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ABSTRACT 
 

In the transformative landscape of Industry 4.0, the integration of Artificial Intelligence (AI) within the 
Industrial Internet of Things (IIoT) has emerged as a cornerstone for advancing operational efficiency and 
reliability. This paper explores the application of various AI methodologies, including both machine learning 
and deep learning approaches, to enhance fault detection in industrial systems, particularly focusing on three-
phase electrical systems. Utilizing an integrated system architecture comprising Power Monitoring Units 
(PMUs) and advanced computational units, we implement and evaluate a suite of AI models such as Support 
Vector Machines (SVM), Decision Trees, K-Nearest Neighbors (KNN), Convolutional Neural Networks 
(CNN), Recurrent Neural Networks (RNN), Long Short-Term Memory (LSTM), and Gated Recurrent Unit 
(GRU) networks. Our comprehensive analysis reveals the nuanced capabilities and performance metrics of 
these models in the context of real-time fault detection, thereby providing pivotal insights for deploying AI-
driven diagnostics in industrial settings. 

Keywords: Three-Phase Systems, Industry 4.0, Industrial Internet Of Things (Iiot), Artificial Intelligence 
(Ai), Machine Learning, Deep Learning, Support Vector Machines (Svm), Decision Trees, K-
Nearest Neighbors (Knn), Artificial Neural Networks (Ann), Convolutional Neural Networks 
(Cnn), Recurrent Neural Networks (Rnn), Long Short-Term Memory (Lstm), Gated Recurrent 
Units (Gru). 

 
1. INTRODUCTION  
 

The advent of Industry 4.0 marks a pivotal 
shift in manufacturing paradigms, characterized by 
the integration of advanced digital technologies and 
automation within industrial ecosystems [1]. This 
transformative era is propelled by the convergence 
of cyber-physical systems, the Internet of Things 
(IoT), and the Industrial Internet of Things (IIoT), 
heralding unprecedented levels of operational 
efficiency, flexibility, and automation in 
manufacturing processes [2]. 

Central to the Industry 4.0 revolution is the 
IIoT, which embodies a network of interconnected 
devices, sensors, and systems designed to 
communicate and exchange data [3]. This 
interconnectedness facilitates real-time monitoring 
and decentralized decision-making, enabling 
predictive maintenance, enhanced operational 
efficiency, and minimized downtime [4]. The IIoT 
serves as the backbone of smart factories, where 

machines and systems autonomously communicate 
and cooperate with each other and with humans in 
real-time [5]. 

Three-phase electrical systems, the 
cornerstone of industrial operations, are undergoing 
significant advancements in the context of Industry 
4.0 [6]. These systems are essential for their 
efficiency in power delivery and their role in driving 
various industrial machinery and processes. The 
reliability and seamless performance of three-phase 
systems are paramount, given their critical function 
in the industrial sector. As such, the detection and 
diagnosis of faults within these systems are crucial 
to averting operational disruptions and ensuring 
sustained productivity [7]. 

In this digital era, Artificial Intelligence 
(AI) emerges as a transformative force, enhancing 
the capabilities for fault detection and diagnosis in 
industrial systems [8]. Machine Learning (ML) 
algorithms, including Support Vector Machines 
(SVM), Decision Trees, and K-Nearest Neighbors 
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(KNN), lay the groundwork for pattern recognition 
and classification, which are vital for identifying 
anomalies and irregularities within operational 
processes [9]. 

Moreover, the evolution of Deep Learning 
(DL) has introduced advanced neural network 
architectures such as Artificial Neural Networks 
(ANN), Convolutional Neural Networks (CNN), 
Recurrent Neural Networks (RNN), Long Short-
Term Memory networks (LSTM), and Gated 
Recurrent Units (GRU) [10]. These models are adept 
at analyzing complex, high-dimensional data 
prevalent in industrial settings, capturing temporal 
and spatial dependencies, and offering superior 
accuracy in fault detection and predictive 
maintenance. 

The synergy of AI technologies and the 
IIoT framework enables a nuanced, real-time 
analysis of data from three-phase systems, 
facilitating the early detection of faults and the 
prediction of potential failures before they manifest. 
This proactive approach to maintenance underscores 
the Industry 4.0 vision, emphasizing the integration 
of interconnectedness, automation, and data 
analytics to achieve unparalleled efficiency and 
reliability in industrial operations. 

Despite these advancements, effectively 
detecting and diagnosing faults in three-phase 
electrical systems remains a significant challenge, 
crucial for maintaining the efficiency and integrity 
of industrial operations. The complexity and 
variability of these systems necessitate advanced 
solutions that can adapt to dynamic operational 
conditions. This study addresses the gap by 
exploring how AI can be integrated within the IIoT 
framework to enhance fault detection in three-phase 
systems, thereby contributing to the robustness and 
sustainability of Industry 4.0 environments. 

The research is motivated by the need to 
bridge this gap, aiming to enhance the accuracy and 
efficiency of fault detection mechanisms. Despite 
the technological strides in Industry 4.0, reliable 
fault detection and diagnosis within three-phase 
electrical systems remain challenging, underscoring 
the need for innovative solutions that enhance the 
precision and speed of these processes in industrial 
environments. The study will explore how AI 
methodologies, when integrated with the IIoT 
framework, can improve the accuracy and efficiency 
of fault detection in three-phase electrical systems 
and will examine the comparative advantages and 
limitations of different AI models in the context of 
fault detection and diagnosis in these systems, 
aligning with the operational demands of Industry 
4.0. 

In conclusion, the integration of IIoT, AI, 
and advanced digital technologies marks a 
significant step in the transformative journey of the 
manufacturing sector towards Industry 4.0 and 
beyond to Industry 5.0. This paradigm shift not only 
redefines the operational landscape of industries but 
also anticipates an era of enhanced human-machine 
collaboration, customization, and sustainability. 

 
2. BACKGROUND 

 
2.1 Industry 4.0 

Industry 4.0, the fourth industrial 
revolution, integrates advanced digital technologies 
into manufacturing, heralding the era of smart 
factories. These factories leverage cyber-physical 
systems and the Internet of Things (IoT) to create 
networks of machines and systems that 
communicate and cooperate in real time, enabling 
advanced automation, data exchange, and intelligent 
decision-making. This integration facilitates the 
creation of a digital twin of the manufacturing 
process, allowing for simulation, analysis, and 
optimization in a virtual environment [11], [12]. 

 
2.2 Industrial Internet of Things (IIoT) 

The IIoT is an extension of the IoT focused 
on industrial applications, involving a network of 
intelligent devices connected to form systems that 
monitor, collect, exchange, and analyze data. Each 
device in the IIoT is equipped with sensors and 
actuators that interact with the physical world and 
the cyber-physical systems. This data is then used to 
optimize operations, predict maintenance needs, and 
increase overall efficiency through machine learning 
algorithms and real-time data analytics [13], [14]. 

 
2.3 Three-Phase Electrical Systems 

Three-phase electrical systems are widely 
used in industrial settings due to their ability to 
deliver consistent, high power with greater 
efficiency than single-phase systems. They consist 
of three alternating currents of the same frequency 
and amplitude, each phase offset by 120 degrees. 
This configuration allows for a more balanced load, 
reducing the size and cost of wiring and electrical 
equipment. In Industry 4.0, these systems are crucial 
for powering machinery and are often monitored 
using advanced sensor technology to predict and 
prevent failures [15], [16]. 

 
2.4 Support Vector Machines (SVM) 

SVMs are a set of supervised learning 
methods used for classification, regression, and 
outliers detection. In an SVM model, each data item 
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is plotted as a point in n-dimensional space (with n 
being the number of features), with the value of each 
feature being the value of a particular coordinate. 
The SVM algorithm then constructs a hyperplane in 
this multidimensional space that best separates the 
different classes. The optimal hyperplane is the one 
with the largest margin between the two classes, with 
support vectors being the data points closest to the 
hyperplane [17]. 

 
2.5 Decision Trees (DT) 

Decision Trees are a non-parametric 
supervised learning method used for classification 
and regression. A decision tree is built from a root 
node and involves partitioning the data into subsets 
that contain instances with similar values 
(homogeneous). DTs use entropy and information 
gain to decide which feature (and value) to split on 
at each step. The goal is to create branches that lead 
to nodes with the highest possible purity, meaning 
the nodes are as homogeneous as possible [18]. 

 
2.6 K-Nearest Neighbors (KNN) 

The KNN algorithm assumes that similar 
things exist in close proximity, known as the 
proximity assumption. In KNN, data points are 
classified by a majority vote of their neighbors, with 
the data point being assigned to the class most 
common among its k nearest neighbors (k is a 
positive integer, typically small). KNN works by 
finding the distances between a query and all the 
examples in the data, selecting the specified number 
of examples (k) closest to the query, then voting for 
the most frequent label (in classification) or 
averaging the labels (in regression) [19]. 

