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ABSTRACT 
 

Sentiment analysis, a crucial component of natural language processing, aims to discern the underlying 
sentiment conveyed in textual data. This research explores the fusion of Amami Rabbit Optimization 
(ARO) with Logistic Regression (LR) to enhance sentiment analysis performance. ARO, inspired by the 
foraging behavior of Amami rabbits, offers a novel metaheuristic approach for optimizing model 
parameters, while LR provides a robust framework for sentiment classification. The proposed integration 
leverages the strengths of both methodologies to overcome challenges inherent in sentiment analysis, 
including feature selection, model training, and accuracy optimization. This study investigates the 
effectiveness of the ARO-LR hybrid approach through empirical experiments conducted on diverse 
datasets sourced from social media platforms and product reviews. Evaluation metrics such as precision, 
recall, F1-score, and accuracy are employed to assess the performance of the integrated model. Results 
indicate significant improvements in sentiment classification accuracy and robustness compared to 
traditional LR models. The findings highlight the efficacy of integrating metaheuristic optimization 
techniques with conventional machine learning algorithms for advancing sentiment analysis capabilities in 
real-world applications. 
Keywords: Sentiment, Reviews, Online Shopping, Classification, Amazon, Neural Network, Rabbit 

Optimization, Logistic Regression 
 
1. INTRODUCTION  

Online shopping, also known as e-
commerce, has revolutionized the way people shop 
for goods and services. It refers to the process of 
purchasing products or services over the internet 
through websites or mobile applications.[1] With 
the widespread availability of high- speed internet 
and the proliferation of digital devices, online 
shopping has become increasingly popular and 
convenient for consumers worldwide. One of the 
key advantages of online shopping is the 
convenience it offers.[2] Consumers can browse 
through a vast selection of products from the 
comfort of their own homes. They can compare 
prices, read product reviews, and make purchases at 
any time of day or night, without having to visit 
physical stores. This convenience is particularly 
beneficial for busy individuals or those who may 
have difficulty accessing traditional brick-and-
mortar stores[3]. 

 
Another benefit of online shopping is the 

ability to access a global marketplace. Through e-
commerce platforms, consumers can shop from 

retailers and sellers located anywhere in the world, 
giving them access to a wider variety of products 
and services than would be available locally. This 
global reach allows consumers to find unique or 
niche items that may not be readily available in 
their area. Online shopping also offers greater 
flexibility and customization for consumers[4]. 
Despite its many advantages, online shopping also 
presents challenges and concerns. Security and 
privacy are important considerations, as consumers 
must trust that their personal and financial 
information will be protected when making online 
transactions[5]. As technology continues to evolve 
and e-commerce platforms innovate, online 
shopping is likely to remain a dominant force in the 
global marketplace, shaping the way consumers 
shop for goods and services now and in the 
future[6]. 

 
Sentiment analysis, also known as opinion 

mining, is a computational technique used to 
analyze and interpret the sentiment or emotional 
tone expressed in textual data. It involves 
identifying and categorizing the sentiment 



 Journal of Theoretical and Applied Information Technology 
15th May 2024. Vol.102. No 9 

©   Little Lion Scientific  
 

ISSN: 1992-8645                                                                    www.jatit.org                                                    E-ISSN: 1817-3195 

 
3731 

 

conveyed in a piece of text as positive, negative, or 
neutral[7]. Sentiment analysis is commonly applied 
to various types of text data, including customer 
reviews, social media posts, news articles, and 
surveys. It is also valuable in political analysis and 
public opinion research[8]. By analyzing the 
sentiment expressed in news articles, social media 
discussions, and public forums, policymakers and 
political candidates can gauge public sentiment 
towards political issues, candidates, and policies. 
Sentiment analysis is used in financial markets to 
analyze news articles, social media discussions, and 
other textual data for insights into investor 
sentiment and market trends[9]. Traders and 
investors use sentiment analysis to make informed 
decisions and predict market movements based on 
sentiment indicators. 

 
Sentiment analysis plays a crucial role in 

extracting insights from textual data and 
understanding the prevailing sentiment or 
emotional tone within a given context. Its 
applications span across various industries and 
domains, helping businesses, organizations, and 
policymakers make informed decisions, improve 
customer satisfaction, and stay ahead of emerging 
trends[10]. Sentiment analysis plays a significant 
role in online shopping, shaping consumer 
experiences and influencing purchasing decisions. 
By analyzing customer reviews and social media 
mentions, businesses gain insights into customer 
satisfaction levels and product perceptions[11]. 
Positive sentiment signals indicate satisfied 
customers and can lead to increased sales and brand 
loyalty. Conversely, negative sentiment alerts 
businesses to potential issues or areas for 
improvement, allowing them to address customer 
concerns promptly. This proactive approach 
enhances the overall shopping experience, fosters 
trust, and strengthens relationships between 
businesses and consumers, ultimately driving 
success in the competitive online marketplace[12]. 
 
1.1. Problem Statement 

Challenges in sentiment analysis for online 
shopping arise due to the complexity and nuances 
of human language. Initially, ambiguity poses a 
challenge, as words or phrases can have multiple 
meanings depending on the context, leading to 
misinterpretation of sentiment. Sarcasm and irony 
are prevalent in online communication, making it 
difficult to accurately discern sentiment. Cultural 
and regional differences in language usage can 
impact the interpretation of sentiment, requiring a 
nuanced understanding of linguistic nuances across 

diverse demographics. Another challenge is the 
presence of noise in text data, such as spelling 
errors, abbreviations, and slang, which can hinder 
sentiment analysis accuracy. Finally the dynamic 
nature of language and evolving trends in online 
discourse present challenges in keeping sentiment 
analysis models up-to-date and relevant. 
Overcoming these challenges requires robust 
algorithms, extensive training data, and continual 
refinement to accurately capture and interpret 
sentiment in the context of online shopping. 

 
1.2. Motivation 

The motivation for this content stems from 
the increasing importance of sentiment analysis in 
various fields such as marketing, customer 
feedback analysis, and social media monitoring. 
Understanding how sentiment analysis models 
perform is crucial for researchers, practitioners, and 
businesses aiming to make informed decisions 
based on textual data. By evaluating the 
performance of sentiment analysis models using 
diverse metrics, this content seeks to provide 
valuable insights into their effectiveness and 
reliability, ultimately contributing to advancements 
in natural language processing and enhancing 
decision-making processes in real-world 
applications. 

 
1.3. Research Objective 

The objective is to develop robust 
sentiment analysis models capable of effectively 
addressing the challenges inherent in natural 
language processing. This includes devising 
algorithms and methodologies that can accurately 
interpret the nuanced aspects of human language, 
such as sarcasm, ambiguity, and cultural variations. 
The objective aims to mitigate the impact of rapidly 
evolving online communication platforms and the 
sheer volume of user- generated content by 
developing scalable and efficient sentiment analysis 
techniques. By overcoming these challenges, the 
objective seeks to enhance decision-making 
processes, gain deeper insights into public 
sentiment, and improve user experiences across 
various domains, including marketing, customer 
service, and social media analytics. Ultimately, the 
goal is to advance the field of sentiment analysis 
and contribute to the development of more 
reliable and accurate tools for understanding and 
interpreting human emotions expressed through 
text. 
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2. LITERATURE REVIEW 
“News Sentinel”[13] presents a pioneering 

approach. Employing entity recognition unveils the 
prominent subjects and entities involved in negative 
news narratives. Regression analysis then quantifies 
the impact of various factors on the prevalence of 
negative news, offering insights into the driving 
forces behind its dissemination. “Twitter 
Sentinels”[14] introduces an innovative approach to 
gauge public sentiment on the development of 
Rinca Island. Doc2Vec facilitates the conversion of 
text data into numerical vectors, enabling the 
analysis of Twitter content. SVM and logistic 
regression then categorize these vectors into 
sentiment classes, unveiling the overall sentiment 
trends. 
 

“FinTweet Analyzer”[15] integrates 
machine learning techniques to discern sentiment 
nuances within the financial discourse on Twitter. 
This model's working mechanism involves training 
machine learning classifiers on annotated 
financial tweet datasets, allowing it to generalize 
and accurately interpret sentiment in real-time 
tweets. “Sentiment Stock Master”[16] introduces a 
pioneering method to forecast stock prices by 
amalgamating sentiment scores from financial news 
with a Multi-Layer Perceptron (MLP) regressor. 
The model's working mechanism involves first 
extracting sentiment scores from financial news 
articles using natural language processing 
techniques. “Sentiment Word Refiner”[17] 
involves augmenting existing word embeddings 
with sentiment scores derived from sentiment 
lexicons or machine learning models. By 
integrating sentiment information directly into the 
word embeddings, the model learns to encode both 
the meaning and sentiment of words. 

 
“Deep-Sentiment Analyzer”[18] working 

mechanism involves the utilization of recurrent 
neural networks (RNNs) augmented with decision-
based mechanisms to capture sequential 
dependencies and make informed sentiment 
predictions. By incorporating decision-making 
processes within the recurrent neural network 
framework, Deep-Sentiment can effectively analyze 
sentiment in text data with higher accuracy and 
efficiency. “Aspect Sentiment Multilocal 
Learner”[19] a learning model involves 
incorporating local and global context-focusing 
mechanisms into the learning model. Local context 
focusing ensures the model attends to relevant 
aspects within each sentence, while global context 
focusing enables the consideration of broader 

discourse patterns and linguistic nuances across 
languages. 

 
“LexiCNN Review Analyzer”[20] 

involves encoding sentiment lexicon information 
into the CNN architecture, allowing the model to 
learn intricate patterns and nuances of sentiment 
expression within online reviews. “Fusion 
Commerce Analyst”[21] is an approach to 
understanding e-commerce product experiences 
through fusion sentiment analysis. The key 
contribution lies in amalgamating multiple 
sentiment analysis techniques to comprehensively 
explore customer perceptions and sentiments 
towards e-commerce products. 

 
“Sentiment Neural Aspect Analyzer”[22] 

involves incorporating sentiment lexicons or 
knowledge bases into the neural network 
architecture. By integrating this external 
knowledge, the model gains a deeper understanding 
of sentiment nuances related to specific aspects of 
text data. “Swarm Intellect Innovator”[23] spans 
from simple single-population algorithms 
mimicking social insect behaviors to advanced 
human-machine hybrid systems.These systems 
harness collective intelligence from both biological 
and artificial entities, enabling synergy between 
human intuition and machine computation. 

 
“BERT Sentiment Fusion”[24] involves 

fusing various BERT model variants to enhance 
sentiment classification accuracy. The working 
mechanism amalgamates pre-trained BERT models 
with task-specific fine-tuning techniques, 
leveraging the strengths of different BERT 
architectures. “Aspect Deep Onto Analyzer”[25] 
involves leveraging deep neural networks to 
capture intricate patterns in textual data while 
incorporating ontological knowledge to 
contextualize aspect-based sentiment analysis. 
“Financial News LSTM Analyst (FNLA)”[26] 
harnessing the sequential nature of financial news 
data and the memory retention capabilities of 
LSTM networks to capture nuanced sentiment 
dynamics. The working mechanism involves 
preprocessing financial news articles and feeding 
them into LSTM layers, which learn to extract 
temporal dependencies and sentiment patterns [28]-
[47]. 

 
“IntelliServe Emotion Sentinel (IES)”[27] 

developing a multi-task ensemble framework that 
simultaneously predicts both emotions and 
sentiments within customer conversations. The 



 Journal of Theoretical and Applied Information Technology 
15th May 2024. Vol.102. No 9 

©   Little Lion Scientific  
 

ISSN: 1992-8645                                                                    www.jatit.org                                                    E-ISSN: 1817-3195 

 
3733 

 

working mechanism involves leveraging ensemble 
learning techniques to combine the outputs of 
multiple models trained for emotion and sentiment 
analysis tasks. By jointly analyzing emotions and 
sentiments, the framework enhances the 
understanding of customer needs and sentiments, 
enabling more personalized and empathetic 
responses.  

 
3. AMAMI RABBIT OPTIMIZATION-

BASED LOGISTIC REGRESSION (ARO- 
LOGISENT) 

 
3.1. Logistic Regression model: 

A popular statistical approach in sentiment 
analysis, which entails deducing the underlying 
emotional tone of a document, is logistic 
regression. Determining if a piece of writing 
conveys neutral, positive, or negative feelings is the 
goal of sentiment analysis. Logistic Regression, 
despite its name, is not a regression technique but 
rather a classification algorithm utilized for binary 
classification tasks, such as sentiment analysis. 
Predicting the likelihood that an input falls into one 
of two categories, usually denoted as positive or 
negative emotion, is the crux of Logistic 
Regression. The logistic function also called the 
sigmoid function, is used in logistic regression to 
represent the likelihood of a binary outcome, as 
opposed to linear regression, which predicts 
continuous values.  

 
For probability modeling, this function 

converts all real-valued inputs to integers between 
zero and one. In sentiment analysis, the input 
features usually consist of various linguistic 
characteristics extracted from the text, such as word 
frequencies, n-grams (sequences of adjacent 
words), or sentiment lexicons. To gauge how likely 
it is that the text has a good or negative tone, these 
qualities act as predictors. 

 
The Logistic Regression model learns 

from a labeled dataset during the training phase. Its 
goal is to reduce the discrepancy between the actual 

class labels and the anticipated probabilities, 
therefore it tweaks its parameters accordingly. This 
process involves optimizing a cost function, 
typically the cross-entropy loss function, through 
techniques like gradient descent. Using the 
likelihood that each text corresponds to either a 
positive or negative sentiment class, the Logistic 
Regression model may categorize fresh texts once it 

has been trained. A class label is applied to the text 
by the model if the probability is greater than a 
predetermined threshold, which is typically 0.5. 

 
Despite its simplicity, Logistic Regression 

offers several advantages for sentiment analysis 
tasks. It is computationally efficient and relatively 
easy to interpret compared to more complex models 
like neural networks. Additionally, Logistic 
Regression can handle high-dimensional feature 
spaces effectively, making it suitable for processing 
text data with numerous features. Logistic 
Regression also has limitations. It assumes that the 
relationship between the input features and the 
output follows a linear decision boundary, which 
may not always hold for complex data distributions. 
Moreover, Logistic Regression is inherently limited 
to binary classification tasks and may struggle with 
multi-class sentiment analysis scenarios. 

