-LOGI achieves
the highest proportion of correctly classified
instances compared to the other models. Similarly,
when considering F-measure, ARO-LOGI again
outperforms the other models with a score of
78.877%, followed by FNLA (71.163%) and IES
(69.510%). These results suggest that ARO-LOGI
demonstrates superior overall performance in
accurately classifying sentiments compared to IES
and FNLA shown in Table 3.

Table 3. Classification Accuracy And F-Measure

Classification
Algorithms

CL-AC F-MSR

IES 63.090 63.795

FNLA 69.397 70.531

ARO-LOGI 80.268 80.264

6.3. Fowlkes–Mallows Index and Matthews
Correlation Coefficient Analysis.

Fowlkes–Mallows Index (FMI) and
Matthews Correlation Coefficient (MCC) are two
important metrics used to evaluate the
performance of sentiment analysis models.
ARO- LOGI demonstrates the highest FMI at
80.276%, followed by FNLA at 70.533%, and
IES with the lowest FMI at 64.012%. A higher
FMI indicates a stronger agreement between the
predicted positive instances and the actual positive
instances, highlighting the effectiveness of ARO-

 Journal of Theoretical and Applied Information Technology
15th May 2024. Vol.102. No 9

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3752

IE FN ARO-
9
0

8
0

7
0

6
0

5
0 FMI

 MC

LOGI in clustering positive sentiments as shown in
Figure 3.

Figure 3. Fowlkes–Mallows Index And Matthews
Correlation Coefficient

ARO-LOGI achieves the highest MCC

score of 60.586%, indicating a strong correlation
between the model's predictions and the actual
sentiments. FNLA follows with an MCC of
38.715%, while IES has the lowest MCC at
27.045%. This suggests that ARO-LOGI provides
the most accurate and reliable sentiment predictions
among the three models, making it a promising
choice for sentiment analysis tasks. The obtained
average result is shown in Table 4.

Table 4. Fowlkes–Mallows Index And Matthews
Correlation Coefficient

Classification

Algorithms

FMI

MCC

IES 64.012 27.045

FNLA 70.533 38.715

ARO-LOGI 80.276 60.586

7. CONCLUSION
The evaluation of sentiment analysis

models using various performance metrics provides
valuable insights into their effectiveness and
reliability. Precision and recall analysis reveals the
accuracy and completeness of positive sentiment
predictions, with ARO-LOGI exhibiting the highest
precision and recall rates among the models
considered. The Fowlkes– Mallows Index and
Matthews Correlation Coefficient offer
comprehensive assessments of model performance,
with ARO-LOGI demonstrating superior agreement
between predicted and actual positive instances and
a strong correlation between predictions and actual

sentiments. ARO-LOGI emerges as the most
promising sentiment analysis model, outperforming
IES and FNLA across multiple metrics. Its high
precision, recall, FMI, and MCC scores signify its
ability to accurately classify positive sentiments
and provide reliable predictions. These findings
underscore the effectiveness of integrating Amami
Rabbit Optimization with logistic regression for
sentiment analysis tasks, highlighting the potential
of ARO-LOGI in real-world applications. Further
research and experimentation could explore
additional datasets and fine-tuning strategies to
further enhance the performance of sentiment
analysis models and optimize their utility in various
domains.

REFERENCES

[1]. S. A., S. G., and K. G., “Enhanced Elman

spike neural network based sentiment analysis
of online product recommendation,” Appl.
Soft Comput., vol. 132, p. 109789, 2023, doi:
https://doi.org/10.1016/j.asoc.2022.109789.

[2]. J. Bowden and R. Gemayel, “Sentiment and
trading decisions in an ambiguous
environment: A study on cryptocurrency
traders,” J. Int. Financ. Mark. Institutions
Money, vol. 80, p. 101622, 2022, doi:
https://doi.org/10.1016/j.intfin.2022.101622.