 
2.7 Artificial Neural Networks (ANN) 

ANNs are computing systems inspired by 
the biological neural networks that constitute animal 
brains [20]. An ANN is composed of a large number 
of interconnected processing elements (neurons) 
working in unison to solve specific problems. ANNs 
are configured for specific applications, such as 
pattern recognition or data classification, through a 
learning process involving adjustments to the 
synaptic connections between neurons [21]. 
2.8 Convolutional Neural Networks (CNN) 

CNNs are a class of deep neural networks, 
most commonly applied to analyzing visual imagery. 
They are composed of multiple layers of neurons 
that process pieces of the input image, called 
receptive fields [22]. The layers of a CNN typically 
include convolutional layers, pooling layers, and 
fully connected layers. Convolutional layers apply a 
convolution operation to the input, passing the result 

to the next layer [23]. This process allows the 
network to build a hierarchy of concepts, from 
simple to complex, facilitating complex image 
recognition tasks [24]. 

 
2.9 Recurrent Neural Networks (RNN) 

RNNs are a class of neural networks where 
connections between nodes form a directed graph 
along a temporal sequence, allowing it to exhibit 
temporal dynamic behavior [25]. Unlike 
feedforward neural networks, RNNs can use their 
internal state (memory) to process sequences of 
inputs. This makes them applicable to tasks such as 
unsegmented, connected handwriting recognition or 
speech recognition [26]. 
2.10  Long Short-Term Memory (LSTM) 

LSTMs are a special kind of RNN capable 
of learning long-term dependencies. They were 
introduced to avoid the long-term dependency 
problem, allowing the network to learn when to 
forget previous hidden states and when to update 
hidden states given new information [27]. LSTMs 
are particularly useful for modeling sequences and 
time-series data, where the timing and order of 
events are critical [28]. 
2.11  Gated Recurrent Units (GRU) 

GRUs are a gating mechanism in recurrent 
neural networks, introduced as a variation of the 
LSTM with a simplified structure. Like LSTMs, 
GRUs are designed to help capture dependencies for 
sequences of data [27]. However, GRUs combine the 
forget and input gates into a single "update gate" and 
merge the cell state and hidden state, resulting in a 
more straightforward model that can perform on par 
with LSTM on certain datasets but with fewer 
parameters [29]. 

 
3. RELATED WORKS 
 

In the evolving landscape of Industry 4.0, 
the symbiosis of Artificial Intelligence (AI) and 
Machine Learning (ML) with the Industrial Internet 
of Things (IIoT) has marked a transformative epoch 
in the domain of intelligent systems. Particularly, the 
incorporation of AI and ML algorithms into 
predictive maintenance and fault detection 
mechanisms stands at the forefront of scholarly 
exploration, especially within the intricate web of 
three-phase systems. This segment aims to 
amalgamate insights from seminal research, 
highlighting the innovative methodologies and 
strategies employed to harness the power of AI and 
ML in preempting and identifying faults. The 
discourse extends beyond the mere application of 
these technologies, venturing into the realm of IIoT-
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driven industrial practices, where the integration of 
smart, connected devices elevates the potential for 
system efficiency and reliability. Through a 
comprehensive review of the existing literature, this 
section endeavors to elucidate the pivotal role of AI 
and ML in redefining fault detection paradigms, 
thereby setting a solid foundation for our in-depth 
analysis within the dynamic IIoT ecosystem. 

Almasoudi et al. [30] integrated artificial 
intelligence in modern power grids, employing 
advanced hybrid machine learning models such as 
CNN-RNN, CNN-GRU, and CNN-LSTM for fault 
prediction and detection. Their approach 
demonstrated the potential of these models in 
enhancing grid resilience by enabling faster and 
more accurate fault identification and remediation, 
showcasing a significant improvement in the 
efficiency and reliability of power distribution 
systems. 

Pietrzak and Wolkiewicz [31] applied 
continuous wavelet transform (CWT) and artificial 
intelligence techniques for diagnosing PMSM stator 
winding faults. By utilizing CWT for signal 
processing and applying various machine learning 
algorithms for fault classification, they highlighted 
the effectiveness of these algorithms in accurately 
classifying stator winding faults, which is crucial for 
the maintenance and reliability of PMSM systems. 

Farrar et al. [32] provided a comprehensive 
review of the application of AI and ML in grid-
connected wind turbine control systems. Their 
review underscored the critical role of AI and ML 
algorithms in optimizing wind farm power 
generation and designing efficient control schemes, 
thereby enhancing the performance and reliability of 
wind turbines and contributing to sustainable energy 
solutions. 

Polenghi et al. [33] proposed a framework 
for fault detection in collaborative robots using a 
modular structure of unsupervised AI algorithms. 
This framework was shown to effectively handle 
different trajectories and notify operators of cobots' 
unhealthy states, enabling first-level maintenance 
and enhancing operational efficiency, which is vital 
for the automation and flexibility of manufacturing 
processes. 

Albertin et al. [34] presented a real-time 
novelty recognition framework using machine 
learning models to automate anomaly detection in 
factory systems. Their framework, which utilized a 
sensor fusion approach and optimized software 
system, enhanced computation scalability and 
response time for novelty detection, offering a viable 
solution for predictive maintenance and ensuring 
continuous operation in Industry 4.0 environments. 

Preethi et al. [35] introduced a supervised 
classification method based on the Logit boosting 
algorithm for fault detection in three-phase induction 
motors. By analyzing rotor current and vibration 
signals to extract features and using the Logit 
boosting algorithm for fault classification, their 
method demonstrated superior performance in 
identifying and classifying motor faults, providing a 
reliable tool for early detection and maintenance of 
induction motors. 

Hong et al. [36] employed convolutional 
neural networks for intelligent fault detection in 
power systems. By transforming fault data into 
images for CNN processing, their approach was able 
to classify fault types and locations under various 
conditions, significantly reducing the complexity 
and effort required for fault analysis and enhancing 
the safety and reliability of power systems. 

Badr et al. [37] introduced a non-invasive 
CNN-based approach for fault diagnosis in three-
phase induction motors, focusing on stator-related 
faults. Their method, which uses external 
measurements to feed into CNNs, demonstrated high 
accuracy in diagnosing faults, offering a cost-
effective and efficient solution for motor 
maintenance and contributing to the advancement of 
diagnostic tools in the field of electrical engineering. 

Building on the diverse contributions of 
previous works, which have underscored the 
potential of AI-based solutions in fault detection 
across various electrical systems and industries, our 
study aims to delve deeper within the context of 
Industry 4.0, particularly through the Industrial 
Internet of Things (IIoT) framework. Unlike prior 
research that often concentrated on specific AI 
models or fault types, we conduct a comprehensive 
analysis of a broad spectrum of machine learning 
and AI models. This includes Support Vector 
Machines (SVM), Decision Trees, K-Nearest 
Neighbors (KNN), Artificial Neural Networks 
(ANN), Convolutional Neural Networks (CNN), 
Recurrent Neural Networks (RNN), Long Short-
Term Memory (LSTM) networks, and Gated 
Recurrent Units (GRU). Our research is distinctive 
in its inclusivity, considering any type of three-phase 
load and even accommodating single-phase 
scenarios, thus extending the applicability of our 
findings across a broader range of industrial settings. 

Moreover, our solution addresses a 
multiclass classification problem, testing on an 
extensive array of faults, specifically 57 different 
types, which surpasses the scope of fault types 
considered in previous studies. This comprehensive 
fault coverage ensures a more robust and versatile 
fault detection system. Additionally, our approach 
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uniquely focuses on electrical parameters, 47 in 
total, as its input, which streamlines the data 
acquisition process and enhances the model's 
applicability and ease of integration into existing 
industrial systems. While previous studies have laid 
a solid foundation by demonstrating the 
effectiveness of AI and ML in fault detection, they 
often limit their focus to specific fault types or 
aspects of electrical systems. Our study seeks to 
overcome these limitations by providing a holistic 
and inclusive solution that not only covers a broader 
spectrum of fault types but also supports a wider 
variety of load conditions within the IIoT framework 
of Industry 4.0. This holistic approach not only 
advances fault detection technologies but also aligns 
with the evolving needs of modern industrial 
environments, where versatility, 
comprehensiveness, and seamless integration are 
paramount. 

 
4. PROPOSED METHODOLOGY 
 
4.1 System Architecture 

Our integrated system architecture is 
meticulously engineered to augment fault detection 
capabilities within three-phase electrical systems. At 
the core of this architecture are Power Monitoring 
Units (PMUs), strategically deployed ahead of each 
load to ensure comprehensive monitoring. These 
PMUs are interconnected with a Main Control Unit 
(MCU), which, in turn, is linked to a Main Power 
Monitoring Unit (MPMU). This configuration offers 
a holistic view of the electrical system's status, as 
illustrated in Figure 1. The architecture's design is 
pivotal for precise fault identification at both 
individual load levels and system-wide. 