 
To mitigate these limitations, practitioners 

often employ techniques like feature engineering to 
extract meaningful features from the text, or 
ensemble methods to combine multiple classifiers 
for improved performance. Moreover, 
incorporating domain-specific knowledge and 
leveraging larger datasets can enhance the model's 
effectiveness in capturing nuanced sentiment 
expressions. The steps involved in the process of 
sentiment analysis using Logistic Regression are as 
follows. 

 
3.1.1. Data Collection: 

 Data Collection, the cornerstone of the 
entire sentiment analysis pipeline, lays the 
foundation for robust model development and 
accurate sentiment classification. Data Collection, 
in essence, involves scouring various sources to 
amass a diverse and representative dataset 
encompassing text samples spanning a spectrum of 
sentiments. These sources may include social media 
platforms, product reviews, news articles, or any 
text-based content pertinent to the analysis domain. 
The collected data serves as the substrate upon 
which the subsequent stages of preprocessing, 
feature extraction, and model training will unfold. 
 

In Eq.(1), where 𝑁 denotes the total 
number of text samples gathered from different 
sources. Each 𝑥𝑖 represents a distinct text sample 
comprising words, phrases, or sentences expressing 
sentiments. 

 
The scale and diversity of the dataset play 

a pivotal role in shaping the efficacy of the 

𝐷𝑎𝑡𝑎 = {𝑥1, 𝑥2, … , 𝑥𝑁} (1) 
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sentiment analysis model. A larger dataset 
facilitates better generalization and enhances the 
model's ability to capture the intricacies of diverse 
linguistic expressions. Conversely, a narrow or 
biased dataset may lead to suboptimal model 
performance and skewed sentiment predictions. 
 

The quality and authenticity of the 
collected data hold paramount importance. 
Inaccurate or misleading data can introduce noise 
and bias, undermining the integrity of the sentiment 
analysis process. Hence, meticulous attention must 
be paid to ensure the credibility and relevance of 
the collected dataset. Expressed mathematically in 
Eq.(2), the quality of the collected data (𝑄𝐷𝑎𝑡𝑎)can 
be quantified using metrics such as: 

 
                   
                𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 S𝑎𝑚𝑝𝑙𝑒𝑠 
𝑄𝐷𝑎𝑡𝑎=  

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠      
                                                                       × 100%

   

(2) 

 
where the number of relevant samples represents 
the subset of data pertinent to the sentiment 
analysis task, and the total number of samples 
encompasses the entire dataset. 

 
Data Collection transcends mere 

aggregation; it necessitates annotation or labelling 
of the text samples with sentiment labels (e.g., 
positive, negative, or neutral). Annotation imbues 
the dataset with ground truth labels essential for 
supervised learning, enabling the model to learn the 
underlying patterns between text features and 
sentiment categories, the annotation process can be 
denoted as: 

 

𝐷𝑎𝑡𝑎 = {(𝑥1, 𝑦1), (𝑥2, 𝑦2), … , (𝑥𝑁, 𝑦𝑁)} 

 
          (3) 

 
In Eq.(3), where 𝑦𝑖 represents the sentiment label 
associated with the corresponding text sample 𝑥𝑖. 
 
3.1.2. Data Preprocessing: 

Data Preprocessing assumes the mantle of 
refining and reshaping the raw textual input into a 
standardized format conducive to subsequent 

analysis. This crucial step requires a series of 
operations aimed at mitigating noise, standardizing 
text representations, and preparing the data for 
feature extraction and model training. 
 

Text Cleaning: At the outset of Data 
Preprocessing, the focus converges on cleansing the 
raw text data of extraneous elements and artefacts 
that might obfuscate the underlying sentiment 
signals. Text Cleaning encompasses a repertoire of 
operations, including the removal of special 
characters, punctuation marks, numerical digits, 
and other non-alphabetic symbols that contribute 
little to the sentiment analysis task. Additionally, 
techniques such as lowercasing all text characters 
and stripping leading or trailing whitespace serve to 

standardize the text representations and alleviate 
spurious variations. In Eq.(4) the process of text 
cleaning can be encapsulated as: 
where 𝑥 denotes the raw text sample, and 𝑥𝑐𝑙𝑒𝑎𝑛 
represents the cleaned version of the text devoid of 
extraneous elements. 

 
Tokenization: After text cleaning, the text data 
undergoes tokenization, a pivotal operation that 
involves segmenting the continuous strings of text 
into discrete units of meaning, typically words or 
phrases. Tokenization facilitates granular analysis 
and feature extraction by breaking down the text 
into its constituent elements. Common tokenization 
strategies include whitespace tokenization, which 
segments text based on whitespace characters, and 
word-level tokenization, which splits text into 
individual words or tokens. Mathematically 
tokenization can be formalized as shown in Eq.(5). 

 
𝑥𝑡𝑜𝑘𝑒𝑛𝑠=𝑡𝑜𝑘𝑒𝑛𝑖𝑧𝑒(𝑥𝑐𝑙𝑒𝑎𝑛) (5) 

 

 

where 𝑥𝑡𝑜𝑘𝑒𝑛𝑠 represents the tokenized version of 
the cleaned text 𝑥𝑐𝑙𝑒𝑎𝑛. 

Stopword Removal: Stopwords, ubiquitous in 
natural language text, comprise common words such 
as 'the,' 'and,' 'is,' which convey little semantic 
meaning and often introduce noise into the 
sentiment analysis process. To mitigate their 
impact, Data Preprocessing entails the removal of 
stopwords from the tokenized text data. This 
operation streamlines the text representations, 
focusing the analysis on content-bearing words and 

phrases that carry significant sentiment cues. 
Stopword removal can be mathematically 
expressed shown in Eq.(6). 

 
where 𝑥𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑 represents the tokenized text data 
with stop words removed. 

𝑥𝑐𝑙𝑒𝑎𝑛 = 𝑐𝑙𝑒𝑎𝑛(𝑥)  (4) 

𝑥𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑 = 𝑟𝑒𝑚𝑜𝑣𝑒_𝑠𝑡𝑜𝑝𝑤𝑜𝑟𝑑𝑠(𝑥𝑡𝑜𝑘𝑒𝑛𝑠) 

 

  (6) 
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Lemmatization or Stemming: To further 
normalize the text representations and reduce 
lexical variations, Data Preprocessing often 
incorporates lemmatization or stemming 
techniques. Lemmatization involves reducing 
words to their base or dictionary form (lemmas), 
whereas stemming involves truncating words to 
their root form by removing affixes. These 
techniques ensure that different morphological 
variants of words are treated as a single entity, 
enhancing the consistency and interpretability of the 
text data. 
 

𝑥𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 = 𝑙𝑒𝑚𝑚𝑎𝑡𝑖𝑧𝑒(𝑥𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑) (7) 
 
In Eq.(7), where 𝑥𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 represents the 
normalized version of the filtered text data. Data 
Preprocessing lays the groundwork for subsequent 
analytical endeavours by refining the raw textual 
input into a standardized and sanitized format 
conducive to feature extraction and model training. 
Through a series of operations encompassing text 
cleaning, tokenization, stopword removal, and 
lemmatization or stemming, 
 

3.1.3. Feature Extraction: 

Feature Extraction assumes the mantle of 
transforming the processed text into a structured 
representation amenable to computational analysis. 
This pivotal step involves distilling the salient 
characteristics or features from the text data, which 
serve as input variables for subsequent model 
training and sentiment classification. 

 
Bag-of-Words Representation: A cornerstone of 
Feature Extraction in sentiment analysis is the Bag-
of-Words (BoW) representation, which 
encapsulates the frequency or occurrence of 
individual words across the entire corpus of text 
data. Each text sample is transformed into a high-
dimensional vector, where each dimension 
corresponds to a unique word in the vocabulary, 
and the value of each dimension represents the 
frequency of the corresponding word in the text 
sample. The BoW representation captures the 
lexical richness and distributional patterns of words 
within the text, enabling the sentiment analysis 
model to discern meaningful associations between 
word frequencies and sentiment categories. This 
BoW representation can be formalized shown in 
Eq.(8) in mathematical form. 
 

(𝑥) = [𝑓1, 𝑓2, … . , 𝑓𝑉]          (8) 

  

where 𝐵𝑜𝑊(𝑥) denotes the Bag-of-Words 
representation of the text sample 𝑥, and 𝑓𝑖 
represents the frequency of the 𝑖𝑡ℎ word in the 
vocabulary 𝑉. 
 
TF-IDF Representation: An extension of the BoW 
representation, the Term Frequency- Inverse 
Document Frequency (TF-IDF) scheme enhances 
the discriminatory power of individual words by 
weighing them based on their frequency within the 
text sample and across the entire corpus. Under this 
scheme, words that are frequent within a particular 
text sample but rare across the corpus are assigned 
higher weights, whereas common words that occur 
frequently across the corpus are down-weighted. 
The TF-IDF representation captures the saliency of 
words within the context of individual text samples, 
enabling the sentiment analysis model to prioritize 
content-bearing terms with higher discriminatory 
power. TF-IDF representation can be expressed in 
Eq.(9). 
. 

𝑇𝐹 − 𝐼𝐷𝐹(𝑥) = [𝑤1, 𝑤2, … , 𝑤𝑉] (9) 

where 𝑇𝐹 − 𝐼𝐷𝐹(𝑥) denotes the TF-IDF 
representation of the text sample 𝑥, and 𝑤𝑖 

represents the TF-IDF weight of the 𝑖𝑡ℎ word in the 
vocabulary 𝑉. 

Word Embeddings: Word embeddings have been 
a game-changer for sentiment analysis feature 
extraction in the past several years. Word 
Embeddings link words to dense, low- dimensional 
vectors in a continuous vector space, including 
semantic relationships and contextual information, 
in contrast to standard representations that regard 
words as discrete entities. Word embeddings model 
the syntactic and semantic features of real 
language, allowing words to be represented as 
proximal vectors in an embedding space based on 
their similarity in meaning or context. The model's 
capacity to detect semantic similarities and deduce 
sentiment from context is improved by this 
distributed representation. Word Embeddings can 
be mathematically represented as shown in Eq.(10). 

 
𝑊𝑜𝑟𝑑𝐸𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔𝑠(𝑥) = [𝑒1, 𝑒2, … , 𝑒𝑑]        (10) 

 
where 𝑊𝑜𝑟𝑑𝐸𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔𝑠(𝑥) denotes the Word 
Embeddings representation of the text sample 𝑥, 
and 𝑒𝑖represents the embedding vector of the 𝑖𝑡ℎ 
word in the text sample, with 𝑑 denoting the 
dimensionality of the embedding space. 

3.1.4. Splitting the Dataset: 
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Splitting the Dataset is crucial for assessing the 
generalization performance of the sentiment 
analysis model and guarding against overfitting or 
underfitting 
 
Training-Testing Split: The splitting of the dataset 
into a training set and a testing set is the 
fundamental process of splitting the dataset. The 
training set, comprising the majority of the data, 
serves as the substrate for model training, enabling 
the sentiment analysis model to learn the underlying 
patterns and associations between text features and 
sentiment categories. The testing set, on the other 
hand, remains isolated during the training phase 
and is reserved for evaluating the model's 
performance on unseen data. This partitioning 
scheme ensures that the model's effectiveness is 
assessed on data it has not been exposed to during 
training, thereby providing a robust estimate of its 
generalization performance. The training-testing 
split can be formalized and mathematically 
represented using. 
 
𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔𝑆𝑒𝑡, 𝑇𝑒𝑠𝑡𝑖𝑛𝑔𝑆𝑒𝑡 = 

𝑆𝑝𝑙𝑖𝑡𝐷𝑎𝑡𝑎𝑠𝑒𝑡(𝐷𝑎𝑡𝑎, 𝑡𝑟𝑎𝑖𝑛_𝑟𝑎𝑡𝑖𝑜) 

(11) 

 
where 𝑇𝑒𝑠𝑡𝑖𝑛𝑔𝑆𝑒𝑡 denotes the training subset of 
the dataset, 𝑇𝑒𝑠𝑡𝑖𝑛𝑔𝑆𝑒𝑡represents the testing 
subset, and 𝑡𝑟𝑎𝑖𝑛_𝑟𝑎𝑡𝑖𝑜 signifies the proportion of 
data allocated to the training set. 

 
Cross-Validation: Cross-Validation emerges as a 
complementary technique for assessing model 
performance and tuning hyperparameters. Cross-
validation involves iteratively partitioning the 
dataset into multiple subsets, or folds, and using 
each fold alternately as the testing set while the 
remaining folds serve as the training set. This 
iterative process yields multiple estimates of the 
model's performance, enabling more robust 
evaluations and mitigating the variability 
introduced by a single training-testing split. This 
Cross-Validation can be mathematically expressed 
in Eq.(12). 
 

𝐶𝑉𝑆𝑐𝑜𝑟𝑒𝑠 = 𝐶𝑟𝑜𝑠𝑠𝑉𝑎𝑙𝑖𝑑𝑎𝑡𝑒(𝑀𝑜𝑑𝑒𝑙, 𝐷𝑎𝑡𝑎,   

                                                              𝑛𝑢𝑚_𝑓𝑜𝑙𝑑𝑠) 

 (12) 
 

where 𝐶𝑉_𝑆𝑐𝑜𝑟𝑒𝑠denotes the performance scores 
obtained through cross-validation, 𝑀𝑜𝑑𝑒𝑙 
represents the sentiment analysis model under 
evaluation, and 𝑛𝑢𝑚_𝑓𝑜𝑙𝑑𝑠denotes the number of 
folds used in the cross-validation procedure. 
 