[3]. P. Liu, A. Hendalianpour, M. Feylizadeh, and
W. Pedrycz, “Mathematical modeling of
Vehicle Routing Problem in Omni-Channel
retailing,” Appl. Soft Comput., vol. 131, p.
109791, 2022, doi:
https://doi.org/10.1016/j.asoc.2022.109791.

[4]. Y. Lin, P. Ji, X. Chen, and Z. He, “Lifelong
Text-Audio Sentiment Analysis learning,”
Neural Networks, vol. 162, pp. 162–174,
2023, doi:
https://doi.org/10.1016/j.neunet.2023.02.008.

[5]. D. Antypas, A. Preece, and J. Camacho-
Collados, “Negativity spreads faster: A large-
scale multilingual twitter analysis on the role
of sentiment in political communication,”
Online Soc. Networks Media, vol. 33, p.
100242, 2023, doi:
https://doi.org/10.1016/j.osnem.2023.100242.

[6]. R. Singh and R. Singh, “Applications of
sentiment analysis and machine learning
techniques in disease outbreak prediction – A
review,” Mater. Today Proc., vol. 81, pp.
1006–1011, 2023, doi:
https://doi.org/10.1016/j.matpr.2021.04.356.

[7]. I. Priyadarshini et al., “Survivability of
industrial internet of things using machine

 Journal of Theoretical and Applied Information Technology
15th May 2024. Vol.102. No 9

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3753

learning and smart contracts,” Comput. Electr.
Eng., vol. 107, p. 108617, 2023, doi:
https://doi.org/10.1016/j.compeleceng.2023.1
08617.

[8]. R. Strubytskyi and N. Shakhovska, “Method
and models for sentiment analysis an hidden
propaganda finding,” Comput. Hum. Behav.
Reports, vol. 12, p. 100328, 2023, doi:
https://doi.org/10.1016/j.chbr.2023.100328.

[9]. Z. Li et al., “Multi-level correlation mining
framework with self-supervised label
generation for multimodal sentiment
analysis,” Inf. Fusion, vol. 99, p. 101891,
2023, doi:
https://doi.org/10.1016/j.inffus.2023.101891.

[10]. M. Mhamed, R. Sutcliffe, X. Sun, J. Feng,
and E. A. Retta, “Arabic sentiment analysis
using GCL-based architectures and a
customized regularization function,” Eng. Sci.
Technol. an Int. J., vol. 43, p. 101433, 2023,
doi:
https://doi.org/10.1016/j.jestch.2023.101433.

[11]. H. Liu et al., “Enhancing aspect-based
sentiment analysis using a dual-gated graph
convolutional network via contextual
affective knowledge,” Neurocomputing, vol.
553, p. 126526, 2023, doi:
https://doi.org/10.1016/j.neucom.2023.12652
6.

[12]. A. Atak, “Exploring the sentiment in Borsa
Istanbul with deep learning,” Borsa Istanbul
Rev., vol. 23, pp. S84–S95, 2023, doi:
https://doi.org/10.1016/j.bir.2023.12.010.

[13]. F. K. Sufi, “Identifying the drivers of negative
news with sentiment, entity and regression
analysis,” Int. J. Inf. Manag. Data Insights,
vol. 2, no. 1, p. 100074, 2022, doi:
https://doi.org/10.1016/j.jjimei.2022.100074.

[14]. T. H. Jaya Hidayat, Y. Ruldeviyani, A. R.
Aditama, G. R. Madya, A. W. Nugraha, and
M. W. Adisaputra, “Sentiment analysis of
twitter data related to Rinca Island
development using Doc2Vec and SVM and
logistic regression as classifier,” Procedia
Comput. Sci., vol. 197, pp. 660–667, 2022,
doi:
https://doi.org/10.1016/j.procs.2021.12.187.