 

 
Figure 1: Schematic Diagram of System Architecture 

with PMUs and MCU Integration 

 
The PMUs, embodying advanced Industrial 

Internet of Things (IIoT) technology, are adept at 
measuring a wide array of electrical parameters, 
including voltage, current, power factor, and the 
spectrum of power components (active, reactive, and 
apparent). Embedded within these units are AI fault 

detection models (AI-FDMs) that operate in real-
time, powered by Jetson Nano boards. The selection 
of Jetson Nano boards as the computational 
backbone is attributed to their capacity to handle the 
demands of AI models efficiently, thereby 
facilitating real-time analytics. 

Data acquisition is twofold: firstly, the 
PMUs process information locally via the embedded 
AI-FDM, ensuring immediate fault detection. 
Simultaneously, this data is transmitted to the MCU, 
fostering an environment for extended analysis and 
model refinement. An additional layer of analysis is 
provided by the AI-FDM within the MCU, which 
also processes data from the MPMU. This layered 
approach not only assures rapid fault identification 
but also enhances the system's learning capabilities, 
promoting continuous improvement through the 
iterative analysis of aggregated data. 

 
4.2 Data Handling and Preprocessing 

The PMUs are tasked with the continuous 
monitoring and collection of data pivotal for the 
accurate detection of faults within the system. This 
collected data is subjected to a series of 
preprocessing steps, each designed to enhance its 
quality and suitability for analysis by AI models: 
 Filtering: Initial data processing involves the 

removal of noise and extraneous information. 
This step is crucial for refining the data, thereby 
improving the precision and reliability of the 
model's outputs. 

 Normalization: Given the heterogeneity of data 
sources, normalization procedures are applied to 
standardize data ranges. This consistency is 
vital for the effective training of AI models, 
ensuring uniform interpretation of input values 
across diverse datasets. 

 Feature Extraction: This critical phase involves 
identifying and isolating features strongly 
indicative of various fault conditions. The 
effectiveness of the AI models in fault detection 
and prediction hinges on the quality and 
relevance of these extracted features. 

For real-time fault detection, AI models are 
deployed directly onto the Jetson Nano boards 
integrated within the PMUs. This deployment 
strategy ensures rapid fault identification with 
minimal latency, enabling the system to take swift 
corrective actions. This localized processing not 
only bolsters the system's operational reliability but 
also its overall safety. 

The models chosen for deployment 
encompass a broad spectrum of machine learning 
and deep learning techniques, including Support 
Vector Machines (SVM), Decision Trees, K-Nearest 



 Journal of Theoretical and Applied Information Technology 
15th May 2024. Vol.102. No 9 

©   Little Lion Scientific  
 

ISSN: 1992-8645                                                                    www.jatit.org                                                    E-ISSN: 1817-3195 

 
3800 

 

Neighbors (KNN), Artificial Neural Networks 
(ANN), Convolutional Neural Networks (CNN), 
Recurrent Neural Networks (RNN), Long Short-
Term Memory (LSTM) networks, and Gated 
Recurrent Unit (GRU) networks. This diverse array 
of models allows for a comprehensive approach to 
fault detection, accommodating the varied and 
complex nature of potential electrical system faults. 
 
4.3 Model’s Inputs and Outputs 
4.3.1 Inputs 

The proposed system is designed to analyze 
and interpret various electrical parameters (47 in 
total)  to detect and classify power system anomalies. 
The inputs to the model are meticulously chosen to 
capture the comprehensive state of the electrical 
system across three phases. These inputs include: 
 Frequency: The fundamental frequency of the 

electrical system, which is a critical parameter 
for AC power systems. 

 Timestamp: The specific time at which the data 
is recorded, allowing for temporal analysis of 
the electrical parameters. 

 For each of the three phases, the following 
parameters are recorded: 
o Maximum Voltage (Vmax): The peak 

voltage observed, providing insights into 
potential overvoltage conditions. 

o Root Mean Square (RMS) Voltage (Vrms): 
A measure of the effective voltage level, 
indicative of the power content in the 
voltage signal. 

o Voltage Angle Theta (Theta): The phase 
angle of the voltage, important for power 
factor and phase shift analyses. 

o Voltage Waveform (Vwave): The shape of 
the voltage signal, useful for identifying 
distortions and harmonics. 

o Load Resistance (Zr)** and **Load 
Reactance (Zx): The resistive and reactive 
components of the load impedance, 
respectively, affecting the system's power 
consumption and phase angles. 

o Maximum Current (Imax) and RMS 
Current (Irms): Peak and effective current 
levels, crucial for assessing load demand 
and potential overcurrent situations. 

o Current Angle Phi (Phi): The phase angle 
of the current relative to the voltage, 
important for calculating real and reactive 
power. 

o Current and Power Waveforms (Iwave, 
Pwave): The shapes of the current and 
power signals, respectively, which help in 

identifying anomalies like harmonics and 
transients. 

o Active (P), Reactive (Q), and Apparent (S) 
Power: These parameters provide a 
comprehensive view of the power 
dynamics in each phase, essential for 
energy management and fault diagnosis. 
Additionally, the total active power (Pt), 

total reactive power (Qt), and total apparent power 
(St) are computed to provide a holistic view of the 
power system's performance. 

 
4.3.2 Outputs 

The system's outputs (58 in total) are 
designed to categorize the operational status of the 
electrical system into various fault and non-fault 
conditions. These outputs include: 
 Normal Operation (Good/ok): Indicating the 

system is functioning within the expected 
operational parameters. 

 Voltage Anomalies: Including single, double, 
and triple undervoltage (suv, duv, tuv) and 
overvoltage (sov, dov, tov) faults, alongside 
voltage magnitude (svmi, dvmi, tvmi) and phase 
angle (svpi, dvpi, tvpi) imbalances. 

 Harmonic Distortions: Classified into single, 
double, and triple harmonic distortion faults 
(shd, dhd, thd), reflecting the presence of non-
fundamental frequency components in the 
electrical signals. 

 Arc Faults: Identified as single, double, and 
triple arc faults (sarc, darc, tarc), indicative of 
high-energy discharges that can lead to 
equipment damage or fire hazards. 

 Line Faults: Including line to ground (slg, dlg, 
tlg), line to line (sll, dll, tll), and open circuit 
faults (soc, doc, toc), crucial for pinpointing 
issues in the transmission infrastructure. 

 Current Imbalances: Highlighting single, 
double, and triple current magnitude (scmi, 
dcmi, tcmi) and phase angle imbalances (scpi, 
dcpi, tcpi), essential for load balancing and 
system stability. 

 Overcurrent Faults: Detected as single, double, 
and triple overcurrent conditions (sovc, dovc, 
tovc), important for protecting equipment from 
excessive current flows. 

 Machine Faults: Including rotor (srot, drot, trot), 
stator (ssta, dsta, tsta), and bearing faults (sber, 
dber, tber) in electrical machines, which can 
lead to efficiency losses and equipment failures. 

 Insulation, Thermal, and Resonance Conditions: 
Covering single, double, and triple insulation 
failures (sins, dins, tins), thermal overloads 
(stro, dtro, ttro), and resonance conditions (sres, 
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dres, tres), each indicative of specific issues 
affecting the system's reliability and safety. 

These outputs are crucial for real-time 
monitoring, fault detection, and preventive 
maintenance strategies in modern electrical systems. 
 
4.4 Data Collection and Dataset Composition 
4.4.1 Data Collection Methodology 

Our approach to data collection was event-
driven, activated by the occurrence of faults within 
the electrical system. This strategy ensured that our 
data acquisition was highly targeted, capturing 
critical events that are most relevant for fault 
detection and analysis. Upon fault detection, our 
specialized equipment was immediately engaged to 
record the pertinent electrical parameters at a high 
fidelity. 

 
4.4.2 Sampling Strategy 

The chosen sampling rate of 50Ksps 
(50,000 samples per second) was pivotal for our 
analysis. Operating in a three-phase system with a 
nominal frequency of 50Hz, this sampling rate 
allowed us to achieve an approximate resolution of 
100 samples per cycle. This high-resolution data 
capture was instrumental in identifying subtle 
disturbances, harmonics, and other anomalies 
indicative of various fault conditions, providing a 
rich dataset for in-depth analysis. 

 
4.4.3 Dataset Composition 

Following the filtration of the captured data 
and its segmentation into training and testing 
subsets, we achieved the following dataset 
composition: 
 Training Dataset: This dataset, spanning 10 

hours, 6 minutes, and 41 seconds of system 
operation, comprises a total of 17,262,000 
samples. It represents a comprehensive 
collection of fault events and normal operational 
states, serving as the foundation for training our 
AI models. 

