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ABSTRACT 
 

Deep learning is a branch of machine learning and Artificial Intelligence that imitates the way people learn 
specific types of information. Image classification is an area in Computer Vision where a computer can 
analyze an image and identify or estimate the probability of the class or category the image falls under. 
Melanoma has become more common over the past 30 years, and early detection has a big effect on lowering 
death rates from this type of skin cancer. The existing system consists of several physical laboratory test 
reports that are analyzed by a doctor or a cancer expert to detect the presence of melanoma. This alone is 
insufficient in countries with huge population like India, where cancer hospitals and labs are few. The 
proposed system consists of an image classifier that takes a dermatoscopic image as input and predicts 
whether a person has melanoma or not. A reliable automated system that can tell whether melanoma is present 
in a dermatoscopic image of lesions is a very helpful tool for medical diagnosis. This system uses an ISIC 
dataset specially curated for melanoma analysis. Thus, the proposed system serves as an automated, 
expedient, and practical method for detecting melanoma from the image of a skin lesion. 
Keywords: Computer Vision, Deep Learning, Image Classification, Machine Learning, Transfer Learning 

1. INTRODUCTION 
 
Skin cancer refers to the abnormal expansion of skin 
cells that most typically occurs on sun-exposed skin. 
Unfortunately, areas of the skin that are exposed to 
sunlight may also acquire this type of cancer [1]. 
Skin cancer generally develops in areas of the body 
exposed to the sun, such as the scalp, face, lips, ears, 
neck, arms, etc. Moreover, it can also appear on 
regions of the body that receive minimal sunlight 
exposure, including the hands, the skin beneath the 
fingernails or toenails, and the genital area. 
Skin cancer can affect all types of skin tones, 
although it is more common in individuals with 
darker skin tones. Melanoma is more inclined to 
appear on darker in complexion individuals in 
places like the soles of their feet and the palms of 
their hands that aren't regularly exposed to sun. 
The three major kinds of skin cancer are melanoma, 
benign keratosis-like lesions, and melanocytic nevi. 
Early detection is required for these types of skin 
cancers, otherwise they can also affect other organs 
of the body. 
Checking your skin for changes that look strange 
can help you find skin cancer early. Early detection 
of these cancers will improve the chances for 

successful treatment [2, 3]. The majority of the 
time, it is diagnosed visually. A clinical screening 
is the first step, followed by a dermatoscopic 
evaluation, a histological review, and a biopsy.  
Even though it might be too late at times, the 
development of artificial intelligence and machine 
learning techniques holds the promise of significant 
time and error savings that could ultimately result 
in the saving of millions of lives. 
In presenting our skin lesion classification system 
for melanoma using deep learning, it is imperative 
to delineate the scope within which our study 
operates. Our system addresses the critical need for 
accurate and efficient detection of melanoma, a 
formidable form of skin cancer, through the 
application of deep learning methodologies to 
dermatological image analysis. By focusing on 
melanoma detection, we aim to contribute to the 
advancement of early diagnosis, which is pivotal for 
improving patient outcomes and reducing mortality 
rates associated with this disease. Our work 
primarily revolves around the development and 
evaluation of a deep learning model trained on a 
curated dataset of skin lesion images, with a 
specific emphasis on melanoma classification. 
While our study is tailored to this particular 
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application, the methodologies and insights gained 
hold potential for broader implications in computer-
aided diagnosis and medical imaging analysis. 

 
2. LITERATURE REVIEW 
 
Examining the skin for unusual changes is crucial 
for the early detection of skin cancer, enhancing the 
prospects of receiving effective treatment. Visual 
diagnosis, particularly for malignant melanoma, is 
the initial approach. Malignant melanoma has been 
persistently ranked as the most prevalent form of 
cancer in Australia, the United States, and Europe 
for an extended period. Early identification of this 
cancer significantly improves the chances of 
successful treatment, boasting a success rate of 
92%. Although a biopsy is commonly employed to 
determine the malignancy or benignity of a tumor, 
the associated high costs and morbidity of 
laboratory procedures underscore the need for an 
alternative, equally prompt, and convenient 
screening method – an automated early detection 
system. 