[15]. M. Wilksch and O. Abramova, “PyFin-
sentiment: Towards a machine-learning-based
model for deriving sentiment from financial
tweets,” Int. J. Inf. Manag. Data Insights, vol.
3, no. 1, p. 100171, 2023, doi:
https://doi.org/10.1016/j.jjimei.2023.100171.

[16]. J. Maqbool, P. Aggarwal, R. Kaur, A. Mittal,
and I. A. Ganaie, “Stock Prediction by

Integrating Sentiment Scores of Financial
News and MLP-Regressor: A Machine
Learning Approach,” Procedia Comput. Sci.,
vol. 218, pp. 1067–1078, 2023, doi:
https://doi.org/10.1016/j.procs.2023.01.086.

[17]. M. Kasri, M. Birjali, M. Nabil, A. Beni-
Hssane, A. El-Ansari, and M. El Fissaoui,
“Refining Word Embeddings with Sentiment
Information for Sentiment Analysis,” J. ICT
Stand., vol. 10, no. 3, pp. 353–382, 2022, doi:
10.13052/jicts2245-800X.1031.

[18]. P. Durga and D. Godavarthi, “Deep-
Sentiment: An Effective Deep Sentiment
Analysis Using a Decision-Based Recurrent
Neural Network (D-RNN),” IEEE Access,
vol. 11, pp. 108433–108447, 2023, doi:
10.1109/ACCESS.2023.3320738.

[19]. J. He, A. Wumaier, Z. Kadeer, W. Sun, X.
Xin, and L. Zheng, “A Local and Global
Context Focus Multilingual Learning Model
for Aspect-Based Sentiment Analysis,” IEEE
Access, vol. 10, pp. 84135–84146, 2022, doi:
10.1109/ACCESS.2022.3197218.

[20]. M. Huang, H. Xie, Y. Rao, Y. Liu, L. K. M.
Poon, and F. L. Wang, “Lexicon-Based
Sentiment Convolutional Neural Networks for
Online Review Analysis,” IEEE Trans.
Affect. Comput., vol. 13, no. 3, pp. 1337–
1348, 2022, doi:
10.1109/TAFFC.2020.2997769.

[21]. H. He, G. Zhou, and S. Zhao, “Exploring E-
Commerce Product Experience Based on
Fusion Sentiment Analysis Method,” IEEE
Access, vol. 10, pp. 110248–110260, 2022,
doi: 10.1109/ACCESS.2022.3214752.

[22]. H. Yan, B. Yi, H. Li, and D. Wu, “Sentiment
knowledge-induced neural network for
aspect-level sentiment analysis,” Neural
Comput. Appl., vol. 34, no. 24, pp. 22275–
22286, 2022, doi: 10.1007/s00521-022-
07698-0.

[23]. G.-Y. Wang, D.-D. Cheng, D.-Y. Xia, and H.-
H. Jiang, “Swarm Intelligence Research:
From Bio-inspired Single-population Swarm
Intelligence to Human-machine Hybrid
Swarm Intelligence,” Mach. Intell. Res., vol.
20, no. 1, pp. 121–144, 2023, doi:
10.1007/s11633-022-1367-7.

[24]. A. S. Talaat, “Sentiment analysis
classification system using hybrid BERT
models,” J. Big Data, vol. 10, no. 1, p. 110,
2023, doi: 10.1186/s40537-023-00781-w.

[25]. M. Belguith, C. Aloulou, and B. Gargouri,
“Aspect Level Sentiment Analysis Based on

 Journal of Theoretical and Applied Information Technology
15th May 2024. Vol.102. No 9

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3754

Deep Learning and Ontologies,” SN Comput.
Sci., vol. 5, no. 1, p. 58, 2023, doi:
10.1007/s42979-023-02362-3.

[26]. A. Sharaff, T. R. Chowdhury, and S.
Bhandarkar, “LSTM based Sentiment
Analysis of Financial News,” SN Comput.
Sci., vol. 4, no. 5, p. 584, 2023, doi:
10.1007/s42979- 023-02018-2.