 Testing Dataset: The testing dataset, which 
extends over 2 hours, 31 minutes, and 32 
seconds, includes 4,299,000 samples. This 
dataset is crucial for evaluating the models' 
performance, ensuring they can accurately 
identify and classify faults under varied 
conditions. 
 

4.4.4 Fault Type Distribution 
A detailed breakdown of the occurrence 

frequency of each fault type is available in Table 2, 
which covers both the test and training sets. Figure 2 
visually maps out these frequencies, making it 

simpler to compare the different fault types. 
Moreover, Figure 3 contrasts the instances when the 
system was functioning correctly, marked as 'OK', 
with the times various faults were detected, offering 
a clear perspective on how common faults are 
relative to normal operation. 

Fault Type Test Counts Train Counts 
suv 78000 342000 
duv 66500 334500 
tuv 69500 268000 
sov 87000 283500 
dov 70500 302000 
tov 78000 288500 

svmi 73000 290000 
dvmi 47000 319500 
tvmi 80500 270000 
svpi 79000 314500 
dvpi 67500 289000 
tvpi 75500 318000 
shd 4831 12007 
dhd 8236 34888 
thd 8270 40146 
sarc 3902 14251 
darc 7130 30604 
tarc 11126 39034 
slg 69500 275500 
dlg 69000 292000 
tlg 81000 287500 
sll 79000 307500 
dll 85000 307000 
tll 75000 328500 
soc 86500 280000 
doc 69000 293500 
toc 51000 304500 

scmi 77500 341500 
dcmi 66000 308500 
tcmi 68000 306500 
scpi 94000 325000 
dcpi 60000 278000 
tcpi 60000 283000 
sovc 89500 298500 
dovc 87500 331000 
tovc 75000 323500 
srot 84500 311000 
drot 66500 319500 
trot 77500 321000 
ssta 67000 324000 
dsta 60500 330000 
tsta 91500 292000 
sinc 4252 17184 
dinc 10907 26311 
tinc 7153 39234 
sber 3935 14271 
dber 6821 28832 
tber 10678 40863 
sins 4354 15500 
dins 4798 26442 
tins 14210 42533 
stro 89500 293500 
dtro 65000 270000 
ttro 85000 313000 
sres 24733 107204 
dres 29142 163242 
tres 41586 198521 
ok 1191436 4448433 
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Table 1:Frequency Distribution of Fault Types in 
Training and Test Sets 

 

 
Figure 2: Distribution of Fault Type Occurrences in 

Training and Test Sets 

 

 

Figure 3: Comparative Analysis of Fault and Non-
Fault Occurrences in Training and Test Sets 

 
4.5 Model’s Implementation 
4.5.1 SVM 

I chose the RBF kernel for the SVM 
because it excels at handling the non-linear 
complexities inherent in electrical fault diagnosis. 
The RBF kernel's adaptability makes it particularly 
effective for parsing the nuanced relationships 
within the multivariate data of three-phase electrical 
systems. This kernel's strength lies in its ability to 
transform the data into a higher-dimensional space, 
thereby uncovering decision boundaries not visible 
in the original feature space. Such a transformation 
is crucial for accurately classifying the subtle 
distinctions between different types of electrical 
faults. To optimize the model, I experimented with 
various gamma values [0.0001, 0.001, 0.01, 0.1, 1, 
10], fine-tuning the model's sensitivity to the data's 
complexity and ensuring the best balance between 
bias and variance. This meticulous calibration, 
combined with the RBF kernel's proven track record 
in complex classification tasks, solidified its 
selection for achieving high accuracy in fault 
diagnosis. 

 
4.5.2 Decision Trees 

I opted for Decision Trees with the Gini 
impurity criterion due to their transparent and 
straightforward decision-making process, which is 
particularly beneficial for the intricate task of 
diagnosing electrical faults in three-phase systems. 
The Gini criterion, known for its efficiency in 
measuring the purity of a node, serves as an excellent 
tool for handling the diverse and categorical nature 
of electrical fault data. To further refine the model 
and adapt it to the complexity of the electrical fault 
patterns, I experimented with various maximum 
depths [8, 16, 32, 64, 128, 256]. These depths were 
carefully chosen to explore the trade-off between 
model simplicity and the ability to capture detailed 
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fault characteristics without overfitting. By adjusting 
the max_depth parameter, I was able to control the 
tree's growth, ensuring it was deep enough to learn 
the nuanced distinctions between different fault 
types, yet restrained to prevent learning the noise in 
the data. This methodical approach to tuning the 
Decision Tree, coupled with the intuitive nature of 
the Gini criterion, formed the cornerstone of my 
strategy to achieve a model that is both accurate and 
interpretable. 

 
4.5.3 KNN 

I selected the K-Nearest Neighbors (KNN) 
algorithm for its intuitive approach to classifying 
electrical faults by leveraging the similarity of data 
points in the feature space. Understanding that the 
proximity of data points in a multidimensional space 
often signifies similarity in characteristics, I found 
KNN to be particularly apt for distinguishing 
between the various types of faults in three-phase 
electrical systems based on their feature signatures. 
To fine-tune the model and ensure it captures the 
intricate patterns of the data without succumbing to 
noise, I experimented with different numbers of 
neighbors [8, 16, 32, 64, 128, 256]. This range 
allowed me to assess the model's performance across 
a spectrum of neighborhood sizes, from more 
localized to more generalized perspectives. By 
adjusting the n_neighbors parameter, I aimed to 
strike an optimal balance where the model is 
sensitive enough to identify subtle fault distinctions 
but robust against the irregularities and variability 
inherent in the data. This careful calibration of KNN, 
guided by the principle of similarity in the feature 
space, underpinned my strategy to develop a model 
that is both precise in fault classification and resilient 
to overfitting. 

 
4.5.4 Neural Networks 

In the structured design of neural network 
architectures for the study, encompassing ANN, 
CNN, RNN, LSTM, and GRU, a standardized 
approach was rigorously employed to ensure 
consistency and methodological clarity across 
various models. Each model's architecture initiates 
with an input layer, meticulously configured to align 
with the dimensions of the input data, thereby laying 
a robust foundation for the data processing pipeline. 
This phase is succeeded by model-specific hidden 
layers, each thoughtfully engineered to capture the 
unique temporal or spatial patterns present in the 
dataset, as elaborated in the architectural framework 
and illustrated in Figure 4. 

Following the implementation of these 
specialized hidden layers, a unified architectural 

backbone is adopted across all models. This includes 
a Flatten layer, facilitating a seamless transition into 
dense layer processing, a crucial step depicted in 
Figure 4. The architecture is enhanced by integrating 
activation functions into the dense layers, which 
boosts the model's capacity to capture complex, non-
linear relationships. Specifically, the first dense 
layer introduces non-linearity by employing a 
number of units as defined in (1), thereby aiding in 
the representation of a wide range of features. The 
following dense layer, which maintains the number 
of units as specified in (2), also includes a ReLU 
activation function, further refining the network's 
learning capabilities. 

 
𝑈𝑛𝑖𝑡𝑠 = 2 ∗ 2⌈ (( _ _ )⌉ (1) 

𝑈𝑛𝑖𝑡𝑠 = 2⌈ (( _ _ )⌉ (2) 

 
Figure 4: Core Architecture of Standardized Neural 

Networks for AI Models 

 
The architectural sequence reaches its 

culmination with a softmax output layer, aptly 
designated as "output". This layer is specifically 
designed to provide a probabilistic distribution over 
the various classes, thereby enabling precise multi-
class classification. To optimize the models for 
multi-class classification tasks, 
"categorical_crossentropy" was chosen as the loss 
function for its effectiveness in handling multiple 
classes by comparing the predicted probabilities 
with the actual class distribution. The "adam" 
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optimizer was selected for its adaptive learning rate 
capabilities, making it well-suited for a wide range 
of data and network architectures, thereby enhancing 
the training process's efficiency and convergence. 

This cohesive and methodologically sound 
architectural blueprint, as detailed in the layer 
configuration, activation layers, loss function, and 
optimizer choice, and visually encapsulated in 
Figure 4, emphasizes a commitment to upholding a 
consistent framework across the array of neural 
network models under consideration. The explicit 
mention of "categorical_crossentropy" and "adam" 
ensures a clear understanding of the training 
dynamics, contributing to the models' transparency 
and reproducibility. This structured approach 
facilitates a detailed assessment of each model's 
distinct features and efficacy, offering a robust and 
versatile framework tailored to the analytical 
objectives at hand. 