Validation Set: When training a model, it is 
sometimes helpful to use a third subset called the 

validation set to evaluate its performance and make 
adjustments to its hyperparameters. You may tweak 
the model settings on the validation set, which is 
separate from the training and testing sets so that 
the testing set stays clean. Model refinement and 
hyperparameter selection may be guided by regular 
evaluations of the model's performance on the 
validation set. This, in turn, improves the model's 
generalization performance. 
Mathematically, the validation set can be denoted 
as: 

𝑉𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛𝑆𝑒𝑡=𝑆𝑝𝑙𝑖𝑡𝑉𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛(𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔𝑆𝑒𝑡,  

                                                                                                        𝑣𝑎𝑙_𝑟𝑎𝑡𝑖𝑜)   (13)  

 
where 𝑉𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛𝑆𝑒𝑡 represents the validation 
subset of the training set, and 𝑣𝑎𝑙_𝑟𝑎𝑡𝑖𝑜 
signifies the proportion of data allocated to the 
validation set. 
Splitting the Dataset serves as a pivotal 
preparatory step in the sentiment analysis 
pipeline, enabling the assessment of model 
performance and generalization on unseen data. 
 

3.1.5. Model Training: 
After the dataset split into training and 

testing subsets, the focus now shifts towards 
training the sentiment analysis model on the 
training data to learn the underlying patterns and 
associations between text features and sentiment 
categories. 

 
Model Selection: Choosing the right sentiment 
analysis model is crucial when starting the Model 
Training process. The available computational 
resources, the size and type of the dataset, and the 
complexity of the sentiment analysis task determine 
which model is considered. Models range from 
deep learning architectures like Transformers and 
Recurrent Neural Networks (RNNs) to more 
traditional machine learning algorithms like 
Logistic Regression and Support Vector Machines 
(SVMs). The chosen model should strike a balance 
between complexity and interpretability, ensuring 
robust performance while remaining tractable for 
training and deployment. 
 

𝑀𝑜𝑑𝑒𝑙 = 𝑆𝑒𝑙𝑒𝑐𝑡𝑀𝑜𝑑𝑒𝑙(𝑇𝑎𝑠𝑘, 𝐷𝑎𝑡𝑎) (14) 

  
In Eq.(14), where 𝑀𝑜𝑑𝑒𝑙denotes the selected 
sentiment analysis model, 𝑇𝑎𝑠𝑘signifies the nature 
of the sentiment analysis task (e.g., binary 
classification, multi-class classification), and 
𝐷𝑎𝑡𝑎represents the training data used for model 
training. 
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Loss Function Optimization: After deciding on a 
model, the next step is to train it so that its 
parameters minimize a loss function. In 
classification tasks, this is usually the cross-entropy 
loss. Stochastic Gradient Descent (SGD) and Adam 
are two examples of gradient-based optimization 
algorithms that iteratively modify the model 
parameters according to the gradients of the loss 
functions about those parameters. This iterative 
process continues until convergence, where the 
model parameters converge to values that minimize 
the loss function and maximize predictive 
performance on the training data represented 
mathematically in Eq.(15). 
 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 = 𝐿(𝜃)    (15) 
where 𝐿(𝜃) denotes the loss function 
parameterized by the model parameters 𝜃, and 
the objective is to minimize the loss function 
through parameter updates. 
 
Hyperparameter Tuning: While training a model, 
it is common practice to optimize its 
hyperparameters, which control the model's 
behaviour and performance, in addition to its 
parameters. Learning rate, regularization strength, 
batch size, and parameters related to the network 
design are examples of hyperparameters in deep 
learning models. The goal of hyperparameter tuning 
is to minimise overfitting and optimize the 
model's performance on the validation set by 
adjusting the model's parameters. To efficiently 
explore the hyperparameter space, one can use 
techniques like grid search, random search, or 
Bayesian optimization. In Eq.(16), hyperparameter 
tuning can be represented mathematically. 
 
𝑂𝑝𝑡𝑖𝑚𝑎𝑙𝐻𝑦𝑝𝑒𝑟𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 = 

                   𝑇𝑢𝑛𝑒𝐻𝑦𝑝𝑒𝑟𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠(𝑀𝑜𝑑𝑒𝑙,  

                    𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔𝑆𝑒𝑡,  𝑉𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛𝑆𝑒𝑡) 

(16) 

 

where 𝑂𝑝𝑡𝑖𝑚𝑎𝑙𝐻𝑦𝑝𝑒𝑟𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 denotes the 
optimal configuration of hyperparameters, and 
𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔𝑆𝑒𝑡 and 𝑉𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛𝑆𝑒𝑡 represent the 
training and validation subsets of the dataset, 
respectively. 
 
3.1.6. Model Evaluation: 
Performance Metrics: Performance metrics, 
which quantify the model's efficacy in sentiment 
classification, are the backbone of model 
evaluation. Many binary sentiment analysis tasks 
use common performance indicators such as F1-

score, recall, accuracy, precision, and area under 
the receiver operating characteristic curve (ROC-
AUC). The model's accuracy in positive and 
negative sentiment classification, detection of real 
positives and negatives, and reduction of false 
positives and negatives are all uncovered by these 
measures. Mathematically, performance metrics can 
be formalized and depicted in Eq.(17) – Eq.(21). 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (17) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (18) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (19) 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (20) 

𝑅𝑂𝐶 − 𝐴𝑈𝐶 = 𝑇𝑃𝑅(𝑓𝑝𝑟)𝑑𝑓𝑝𝑟 (21) 

where 𝑇𝑃, 𝑇𝑁, 𝐹𝑃, and 𝐹𝑁 denote true positives, 
true negatives, false positives, and false negatives, 
respectively, and 𝑇𝑃𝑅 represents the true positive 
rate. 
 
Confusion Matrix: The confusion matrix is an 
additional tool for Model Evaluation. It shows the 
model's predictions compared to the ground truth 
labels in a tabular format. For a complete picture of 
how well the model classified various sentiment 
categories, the confusion matrix summed together 
the counts of true positives, true negatives, false 
positives, and false negatives. To gain a better 
understanding of the model's performance, one may 
derive additional metrics like recall, accuracy, and 
precision from the confusion matrix. The confusion 
matrix can be denoted as Eq.(22). 

 

𝐶𝑜𝑛𝑓𝑢𝑠𝑖𝑜𝑛𝑀𝑎𝑡𝑟𝑖𝑥 =
𝑇𝑃 𝐹𝑃
𝐹𝑁 𝑇𝑁

 (22) 

Cross-Validation Results: It is common practice 
in Model Evaluation to aggregate findings from 
cross-validation to gain more robust estimates of 
performance, in addition to evaluating the model on 
a single training-testing split. To further evaluate 
the model's generalizability and variance over 
distinct data subsets, cross-validation produces  
performance metrics across many dataset folds. 
Practitioners can get more accurate estimations of 
the model's actual performance by averaging 
performance measures from several folds. These 
cross-validation results can be represented as 
Eq.(23). 
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𝐶𝑉

= [𝑀𝑒𝑡𝑟𝑖𝑐 , 𝑀𝑒𝑡𝑟𝑖𝑐 , … , 𝑀𝑒𝑡𝑟𝑖𝑐 ] 
(23) 

where 𝑀𝑒𝑡𝑟𝑖𝑐  represents the performance metric 
obtained from the 𝑖 fold of cross-validation. 
 
3.1.7. Hyperparameter Tuning: 
Grid Search: Grid search is an essential tool for 
hyperparameter tuning; it entails scanning a 
predetermined space of hyperparameters to find the 
best possible setting that makes the model work as 
well as possible. Grid search involves specifying a 
list of potential values for each hyperparameter and 
then training and evaluating the model for every 
conceivable combination of those values. To find 
the hyperparameter setting that performs best on the 
validation set, practitioners can use grid search, 
which methodically explores the whole search 
space. Mathematically, grid search can be 
represented as Eq. (24). 
 

𝑂𝑝𝑡𝑖𝑚𝑎𝑙𝐻𝑦𝑝𝑒𝑟𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 = 

𝐺𝑟𝑖𝑑𝑆𝑒𝑎𝑟𝑐ℎ(𝑀𝑜𝑑𝑒𝑙, 𝐻𝑦𝑝𝑒𝑟𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑆𝑝𝑎𝑐𝑒, 𝑉𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛𝑆𝑒𝑡

   

(24) 

Where 𝑂𝑝𝑡𝑖𝑚𝑎𝑙𝐻𝑦𝑝𝑒𝑟𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 denotes the 
optimal configuration of hyperparameters, 
𝐻𝑦𝑝𝑒𝑟𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑆𝑝𝑎𝑐𝑒 represents the 
predefined search space for hyperparameters, and 
𝑉𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛𝑆𝑒𝑡 signifies the validation subset of the 
dataset. 
 
Random Search: It explores the entire 
hyperparameter space systematically, random 
search samples hyperparameters from predefined 
distributions and evaluates the model's 
performance with randomly selected 
configurations. Random search offers advantages in 
scenarios where the hyperparameter space is high-
dimensional or where certain hyperparameters have 
a greater impact on model performance than others. 

By randomly sampling hyperparameters, random 
search efficiently explores the hyperparameter 
space while providing comparable performance to 
grid search. This random search can be expressed 
mathematically depicted in Eq.(25) 
 

𝑂𝑝𝑡𝑖𝑚𝑎𝑙𝐻𝑦𝑝𝑒𝑟𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 = 

𝑅𝑎𝑛𝑑𝑜𝑚𝑆𝑒𝑎𝑟𝑐ℎ
𝑀𝑜𝑑𝑒𝑙, 𝐻𝑦𝑝𝑒𝑟𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟

𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛,
𝑉𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛𝑆𝑒𝑡

(25) 

 

Where 𝐻𝑦𝑝𝑒𝑟𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 represents 
the distribution from which hyperparameters are 
sampled. 
 
Bayesian Optimization: Iteratively searching for 
ideal hyperparameters is guided by Bayesian 
optimization, another sophisticated strategy for 
hyperparameter tuning. This method uses 
probabilistic models to describe the underlying goal 
function, such as model performance. By 
adaptively selecting the next set of hyperparameters 
to assess based on knowledge gathered from prior 
evaluations, Bayesian optimization focuses the 
search on attractive parts of the hyperparameter 
space. By efficiently exploring the hyperparameter 
space while leveraging probabilistic modeling, 
Bayesian optimization offers advantages in terms of 
sample efficiency and convergence speed. This 
Bayesian optimization can be denoted as Eq.(26). 
 

𝑂𝑝𝑡𝑖𝑚𝑎𝑙𝐻𝑦𝑝𝑒𝑟𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 = 

𝐵𝑎𝑦𝑒𝑠𝑖𝑎𝑛𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛
𝑀𝑜𝑑𝑒𝑙, 𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛

𝐻𝑦𝑝𝑒𝑟𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑆𝑝𝑎𝑐𝑒

(26

) 

where 𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 represents the function 
to be optimized (e.g., model performance). 
 
3.1.8. Predictions: 
Forward Pass: At the core of Predictions lies the 
forward pass, where new text samples are fed into 
the trained sentiment analysis model to obtain 
predictions about their sentiment. During the 
forward pass, the input text undergoes the 
same preprocessing steps applied during training, 
including tokenization, stopword removal, and 
lemmatization or stemming. The preprocessed text 
is then transformed into a structured representation 
(e.g., Bag-of- Words, TF-IDF, Word Embeddings) 
compatible with the input format expected by the 
model. Finally, the model computes the predicted 
sentiment label based on the learned associations 
between text features and sentiment categories. The 
forward pass can be represented in Eq.(27). 
where 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠 represents the predicted 
sentiment labels for the input text 𝑥𝑝𝑟𝑒𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑, 
obtained through the trained sentiment analysis 
model. 
 
Probability Estimation: In addition to predicting 
the sentiment label for each text sample, the 
sentiment analysis model may also output 
probabilities or confidence scores indicating the 
likelihood of each sentiment category. Probability 
estimation provides a more nuanced understanding 
of the model's confidence in its predictions, 

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠 = 𝑀𝑜𝑑𝑒𝑙(𝑥𝑝𝑟𝑒𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑) (27) 
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enabling practitioners to assess the uncertainty 
associated with each prediction. Higher 
probabilities for a particular sentiment category 
signify greater confidence in the model's prediction, 
while lower probabilities indicate higher 
uncertainty. Probability estimation can be depicted 
mathematically in Eq(28). 
 

𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠 =  
         m𝑜𝑑𝑒𝑙_𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦(𝑥𝑝𝑟𝑒𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑) 

(28) 

 
where 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠 represents the predicted 
probabilities for each sentiment category, obtained 
through the trained sentiment analysis model. 
 
Post-processing: Post-processing may involve 
sentiment aggregation, where predictions for 
multiple text samples are aggregated to derive an 
overall sentiment score or sentiment distribution. 
Sentiment analysis results may be subjected to 
further analysis or visualization to uncover 
underlying trends, patterns, or anomalies in the 
sentiment of the text data. 
 

𝑆𝑒𝑛𝑡𝑖𝑚𝑒𝑛𝑡𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑖𝑜𝑛 =  
𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠(𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠) 

(29) 

 
In Eq.(29), where 𝑆𝑒𝑛𝑡𝑖𝑚𝑒𝑛𝑡𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑖𝑜𝑛 
represents the aggregated sentiment score or 
distribution derived from the model's predictions. 
 
3.1.9. Post-processing: 
Sentiment Aggregation: Sentiment aggregation 
enables practitioners to obtain a high-level 
summary of the sentiment dynamics within the 
dataset, facilitating comparative analysis and trend 
identification. Common aggregation techniques 
include averaging sentiment scores, computing 
sentiment distributions, or aggregating sentiment 
labels based on predefined rules or thresholds is 
depicted in Eq.(30). 
 

𝑆𝑒𝑛𝑡𝑖𝑚𝑒𝑛𝑡𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑖𝑜𝑛 = 
 𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠(𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠) 

 

 (30) 

 

 

where 𝑆𝑒𝑛𝑡𝑖𝑚𝑒𝑛𝑡𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑖𝑜𝑛 represents the 
aggregated sentiment score or distribution derived 
from the model's predictions. 
 