Numerous endeavors have been undertaken by 
researchers to create an automated system for skin 
cancer detection, aiming to enhance diagnostic 
accuracy. It is imperative to thoroughly examine the 
paths explored by these researchers in order to 
acquire substantial knowledge that can be 
instrumental in the development of a robust and 
effective skin cancer detection system. These 
approaches are discussed in the following literature. 
Dermatology imaging researchers think that 
melanoma diagnosis may be automated based on 
key physical traits and color details that are 
distinctive of skin cancer kinds. Lesion color, 3D 
form and size, and vertical thickness are all 
important melanoma diagnostic and prognostic 
criteria [2]. Traditional systems include various 
physical laboratory test reports which needs to be 
analyzed by a doctor or a cancer expert to detect the 
presence of melanoma [4]. 
Shetty et al. [5] presented a methodology for skin 
cancer identification using image detection 
techniques and computerized classification 
capabilities. To bolster robustness, their model 
incorporates k-fold cross-validation. The 
investigation assessed the accuracy in classification 
of both Machine Learning techniques and 
Convolutional Neural Network (CNN) techniques, 
indicating that CNN models demonstrated superior 
performance in terms of accuracy. The system 
attained an accuracy rate of approximately 95% 
with the CNN technique, enabling the proactive 
detection of distinct skin disease classes and 

empowering medical practitioners to prescribe 
appropriate treatments. 
Md. Kamrul Hasan et al. [6] introduced a 
Dermoscopic Expert model, presenting an 
automated Skin Lesion Classification (SLC) 
framework that integrates a hybrid Convolutional 
Neural Network (hybrid-CNN) and advanced pre-
processing techniques to generate intricate feature 
maps of skin lesions. Employing transfer learning 
from pre-existing models, their framework is 
designed for deployment in a web application, 
enhancing overall accuracy in skin lesion 
classification. 
Ahmadi Mehr R et al. [7] suggested, a novel deep 
learning approach for the detection of skin cancer in 
lesion images. The method incorporated patient 
data, such as anatomical site, age, and gender, in 
addition to utilizing an Inception-ResNet-v2 
Convolutional Neural Network (CNN) for effective 
recognition of objects. The model predicts the type 
of lesion not solely based on the lesion image but 
also considered relevant patient information. Their 
innovative approach has the potential to enhance 
the efficiency of skin cancer diagnosis by providing 
physicians with a more comprehensive set of data 
for analysis. The suggested technique enhanced the 
classification accuracy by 5% through the 
incorporation of patient metadata alongside lesion 
images, resulting in an accuracy of 89.3%±1.1% for 
distinguishing among four primary skin conditions 
and 94.5%±0.9% for discerning between benign 
and malignant lesions. 
Detection of skin cancer traditionally relies on 
visual examination and dermoscopy, yet automated 
methodologies encounter difficulties such as 
artifacts, irregularities, and extractions of irrelevant 
features. Recent progress in deep learning, 
specifically leveraging convolutional neural 
networks (CNNs) with annotated skin images, 
demonstrate enhanced performance. S. P. Godlin 
Jasil et al. [8] study introduces a novel CNN 
architecture, combining Densenet and residual 
network, incorporating contextual data. The model 
underwent testing on the authoritative Human 
against Machine dataset (HAM10000) and was 
refined through up-sampling and additional 
information. The outcomes reveal a remarkable 
accuracy of 95% in the automatic classification of 
skin lesions. 
Zillur Rahman et al. [9] in their investigation, 
introduced a novel weighted average ensemble 
learning model for the classification of skin lesions, 
leveraging the capabilities of five distinct deep 
neural network models. The model underwent 
training on a dataset comprising 18,730 
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dermoscopy images, with optimization focused on 
achieving an exemplary average recall score. The 
individual models demonstrated commendable 
performance, with ResNeXt, SeResNeXt, ResNet, 
Xception, and ResNet attaining recall scores of 
88%, 89%, 91%, 88%, and 84%, respectively. 
Notably, the weighted average ensemble model 
achieved an impressive 94% recall, showcasing its 
efficacy in skin lesion classification. 
Seeja R D et al. [10] primary objective of their 
research is to improve melanoma classification 
through the implementation of deep learning-based 
automatic skin lesion segmentation. The 
methodology involves the utilization of a 
Convolutional Neural Network (CNN) with the U-
net algorithm for segmentation, extracting color, 
texture, and shape features through techniques such 
as LBP, EH, HOG, and Gabor. Subsequently, these 
features are input into classifiers, such as SVM, 
resulting in the attainment of a Dice coefficient 
value of 77.5%. 
Adnan Afroz et al. [11] offered an analysis of 
various machine learning techniques for Skin lesion 
classification. The objective of their study is to 
assist examiners in developing proficient models 
for discerning between skin diseases and healthy 
skin images. It addresses challenges in skin tumor 
identification, explores pre-processing and 
segmentation techniques, provides comparisons 
with recent research, delves into classification 
methods, and explores the utilization of machine 
learning techniques. Additionally, the study 
scrutinizes the segmentation and classification 
processes utilizing the ISIC 2018 and 2019 datasets, 
highlighting challenges encountered in the analysis 
of skin diseases with these datasets. 
Zahra Mirikharaji et al. [12] conducted a survey on 
skin lesion segmentation using deep learning 
methods. Their survey analyzed 177 research 
papers pertaining to the segmentation of skin 
lesions using deep learning techniques. The primary 
focus is on evaluating input data, model design, and 
assessment methodologies. The examination aims 
to elucidate the impact of these dimensions on 
current trends and suggests ways to overcome their 
limitations. The overarching goal is to alleviate the 
burden of skin cancer by addressing challenges 
related to both natural and artificial artifacts, 
intrinsic factors, and varying image acquisition 
conditions. 
Drawing from parallel research findings, employing 
deep learning for skin lesion classification, 
specifically for melanoma, produces superior 
results. Consequently, the proposed system 
integrates deep learning methods with robust image 