 
4.5.4.1 ANN 

In the ANN model's hidden layer 
configuration, a dense layer with ReLU activation 
was employed. The model's adaptability and 
learning depth were tested by varying the number of 
units in this layer, specifically exploring 
configurations with 8, 16, 32, 128, and 256 units. 
This range was chosen to assess the network's 
performance from simpler to more complex 
structures, aiming to find an optimal setup that 
captures intricate data patterns efficiently while 
avoiding overfitting, thus ensuring precise 
classification and robust generalization. 

 
4.5.4.2 CNN,RNN,LSTM,GRU 

In our comprehensive exploration, we 
delved into the intricacies of neural network 
architectures including CNN, RNN, LSTM, GRU, 
and their hybrid variations, particularly those that 
integrate CNN with RNN, LSTM, and GRU 
elements. Our primary aim was to identify the 
optimal configurations that delicately balance model 
complexity with the ability to generalize effectively. 
This balance is pivotal for proficient pattern 
recognition and ensuring stable performance across 
diverse datasets. To achieve this, we systematically 
tested various model depths and unit values, 
examining how these parameters influence the 
models' learning capabilities and overall efficacy. 

 
4.5.4.2.1 CNN Architectures 

Delving into the realm of Convolutional 
Neural Networks, our study meticulously explored 
the capabilities of CNNs to process and analyze 
spatial data. This foundational exploration served as 

a critical step in understanding how CNNs, with their 
unique architectural design, effectively capture 
spatial features and patterns within data, setting the 
stage for more complex model configurations. 
 CNN_1 Configuration: Employs a single 

Conv1D layer, experimenting with different 
units (8, 16, 32, 128, 256) to gauge the initial 
spatial feature extraction capabilities. This is 
followed by a MaxPooling layer to diminish 
dimensionality and highlight key features, 
thereby streamlining the feature selection 
process (see Figure 5). 

 CNN_2 Configuration: Builds on the CNN_1 
setup by stacking two such layers sequentially, 
using units (8,16), (16,32), (32,64), (64,128), 
and (128,256). This structure is intended to 
refine the depth of feature extraction, enhancing 
the model's analytical depth (illustrated in 
Figure 6). 

 CNN_3 Configuration: Introduces a third layer 
to the CNN_1 sequence, employing unit 
combinations (8,16,32), (16,32,64), 
(32,64,128), and (64,128,256). This approach 
aims to explore the advantages of increased 
depth in hierarchical feature learning (depicted 
in Figure 7). 
 

 
Figure 5: Hidden Layer Configuration of CNN_1 Model 

 

 
Figure 6: Hidden Layer Configuration of CNN_2 Model 
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Figure 7: Hidden Layer Configuration of CNN_3 Model 

 
4.5.4.2.2 RNN, LSTM, and GRU Models 

The focus shifts towards understanding the 
management of temporal dependencies, essential for 
processing sequential data. The configurations 
explored include: 
 (RNN/LSTM/GRU)_1: Incorporates a single 

recurrent layer with units (8, 16, 32, 128, 256) 
and a 50% dropout rate to evaluate the basic 
ability to capture temporal patterns and prevent 
overfitting, thereby enhancing the model's 
generalization capacity (see Figure 8). 

 (RNN/LSTM/GRU)_2: Consists of two 
(RNN/LSTM/GRU)_1 layers stacked 
sequentially, with units set as pairs (8,16), 
(16,32), (32,64), (64,128), (128,256). This 
configuration seeks to assess how additional 
layers improve the model's capability to capture 
more intricate temporal relationships (illustrated 
in Figure 9). 

 (RNN/LSTM/GRU)_3: Assembles three 
(RNN/LSTM/GRU)_1 layers sequentially, with 
unit combinations (8,16,32), (16,32,64), 
(32,64,128), (64,128,256). This setup aims to 
delve into the network's potential for advanced 
temporal pattern recognition and long-term 
dependency modeling (depicted in Figure 10). 

 

 
Figure 8: Hidden Layer Configuration in Single-Layer 

RNN/LSTM/GRU Models 

 

 
Figure 9: Hidden Layer Configuration in Dual-Layer 

RNN/LSTM/GRU Models 

 

 
Figure 10: Hidden Layer Configuration in Triple-

Layer RNN/LSTM/GRU Models 

4.5.4.2.3 Hybrid CNN_(RNN/LSTM/GRU) 
Models 

The fusion of CNN architectures with 
recurrent neural models (RNN, LSTM, GRU) marks 
a significant advancement in our quest to harness the 
full potential of neural networks for spatial-temporal 
data analysis. These hybrid models are designed to 
capture the best of both worlds: the CNN's adeptness 
at processing spatial information and the sequential 
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data handling capabilities of RNN-based models. By 
intertwining these architectures, we aim to create a 
versatile framework capable of deciphering complex 
patterns that are not only spatially but also 
temporally significant. This innovative approach 
promises to extend the applicability of neural 
networks to a broader spectrum of challenges, 
especially those involving intricate spatial-temporal 
dynamics. 
 CNN_(RNN/LSTM/GRU)_1: This hybrid 

model initiates with the complete CNN_1 
structure, focusing on spatial feature extraction, 
and is followed by an (RNN/LSTM/GRU)_1 
layer dedicated to temporal modeling. The 
objective is to synergize the spatial analysis 
proficiency of CNNs with the temporal 
sequencing strengths of RNN-based models, 
offering a holistic solution for analyzing spatial-
temporal data (refer to Figure 11). 

 CNN_(RNN/LSTM/GRU)_2: The model's 
depth and analytical capabilities are further 
augmented by combining two 
CNN_(RNN/LSTM/GRU)_1 units. This 
enhancement seeks to enrich both the spatial 
and temporal dimensions of data analysis, 
providing a more nuanced understanding of the 
underlying patterns (illustrated in Figure 12). 

 CNN_(RNN/LSTM/GRU)_3: By integrating 
three CNN_(RNN/LSTM/GRU)_1 units, this 
configuration substantially increases the 
model's complexity, pushing the boundaries of 
spatial-temporal feature extraction and 
recognition. This ambitious setup is designed to 
tackle the most challenging spatial-temporal 
analysis tasks, offering unparalleled insights 
into the data (depicted in Figure 13). 

 

 
Figure 11: Hidden Layer Configuration in Single-

Layer  CNN_(RNN/LSTM/GRU) Models 

 

 
Figure 12: Hidden Layer Configuration in Dual-Layer  

CNN_(RNN/LSTM/GRU) Models 

 

 
Figure 13: Hidden Layer Configuration in Triple-

Layer  CNN_(RNN/LSTM/GRU) Models 

 
Through this extensive exploration, we 

leveraged the distinct strengths of CNN and RNN-
based architectures, charting new territories in 
complex dataset analysis that necessitates an 
intricate understanding of both spatial and temporal 
dimensions. This endeavor not only sheds light on 
the optimal configurations for various neural 
network models but also sets the stage for future 
innovations in neural network applications and 
optimization. 

 
5. RESULTS AND DISCUSSION 
 

In this section, we delve into the empirical 
findings from our application of various AI 
methodologies to fault detection in three-phase 
electrical systems. Through a comparative analysis, 
we assess the performance of each model in 
identifying and classifying faults, offering insights 
into their practical implications for industrial 
applications. 

Our analysis is intricately linked to the 
overarching objectives of this research, aiming to 
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enhance the accuracy and efficiency of fault 
detection mechanisms in industrial settings. The 
results demonstrate that AI models, particularly 
those employing deep learning techniques like 
Convolutional Neural Networks (CNNs) and 
Recurrent Neural Networks (RNNs), significantly 
improve the detection and diagnosis of faults. This 
empirical evidence underscores the potential of AI to 
revolutionize fault detection processes, aligning with 
our initial research objectives of integrating 
advanced AI methodologies to improve operational 
reliability and efficiency in the context of Industry 
4.0. 

 
5.1 Hardware characteristics 

The outcomes of our study were achieved 
on a server equipped with specific hardware 
specifications: 
 CPU: AMD Ryzen 9 5900X (1 socket, 12 cores, 

24 threads). 
 RAM: 128 GB. 
 GPU: 4 * NVidia’s GeForce RTX 3080 with 

Cuda v12.0. 
In our experiments, we employed Keras, an 

open-source Python library for deep learning, 
running on TensorFlow version 2.15.0 as the 
backend engine. Additionally, we utilized Scikit-
learn version 1.3.2 for traditional machine-learning 
models and metric calculations. 

 
5.2 Evaluating the models 

To evaluate our models, we generated a 
wide array of metrics, including Accuracy, 
Precision, Recall, F1 Score, Class Precision, Class 
Recall, Class F1 scores, and the confusion matrix for 
each. However, for the purpose of comparison across 
the diverse set of models in this study, we will 
concentrate on using only Accuracy, Precision, 
Recall, and F1 Score. These core metrics provide a 
comprehensive and efficient framework for 
assessing and comparing model performance, 
offering insights into the models' overall 
effectiveness and their balance between precision 
and recall, which are pivotal for the nuanced task of 
multi-class fault classification. 