Sentiment Analysis Visualization: In addition to 
numerical summaries, Post-Processing may involve 
visualizing sentiment analysis results through 
various graphical representations. Sentiment 

analysis visualizations provide intuitive insights 
into the sentiment dynamics within the dataset, 
enabling practitioners to identify patterns, outliers, 
or correlations visually. Common visualization 
techniques include bar charts, line plots, pie charts, 
and heatmaps, which depict sentiment distributions, 
trends over time, or sentiment correlations with 
other variables. Mathematically, sentiment analysis 
visualization can be represented as Eq.(31): 
 
𝑉𝑖𝑠𝑢𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛=𝑉𝑖𝑠𝑢𝑎𝑙𝑖𝑧𝑒(𝑥,  
                                           𝑆𝑒𝑛𝑡𝑖𝑚𝑒𝑛𝑡𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑖𝑜𝑛) 

(31) 

 
where 𝑉𝑖𝑠𝑢𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 represents the graphical 
representation of sentiment analysis results 
derived from the input text data 𝑥 and the 
aggregated sentiment scores or distributions 
 
Sentiment Analysis Reporting: Furthermore, 
Post-Processing may involve generating 
comprehensive reports summarizing the sentiment 
analysis results and insights derived from the text 
data. Sentiment analysis reports provide 
stakeholders with a detailed overview of sentiment 
trends, key findings, and actionable 
recommendations, facilitating informed decision-
making and strategic planning. Reports may include 
descriptive statistics, sentiment distributions, 
sentiment trends over time, sentiment correlations 
with other variables, and qualitative insights 
derived from text analysis. 

 

𝑅𝑒𝑝𝑜𝑟𝑡 = 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑅𝑒𝑝𝑜𝑟𝑡(𝑥,  
𝑆𝑒𝑛𝑡𝑖𝑚𝑒𝑛𝑡𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑖𝑜𝑛,𝑉𝑖𝑠𝑢𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛) 
 

 
(32) 

In Eq.(32), where 𝑅𝑒𝑝𝑜𝑟𝑡 represents the 
comprehensive report summarizing sentiment 
analysis results and insights derived from the input 
text data 𝑥, aggregated sentiment scores or 
distributions, and sentiment analysis visualizations. 
 
3.1.10. Deployment: 
Model Integration: At the core of Deployment lies 
model integration, where the trained sentiment 
analysis model is seamlessly integrated into 
existing software or infrastructure. Model 
integration involves embedding the model within 
production systems, such as web applications, 
mobile apps, or data pipelines, to enable real-time 
sentiment analysis on incoming text data. 
Integration may require developing application 
programming interfaces (APIs), libraries, or 
software packages that expose the sentiment 
analysis functionality to downstream systems or 



 Journal of Theoretical and Applied Information Technology 
15th May 2024. Vol.102. No 9 

©   Little Lion Scientific  
 

ISSN: 1992-8645                                                                    www.jatit.org                                                    E-ISSN: 1817-3195 

 
3740 

 

end-users. Mathematically, model integration can 
be denoted as Eq.(33). 
 

𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑒𝑑𝑀𝑜𝑑𝑒𝑙=𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑒𝑀𝑜𝑑𝑒𝑙(𝑇𝑟𝑎𝑖𝑛𝑒𝑑𝑀𝑜𝑑𝑒𝑙)      (33) 

 
where 𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑒𝑑𝑀𝑜𝑑𝑒𝑙 represents the sentiment 
analysis model seamlessly integrated into 
production systems. 
 
Scalability and Performance Optimization: 
Scalability measures may include deploying the 
model on distributed computing frameworks or 
cloud infrastructure to distribute computational 
load across multiple nodes. Performance 
optimization techniques, such as batch processing, 
caching, or parallelization, may be employed to 
accelerate sentiment analysis inference and reduce 
latency in processing incoming text data. 
 

𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑑𝑀𝑜𝑑𝑒𝑙=    
     𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 
      (𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑒𝑑𝑀𝑜𝑑𝑒𝑙) 

     (34) 

 
In Eq.(34), where 𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑑𝑀𝑜𝑑𝑒𝑙 represents the 
sentiment analysis model optimized for scalability 
and performance. 
 
Monitoring and Maintenance: Deployment 
involves establishing monitoring and maintenance 
mechanisms to ensure the ongoing reliability and 
performance of the deployed sentiment analysis 
model. Monitoring may involve tracking key 
performance indicators (KPIs), such as throughput, 
latency, and accuracy, to detect anomalies or 
deviations from expected behaviour. Maintenance 
activities may include periodic model retraining, 
updating, or reevaluation to adapt to evolving data 
distributions, concept drift, or changing business 
requirements represented mathematically in 
Eq.(35). 
 
𝑀𝑜𝑛𝑖𝑡𝑜𝑟𝑖𝑛𝑔𝑅𝑒𝑠𝑢𝑙𝑡𝑠 = 𝑀𝑜𝑛𝑖𝑡𝑜𝑟 
(𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑑𝑀𝑜𝑑𝑒𝑙, 𝐼𝑛𝑐𝑜𝑚𝑖𝑛𝑔𝐷𝑎𝑡𝑎) 

(35) 

 
where 𝑀𝑜𝑛𝑖𝑡𝑜𝑟𝑖𝑛𝑔𝑅𝑒𝑠𝑢𝑙𝑡𝑠 represents the results 
of monitoring the deployed sentiment analysis 
model's performance on incoming data. 
 
 
 
 
 
 
 

Functional Procedure 1: Logistic 
Regression 

procedure LogisticRegression(X, y, 
learning_rate, num_iterations): initialize 
weights w and bias b to zeros or small 
random values normalize or standardize 
the input features X (optional) 
for i = 1 to num_iterations 
     do: compute z = 
     dot_product(w, X) + b 

compute predicted probabilities y_hat 
= sigmoid(z) 

compute binary_cross_entropy_loss =   

   -sum(y *     
log(y_hat) + (1 - y) * log(1 - y_hat))         
/ num_examples 
compute dw = dot_product(X, (y_hat - 
y)) / num_examples compute db = 
sum(y_hat - y) / num_examples 
update weights: w = w - learning_rate * 
dw update bias: b = b - learning_rate * 
db 

return w, b 
 
function sigmoid(z):  
return 1 / (1 + exp(-z)) 
 
procedure Predict(X, w, b): 
compute z = dot_product(w, X) + b 
compute predicted probabilities y_hat = 
sigmoid(z) return y_hat 
 
procedure Evaluate(y_true, y_pred): 
# Evaluate performance using appropriate 
metrics such as accuracy, precision, recall, 
or F1-score 

 
Algorithm 1 depicts the steps involved in training a 
Logistic Regression model, making predictions, and 
evaluating its performance. The LogisticRegression 
procedure trains the model on input features X and 
corresponding labels y using a specified learning 
rate and number of iterations. The Predict 
procedure predicts the labels for new data using the 
trained parameters w and b. Finally, the evaluation 
procedure evaluates the model's performance using 
appropriate metrics. 
 

3.2. Amami Rabbit Optimization (ARO) 
Amami Rabbit Optimization (ARO) is a 

metaheuristic optimization algorithm inspired by 
the unique characteristics and behaviours of the 
Amami rabbit (Pentalagusfurnessi), an endangered 



 Journal of Theoretical and Applied Information Technology 
15th May 2024. Vol.102. No 9 

©   Little Lion Scientific  
 

ISSN: 1992-8645                                                                    www.jatit.org                                                    E-ISSN: 1817-3195 

 
3741 

 

species native to the Amami Islands in Japan. ARO 
leverages the natural foraging and mating 
behaviours of the Amami rabbit to iteratively 
explore the solution space and find optimal 
solutions to optimization problems 

 Initialization: Start with a set of possible 
answers to the optimization issue, called a 
population of candidate solutions. The initial 
population should reflect the diversity of the 
solution space and may be generated randomly 
or through other heuristic methods. 

 Foraging Behavior: Emulate the foraging 
behaviour of Amami rabbits, which 
involves searching for food sources in 
their natural habitat. In ARO, candidate 
solutions explore the solution space by 
iteratively adjusting their positions based 
on the quality of nearby solutions. 

 Mating Behavior: Model the mating 
behavior of Amami rabbits, which 
involves selecting mates based on 
desirable traits. In ARO, candidate 
solutions exchange information with other 
solutions through crossover and mutation 
operations to generate offspring with 
potentially improved fitness. 

 Social Interaction: Capture the social 
interaction among Amami rabbits, which 
involves sharing information and learning 
from other individuals in the population. 
In ARO, candidate solutions communicate 
and exchange information to collectively 
improve the overall quality of solutions in 
the population. 

 Fitness Evaluation: Evaluate the fitness 
of each candidate solution based on its 
performance in solving the optimization 
problem. The fitness function assesses 
how well a solution meets the objectives 
and constraints of the problem, guiding the 
selection of solutions for further 
exploration and reproduction. 

 Selection: Select candidate solutions for 
reproduction based on their fitness values, 
favoring solutions with higher fitness for 
mating and producing offspring. Selection 
mechanisms such as roulette wheel 
selection or tournament selection may be 
employed to maintain diversity and 
prevent premature convergence. 

 Offspring Generation: Generate 
offspring by applying crossover and 
mutation operations to selected parent 
solutions. Crossover combines information 
from two parent solutions to produce 
offspring with characteristics inherited 

from both parents, while mutation 
introduces random changes to promote the 
exploration of new regions in the solution 
space. 

 Replacement : Replace inferior solutions 
in the population with newly generated 
offspring, ensuring that the population 
maintains its size and diversity over 
successive generations. Replacement 
strategies may prioritize solutions with 
higher fitness or employ elitism to 
preserve the best solutions encountered so 
far. 

 Convergence Check: Check for 
convergence criteria to determine whether 
the optimization process should terminate. 
Convergence may be determined based on 
the stability of the population, the number 
of iterations, or the improvement in fitness 
over successive generations. 

 Termination: Terminate the optimization 
process if convergence criteria are met or 
if a predefined maximum number of 
iterations is reached. The best solution 
encountered during the optimization 
process is returned as the final solution to 
the optimization problem. 

 
3.2.1. Initialization: 

Initialization of a population of candidate 
solutions, laying the foundation for subsequent 
exploration and optimization. In this step, a diverse 
set of potential solutions is generated to represent 
different points in the solution space. The 
initialization process aims to provide an initial pool 
of solutions that reflects the variability and 
complexity of the optimization problem being 
addressed depicted mathematically in Eq.(36). 
 
𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 = {𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛1,   

                      𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛2, … ,𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑁} 

 
 
           (36) 

where   𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛   represents   the   initial   
population   of   candidate   solutions,   and 
𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑖denotes the 𝑖𝑡ℎ the solution in the 
population. 

The size of the population 𝑁 is a crucial 
parameter in ARO, as it determines the diversity 
and exploration capabilities of the optimization 
process. Although the computational complexity 
may rise, the solution space may be explored more 
thoroughly with a bigger population size. 
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The initialization process may involve 
generating candidate solutions randomly within 
predefined ranges or using heuristic methods 
tailored to the characteristics of the optimization 
problem. For example, solutions may be generated 
by randomly sampling from uniform or Gaussian 
distributions, or by employing techniques such as 
Latin hypercube sampling or quasi-random 
sequences to ensure thorough coverage of the 
solution space. 

 
𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑖 = 𝑅𝑎𝑛𝑑𝑜𝑚𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 

(𝐿𝑜𝑤𝑒𝑟𝐵𝑜𝑢𝑛𝑑, 𝑈𝑝𝑝𝑒𝑟𝐵𝑜𝑢𝑛𝑑) 

    (37) 

 
Where 𝑅𝑎𝑛𝑑𝑜𝑚𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 generates a 
candidate solution within the specified lower and 
upper bounds of the solution space. 
 

The initialization process may incorporate 
domain-specific knowledge or constraints to guide 
the generation of candidate solutions. For example, 
in optimization problems involving physical 
parameters or engineering design variables, 
solutions may be constrained to feasible regions of 
the solution space to ensure practicality and 
validity. 

 

𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑖 = 𝐻𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 

(𝑃𝑟𝑜𝑏𝑙𝑒𝑚𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠) 

 
(38) 

 
where 𝐻𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 employs domain-
specific heuristics or knowledge to generate 
candidate solutions tailored to the characteristics of 
the optimization problem. 
 
3.2.2. Foraging Behavior: 

During this Foraging Behaviour step, 
candidate solutions iteratively adjust their positions 
based on the quality of nearby solutions, akin to 
how Amami rabbits navigate their environment to 
find food sources. The foraging behaviour in ARO 
can be represented mathematically in Eq.(39). 

 
𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑖(𝑡 + 1) = 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑖(𝑡) +  

                                          ∆𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑖 

         (39) 
 

where 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑖(𝑡) represents the position of the 
𝑖𝑡ℎsolution at time 𝑡, and ∆𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑖 denotes the 
incremental adjustment or movement of the 
solution towards more promising regions of the 
solution space. 
 

The incremental adjustment ∆𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑖 is 
determined by factors such as the attractiveness of 
neighbouring solutions, the gradient of the fitness 

landscape, and stochastic exploration mechanisms. 
Solutions may move towards regions of higher 
fitness, explore uncharted areas of the solution 
space, or exploit promising regions identified 
during previous iterations. 

 

∆𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑖 = 𝛼 × 𝐴𝑡𝑡𝑟𝑎𝑐𝑡𝑖𝑣𝑒𝑛𝑒𝑠𝑠𝑖 + 

                                             𝛽 × 𝐸𝑥𝑝𝑙𝑜𝑟𝑎𝑡𝑖𝑜𝑛𝑖 

 
 (40) 
 

In Eq.(40), where 𝛼 and 𝛽 represent scaling factors 
that control the relative influence of attractiveness 
and exploration, and 𝐴𝑡𝑡𝑟𝑎𝑐𝑡𝑖𝑣𝑒𝑛𝑒𝑠𝑠𝑖 and 
𝐸𝑥𝑝𝑙𝑜𝑟𝑎𝑡𝑖𝑜𝑛𝑖represent the attractiveness and 
exploration components influencing the movement 
of the 𝑖𝑡ℎ solution. 
 