processing techniques and decision-making 
processes to establish a computer-aided diagnostic 
system. This system aims to offer comprehensive 
methods facilitating the early detection of skin 
cancer. The innovative computer-aided diagnostic 
system, often denoted as computerized 
dermoscopy, has been developed. 
Existing systems for skin lesion classification using 
melanoma detection methods rely heavily on 
manual analysis by medical professionals, leading 
to time-consuming and subjective diagnoses that 
are not scalable or accessible, particularly in 
underserved regions. Moreover, the subjectivity in 
diagnosis can result in inconsistencies and high 
false positive rates, causing unnecessary patient 
anxiety and healthcare costs. Insufficient training 
data and the inability of models to handle the 
variability in skin lesions further compromise the 
accuracy and reliability of existing systems. 
Additionally, the lack of real-time analysis 
capabilities limits the timely diagnosis and 
intervention crucial for improving patient 
outcomes. These pitfalls have been addressed in the 
proposed system necessitating the development of 
automated systems that are robust, scalable, and 
capable of accurately classifying melanoma from 
dermatoscopic images while being accessible to a 
wider population. 
 

3. DATASET INFORMATION  
 
The data utilized in this study is sourced from the 
global collaboration on skin imaging, specifically 
the International Skin Imaging Collaboration 
(ISIC). The dataset is composed of dermatoscopic 
images, serving as a comprehensive resource for 
training academic deep learning models. Within 
this dataset, a diverse range of pigmented tumors is 
featured, encompassing benign keratosis-like 
lesions such as solar lentigines, seborrheic 
keratosis, and lichen planus-like keratoses (BKL), 
as well as malignant entities like melanoma (Mel) 
and melanocytic nevi (NV). 
Various independent variables are incorporated into 
the datasets, including but not limited to Image-id, 
lesion-id, and DX. These factors contribute as 
independent features in the analysis. The dependent 
variable, termed Outcome, is the target variable of 
interest. The Outcome variable is associated with 
cancer labels, providing a crucial focus for the 
investigation. This dataset thus presents a rich and 
diverse set of information for the development and 
training of deep learning models in the field of 
dermatoscopic image analysis. 
The dataset encompasses a total of 10,116 images. 
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Figure 1 visually represents a selection of images 
extracted directly from this extensive dataset. The 
training dataset constitutes 80% of the overall data, 
while the testing dataset comprises the remaining 
20%. 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

4. PROPOSED FRAMEWORK  

The architecture for the proposed system is 
presented in Figure 2. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                              Figure. 2. Architecture of the Proposed Model 
 

The architecture proposed in Figure. 2 includes the 
following components to automate the process of 
classification of melanoma: 

 Convolutional layers with specified strides and 
zero padding. 
 Max pooling layer for down-sampling. 
 Data augmentation using ImageDataGenerator 
applied only to Melanoma pictures. 