In summarizing the extensive analysis 
across various neural network models and 
configurations, we observed the following key 
insights: 

 
5.2.1 SVM model: 

The SVM model's performance varies with 
gamma values, as illustrated in Table 2. Lower 
gammas lead to underfitting with high precision but 
low recall, resulting in a low F1-score. Slight 

increases in gamma marginally improve accuracy, 
precision, and recall. Gamma 0.01 offers balanced 
performance with significantly improved metrics. 
However, higher gammas induce overfitting, 
sacrificing accuracy for increased recall. Gamma 
0.01 emerges as the optimal choice, striking a 
balance between precision, recall, and accuracy. 
Therefore, meticulous gamma parameter tuning is 
crucial for optimizing the SVM model's performance 
on the dataset, ensuring effective classification 
without compromising generalization. 

Table 2: SVM Model Performance Analysis with Varied 
Gamma Values 

Gamma Accuracy Precision Recall F1-score 
0.0001 0.374 0.864 0.169 0.120 
0.001 0.402 0.889 0.237 0.138 
0.01 0.448 0.789 0.330 0.290 
0.1 0.308 0.684 0.334 0.266 
1 0.138 0.668 0.261 0.149 

10 0.104 0.876 0.092 0.092 

 
5.2.2 Decision Tree model: 

The Decision Tree model's performance 
varies with tree depths, as outlined in Table 3. At 
depth 8, the model exhibits high precision but low 
recall, indicating conservative positive case 
predictions, resulting in a low F1-score despite high 
accuracy. Increasing to depth 16 improves accuracy, 
precision, and recall slightly, capturing more data 
complexities. Depth 32 shows decreased precision 
but improved recall, yielding a higher F1-score. 
Depth 64 further enhances recall, resulting in the 
highest F1-score among tested depths. Depths 128 
and 256 plateau in performance, suggesting 
diminishing returns. The optimal balance between 
precision and recall, evident in the highest F1-score, 
is at depth 64. Careful tree depth tuning is vital for 
optimizing model performance on this dataset. 

Table 3: Decision Tree Model Evaluation Across 
Different Depths 

Depth Accuracy Precision Recall F1-score 
8 0.540 0.970 0.266 0.262 

16 0.613 0.963 0.343 0.337 
32 0.588 0.658 0.369 0.658 
64 0.512 0.425 0.382 0.717 
128 0.482 0.430 0.379 0.701 
256 0.482 0.430 0.379 0.701 

 
5.2.3 KNN model: 

The performance of the K-Nearest 
Neighbors (KNN) model is influenced by the 
number of neighbors, as demonstrated in Table 4. 
With 8 neighbors, moderate accuracy and precision 
are achieved, alongside a relatively low recall. The 
F1-score indicates a balanced precision-recall trade-
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off. Increasing to 16 neighbors maintains similar 
accuracy and slightly improves precision, yet the F1-
score decreases slightly. Doubling to 32 neighbors 
leads to decreased accuracy but increased precision, 
resulting in a lower F1-score. Further increases to 64 
and 128 neighbors show diminishing returns, with 
declining recall and fluctuating F1-scores. At 256 
neighbors, there's a slight increase in accuracy and 
precision, but the F1-score remains lower. Smaller 
neighborhoods exhibit better precision-recall 
balance, suggesting their effectiveness in this 
dataset. 

Table 4: KNN Model Performance with Varying Number 
of Neighbors 

Depth Accuracy Precision Recall F1-score 
8 0.540 0.970 0.266 0.262 

16 0.613 0.963 0.343 0.337 
32 0.588 0.658 0.369 0.658 
64 0.512 0.425 0.382 0.717 
128 0.482 0.430 0.379 0.701 
256 0.482 0.430 0.379 0.701 

 
5.2.4 ANN model: 

The ANN model's performance varies with 
the number of units, as outlined in Table 5. With 8 
units, moderate accuracy and precision are observed, 
along with relatively low recall. Increasing to 16 
units improves all metrics, indicating better capture 
of dataset nuances. At 32 units, slight improvements 
in accuracy and precision are noted, with a marginal 
increase in the F1-score. Jumping to 64 units notably 
boosts recall, though precision decreases slightly, 
resulting in a significant F1-score improvement. 
Surprisingly, 128 units yield decreased metrics, 
suggesting potential overfitting. However, at 256 
units, the model achieves peak performance, raising 
concerns of overfitting. Overall, the ANN model's 
performance improves with complexity, but careful 
tuning is vital to prevent overfitting. 

Table 5: ANN Model Performance Across Different Unit 
Configurations 

Units Accuracy Precision Recall F1-score 
8 0.655 0.784 0.411 0.531 

16 0.686 0.780 0.458 0.579 
32 0.689 0.793 0.458 0.581 
64 0.709 0.722 0.496 0.642 
128 0.557 0.583 0.357 0.590 
256 0.790 0.817 0.595 0.659 

 
5.2.5 CNN models: 

The CNN_1 model reveals diverse 
performance metrics across various configurations, 
as shown in Table 6. With 8 units, it demonstrates 
moderate accuracy and precision, while increasing to 
16 units shows slight accuracy improvements but a 

decrease in precision. However, at 32 units, there's a 
notable drop in accuracy and recall. Surprisingly, 
128 units yield significant improvements in all 
metrics, indicating the best performance among 
CNN_1 setups. 

The CNN_2 model, detailed in Table 7, 
showcases enhancements as complexity increases. 
Ranging from [8,16] to [128,256] units, there's a 
consistent trend of increasing accuracy, precision, 
and recall. Notably, configurations like [128,256] 
yield the highest performance, indicating a better 
balance and overall effectiveness. 

In the CNN_3 model, illustrated in Table 8, 
performance improves with deeper layers. 
Progressing from [8,16,32] to [64,128,256] units, 
notable enhancements in accuracy, precision, and 
recall are observed. However, fluctuations in the F1-
score suggest varying balance levels. Nonetheless, 
the [64,128,256] setup achieves remarkable 
accuracy and precision, coupled with a significant 
recall boost, indicating robust performance. 

The CNN models exhibit diverse 
performance trends across different configurations 
and depths. As complexity increases, so does the 
overall effectiveness, with deeper layers and larger 
units generally leading to better balance and 
performance. Notably, configurations like [128,256] 
for CNN_2 and [64,128,256] for CNN_3 
demonstrate superior performance, showcasing the 
importance of complexity in capturing dataset 
nuances. However, potential considerations for 
overfitting and computational costs should be 
carefully evaluated when opting for deeper and more 
intricate models. 

Table 6: CNN_1 Model Performance with Various 
Architectural Configurations 

Units Accuracy Precision Recall F1-score 
8 0.687 0.762 0.453 0.591 

16 0.690 0.671 0.456 0.649 
32 0.647 0.728 0.396 0.584 
64 0.579 0.565 0.368 0.635 
128 0.775 0.835 0.590 0.616 
256 0.664 0.638 0.419 0.662 

Table 7: CNN_2 Model Performance Across Different 
Architectural Configurations 

Units Accuracy Precision Recall F1-score 
[8,16] 0.685 0.712 0.451 0.641 
[16,32] 0.704 0.692 0.480 0.642 
[32,64] 0.738 0.754 0.531 0.617 

[64,128] 0.667 0.649 0.427 0.686 
[128,256] 0.858 0.831 0.667 0.760 
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Table 8: CNN_3 Model Performance with Varied 
Architectural Configurations 

Units Accuracy Precision Recall F1-score 
[8,16,32] 0.678 0.764 0.439 0.561 

[16,32,64] 0.698 0.695 0.467 0.626 
[32,64,128] 0.718 0.749 0.500 0.580 
[64,128,256] 0.800 0.847 0.607 0.634 

 
5.2.6 RNN models: 

The RNN models demonstrate varied 
performance across different configurations and 
depths. Starting with RNN_1, showcased in Table 9, 
we observe that 8 units exhibit moderate accuracy 
and high precision, while 16 units show improved 
accuracy and recall. However, at 32 units, there's a 
decrease in accuracy, precision, and recall. 
Substantial improvements are observed at 64 and 
128 units, with optimal performance seen at 256 
units. 

Moving to RNN_2, illustrated in Table 10, 
configurations such as [8,16] units display lower 
accuracy and recall compared to RNN_1 setups, 
with relatively high precision but a low F1-score. 
Further configurations show varying degrees of 
improvement, with [128,256] units achieving the 
highest metrics across the board. 