The attractiveness component 
𝐴𝑡𝑡𝑟𝑎𝑐𝑡𝑖𝑣𝑒𝑛𝑒𝑠𝑠𝑖reflects the quality or fitness of 
neighbouring solutions relative to the current 
solution. Solutions are attracted towards 
neighbouring solutions with higher fitness values, 
promoting the exploitation of promising regions in 
the solution space. 

𝐴𝑡𝑡𝑟𝑎𝑐𝑡𝑖𝑣𝑒𝑛𝑒𝑠𝑠 =
𝑓 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒
 (41) 

 
In Eq.(41), where 𝑓 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛  represents the 
fitness of the neighbouring solution 𝑗, and 
𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒  denotes the Euclidean distance between 
the 𝑖 solution and the neighbouring solution 𝑗. 
 

The exploration component 𝐸𝑥𝑝𝑙𝑜𝑟𝑎𝑡𝑖𝑜𝑛   
introduces stochasticity or randomness into the 
movement of solutions, facilitating the exploration 
of diverse regions of the solution space and 
preventing premature convergence. 
 

𝐸𝑥𝑝𝑙𝑜𝑟𝑎𝑡𝑖𝑜𝑛 = 𝑅𝑎𝑛𝑑𝑜𝑚𝐸𝑥𝑝𝑙𝑜𝑟𝑎𝑡𝑖𝑜𝑛 (42) 

In Eq.(42), where 𝑅𝑎𝑛𝑑𝑜𝑚𝐸𝑥𝑝𝑙𝑜𝑟𝑎𝑡𝑖𝑜𝑛 represents 
a random perturbation or exploration mechanism 
that introduces stochasticity into the movement of 
solutions. 
 

3.2.3. Mating Behavior: 
In this phase, it focuses on emulating the 

mating behaviour of Amami rabbits, which 
involves selecting mates based on desirable traits. 
In the context of optimization, mating behaviour 
corresponds to the exchange of information 
between candidate solutions to produce offspring 
with potentially improved fitness. Mathematically, 
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the mating behaviour in ARO can be represented in 
Eq.(43): 

𝑂𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔

= 𝐶𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟(𝑃𝑎𝑟𝑒𝑛𝑡 , 𝑃𝑎𝑟𝑒𝑛𝑡 ) 
(43) 

where 𝑂𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔  represents the offspring 
generated by crossing over the genetic material of 
two parent solutions 𝑃𝑎𝑟𝑒𝑛𝑡  and 𝑃𝑎𝑟𝑒𝑛𝑡 . 
Crossover involves combining characteristics from 
both parents to produce offspring with potentially 
improved traits. 

𝑂𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔 = 𝑀𝑢𝑡𝑎𝑡𝑖𝑜𝑛(𝑂𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔 ) (44) 

In Eq.(44), where 𝑂𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔 undergoes mutation 
to introduce random variations or changes, 
promoting the exploration of novel regions in the 
solution space. Mutation helps prevent premature 
convergence and facilitates the discovery of diverse 
solutions. 

 
The crossover and mutation operations 

aim to diversify the population of candidate 
solutions and explore new regions of the solution 
space. Crossover enables the exchange of genetic 
material between parent solutions, facilitating the 
combination of beneficial traits from both parents 
in the offspring represented mathematically in 
Eq.(45). 

𝐶𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟(𝑃𝑎𝑟𝑒𝑛𝑡 , 𝑃𝑎𝑟𝑒𝑛𝑡 )

= 𝑂𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔 
(45) 

where 𝑂𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔 represents the offspring 
generated by crossing over the genetic material of 
𝑃𝑎𝑟𝑒𝑛𝑡   and 𝑃𝑎𝑟𝑒𝑛𝑡 , incorporating 
characteristics from both parents. 

Mutation introduces random changes or 
perturbations to the offspring's genetic material, 
promoting the exploration of novel solutions and 
preventing stagnation in the optimization process. 
𝑀𝑢𝑡𝑎𝑡𝑖𝑜𝑛(𝑂𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔)

= 𝑀𝑢𝑡𝑎𝑡𝑒𝑑𝑂𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔 
(46) 

In Eq.(46), where 𝑀𝑢𝑡𝑎𝑡𝑒𝑑𝑂𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔 represents 
the offspring with randomly introduced variations 
or mutations, facilitating the exploration of new 
regions in the solution space. 
 
3.2.4. Social Interaction: 

Social interaction in ARO involves 
communication and exchange of information 
between solutions to collectively improve the 
overall quality of solutions in the population. 
Which is Mathematically represented in Eq.(47). 

𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟

= 𝑆𝑒𝑙𝑒𝑐𝑡𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟(𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 ) 
(47) 

where 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟   represents a neighbouring 
solution selected by the 𝑖 𝑡ℎ𝑒 solution in the 
population, and 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 denotes the subset of 
the population within the vicinity of the 𝑖  
solution. SelectNeighbor may employ mechanisms 
such as neighbourhood search or nearest-neighbour 
selection to identify neighbouring solutions. 

𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛𝑖 = 

𝐸𝑥𝑐ℎ𝑎𝑛𝑔𝑒𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛(𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑖, 

𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑖) 

 

 

  

(48) 

 

In Eq.(48), where 𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 represents the 
information exchanged between the 𝑖 solution and 
its neighbouring solution. ExchangeInformation 
facilitates the sharing of knowledge, insights, or 
solutions between neighbouring solutions to 
promote collective learning and improvement. 
 

𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑖 = 𝑈𝑝𝑑𝑎𝑡𝑒𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛(𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑖,  

                                    𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛𝑖) 

(49) 
 

In Eq.(49), where 𝑈𝑝𝑑𝑎𝑡𝑒𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛 integrates the 
exchanged information into the 𝑖𝑡ℎ the solution, 
enabling it to adapt and improve based on insights 
gained from neighbouring solutions. Updating 
solutions based on exchanged information enhances 
the overall quality of solutions in the population and 
facilitates convergence towards better solutions. 
𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 = 𝑈𝑝𝑑𝑎𝑡𝑒𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 
                     (𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛, 𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛) 

 

(50) 

In Eq.(50), where 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 represents the 
updated population of candidate solutions after 
social interaction, and 𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 encompasses 
the exchanged information between solutions. 
UpdatePopulation integrates the exchanged 
information into the entire population, collectively 
improving the overall quality of solutions and 
promoting convergence towards optimal solutions. 
 
3.2.5. Fitness Evaluation: 
Fitness evaluation serves as a crucial step in 
guiding the selection and reproduction of solutions 
based on their quality or fitness. In ARO, solutions 
are evaluated based on their ability to meet the 
objectives and constraints of the optimization 
problem, with higher fitness values indicating 
superior performance. The fitness evaluation 
process in ARO can be represented in Eq.(51). 
 
𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑖 = (𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑖)                                      (51)                                      
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where 𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑖 represents the fitness of the 𝑖𝑡ℎ the 
solution in the population, and 

(𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑖) denotes the fitness function that 
evaluates the performance of the solution in solving 
the optimization problem. The fitness function may 
be problem-specific and assess various criteria such 
as accuracy, efficiency, or cost-effectiveness. 

𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛𝑖 = (𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛, 𝐹𝑖𝑡𝑛𝑒𝑠𝑠)             (52)                               
In Eq.(52), where 𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛𝑖 represents the 
selection probability of the 𝑖𝑡ℎsolution in the 
population, determined based on its fitness relative 
to other solutions in the population. Select employs 
selection mechanisms such as roulette wheel 
selection, tournament selection, or elitism to choose 
solutions for reproduction based on their fitness 
values depicted in Eq.(53). 

𝑃𝑎𝑟𝑒𝑛𝑡𝑠=𝑆𝑒𝑙𝑒𝑐𝑡𝑃(𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛,𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛)  (53)                
where 𝑃𝑎𝑟𝑒𝑛𝑡𝑠 represents the selected parent 
solutions chosen for reproduction, based on their 
selection probabilities determined by their fitness 
values. The purpose of Select Parents is to increase 
the likelihood of selecting solutions with a higher 
fitness level to reproduce. 

𝑂𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔 = 𝑅𝑒𝑝(𝑃𝑎𝑟𝑒𝑛𝑡𝑠)                 (54)                                
In Eq.(54), where 𝑂𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔 represents the 
offspring generated by reproducing the selected 
parent solutions. Reproduction involves crossover 
and mutation operations, where characteristics from 
parent solutions are combined to produce offspring 
with potentially improved fitness. 
 
 
3.2.6. Selection: 
The selection of candidate solutions for 
reproduction is based on their fitness values. 
Selection is a critical step in guiding the 
evolutionary process of ARO, determining which 
solutions will contribute their genetic material to 
the next generation. By favoring solutions with 
higher fitness values, selection promotes the 
propagation of desirable traits and facilitates the 
convergence towards optimal solutions. 
Mathematically, the selection process in ARO can 
be represented in Eq.(55). 

𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛 =
𝐹𝑖𝑡𝑛𝑒𝑠𝑠

∑ 𝐹𝑖𝑡𝑛𝑒𝑠𝑠
 

         

(55) 

where 𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛𝑖 represents the selection 
probability of the 𝑖𝑡ℎ the solution in the population, 
and 𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑖denotes the fitness of the 𝑖𝑡ℎ solution. 
The selection probability is computed as the ratio of 
the fitness of the solution to the sum of fitness 
values across all solutions in the population. 

                                              𝑖 
𝐶𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑖 = ∑𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛𝑘 

                                                𝑘=1 
 (56) 

In Eq.(56), where 𝐶𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑖 
represents the cumulative selection probability up 
to the 𝑖𝑡ℎ solution. Cumulative probabilities are 
computed to facilitate the selection of solutions 
using techniques such as roulette wheel selection or 
stochastic universal sampling. 

𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠 = 

𝑅𝑜𝑢𝑙𝑒𝑡𝑡𝑒𝑊ℎ𝑒𝑒𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛(𝑃𝑜𝑝𝑢𝑙𝑎𝑡

𝑖𝑜𝑛, 𝐶𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦) 

           
(57) 

In Eq.(57), where 𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠 represents 
the candidate solutions selected for reproduction 
using roulette wheel selection. Roulette wheel 
selection assigns a selection probability to each 
solution based on its fitness and selects solutions 
probabilistically, favouring solutions with higher 
fitness values depicted in Eq.(58). 

where 𝑂𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔 represents the offspring 
generated by reproducing the selected candidate 
solutions. Reproduction involves crossover and 
mutation operations, where characteristics from 
selected parent solutions are combined to produce 
offspring with potentially improved fitness. 
 
3.2.7. Offspring Generation: 
Offspring generation is a vital step in the 
evolutionary process of ARO, as it facilitates the 
exploration of new solution space regions and the 
propagation of desirable traits from parent solutions 
to the next generation. By combining characteristics 
from selected parent solutions, offspring are created 
with the potential for improved fitness and 
diversity. Mathematically, the offspring generation 
process in ARO can be represented in Eq.(59). 

𝑂𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔𝑖 = 𝐶𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟(𝑃𝑎𝑟𝑒𝑛𝑡1,  

                                                      𝑃𝑎𝑟𝑒𝑛𝑡2)                       (59) 
where 𝑂𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔𝑖 represents the offspring 
generated by crossing over the genetic material of 
two parent solutions 𝑃𝑎𝑟𝑒𝑛𝑡1 and 𝑃𝑎𝑟𝑒𝑛𝑡2. 
Crossover involves combining characteristics from 
both parents to produce offspring with potentially 
improved traits. 

𝑀𝑢𝑡𝑎𝑡𝑒𝑑𝑂𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔𝑖 = 𝑀𝑢𝑡𝑎𝑡𝑖𝑜𝑛 

                                     (𝑂𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔𝑖)                    (60) 
In Eq.(60), where 𝑀𝑢𝑡𝑎𝑡𝑒𝑑𝑂𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔𝑖 represents 
the offspring with randomly introduced variations 
or mutations. Mutation introduces random changes 
or perturbations to the offspring's genetic material, 

𝑂𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔 = 
𝑅𝑒𝑝𝑟𝑜𝑑𝑢𝑐𝑒(𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠) 

          (58) 
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promoting the exploration of novel solution space 
regions and preventing premature convergence. 

  
            𝑂𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔 = 

{𝑀𝑢𝑡𝑎𝑡𝑒𝑑𝑂𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔1,  

𝑢𝑡𝑎𝑡𝑒𝑑𝑂𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔2, … , 𝑀𝑢𝑡𝑎𝑡𝑒𝑑𝑂 

𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔𝑁} 

 

(61) 

In Eq.(61), where 𝑂𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔 represents the 
population of offspring generated through crossover 
and mutation operations. The offspring population 
consists of newly created solutions with 
characteristics inherited from parent solutions, as 
well as random variations introduced through 
mutation. 

𝑁𝑒𝑥𝑡𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 = 

𝐶𝑜𝑚𝑏𝑖𝑛𝑒(𝑃𝑜𝑝𝑢𝑙𝑡𝑎𝑖𝑜𝑛, 𝑂𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔) 

          
(62) 

In Eq.(62), where 𝑁𝑒𝑥𝑡𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 represents the 
next generation of solutions obtained by combining 
the parent solutions with the offspring population. 
Combining parent solutions with offspring ensures 
the continuation of the evolutionary process, with 
the offspring population contributing new genetic 
material to the population. 

3.2.8. Replacement: 
In ARO the process of replacement occurs, where 
inferior solutions in the population are replaced 
with newly generated offspring. By removing 
inferior solutions and introducing newly generated 
offspring, ARO ensures the continuous 
improvement and adaptation of the population 
towards better solutions. The replacement process 
in ARO can be represented in Eq.(63). 
 

𝑅𝑒𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 = 

𝑆𝑒𝑙𝑒𝑐𝑡𝑅𝑒𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡𝐶𝑎𝑛𝑑𝑖

𝑑𝑎𝑡𝑒𝑠(𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛, 

𝑂𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔) 

(63) 

 
In Eq.(63), where 𝑅𝑒𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 
represents the candidate solutions selected for 
replacement based on predefined criteria. Select 
Replacement Candidates identify inferior solutions 
in the population that are to be replaced with newly 
generated offspring depicted in Eq.(64). 
 

𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑁𝑒𝑤 = 

𝑅𝑒𝑝𝑙𝑎𝑐𝑒(𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛, 

𝑟𝑒𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠, 

𝑂𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔) 

(64) 

where 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑁𝑒𝑤 represents the updated 
population after replacement, where inferior 
solutions have been replaced with newly generated 

offspring. Replace combines the parent solutions 
with the offspring population, ensuring the 
continuity of the evolutionary process and the 
preservation of diversity within the population is 
represented mathematically in Eq.(65). 
 

𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 = 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛  (65) 

where 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 is updated to reflect the changes 
made during the replacement process. The updated 
population now consists of a mixture of parent 
solutions and newly generated offspring, 
maintaining the diversity and quality of solutions in 
the population. 
 

𝐵𝑒𝑠𝑡𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛 = 𝑒𝑙𝑒𝑐𝑡𝐵𝑒𝑠𝑡𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛 

                                       (𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛)                  (66) 
In Eq.(66), where 𝐵𝑒𝑠𝑡𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛 represents the best 
solution encountered in the population, selected 
based on its fitness value. As a benchmark for 
measuring optimization success, Select Best 
Solution finds the solution in the updated population 
with the greatest fitness value. 

 
3.2.9. Convergence Check: 

The convergence of the optimization 
process is assessed to determine whether a 
satisfactory solution has been found or if further 
iterations are required. Convergence checking is 
essential for monitoring the progress of the 
optimization algorithm and ensuring that it 
terminates when the desired convergence criteria 
are met. By evaluating convergence, ARO can 
prevent unnecessary computational effort and 
efficiently allocate resources towards the most 
promising areas of the solution space. The 
convergence check in ARO can be represented in 
Eq.(67). 

 
𝐵𝑒𝑠𝑡𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝐶𝑢𝑟𝑟𝑒𝑛𝑡=   
                 𝑆𝑒𝑙𝑒𝑐𝑡𝐵𝑒𝑠𝑡𝑆𝑜(𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛) (67) 
where 𝐵𝑒𝑠𝑡𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝐶𝑢𝑟𝑟𝑒𝑛𝑡 represents the best 
solution encountered in the current population, 
selected based on its fitness value. 
SelectBestSolution identifies the solution with the 
highest fitness value from the population, serving 
as a reference point for evaluating convergence. 
∆𝐹𝑖𝑡𝑛𝑒𝑠𝑠 = 𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑃𝑟𝑒𝑣𝑖𝑜𝑢𝑠 –  
                𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝐶𝑢𝑟𝑟𝑒𝑛𝑡                (68) 
In Eq.(68), where ∆𝐹𝑖𝑡𝑛𝑒𝑠𝑠 represents the change 
in fitness between the previous and current 
iterations of the optimization process. A decrease in 
𝛥𝐹𝑖𝑡𝑛𝑒𝑠𝑠 indicates that the fitness of the best 
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solution has improved, suggesting progress towards 
convergence. 
𝐶𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛=|𝛥𝐹𝑖𝑡𝑛𝑒𝑠𝑠|<  (69)                                

In Eq.(69), where 𝐶𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛 
represents the convergence criterion, which is 
satisfied when the change in fitness between 
iterations falls below a predefined threshold 𝜖. The 
convergence criterion serves as a termination 
condition for the optimization algorithm, indicating 
that the optimization process has converged to a 
satisfactory solution represented mathematically in 
Eq.(70). 

𝑇𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛=𝑇𝑟𝑢  (70)                                    

where 𝑇𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛 is a boolean 
variable that is set to true when the convergence 
criterion is met, indicating that the optimization 
process can be terminated. Terminate Optimization 
serves as a flag to signal the algorithm to stop 
further iterations once convergence is achieved. 
 
3.2.10. Termination: 

The termination of the optimization 
process occurs when the convergence criteria have 
been met or when a predefined stopping condition 
is satisfied. Termination is a vital step in the ARO 
algorithm as it signifies the end of the optimization 
process and determines when to halt further 
iterations. By terminating the algorithm 
appropriately, ARO ensures computational 
efficiency and prevents unnecessary resource 
consumption. The termination of ARO can be 
represented mathematically in Eq.(71). 
 
𝐶𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛=|𝛥𝐹𝑖𝑡𝑛𝑒𝑠𝑠|<𝜖   (71)
                          
where 𝐶𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛 represents the 
convergence criterion, which is satisfied when the 
change in fitness between iterations falls below a 
predefined threshold 𝜖. This criterion indicates that 
the optimization process has converged to a 
satisfactory solution, and further iterations are 
unnecessary. 

𝑇𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛 = 𝑇𝑟𝑢𝑒     (72)                                             

In Eq.(72), where 𝑇𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛 is a 
boolean variable that is set to true when the 
convergence criterion is met, indicating that the 
optimization process can be terminated. Terminate 
Optimization serves as a flag to signal the 
algorithm to stop further iterations once 
convergence is achieved depicted in Eq.(73). 

𝑆𝑡𝑜𝑝𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛                                           (73)                                                              

where 𝑆𝑡𝑜𝑝𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 represents any additional 
stopping conditions defined by the user or specific 
to the optimization problem. These conditions 
could include reaching a maximum number of 
iterations, exceeding a computational budget, or 
meeting domain-specific requirements. 

𝑇𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛 = 𝑇𝑟𝑢𝑒                (74)                                            

In Eq.(74), where 𝑇𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛 is set 
to true when any of the stopping conditions are met, 
indicating that the optimization process should be 
terminated. By evaluating all stopping conditions, 
ARO ensures that the optimization process stops 
when any of the predefined criteria are satisfied. 

Functional Procedure 2: ARO 

Procedure 
AmamiRabbitOptimization(objective_function, 
num_rabbits, num_iterations): 
     initialize rabbit_population with num_rabbits      
   rabbits randomly distributed in the search 

space 
   for iteration = 1 to num_iterations do: 
      for each rabbit in rabbit_population do:             

                                                                                                                                                                                                                explore_phase(rabbit)  
evaluate_fitness(rabbit)  
update_local_best(rabbit)  
update_global_best(rabbit) 

  move phase(rabbit_population) 
 return global_best_solution 

procedure explore_phase(rabbit): 
randomly select a neighbor solution within a 

certain radius from the current position of the  
rabbit 

evaluate_fitness of the neighbor solution 
if neighbor_solution is better than 

current_solution then: 
  move rabbit to neighbor_solution 

else if neighbor_solution is worse and meets 
the acceptance criterion then: 

move rabbit to neighbor_solution with 
probability based on temperature or other 
criteria 

procedure move_phase(rabbit_population): 
calculate the movement direction for each 

rabbit based on its local best and global best  
solutions 

update the position of each 
rabbit using the movement 
direction and step size  
apply boundary constraints 
if necessary 

procedure evaluate_fitness(rabbit): 
     compute the fitness value of the rabbit using 
the objective  function 
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This procedure outlines the main phases of 
the Amami Rabbit Optimization algorithm, 
including exploration, movement, fitness 
evaluation, and updating of local and global best 
solutions. During each iteration, rabbits explore the 
search space, update their positions, and improve 
their solutions based on local and global 
information. Finally, the algorithm returns the 
global best solution found after the specified 
number of iterations. 
 

3.3. Fusion of ARO with Logistic Regression 
(ARO-LogiSent) : 

In recent years, sentiment analysis has 
gained significant attention in various domains such 
as marketing, social media monitoring, and 
customer feedback analysis. One approach to 
sentiment analysis involves combining the strengths 
of evolutionary algorithms, such as Amami Rabbit 
Optimization (ARO), with machine learning 
techniques like logistic regression. This fusion aims 
to leverage the optimization capabilities of ARO 
and the predictive power of logistic regression to 
develop a robust sentiment analysis model. 

ARO-LogiSent integrates the ARO 
algorithm with logistic regression to perform 
sentiment analysis on textual data. The ARO 
component is responsible for optimizing the feature 
space and hyperparameters of the logistic 
regression model to maximize its performance in 
sentiment classification tasks. 
 
Data Collection : Initially labelled textual data for 
sentiment analysis is collected from various 
sources, such as social media platforms, customer 
reviews, or product descriptions. The dataset 
consists of text samples labelled with sentiment 
classes. 

 Data Preprocessing: The collected data 
undergoes preprocessing steps, including 
tokenization, lowercasing, stop word 
removal, and stemming or lemmatization. 
This step ensures that the text data is 
normalized and cleaned for further 
analysis. 

 Feature Extraction: Feature extraction 
involves transforming the preprocessed 
text data into numerical feature vectors 
that can be used as input to the logistic 
regression model. Techniques such as bag-
of- words, TF-IDF (Term Frequency-
Inverse Document Frequency), or word 
embeddings may be employed to represent 
the textual data as feature vectors. 

 Splitting the Dataset: The dataset is 
divided into training, validation, and 
testing sets to facilitate model training, 
validation, and evaluation. Typically, the 
majority of the data is allocated to the 
training set, with smaller portions reserved 
for validation and testing. 

 Model Training: The logistic regression 
model is trained using the training dataset. 
ARO is employed to optimize the 
hyperparameters of the logistic regression 
model, such as the regularization 
parameter and feature selection. 

 Model Evaluation: The trained logistic 
regression model is evaluated using the 
validation dataset to assess its performance 
in sentiment classification. ARO-LogiSent 
aims to maximize evaluation metrics such 
as accuracy, precision, recall, and F1 score 
through iterative optimization. 

 Hyperparameter Tuning: ARO 
optimizes the hyperparameters of the 
logistic regression model based on the 
performance metrics obtained during 
model evaluation. This step aims to fine-
tune the model's parameters to achieve 
better sentiment classification results. 

 Prediction: Once the logistic regression 
model is trained and optimized, it is used 
to make predictions on unseen data, such 
as the testing dataset or new incoming text 
samples. The model assigns sentiment 
labels (e.g., positive, negative) to the input 
text based on its learned patterns. 

 Post-Processing: Post-processing involves 
analyzing the model predictions and 
refining them if necessary. This step may 
include sentiment aggregation, sentiment 
scoring, or incorporating domain- specific 
rules to improve the accuracy of sentiment 
analysis results. 

 Deployment: The trained and optimized 
logistic regression model is deployed into 
production environments, where it can be 
used to perform real-time sentiment 
analysis on incoming textual data. The 
deployed model enables businesses to gain 
insights into customer sentiments and 
make informed decisions accordingly. 

 
ARO-LogiSent combines the optimization 
capabilities of ARO with the predictive power of 
logistic regression to develop a robust sentiment 
analysis model. By integrating evolutionary 
algorithms with machine learning techniques, 
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ARO-LogiSent offers an effective approach to 
sentiment analysis that can be applied across 
various domains. 
 
Functional Procedure for the Fusion of ARO 

and Logistic Regression 
// Define logistic regression function 

def logistic_regression(X_train, y_train, 
X_test): 

// Train logistic regression model model = 
LogisticRegression() model.fit(X_train, 
y_train) 

 
// Predict sentiment labels for test data 
y_pred = model.predict(X_test) 
return y_pred 

 
// Define ARO optimization function 

def 
amami_rabbit_optimization(objective_functio
n, num_rabbits, num_iterations): 

// Initialize rabbit population randomly 

rebbit_population = 
np.random.rand(num_rabbits, 
num_features) 

for iteration in range(num_iterations): for 
rabbit in rabbit_population: 

// Explore phase explore_phase(rabbit) 

// Evaluate fitness 

fitness = objective_function(rabbit) 

// Update local best 
update_local_best(rabbit, fitness) 

// Update global best 
update_global_best(rabbit, fitness) 

// Move phase 
move_phase(rabbit_population) 

// Return global best solution return 
global_best_solution 

// Define explore phase def 
explore_phase(rabbit): 

// Define exploration strategy, e.g., random 
walk return explored_solution 

// Define move phase 

def move_phase(rabbit_population): 

// Define movement strategy, e.g., update 
positions based on local and global best 
return updated_population 

// Define objective function for sentiment 
analysis def objective_function(rabbit): 

// Extract features from rabbit solution 

X_train, y_train, X_test = 
extract_features(rabbit) 

// Perform logistic regression and evaluate 
performance y_pred = 
logistic_regression(X_train, y_train, X_test) 

// Compute performance metric, 
e.g., accuracy fitness = 
compute_fitness(y_test, y_pred) 
return fitness 

// Define the function to extract 
features from rabbit solution def 
extract_features(rabbit): 

// Implement feature extraction 
method return X_train, y_train, 
X_test 

// Define function to compute 
fitness def 
compute_fitness(y_true, y_pred): 

// Implement performance metrics, 
e.g., accuracy return fitness 

// Define function to update local 
best solution def 
update_local_best(rabbit, fitness): 

// Update local best solution if 
fitness improves return 
local_best_solution 

// Define function to update global 
best solution def 
update_global_best(rabbit, 
fitness): 

// Update global best solution if 
fitness improves return 
global_best_solution 

 
This algorithm integrates ARO optimization with 
logistic regression for sentiment analysis. It defines 
functions for logistic regression, ARO optimization 
phases (explore and move), the objective function 
(for sentiment analysis), feature extraction, fitness 
computation, and updating of local and global best 
solutions. The ARO algorithm iteratively optimizes 
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the logistic regression model parameters to improve 
sentiment analysis performance. 
3.3.1. Advantages of ARO-LogiSent: 

Infusing Amami Rabbit Optimization 
(ARO) with Logistic Regression for Sentiment 
Analysis, known as ARO-LogiSent, presents 
several advantages: 

 Enhanced Accuracy: ARO-LogiSent 
leverages the optimization capabilities of 
ARO to fine- tune the parameters of 
logistic regression, resulting in a sentiment 
analysis model with improved accuracy. 
By iteratively optimizing the model's 
parameters, ARO-LogiSent can effectively 
capture the nuances of sentiment in textual 
data, leading to more accurate predictions. 

 Efficient Feature Selection: ARO-
LogiSent employs ARO to select relevant 
features from the textual data, eliminating 
redundant or noisy features that may 
negatively impact the performance of the 
sentiment analysis model. This feature 
selection process enhances the efficiency 
of the logistic regression model by 
focusing on the most informative aspects 
of the input data. 