 Fully connected layers for classification. 
 Output layer with a sigmoid activation function 
for binary classification 
 
4.1. Convolutional Neural Networks 
In feed-forward neural networks, the input layer 
neurons establish connections with every neuron in 
the output layer, forming what is commonly known 
as a fully connected (FC) layer. In contrast, 

Figure. 1. Dataset Images 
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convolutional neural networks (CNNs) diverge 
from this architecture by avoiding the utilization of 
FC layers throughout most of the network, reserving 
them for the final layers. Consequently, it can be 
inferred that a CNN is a type of neural network 
where convolutional layers substitute for at least one 
of its conventional layers. 
The outcomes of these convolutions undergo a non-
linear activation function, such as RELU. To 
mitigate overfitting, convolutional RELU activation 
is applied before introducing one or two fully 
connected (FC) layers at the concluding stages of 
the network, culminating in the ultimate output 
classifications. This process helps in curbing 
overfitting by diminishing the width and height of 
the source volumes. Typically, a CNN employs 
hundreds or even thousands of filters on each layer, 
which subsequently consolidates the outcomes 
before transmitting the data to the subsequent layer. 
Throughout the training process, a CNN inherently 
acquires and refines the values associated with these 
filters [5, 6]. 

• Via the first stratum, edges are detected from the 
raw pixel data. 
• Via the second stratum, the edges are used for 
detection of forms. 
• Use these shapes to identify higher-level 
characteristics in the network's upper layers. 

The final layer of a CNN leverages these higher-
level features to generate predictions regarding the 
content of the image. In practice, the compelling 
attributes of CNNs lie in their compositionality and 
local consistency. The principle of local invariance 
ensures that regardless of the object's placement in 
the image, its presence can be identified. The 
pooling layers play a key role in achieving local 
invariance by isolating regions in the input volume 
that exhibit a strong response to a specific filter. 
Convolutional neural networks can be constructed 
with various levels, but the most commonly 
encountered ones include: 

 Convolutional layer 
 Pooling layer 
 Dense layer 
 Dropout layer 
 
4.2. Convolutional Layer  
The core of a CNN is its CONV layer, as indicated 
by previous research [4, 5]. Within this layer, the 
essential components are K learnable filters, 
commonly known as "kernels." These kernels are 
defined by both their width and height, with a 
typical configuration being square in shape. Despite 
their relatively modest spatial dimensions, these 

filters span the entire depth of the volume, 
contributing to their comprehensive influence on the 
input data. 

The depth of a CNN is contingent upon the number 
of channels within its input feed, for instance, a 
depth of three when processing RGB images, 
signifying one channel for each color. Additionally, 
the depth of network volumes is intricately 
connected to the quantity of filters implemented in 
the preceding layer. 
To enhance comprehension of this concept, let's 
delve into the forward-pass of a CNN. During this 
process, each of the K filters conducts convolutions 
both horizontally and vertically across the 
dimensions of the source volume. Alternatively, 
envision each of the K kernels sliding through the 
source area, executing element-wise multiplication, 
aggregating the results, and then storing the output 
value in the activation map in two dimensions, as 
depicted below: 
Step 1: The K kernels are poised for application to 
the image. 
Step 2: Each kernel engages in convolution with 
the input volume. 
Step 3: The outcome of each convolution operation 
manifests as a two-dimensional output. 
Hence, each entry in the output signifies the 
outcome within a neuron, considering only a small 
portion of information. As a result, the system 
evolves filters that activate when a specific 
characteristic is identified at a particular spatial 
location within the source volume. For instance, 
lower-level filters in the system can become active 
when detecting regions resembling edges or corners. 
Subsequently, the presence of higher-level features, 
such as components of a face, a car's hood, and 
similar intricate elements, can trigger filters at the 
deeper layers of the network. In our analogy of a 
neural network, this concept of activation aligns 
with the way neurons become stimulated and 
engaged when they recognize a specific pattern in 
an input image. 
Efficiently combining a small filter with a large 
input volume holds particular significance in 
convolutional neural networks (CNNs), where the 
proximity of connections and receptive fields for 
each neuron is crucial. Given the multitude of 
connections and weights inherent in image 
processing, establishing connections between every 
neuron in the current volume and every neuron in 
the preceding volume can become impractical. 
Consequently, training deep networks on images 
with excessively large spatial dimensions becomes 
unfeasible. Instead, a strategic approach involves 
linking each neuron to a minute segment of the input 
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volume, termed the neuron's receptive field. 
To illustrate this concept, consider a dataset with an 
input volume of 32x32x3, where each image has 
dimensions of 32 pixels in width, 32 pixels in height, 
and 3 pixels in depth. If the receptive field is set at 
3x3, the CONV layer will generate a total of 
3x3x3=27 weights. The depth of the filters is set at 
three, corresponding to the three channels 
encompassed by the source image in this scenario 
[7]. 
Until now, we've explored how neurons are 
interconnected at the input level, but we haven't 
delved into the specifics of how large or the manner 
in which the output level is shaped. The dimensions 
of the output volume are influenced by the size of 
the kernel, the stride size, and the zero-padding size. 
 