Similarly, we explore RNN_3, detailed in 
Table 11, where we observe notable performance 
fluctuations. While [8,16,32] units exhibit the lowest 
accuracy and recall, subsequent configurations 
demonstrate improvements. Notably, [64,128,256] 
units show the highest F1-score among RNN_3 
setups. 

Overall, increasing the complexity of RNN 
models generally enhances performance, with 
notable improvements in accuracy, precision, recall, 
and F1-scores observed in larger unit configurations. 
However, optimal configuration selection requires 
careful tuning and validation to prevent overfitting 
and ensure robust generalization to new data. 

Table 9: RNN_1 Model Performance Across Different 
Architectural Configurations 

Units Accuracy Precision Recall F1-score 
8 0.673 0.843 0.430 0.501 

16 0.717 0.812 0.497 0.535 
32 0.590 0.611 0.370 0.568 
64 0.814 0.862 0.623 0.650 
128 0.927 0.943 0.741 0.758 
256 0.944 0.959 0.777 0.786 

 

Table 10: RNN_2 Model Performance with Various 
Architectural Configurations 

Units Accuracy Precision Recall F1-score 
[8,16] 0.578 0.756 0.350 0.424 
[16,32] 0.523 0.564 0.357 0.610 

[32,64] 0.866 0.903 0.676 0.697 
[64,128] 0.923 0.943 0.755 0.764 

[128,256] 0.973 0.976 0.806 0.817 

Table 11: RNN_3 Model Performance Across Different 
Architectural Configurations 

Units Accuracy Precision Recall F1-score 
[8,16,32] 0.473 0.550 0.312 0.490 

[16,32,64] 0.500 0.548 0.354 0.559 
[32,64,128] 0.430 0.482 0.302 0.591 
[64,128,256] 0.457 0.459 0.334 0.619 

 
5.2.7 LSTM models: 

The LSTM models exhibit diverse 
performance across different configurations and 
depths. In LSTM_1 (Table 12), with 8 units, there's 
moderate accuracy and high precision but lower 
recall, suggesting a simplistic approach. Progressing 
to 16 units shows slight improvements in accuracy, 
precision, and recall, indicating a more balanced 
model. However, at 32 units, there's a drop in 
accuracy and precision, possibly due to overfitting, 
while 64 units exhibit a further decrease in metrics. 
Nonetheless, 128 units show improved accuracy and 
precision. 

Moving to LSTM_2 (Table 13), 
configurations such as [8,16] units display lower 
accuracy and recall compared to LSTM_1, while 
[16,32] units show improvements in accuracy and 
recall. However, setups like [32,64] units exhibit a 
significant drop in accuracy and precision. On the 
other hand, [64,128] units demonstrate notable 
improvements across all metrics. 

In LSTM_3 (Table 14), configurations vary 
considerably. For instance, [8,16,32] units show the 
lowest accuracy and recall, while [64,128,256] units 
achieve the highest accuracy and precision. 
However, increasing complexity doesn't consistently 
enhance performance, as evidenced by fluctuating 
F1-scores. Despite this, LSTM_2 configurations 
seem to strike a balance, particularly the [64,128] 
units setup. 

Overall, while increased complexity tends 
to improve LSTM model performance, further 
complexity doesn't always yield better results and 
may introduce overfitting. Thus, careful tuning is 
necessary to find the optimal configuration that 
balances precision, recall, and overall accuracy. 

Table 12: LSTM_1 Model Performance with Varied 
Architectural Configurations 

Units Accuracy Precision Recall F1-score 
8 0.677 0.786 0.430 0.521 

16 0.706 0.747 0.476 0.543 
32 0.581 0.573 0.360 0.594 
64 0.561 0.562 0.363 0.587 
128 0.710 0.750 0.478 0.564 
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256 0.630 0.796 0.377 0.476 

Table 13: LSTM_2 Model Performance Across Different 
Architectural Configurations 

Units Accuracy Precision Recall F1-score 
[8,16] 0.607 0.744 0.359 0.439 
[16,32] 0.684 0.714 0.450 0.517 
[32,64] 0.516 0.505 0.334 0.607 

[64,128] 0.794 0.847 0.584 0.613 
[128,256] 0.651 0.783 0.400 0.538 

Table 14: LSTM_3 Model Performance with Various 
Architectural Configurations 

Units Accuracy Precision Recall F1-score 
[8,16,32] 0.466 0.721 0.218 0.319 

[16,32,64] 0.215 0.766 0.062 0.216 
[32,64,128] 0.575 0.891 0.324 0.368 
[64,128,256] 0.648 0.941 0.395 0.394 

 
5.2.8 GRU models: 

The GRU models exhibit varied 
performance across configurations and depths. In 
GRU_1 (Table 15), starting with 8 units, there's 
moderate accuracy and high precision but lower 
recall, suggesting a precise yet limited model. 
Progressing to 16 units shows a slight decrease in 
accuracy and precision, but a better balance between 
precision and recall. At 32 units, there are significant 
improvements in accuracy, precision, and recall, 
indicating effective pattern capture. Subsequently, 
64 units display substantial enhancements in all 
metrics, reflecting excellent model performance, 
while 128 units exhibit near-perfect accuracy and 
precision. 

In GRU_2 (Table 16), configurations like 
[8,16] units show lower accuracy and precision 
compared to GRU_1, suggesting limited 
effectiveness. Further configurations exhibit 
nuanced changes, with [32,64] units showcasing 
improvements in balance and overall performance. 
However, setups like [128,256] units indicate a 
complex interplay between precision and recall, 
despite lower overall metrics. 

In GRU_3 (Table 17), configurations vary 
significantly. For instance, [8,16,32] units show the 
lowest accuracy and precision, while [64,128,256] 
units achieve the highest accuracy and precision. 
Nonetheless, increasing complexity doesn't 
consistently enhance performance, as evidenced by 
varying F1-scores. Despite this, GRU_1 
configurations, particularly with 256 units, 
demonstrate the best balance between precision, 
recall, and overall accuracy. 

Overall, GRU models benefit from 
increased complexity up to a point, as seen in 
GRU_1 configurations. However, further 

complexity doesn't always yield better performance 
and may introduce overfitting, necessitating careful 
tuning and validation for generalization to new data. 

Table 15: GRU_1 Model Performance Across Different 
Architectural Configurations 

Units Accuracy Precision Recall F1-score 
8 0.676 0.810 0.434 0.557 

16 0.576 0.582 0.361 0.611 
32 0.785 0.836 0.578 0.629 
64 0.900 0.896 0.713 0.769 
128 0.954 0.951 0.777 0.809 
256 0.978 0.981 0.817 0.827 

Table 16: GRU_2 Model Performance with Varied 
Architectural Configurations 

Units Accuracy Precision Recall F1-score 
[8,16] 0.610 0.612 0.393 0.560 
[16,32] 0.542 0.543 0.353 0.599 
[32,64] 0.807 0.834 0.630 0.651 

[64,128] 0.736 0.733 0.585 0.653 
[128,256] 0.674 0.660 0.430 0.657 

Table 17: GRU_3 Model Performance Across Different 
Architectural Configurations 

Units Accuracy Precision Recall F1-score 
[8,16,32] 0.342 0.402 0.241 0.468 

[16,32,64] 0.621 0.837 0.370 0.463 
[32,64,128] 0.609 0.819 0.355 0.444 
[64,128,256] 0.669 0.752 0.424 0.582 

 
5.2.9 CNN_RNN models: 

The CNN-RNN hybrid models exhibit 
varied performance across different configurations 
and depths. In CNN_RNN_1 (Table 18), starting 
with 8 units, there's moderate accuracy and very high 
precision but lower recall, suggesting a model that's 
precise but not as effective in identifying all positive 
cases. Progressing to 16 units shows improvements 
in accuracy and recall, with a slight decrease in 
precision but a higher F1-score, indicating a better 
balance. At 32 units, significant enhancements in all 
metrics reflect excellent model performance, while 
128 units achieve near-perfect accuracy and 
precision. 

In CNN_RNN_2 (Table 19), configurations 
like [8,16] units exhibit lower accuracy and recall 
compared to CNN_RNN_1, suggesting limited 
effectiveness. Further configurations show nuanced 
changes, with [32,64] units indicating potential 
issues with model overfitting or complexity. 
However, setups like [128,256] units demonstrate a 
significant jump in all metrics, suggesting an optimal 
balance between complexity and performance. 

In CNN_RNN_3 (Table 20), configurations 
vary in performance. For instance, [8,16,32] units 
show moderate accuracy and high precision but low 
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recall, while [64,128,256] units exhibit further 
decreases in accuracy and precision, with potential 
overfitting issues. Despite this, CNN_RNN_1 and 
CNN_RNN_2 configurations, particularly with 
larger unit sizes, demonstrate improved 
performance. 