 Robustness to Noise: ARO-LogiSent's 
integration of ARO helps mitigate the 
effects of noise in the data by optimizing 
the logistic regression model's parameters 
robustly. By iteratively refining the 
model's parameters, ARO-LogiSent can 
better handle noisy or ambiguous textual 
inputs, resulting in more reliable sentiment 
analysis outcomes. 

 Flexibility and Adaptability: ARO-
LogiSent offers flexibility in adapting to 
different domains and datasets. The ARO 
component allows the sentiment analysis 
model to adapt to the characteristics of the 
input data, making it suitable for various 
applications such as social media 
monitoring, customer feedback analysis, 
and product sentiment analysis. 

 Scalability: ARO-LogiSent is scalable and 
can accommodate large datasets with ease. 
The parallel processing capabilities of 
ARO enable efficient optimization of the 
logistic regression model's parameters, 
even when dealing with massive amounts 
of textual data. This scalability makes 
ARO-LogiSent well-suited for deployment 
in real-world scenarios where large-scale 
sentiment analysis is required. 

 

4.  ABOUT DATASET 
 
The Amazon Review Data (2018) about 

the Home and Kitchen category represents a 
significant subset of the broader Amazon review 
dataset. With a substantial volume of 6,898,955 
reviews, this dataset offers a comprehensive 
glimpse into consumer sentiments and preferences 
regarding various products and services within the 
Home and Kitchen domain. Each review within this 
dataset serves as a valuable piece of feedback from 
consumers, expressing their opinions, experiences, 
and satisfaction levels with the products they have 
purchased and used. As such, the dataset 
encompasses a diverse range of products, including 
but not limited to kitchen appliances, home decor 
items, furniture, and cleaning supplies. 
 

Analyzing this dataset provides insights 
into consumer preferences, product performance, 
and market trends within the Home and Kitchen 
category. Researchers, analysts, and businesses can 
leverage this data to understand consumer behavior, 
identify popular products, and make informed 
decisions regarding product development, 
marketing strategies, and inventory management. 
 

The Amazon Review Data (2018) for 
Home and Kitchen constitutes a rich and valuable 
resource for sentiment analysis, market research, 
and business intelligence within the e- commerce 
domain. Its substantial size and granularity make it 
a valuable asset for studying consumer behavior 
and preferences in the context of home-related 
products and services. 

 
Table 1. Field Description 

Field Name Description 

Field Name Description 

Review ID Unique identifier for each 
review 

Product ID Unique identifier for each 
product 

Reviewer ID Unique identifier for each 
reviewer 

Review Text Textual content of the 
review 

Star Rating Rating given by the 
reviewer (1 to 5 stars) 

Review Date Date when the review was 
posted 
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Helpful Votes Number of helpful votes 
received on the review 

Total Votes Total number of votes 
received on the review 

Verified Purchase Indicates if the reviewer 
purchased the product from 
Amazon 

Product Category Category of the product 

Product 
Subcategory 

Subcategory of the product 

 
5. PERFORMANCE METRICS 

 
Sentiment analysis, also known as opinion 

mining, is the computational task of determining 
the sentiment expressed in a piece of text, whether 
it's positive, negative, or neutral. Evaluating the 
performance of sentiment analysis models is crucial 
for assessing their effectiveness in accurately 
classifying sentiments. Performance metrics 
provide quantitative measures of how well a model 
performs in sentiment classification tasks. 
Commonly used performance metrics include 
precision, recall, classification accuracy, F-
measure, Fowlkes– Mallows Index, and Matthews 
Correlation Coefficient. 
 

Before delving into the specific metrics, 
it's essential to understand the basic concepts 
behind them. In sentiment analysis, predictions are 
typically classified as either positive or negative. 
True positives (TP) are instances where the model 
correctly predicts positive sentiment, while true 
negatives (TN) are instances where the model 
correctly predicts negative sentiment. False 
positives (FP) occur when the model incorrectly 
predicts positive sentiment, and false negatives 
(FN) occur when the model incorrectly predicts 
negative sentiment. 
 Precision: Precision measures the proportion 

of correctly predicted positive sentiments out 
of all instances classified as positive by the 
model. It indicates how often the model 
correctly identifies positive sentiments. Higher 
precision implies fewer false positives, which 
are instances incorrectly labelled as positive. 

 Recall: Recall, also known as sensitivity, 
measures the proportion of correctly predicted 
positive sentiments out of all instances of true 
positive sentiments in the dataset. It gauges 
how effectively the model captures all positive 
sentiments present. Higher recall suggests 
fewer missed positive sentiments. 

 Classification Accuracy: Classification 
accuracy quantifies the overall correctness of 
sentiment predictions made by the model. It 
represents the proportion of correctly classified 
instances, including both true positives and true 
negatives, among all instances in the dataset. 

 F-Measure: F-measure, the harmonic mean of 
precision and recall, provides a balanced 
measure of model performance. It considers 
both false positives and false negatives, 
offering a comprehensive evaluation of model 
accuracy. A higher F- measure indicates better 
precision and recall balance. 

 Fowlkes–Mallows Index: The Fowlkes–
Mallows Index assesses the similarity between 
predicted positive instances and actual positive 
instances. It measures how well the model 
clusters predicted positive sentiments 
compared to true positive sentiments. Higher 
values indicate a stronger agreement between 
predicted and actual positive sentiments. 

 Matthews Correlation Coefficient (MCC): 
MCC evaluates the quality of binary 
classifications, considering true and false 
positives and negatives. It ranges from -1 to 1, 
with higher values indicating better prediction 
quality. MCC accounts for imbalanced datasets 
and provides insights into the overall 
performance of the model. 

 
These performance metrics offer valuable insights 
into the effectiveness of sentiment analysis models, 
allowing researchers and practitioners to assess 
model accuracy, identify strengths and weaknesses, 
and make informed decisions to improve model 
performance. 
 
6. RESULTS AND DISCUSSION 
 
6.1. Precision and Recall Analysis 

Precision and recall analysis is crucial in 
evaluating the performance of sentiment analysis 
models. Precision measures the proportion of 
correctly predicted positive sentiments out of all 
instances classified as positive by the model, while 
recall measures the proportion of correctly 
predicted positive sentiments out of all instances of 
true positive sentiments in the dataset. the precision 
of the sentiment analysis models varies 
significantly. IES demonstrates the lowest precision 
at 58.949%, followed by FNLA at 69.909%, and 
ARO- LOGI leads with 81.701%. A higher 
precision indicates a lower rate of false positive 
predictions, meaning that ARO-LOGI exhibits the 
highest accuracy in classifying positive sentiments. 
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Figure 1. Precision And Recall 

 
The recall values indicate the ability of the 

models to capture all positive sentiments present in 
the dataset. ARO-LOGI achieves the highest recall 
rate of 78.877%, followed by FNLA at 71.163%, 
and IES with the lowest recall rate of 69.510%. 
Figure 1. depicts the obtained results of Precesion 
and Recall. These findings suggest that ARO-LOGI 
excels in identifying positive sentiments 
comprehensively, making it a promising model for 
sentiment analysis tasks. Table 2 shows the average 
performance of ARO-LONGI with the comparison 
of IES and FNLA. 
 

Table 2. Precision And Recall 

Classification 
Algorithms 

     PREC RCLL 

IES 58.949 69.510 

FNLA 69.909 71.163 

ARO-LOGI 81.701 78.877 

 
6.2. Classification Accuracy and F-Measure 
Analysis 

Classification accuracy is a fundamental 
metric that measures the overall correctness of 
predictions made by a model. It quantifies the 
proportion of correctly classified instances, 
including both true positives and true negatives, 
among all instances in the dataset. F- measure, on 
the other hand, is the harmonic mean of precision 
and recall and provides a balanced measure of 
model performance. The obtained results of 
Classification Accuracy and F-Measure are depicted 
in Figure 2. 
 

 
Figure 2. Classification Accuracy And F-Measure 

 
In the provided data, the ARO-LOGI 

model exhibits the highest classification accuracy 
of 80.268%, followed by FNLA (69.397%) and IES 
(63.090%). This indicates that ARO-LOGI achieves 
the highest proportion of correctly classified 
instances compared to the other models. Similarly, 
when considering F-measure, ARO-LOGI again 
outperforms the other models with a score of 
78.877%, followed by FNLA (71.163%) and IES 
(69.510%). These results suggest that ARO-LOGI 
demonstrates superior overall performance in 
accurately classifying sentiments compared to IES 
and FNLA shown in Table 3. 

 
Table 3. Classification Accuracy And F-Measure 

Classification 
Algorithms 

CL-AC F-MSR 

IES 63.090 63.795 

FNLA 69.397 70.531 

ARO-LOGI 80.268 80.264 

 

6.3. Fowlkes–Mallows Index and Matthews 
Correlation Coefficient Analysis.  

Fowlkes–Mallows Index (FMI) and 
Matthews Correlation Coefficient (MCC) are two 
important metrics used to evaluate the 
performance of sentiment analysis models. 
ARO- LOGI demonstrates the highest FMI at 
80.276%, followed by FNLA at 70.533%, and 
IES with the lowest FMI at 64.012%. A higher 
FMI indicates a stronger agreement between the 
predicted positive instances and the actual positive 
instances, highlighting the effectiveness of ARO-
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Figure 3. Fowlkes–Mallows Index And Matthews 
Correlation Coefficient 

 
ARO-LOGI achieves the highest MCC 

score of 60.586%, indicating a strong correlation 
between the model's predictions and the actual 
sentiments. FNLA follows with an MCC of 
38.715%, while IES has the lowest MCC at 
27.045%. This suggests that ARO-LOGI provides 
the most accurate and reliable sentiment predictions 
among the three models, making it a promising 
choice for sentiment analysis tasks. The obtained 
average result is shown in Table 4. 
 

Table 4. Fowlkes–Mallows Index And Matthews 
Correlation Coefficient 

Classification 

Algorithms 

 
FMI 

 
MCC 

IES 64.012 27.045 

FNLA 70.533 38.715 

ARO-LOGI 80.276 60.586 
 

7. CONCLUSION 
The evaluation of sentiment analysis 

models using various performance metrics provides 
valuable insights into their effectiveness and 
reliability. Precision and recall analysis reveals the 
accuracy and completeness of positive sentiment 
predictions, with ARO-LOGI exhibiting the highest 
precision and recall rates among the models 
considered. The Fowlkes– Mallows Index and 
Matthews Correlation Coefficient offer 
comprehensive assessments of model performance, 
with ARO-LOGI demonstrating superior agreement 
between predicted and actual positive instances and 
a strong correlation between predictions and actual 

sentiments. ARO-LOGI emerges as the most 
promising sentiment analysis model, outperforming 
IES and FNLA across multiple metrics. Its high 
precision, recall, FMI, and MCC scores signify its 
ability to accurately classify positive sentiments 
and provide reliable predictions. These findings 
underscore the effectiveness of integrating Amami 
Rabbit Optimization with logistic regression for 
sentiment analysis tasks, highlighting the potential 
of ARO-LOGI in real-world applications. Further 
research and experimentation could explore 
additional datasets and fine-tuning strategies to 
further enhance the performance of sentiment 
analysis models and optimize their utility in various 
domains. 
 
REFERENCES 
 
[1]. S. A., S. G., and K. G., “Enhanced Elman 

spike neural network based sentiment analysis 
of online product recommendation,” Appl. 
Soft Comput., vol. 132, p. 109789, 2023, doi: 
https://doi.org/10.1016/j.asoc.2022.109789. 

[2]. J. Bowden and R. Gemayel, “Sentiment and 
trading decisions in an ambiguous 
environment: A study on cryptocurrency 
traders,” J. Int. Financ. Mark. Institutions 
Money, vol. 80, p. 101622, 2022, doi: 
https://doi.org/10.1016/j.intfin.2022.101622. 

[3]. P. Liu, A. Hendalianpour, M. Feylizadeh, and 
W. Pedrycz, “Mathematical modeling of 
Vehicle Routing Problem in Omni-Channel 
retailing,” Appl. Soft Comput., vol. 131, p. 
109791, 2022, doi: 
https://doi.org/10.1016/j.asoc.2022.109791. 

[4]. Y. Lin, P. Ji, X. Chen, and Z. He, “Lifelong 
Text-Audio Sentiment Analysis learning,” 
Neural Networks, vol. 162, pp. 162–174, 
2023, doi: 
https://doi.org/10.1016/j.neunet.2023.02.008. 

[5]. D. Antypas, A. Preece, and J. Camacho-
Collados, “Negativity spreads faster: A large- 
scale multilingual twitter analysis on the role 
of sentiment in political communication,” 
Online Soc. Networks Media, vol. 33, p. 
100242, 2023, doi: 
https://doi.org/10.1016/j.osnem.2023.100242. 

[6]. R. Singh and R. Singh, “Applications of 
sentiment analysis and machine learning 
techniques in disease outbreak prediction – A 
review,” Mater. Today Proc., vol. 81, pp. 
1006–1011, 2023, doi: 
https://doi.org/10.1016/j.matpr.2021.04.356. 

[7]. I. Priyadarshini et al., “Survivability of 
industrial internet of things using machine 



 Journal of Theoretical and Applied Information Technology 
15th May 2024. Vol.102. No 9 

©   Little Lion Scientific  
 

ISSN: 1992-8645                                                                    www.jatit.org                                                    E-ISSN: 1817-3195 

 
3753 

 

learning and smart contracts,” Comput. Electr. 
Eng., vol. 107, p. 108617, 2023, doi: 
https://doi.org/10.1016/j.compeleceng.2023.1
08617. 

[8]. R. Strubytskyi and N. Shakhovska, “Method 
and models for sentiment analysis an hidden 
propaganda finding,” Comput. Hum. Behav. 
Reports, vol. 12, p. 100328, 2023, doi: 
https://doi.org/10.1016/j.chbr.2023.100328. 