[27]. D. Chen, H. Zhengwei, T. Yiting, M. Jintao,
and R. Khanal, “Emotion and sentiment
analysis for intelligent customer service
conversation using a multi-task ensemble
framework,” Cluster Comput., 2023, doi:
10.1007/s10586-023-04073-z.

[28]. J. Ramkumar, A. Senthilkumar, M. Lingaraj,
R. Karthikeyan, and L. Santhi, “Optimal
Approach for Minimizing Delays in Iot-Based
Quantum Wireless Sensor Networks Using
Nm-Leach Routing Protocol,” J. Theor. Appl.
Inf. Technol., vol. 102, no. 3, pp. 1099–1111,
2024.

[29]. J. Ramkumar, R. Vadivel, B. Narasimhan, S.
Boopalan, and B. Surendren, “Gallant Ant
Colony Optimized Machine Learning
Framework (GACO-MLF) for Quality of
Service Enhancement in Internet of Things-
Based Public Cloud Networking,” J. M. R. S.
Tavares, J. J. P. C. Rodrigues, D. Misra, and
D. Bhattacherjee, Eds., Singapore: Springer
Nature Singapore, 2024, pp. 425–438. doi:
10.1007/978-981-99-5435-3_30.

[30]. D. Jayaraj, J. Ramkumar, M. Lingaraj, and B.
Sureshkumar, “AFSORP: Adaptive Fish
Swarm Optimization-Based Routing Protocol
for Mobility Enabled Wireless Sensor
Network,” Int. J. Comput. Networks Appl.,
vol. 10, no. 1, pp. 119–129, 2023, doi:
10.22247/ijcna/2023/218516.

[31]. R. Jaganathan and V. Ramasamy,
“Performance modeling of bio-inspired
routing protocols in Cognitive Radio Ad Hoc
Network to reduce end-to-end delay,” Int. J.
Intell. Eng. Syst., vol. 12, no. 1, pp. 221–231,
2019, doi: 10.22266/IJIES2019.0228.22.

[32]. J. Ramkumar, K. S. Jeen Marseline, and D. R.
Medhunhashini, “Relentless Firefly
Optimization-Based Routing Protocol
(RFORP) for Securing Fintech Data in IoT-
Based Ad-Hoc Networks,” Int. J. Comput.
Networks Appl., vol. 10, no. 4, pp. 668–687,
Aug. 2023, doi: 10.22247/ijcna/2023/223319.

[33]. J. Ramkumar and R. Vadivel, “Improved frog
leap inspired protocol (IFLIP) – for routing in
cognitive radio ad hoc networks (CRAHN),”
World J. Eng., vol. 15, no. 2, pp. 306–311,

2018, doi: 10.1108/WJE-08-2017-0260.
[34]. M. Lingaraj, T. N. Sugumar, C. S. Felix, and

J. Ramkumar, “Query aware routing protocol
for mobility enabled wireless sensor
network,” Int. J. Comput. Networks Appl.,
vol. 8, no. 3, pp. 258–267, 2021, doi:
10.22247/ijcna/2021/209192.

[35]. R. Vadivel and J. Ramkumar, “QoS-enabled
improved cuckoo search-inspired protocol
(ICSIP) for IoT-based healthcare
applications,” Inc. Internet Things Healthc.
Appl. Wearable Devices, pp. 109–121, 2019,
doi: 10.4018/978-1-7998-1090-2.ch006.

[36]. J. Ramkumar and R. Vadivel, “Improved
Wolf prey inspired protocol for routing in
cognitive radio Ad Hoc networks,” Int. J.
Comput. Networks Appl., vol. 7, no. 5, pp.
126–136, 2020, doi:
10.22247/ijcna/2020/202977.