4.3. Kernel 
A filter, often referred to as a kernel, plays a crucial 
role in layered designs. It constitutes a smaller 
matrix with real-valued entries in contrast to the size 
of the image. Subsequently, activation maps are 
generated by convolving these kernels with the input 
volume. Activation maps visually highlight 
activated areas, indicating regions where the input 
exhibits properties specific to the applied kernel. 
 
4.4. Stride 
To execute a convolution, a small matrix is 
systematically moved over a larger matrix, halting 
at each point to conduct element-by-element 
multiplication and addition, followed by storing the 
resultant matrices. This process closely resembles a 
sliding window traversing an image horizontally 
and vertically, capturing information as it moves 
from left to right and top to bottom. 
 
4.5. Zero Padding 
To preserve the original size of an image post-
convolution, it's necessary to apply "padding" to the 
outermost regions of the image. This consideration 
holds true for filters within a CNN as well. Utilizing 
zero-padding along the input's border ensures an 
exact match between the output volume and the 
input volume. The extent of padding is determined 
by the input "padding" parameter. 
This strategy becomes particularly crucial in the 
context of deep CNN designs that incorporate 
numerous stacked CONV filters. To exemplify the 
concept of zero-padding, we applied a 3x3 kernel to 
a 5x5 input image with a stride of 1. As depicted in 
Figure. 3, the results showcase the impact of zero-
padding. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 

Figure. 3. Zero Padding Illustration 
 

4.6. Pooling Layer 
Two techniques for downsizing an input volume are 
POOL layers and CONV layers with a stride greater 
than one, as demonstrated. In the architecture of 
CNNs, POOL layers are commonly integrated 
between consecutive layers. The primary objective 
of a POOL layer is to gradually reduce the 
dimensions of the source volume, specifically its 
width and height. This reduction in complexity aids 
in diminishing the number of metrics and 
computations required, contributing to a more 
manageable system. Additionally, pooling plays a 
role in managing overfitting by consolidating 
processing and parameter data within the network.  
POOL layers employ either the max or average 
function to operate on each input depth slice 
independently. Average pooling is often employed 
as the last layer of a network, especially in scenarios 
where there are no fully connected (FC) layers. On 
the other hand, max pooling is frequently 
implemented in the core of CNN designs to 
effectively reduce the overall size of the network. 
The pooling layer encompasses two types of pooling 
techniques: 

 MAX POOLING: This technique concentrates on 
the specific location where the weighted pixel is 
most pronounced in a given spot. 
 AVG POOLING: In contrast, average pooling 
considers the entire image, with pixels dispersed 
across the entire picture. Figure. 4 illustrates the 
outcomes of average pooling. 

 
 
 
 
 
 
 
 

 
Figure. 4. Pool types 
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4.7. Fully Connected (Fc) Layer  
Neurons within fully connected (FC) layers 
establish connections with all activations in the 
preceding layer, adhering to the conventional 
structure of feedforward neural networks. 
Towards the network's conclusion, FC layers are 
consistently integrated, avoiding a sequence 
where a convolutional (CONV) layer is 
succeeded by an FC layer, followed by another 
CONV layer. In a simplified architecture, 
multiple FC layers are typically employed before 
reaching the SoftMax classifier. This classifier, 
which determines the total output probabilities for 
each class, follows the (implied) SoftMax 
classifier. Preceding the SoftMax classifier, two 
fully connected layers are utilized. Figure. 5 
provides a visual representation of the outcomes 
of a fully connected layer. 