[9]. Z. Li et al., “Multi-level correlation mining 
framework with self-supervised label 
generation for multimodal sentiment 
analysis,” Inf. Fusion, vol. 99, p. 101891, 
2023, doi: 
https://doi.org/10.1016/j.inffus.2023.101891. 

[10]. M. Mhamed, R. Sutcliffe, X. Sun, J. Feng, 
and E. A. Retta, “Arabic sentiment analysis 
using GCL-based architectures and a 
customized regularization function,” Eng. Sci. 
Technol. an Int. J., vol. 43, p. 101433, 2023, 
doi: 
https://doi.org/10.1016/j.jestch.2023.101433. 

[11]. H. Liu et al., “Enhancing aspect-based 
sentiment analysis using a dual-gated graph 
convolutional network via contextual 
affective knowledge,” Neurocomputing, vol. 
553, p. 126526, 2023, doi: 
https://doi.org/10.1016/j.neucom.2023.12652
6. 

[12]. A. Atak, “Exploring the sentiment in Borsa 
Istanbul with deep learning,” Borsa Istanbul 
Rev., vol. 23, pp. S84–S95, 2023, doi: 
https://doi.org/10.1016/j.bir.2023.12.010. 

[13]. F. K. Sufi, “Identifying the drivers of negative 
news with sentiment, entity and regression 
analysis,” Int. J. Inf. Manag. Data Insights, 
vol. 2, no. 1, p. 100074, 2022, doi: 
https://doi.org/10.1016/j.jjimei.2022.100074. 

[14]. T. H. Jaya Hidayat, Y. Ruldeviyani, A. R. 
Aditama, G. R. Madya, A. W. Nugraha, and 
M. W. Adisaputra, “Sentiment analysis of 
twitter data related to Rinca Island 
development using Doc2Vec and SVM and 
logistic regression as classifier,” Procedia 
Comput. Sci., vol. 197, pp. 660–667, 2022, 
doi: 
https://doi.org/10.1016/j.procs.2021.12.187. 

[15]. M. Wilksch and O. Abramova, “PyFin-
sentiment: Towards a machine-learning-based 
model for deriving sentiment from financial 
tweets,” Int. J. Inf. Manag. Data Insights, vol. 
3, no. 1, p. 100171, 2023, doi: 
https://doi.org/10.1016/j.jjimei.2023.100171. 

[16]. J. Maqbool, P. Aggarwal, R. Kaur, A. Mittal, 
and I. A. Ganaie, “Stock Prediction by 

Integrating Sentiment Scores of Financial 
News and MLP-Regressor: A Machine 
Learning Approach,” Procedia Comput. Sci., 
vol. 218, pp. 1067–1078, 2023, doi: 
https://doi.org/10.1016/j.procs.2023.01.086. 

[17]. M. Kasri, M. Birjali, M. Nabil, A. Beni-
Hssane, A. El-Ansari, and M. El Fissaoui, 
“Refining Word Embeddings with Sentiment 
Information for Sentiment Analysis,” J. ICT 
Stand., vol. 10, no. 3, pp. 353–382, 2022, doi: 
10.13052/jicts2245-800X.1031. 

[18]. P. Durga and D. Godavarthi, “Deep-
Sentiment: An Effective Deep Sentiment 
Analysis Using a Decision-Based Recurrent 
Neural Network (D-RNN),” IEEE Access, 
vol. 11, pp. 108433–108447, 2023, doi: 
10.1109/ACCESS.2023.3320738. 

[19]. J. He, A. Wumaier, Z. Kadeer, W. Sun, X. 
Xin, and L. Zheng, “A Local and Global 
Context Focus Multilingual Learning Model 
for Aspect-Based Sentiment Analysis,” IEEE 
Access, vol. 10, pp. 84135–84146, 2022, doi: 
10.1109/ACCESS.2022.3197218. 

[20]. M. Huang, H. Xie, Y. Rao, Y. Liu, L. K. M. 
Poon, and F. L. Wang, “Lexicon-Based 
Sentiment Convolutional Neural Networks for 
Online Review Analysis,” IEEE Trans. 
Affect. Comput., vol. 13, no. 3, pp. 1337–
1348, 2022, doi: 
10.1109/TAFFC.2020.2997769. 

[21]. H. He, G. Zhou, and S. Zhao, “Exploring E-
Commerce Product Experience Based on 
Fusion Sentiment Analysis Method,” IEEE 
Access, vol. 10, pp. 110248–110260, 2022, 
doi: 10.1109/ACCESS.2022.3214752. 

[22]. H. Yan, B. Yi, H. Li, and D. Wu, “Sentiment 
knowledge-induced neural network for 
aspect-level sentiment analysis,” Neural 
Comput. Appl., vol. 34, no. 24, pp. 22275– 
22286, 2022, doi: 10.1007/s00521-022-
07698-0. 

[23]. G.-Y. Wang, D.-D. Cheng, D.-Y. Xia, and H.-
H. Jiang, “Swarm Intelligence Research: 
From Bio-inspired Single-population Swarm 
Intelligence to Human-machine Hybrid 
Swarm Intelligence,” Mach. Intell. Res., vol. 
20, no. 1, pp. 121–144, 2023, doi: 
10.1007/s11633-022-1367-7. 
 

[24]. A. S. Talaat, “Sentiment analysis 
classification system using hybrid BERT 
models,” J. Big Data, vol. 10, no. 1, p. 110, 
2023, doi: 10.1186/s40537-023-00781-w. 

[25]. M. Belguith, C. Aloulou, and B. Gargouri, 
“Aspect Level Sentiment Analysis Based on 



 Journal of Theoretical and Applied Information Technology 
15th May 2024. Vol.102. No 9 

©   Little Lion Scientific  
 

ISSN: 1992-8645                                                                    www.jatit.org                                                    E-ISSN: 1817-3195 

 
3754 

 

Deep Learning and Ontologies,” SN Comput. 
Sci., vol. 5, no. 1, p. 58, 2023, doi: 
10.1007/s42979-023-02362-3. 

[26]. A. Sharaff, T. R. Chowdhury, and S. 
Bhandarkar, “LSTM based Sentiment 
Analysis of Financial News,” SN Comput. 
Sci., vol. 4, no. 5, p. 584, 2023, doi: 
10.1007/s42979- 023-02018-2. 

[27]. D. Chen, H. Zhengwei, T. Yiting, M. Jintao, 
and R. Khanal, “Emotion and sentiment 
analysis for intelligent customer service 
conversation using a multi-task ensemble 
framework,” Cluster Comput., 2023, doi: 
10.1007/s10586-023-04073-z. 

[28]. J. Ramkumar, A. Senthilkumar, M. Lingaraj, 
R. Karthikeyan, and L. Santhi, “Optimal 
Approach for Minimizing Delays in Iot-Based 
Quantum Wireless Sensor Networks Using 
Nm-Leach Routing Protocol,” J. Theor. Appl. 
Inf. Technol., vol. 102, no. 3, pp. 1099–1111, 
2024. 

[29]. J. Ramkumar, R. Vadivel, B. Narasimhan, S. 
Boopalan, and B. Surendren, “Gallant Ant 
Colony Optimized Machine Learning 
Framework (GACO-MLF) for Quality of 
Service Enhancement in Internet of Things-
Based Public Cloud Networking,” J. M. R. S. 
Tavares, J. J. P. C. Rodrigues, D. Misra, and 
D. Bhattacherjee, Eds., Singapore: Springer 
Nature Singapore, 2024, pp. 425–438. doi: 
10.1007/978-981-99-5435-3_30. 

[30]. D. Jayaraj, J. Ramkumar, M. Lingaraj, and B. 
Sureshkumar, “AFSORP: Adaptive Fish 
Swarm Optimization-Based Routing Protocol 
for Mobility Enabled Wireless Sensor 
Network,” Int. J. Comput. Networks Appl., 
vol. 10, no. 1, pp. 119–129, 2023, doi: 
10.22247/ijcna/2023/218516. 

[31]. R. Jaganathan and V. Ramasamy, 
“Performance modeling of bio-inspired 
routing protocols in Cognitive Radio Ad Hoc 
Network to reduce end-to-end delay,” Int. J. 
Intell. Eng. Syst., vol. 12, no. 1, pp. 221–231, 
2019, doi: 10.22266/IJIES2019.0228.22. 

[32]. J. Ramkumar, K. S. Jeen Marseline, and D. R. 
Medhunhashini, “Relentless Firefly 
Optimization-Based Routing Protocol 
(RFORP) for Securing Fintech Data in IoT-
Based Ad-Hoc Networks,” Int. J. Comput. 
Networks Appl., vol. 10, no. 4, pp. 668–687, 
Aug. 2023, doi: 10.22247/ijcna/2023/223319. 

[33]. J. Ramkumar and R. Vadivel, “Improved frog 
leap inspired protocol (IFLIP) – for routing in 
cognitive radio ad hoc networks (CRAHN),” 
World J. Eng., vol. 15, no. 2, pp. 306–311, 

2018, doi: 10.1108/WJE-08-2017-0260. 
[34]. M. Lingaraj, T. N. Sugumar, C. S. Felix, and 

J. Ramkumar, “Query aware routing protocol 
for mobility enabled wireless sensor 
network,” Int. J. Comput. Networks Appl., 
vol. 8, no. 3, pp. 258–267, 2021, doi: 
10.22247/ijcna/2021/209192. 

[35]. R. Vadivel and J. Ramkumar, “QoS-enabled 
improved cuckoo search-inspired protocol 
(ICSIP) for IoT-based healthcare 
applications,” Inc. Internet Things Healthc. 
Appl. Wearable Devices, pp. 109–121, 2019, 
doi: 10.4018/978-1-7998-1090-2.ch006. 

[36]. J. Ramkumar and R. Vadivel, “Improved 
Wolf prey inspired protocol for routing in 
cognitive radio Ad Hoc networks,” Int. J. 
Comput. Networks Appl., vol. 7, no. 5, pp. 
126–136, 2020, doi: 
10.22247/ijcna/2020/202977. 

[37]. A. Senthilkumar, J. Ramkumar, M. Lingaraj, 
D. Jayaraj, and B. Sureshkumar, “Minimizing 
Energy Consumption in Vehicular Sensor 
Networks Using Relentless Particle Swarm 
Optimization Routing,” Int. J. Comput. 
Networks Appl., vol. 10, no. 2, pp. 217–230, 
2023, doi: 10.22247/ijcna/2023/220737. 

[38]. J. Ramkumar and R. Vadivel, “Whale 
optimization routing protocol for minimizing 
energy consumption in cognitive radio 
wireless sensor network,” Int. J. Comput. 
Networks Appl., vol. 8, no. 4, pp. 455–464, 
2021, doi: 10.22247/ijcna/2021/209711. 

[39]. R. Jaganathan and R. Vadivel, “Intelligent 
Fish Swarm Inspired Protocol (IFSIP) for 
Dynamic Ideal Routing in Cognitive Radio 
Ad-Hoc Networks,” Int. J. Comput. Digit. 
Syst., vol. 10, no. 1, pp. 1063–1074, 2021, 
doi: 10.12785/ijcds/100196. 

[40]. P. Menakadevi and J. Ramkumar, “Robust 
Optimization Based Extreme Learning 
Machine for Sentiment Analysis in Big Data,” 
2022 Int. Conf. Adv. Comput. Technol. Appl. 
ICACTA 2022, pp. 1–5, Mar. 2022, doi: 
10.1109/ICACTA54488.2022.9753203. 

[41]. J. Ramkumar and R. Vadivel, CSIP—cuckoo 
search inspired protocol for routing in 
cognitive radio ad hoc networks, vol. 556. 
2017. doi: 10.1007/978-981-10-3874-7_14. 

[42]. J. Ramkumar, C. Kumuthini, B. Narasimhan, 
and S. Boopalan, “Energy Consumption 
Minimization in Cognitive Radio Mobile Ad-
Hoc Networks using Enriched Ad-hoc On-
demand Distance Vector Protocol,” in 2022 
International Conference on Advanced 
Computing Technologies and Applications, 



 Journal of Theoretical and Applied Information Technology 
15th May 2024. Vol.102. No 9 

©   Little Lion Scientific  
 

ISSN: 1992-8645                                                                    www.jatit.org                                                    E-ISSN: 1817-3195 

 
3755 

 

ICACTA 2022, 2022. doi: 
10.1109/ICACTA54488.2022.9752899. 

[43]. L. Mani, S. Arumugam, and R. Jaganathan, 
“Performance Enhancement of Wireless 
Sensor Network Using Feisty Particle Swarm 
Optimization Protocol,” ACM Int. Conf. 
Proceeding Ser., pp. 1–5, Dec. 2022, doi: 
10.1145/3590837.3590907. 

[44]. R. Jaganathan, V. Ramasamy, L. Mani, and 
N. Balakrishnan, “Diligence Eagle 
Optimization Protocol for Secure Routing 
(DEOPSR) in Cloud-Based Wireless Sensor 
Network,” Res. Sq., 2022, doi: 
10.21203/rs.3.rs-1759040/v1. 

[45]. J. Ramkumar, R. Vadivel, and B. Narasimhan, 
“Constrained Cuckoo Search Optimization 
Based Protocol for Routing in Cloud 
Network,” Int. J. Comput. Networks Appl., 
vol. 8, no. 6, pp. 795–803, 2021, doi: 
10.22247/ijcna/2021/210727. 

[46]. J. Ramkumar, S. S. Dinakaran, M. Lingaraj, 
S. Boopalan, and B. Narasimhan, “IoT-Based 
Kalman Filtering and Particle Swarm 
Optimization for Detecting Skin Lesion,” in 
Lecture Notes in Electrical Engineering, K. 
Murari, N. Prasad Padhy, and S. 
Kamalasadan, Eds., Singapore: Springer 
Nature Singapore, 2023, pp. 17–27. doi: 
10.1007/978-981-19-8353-5_2. 

[47]. J. Ramkumar and R. Vadivel, “Multi-
Adaptive Routing Protocol for Internet of 
Things based Ad-hoc Networks,” Wirel. Pers. 
Commun., vol. 120, no. 2, pp. 887–909, Apr. 
2021, doi: 10.1007/s11277-021-08495-z. 

 