[37]. A. Senthilkumar, J. Ramkumar, M. Lingaraj,
D. Jayaraj, and B. Sureshkumar, “Minimizing
Energy Consumption in Vehicular Sensor
Networks Using Relentless Particle Swarm
Optimization Routing,” Int. J. Comput.
Networks Appl., vol. 10, no. 2, pp. 217–230,
2023, doi: 10.22247/ijcna/2023/220737.

[38]. J. Ramkumar and R. Vadivel, “Whale
optimization routing protocol for minimizing
energy consumption in cognitive radio
wireless sensor network,” Int. J. Comput.
Networks Appl., vol. 8, no. 4, pp. 455–464,
2021, doi: 10.22247/ijcna/2021/209711.

[39]. R. Jaganathan and R. Vadivel, “Intelligent
Fish Swarm Inspired Protocol (IFSIP) for
Dynamic Ideal Routing in Cognitive Radio
Ad-Hoc Networks,” Int. J. Comput. Digit.
Syst., vol. 10, no. 1, pp. 1063–1074, 2021,
doi: 10.12785/ijcds/100196.

[40]. P. Menakadevi and J. Ramkumar, “Robust
Optimization Based Extreme Learning
Machine for Sentiment Analysis in Big Data,”
2022 Int. Conf. Adv. Comput. Technol. Appl.
ICACTA 2022, pp. 1–5, Mar. 2022, doi:
10.1109/ICACTA54488.2022.9753203.

[41]. J. Ramkumar and R. Vadivel, CSIP—cuckoo
search inspired protocol for routing in
cognitive radio ad hoc networks, vol. 556.
2017. doi: 10.1007/978-981-10-3874-7_14.

[42]. J. Ramkumar, C. Kumuthini, B. Narasimhan,
and S. Boopalan, “Energy Consumption
Minimization in Cognitive Radio Mobile Ad-
Hoc Networks using Enriched Ad-hoc On-
demand Distance Vector Protocol,” in 2022
International Conference on Advanced
Computing Technologies and Applications,

 Journal of Theoretical and Applied Information Technology
15th May 2024. Vol.102. No 9

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3755

ICACTA 2022, 2022. doi:
10.1109/ICACTA54488.2022.9752899.

[43]. L. Mani, S. Arumugam, and R. Jaganathan,
“Performance Enhancement of Wireless
Sensor Network Using Feisty Particle Swarm
Optimization Protocol,” ACM Int. Conf.
Proceeding Ser., pp. 1–5, Dec. 2022, doi:
10.1145/3590837.3590907.

[44]. R. Jaganathan, V. Ramasamy, L. Mani, and
N. Balakrishnan, “Diligence Eagle
Optimization Protocol for Secure Routing
(DEOPSR) in Cloud-Based Wireless Sensor
Network,” Res. Sq., 2022, doi:
10.21203/rs.3.rs-1759040/v1.

[45]. J. Ramkumar, R. Vadivel, and B. Narasimhan,
“Constrained Cuckoo Search Optimization
Based Protocol for Routing in Cloud
Network,” Int. J. Comput. Networks Appl.,
vol. 8, no. 6, pp. 795–803, 2021, doi:
10.22247/ijcna/2021/210727.

[46]. J. Ramkumar, S. S. Dinakaran, M. Lingaraj,
S. Boopalan, and B. Narasimhan, “IoT-Based
Kalman Filtering and Particle Swarm
Optimization for Detecting Skin Lesion,” in
Lecture Notes in Electrical Engineering, K.
Murari, N. Prasad Padhy, and S.
Kamalasadan, Eds., Singapore: Springer
Nature Singapore, 2023, pp. 17–27. doi:
10.1007/978-981-19-8353-5_2.

[47]. J. Ramkumar and R. Vadivel, “Multi-
Adaptive Routing Protocol for Internet of
Things based Ad-hoc Networks,” Wirel. Pers.
Commun., vol. 120, no. 2, pp. 887–909, Apr.
2021, doi: 10.1007/s11277-021-08495-z.