 
 
 
 
 
 
 
 
 
 

 
Figure. 5. Fully connected layer 

 
4.7.1. CNN without Augmentation 
Data augmentation involves employing various 
techniques to artificially expand a dataset by 
introducing additional data points. The objective 
is to augment the overall quantity of the dataset. 
This can be achieved through inconspicuous 
modifications to the existing data or leveraging 
deep learning algorithms to produce novel 
information. In the case of this model, no 
additions were made to the image library by the 
system. 
 
4.7.2. CNN with Augmentation 
Data augmentation encompasses a collection of 
techniques crafted to artificially enrich a dataset 
by introducing additional data points, thereby 
increasing the overall quantity of the data. This 
can be achieved through subtle modifications to 
the existing data or by utilizing deep learning 
models deep learning algorithms to produce novel 
information. In the context of this model, the 
augmentation has been applied to every image in 
the dataset. 
 

4.7.3. CNN with Augmentation is applied only 
to the Melanoma Picture 
Data augmentation encompasses the use of 
various methods to artificially enrich a dataset by 
incorporating additional data points, thereby 
augmenting the overall quantity of the dataset. 
This can involve inconspicuous alterations to 
existing data or the use of deep learning 
algorithms to produce novel information. In the 
context of model, the algorithm selectively 
applies augmentation only to the few melanoma 
images within the collection. 
 
5. RESULTS AND ANALYSIS 
To assess and comprehend the performance of the 
model under consideration, accuracy and loss 
graphs, as well as ROC curves are analyzed in 
section 5.1 and 5.2 respectively. These tools serve 
as essential tools for diagnosing the issues, 
optimizing model training, and evaluating the 
overall performance of skin lesion classification 
models. They provided valuable insights for making 
informed decisions about model adjustments and 
comparing different models. 
 
5.1. Model accuracy and loss graph 

• The suggested model's accuracy is denoted by the 
percentage of correct predictions it makes. 
• The loss curve illustrates the model's error, 
providing insights into its performance. It quantifies 
how effectively or ineffectively the model is 
performing. 
• The model underwent validation for 25 epochs. 
The blue curve depicts the performance on the 
training data, while the orange curve represents the 
performance on the validation data. 
 
5.1.1. CNN Accuracy and Loss without 
Augmentation 
 
 
 
 
 
 
 
 
 
 
 
 
  

 
Figure. 6. CNN Accuracy and Loss without 

Augmentation 
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In Figure 6, the y-axis corresponds to the precision 
rate, while the x-axis shows how many epochs there 
are in total. The blue line on the graph signifies the 
training score, and the orange line represents the 
epoch count. At this juncture, the accuracy stands at 
a higher value (0.93), and further increasing the 
number of training instances may lead the CNN to 
underfit the dataset. 
 
5.1.2. CNN Accuracy and Loss with 
Augmentation 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure. 7. CNN Accuracy and Loss with 
Augmentation 

In Figure 7, the y-axis denotes the precision rating, 
and the x-axis shows how many epochs there are in 
total.. The blue line on the chart reflects the training 
score, while the orange line corresponds to the 
epoch count. At this specific juncture, the accuracy 
registers a higher value (0.74), and further 
increasing the number of training instances may 
potentially lead the CNN to underfit the dataset. 
 

 
5.1.3. CNN Accuracy and Loss with 
Augmentation is applied only to Melanoma 
Picture 
 
 
 
 
 
 
 
 
 
 
 

Figure. 8. CNN Accuracy and Loss with Augmentation 
is Applied only to   Melanoma Picture 

In Figure 8, the y-axis illustrates the precision 

rating, while the x-axis shows how many epochs 
there are in total.. The blue line in the chart 
corresponds to the training score, and the orange line 
signifies the epoch count. Notably, the accuracy 
reaches a higher value at this juncture (0.83), and 
there is a possibility that further increasing the 
number of training instances may lead the CNN to 
underfit our dataset. 
 
5.2.   ROC Curves 

• The Receiver Operating Characteristics (ROC) 
curve illustrates the true positive rate versus the 
false positive rate across various categorization 
thresholds. 
• In the subsequent graphs, the orange curves 
depict the performance of our model under 
different decision-rule settings, effectively 
identifying genuine positive values from fake 
positive ones. The ROC accuracy, represented by 
the blue line, is calculated based on the distance 
between the model performance curve and the 
linear. 
 
5.2.1.     CNN ROC without Augmentation 
 
 
 
 
 
 
 
 
 
 
 
 

Figure. 9. CNN ROC without Augmentation 

Figure 9 above illustrates the true positive score 
at different decision rules on the y-axis and the 
false positive rate score on the x-axis, 
representing thresholds. The model's 
effectiveness is depicted by the orange line, 
which forms the Receiver Operating 
Characteristics (ROC) curve, while the baseline 
is represented in blue. The computation of the 
ROC score relies on the area beneath the ROC 
curve, and in this case, the model's ROC value is 
0.8672. 
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5.2.2.     CNN ROC without Augmentation 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure. 10. CNN ROC with Augmentation 
Figure 10 above illustrates the true positive score at 
different decision rules on the y-axis and the false 
positive rate score on the x-axis, representing 
thresholds. The model's effectiveness is depicted by 
the orange line, which forms the Receiver Operating 
Characteristics (ROC) curve, while the baseline is 
represented in blue. The computation of the ROC 
score relies on the area beneath the ROC curve, and 
in this instance, the model's ROC score is 
determined to be 0.8579. 
5.2.3.   CNN ROC with Augmentation is 
applied only to Melanoma Picture 
 
 
 
 
 
 
 
 

 
 
 
 

 
Figure. 11. CNN ROC with augmentation is only 

applied to melanoma picture 
 

Figure 11 above displays the true positive score at 
different decision rules plotted against the false 
positive rate score on the x-axis, representing 
thresholds. The orange line on the Receiver 
Operating Characteristics (ROC) curve illustrates 
the effectiveness of our algorithm, while the 
baseline is depicted in blue. The ROC score is 
computed based on the area beneath the ROC curve, 
and in this instance, the model's ROC score is 
determined to be 0.8493. 
The performance of the proposed model is shown in 

Table 1 
Table 1. Model Performance 

CNN ACCURACY ROC  
ACCURACY 

WITHOUT 
AUGMENTATION 

0.93 0.86 

WITH 
AUGMENTATION 

0.74 0.85 

AUGMENTATION 
FOR MELONOMA
PICTURES ONLY 

0.83 0.84 

Analysis from Table 1 indicates that the CNN model 
without augmentation yielded the highest accuracy, 
implying that, in this particular case, augmentation 
may not have conferred significant benefits. The 
observed decrease in accuracy with general 
augmentation can be attributed to the introduction of 
augmented data that deviates from the distribution 
of non-augmented data. Notably, the strategy of 
exclusively applying augmentation to Melanoma 
pictures has demonstrated improvement compared 
to general augmentation. 

 

6.   CONCLUSION 
This study explored the integration of deep learning 
techniques, particularly through image 
classification in the realm of computer vision, 
offering a promising avenue for enhancing early 
detection of melanoma. The proposed automated 
system, leveraging dermatoscopic image analysis 
and a curated dataset tailored for melanoma 
detection, represents a significant step towards 
addressing the challenges posed by existing reliance 
on physical laboratory tests and manual analysis. By 
providing a reliable, expedient, and practical 
method for identifying melanoma from skin lesion 
images, this system holds substantial potential to 
improve medical diagnosis, particularly in areas 
where resources are constrained. The methodology 
involved constructing a Convolutional Neural 
Network (CNN) model, training and evaluating it. 
The developed approach achieved an accuracy of 
84%.  

 

7. FUTURE SCOPE 

In addition to focusing on skin cancer, this study 
acknowledges the potential inclusion of other forms 
of cancer. Future iterations of the research may 
incorporate diverse classifications, extending 
beyond skin cancer, to encompass conditions such 
as dermatofibroma (DF) and basal cell carcinoma 
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(BCC). The objective of broadening the 
classification scope is to augment the adaptability of 
the model and foster a more all-encompassing 
comprehension of diverse dermatological ailments. 
This progression is consistent with the continuous 
progress in machine learning and medical imaging, 
promoting a more comprehensive and inclusive 
method of cancer identification and categorization. 
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