Overall, CNN-RNN hybrid models tend to 
improve in performance with increased complexity 
up to a point, particularly seen in CNN_RNN_1 and 
CNN_RNN_2 configurations. However, further 
complexity doesn't consistently lead to better 
performance and might introduce overfitting, 
emphasizing the importance of careful tuning and 
validation. The optimal configuration appears to be 
within the CNN_RNN_2 range, especially the 
[128,256] units configuration. 

Table 18: CNN_RNN_1 Model Performance with 
Various Architectural Configurations 

Units Accuracy Precision Recall F1-score 
8 0.656 0.895 0.409 0.462 

16 0.706 0.818 0.466 0.546 
32 0.793 0.838 0.593 0.614 
64 0.878 0.908 0.686 0.706 
128 0.958 0.969 0.772 0.788 
256 0.968 0.983 0.798 0.810 

Table 19: CNN_RNN_2 Model Performance Across 
Different Architectural Configurations 

Units Accuracy Precision Recall F1-score 
[8,16] 0.599 0.874 0.349 0.408 
[16,32] 0.614 0.689 0.396 0.593 
[32,64] 0.517 0.587 0.328 0.525 

[64,128] 0.496 0.573 0.319 0.497 
[128,256] 0.958 0.973 0.754 0.758 

Table 20: CNN_RNN_3 Model Performance with Varied 
Architectural Configurations 

Units Accuracy Precision Recall F1-score 
[8,16,32] 0.578 0.806 0.329 0.403 

[16,32,64] 0.556 0.594 0.345 0.627 
[32,64,128] 0.464 0.587 0.326 0.538 
[64,128,256] 0.442 0.583 0.308 0.600 

 
5.2.10 CNN_LSTM model: 

The CNN-LSTM hybrid models showcase 
performance variations across different 
configurations and depths. Starting with 
CNN_LSTM_1 (Table 21), configurations like 8 
units display moderate accuracy with high precision 
but lower recall, suggesting a significant number of 
missed detections. Progressing to 16 units shows 
improved accuracy and recall with slightly lower 
precision, indicating a better balance between 
identifying and classifying positive cases. At 32 
units, there's a drop in accuracy and precision but an 

increase in the F1-score, suggesting improved 
balance despite lower overall performance. 

In CNN_LSTM_2 (Table 22), 
configurations like [8,16] units exhibit lower 
accuracy and recall compared to most 
CNN_LSTM_1 setups, indicating less effectiveness 
in capturing relevant cases. Further configurations 
show nuanced changes, with [32,64] units indicating 
potential improvements in identifying positive cases. 
However, setups like [128,256] units demonstrate a 
drop in all metrics, suggesting potential issues with 
overfitting or model complexity. 

In CNN_LSTM_3 (Table 23), 
configurations vary significantly, with setups like 
[8,16,32] units showing the lowest accuracy and 
recall, while [64,128,256] units exhibit further 
decreases in accuracy and precision. Despite this, 
CNN_LSTM_1 configurations, particularly with 
larger unit sizes, indicate improved performance, 
suggesting more complex models can better capture 
the dataset's spatial-temporal dynamics. 

Overall, CNN-LSTM hybrid models tend 
to show improved performance with increased 
complexity up to a certain point, as seen in 
CNN_LSTM_1 configurations. However, further 
complexity doesn't consistently lead to better 
performance and might introduce issues like 
overfitting. The optimal configuration appears to be 
within the CNN_LSTM_1 range, especially the 256 
units setup, offering a good balance between 
precision, recall, and overall accuracy. 

Table 21: CNN_LSTM_1 Model Performance Across 
Different Architectural Configurations 

Units Accuracy Precision Recall F1-score 
8 0.660 0.874 0.411 0.448 

16 0.737 0.815 0.514 0.544 
32 0.564 0.599 0.373 0.574 
64 0.813 0.863 0.609 0.636 
128 0.975 0.988 0.802 0.815 
256 0.978 0.980 0.826 0.833 

Table 22: CNN_LSTM_2 Model Performance with 
Various Architectural Configurations 

Units Accuracy Precision Recall F1-score 
[8,16] 0.518 0.750 0.279 0.405 
[16,32] 0.466 0.515 0.291 0.480 
[32,64] 0.441 0.577 0.305 0.542 

[64,128] 0.362 0.504 0.254 0.523 
[128,256] 0.410 0.538 0.294 0.531 

Table 23: CNN_LSTM_3 Model Performance Across 
Different Architectural Configurations 

Units Accuracy Precision Recall F1-score 
[8,16,32] 0.306 0.565 0.081 0.334 

[16,32,64] 0.411 0.463 0.222 0.460 
[32,64,128] 0.256 0.365 0.114 0.516 
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[64,128,256] 0.245 0.428 0.168 0.496 

 
5.2.11 CNN_GRU model: 

The CNN_GRU hybrid models display 
varying performance across configurations and 
depths. In CNN_GRU_1 (Table 24), starting with 8 
units, there's moderate accuracy and high precision 
but relatively low recall, suggesting precision at the 
expense of identifying all relevant cases. Progressing 
to 16 units shows a decrease in accuracy and 
precision, with a similar F1-score, indicating a less 
optimal balance. At 32 units, there's further decline 
in accuracy and precision but an increase in the F1-
score, suggesting an improvement in balance despite 
lower overall performance. 

In CNN_GRU_2 (Table 25), configurations 
like [8,16] units exhibit lower accuracy and recall 
compared to most CNN_GRU_1 setups, indicating 
less effectiveness in capturing relevant cases. 
Further configurations show nuanced changes, with 
[32,64] units indicating potential improvements in 
identifying positive cases. However, setups like 
[128,256] units demonstrate a drop in all metrics, 
suggesting potential issues with overfitting or model 
complexity. 

In CNN_GRU_3 (Table 26), configurations 
vary significantly, with setups like [8,16,32] units 
showing the lowest accuracy and recall, while 
[32,64,128] units exhibit improvements in accuracy, 
precision, and recall. Despite this, CNN_GRU_1 
configurations, particularly with larger unit sizes, 
indicate improved performance, suggesting more 
complex models can better capture the dataset's 
spatial-temporal dynamics. 

Overall, CNN-GRU hybrid models tend to 
show improved performance with increased 
complexity up to a certain point, as seen in 
CNN_GRU_1 configurations. However, further 
complexity doesn't consistently lead to better 
performance and might introduce issues such as 
overfitting. The optimal configuration appears to be 
within the CNN_GRU_1 range, especially the 256 
units setup, offering a good balance between 
precision, recall, and overall accuracy. Careful 
tuning and validation are essential to prevent 
overfitting and ensure the model generalizes well to 
new data. 

Table 24: CNN_GRU_1 Model Performance with Varied 
Architectural Configurations 

Units Accuracy Precision Recall F1-score 
8 0.679 0.888 0.434 0.488 

16 0.597 0.720 0.366 0.493 
32 0.562 0.573 0.358 0.599 
64 0.859 0.907 0.661 0.692 
128 0.948 0.962 0.764 0.780 

256 0.979 0.971 0.818 0.828 

Table 25: CNN_GRU_2 Model Performance Across 
Different Architectural Configurations 

Units Accuracy Precision Recall F1-score 
[8,16] 0.555 0.912 0.300 0.324 
[16,32] 0.541 0.572 0.364 0.522 
[32,64] 0.473 0.575 0.307 0.546 

[64,128] 0.479 0.549 0.333 0.543 
[128,256] 0.453 0.580 0.323 0.561 

Table 26: CNN_GRU_3 Model Performance with 
Various Architectural Configurations 

Units Accuracy Precision Recall F1-score 
[8,16,32] 0.329 0.581 0.164 0.354 

[16,32,64] 0.315 0.334 0.131 0.465 
[32,64,128] 0.662 0.845 0.420 0.504 
[64,128,256] 0.360 0.459 0.258 0.522 

 
5.2.12 Best Performing Models: 

Drawing insights from Table 27, which 
presents the 'Best' configurations for each model 
type and is visually represented in Figure 14 for 
clearer understanding, we observe distinct 
performance characteristics across a spectrum of 
machine learning models: 

 
5.2.12.1 Traditional Models: 
 SVM (Gamma 0.01): This configuration shows 

moderate accuracy and high precision, 
indicating a strong ability to correctly identify 
positive cases. However, the low recall and F1-
score suggest a cautious approach in 
classification, highlighting a potential area for 
improvement in capturing all positive instances. 

 DT (Depth 64): With relatively lower accuracy 
and precision but a higher recall than SVM, this 
depth setting indicates a broader identification 
of positive cases, albeit at the cost of increased 
false positives. The higher F1-score compared 
to SVM suggests a better balance between 
precision and recall. 

 KNN (8 Neighbors): This model offers balanced 
performance with moderate accuracy, precision, 
and recall. The F1-score indicates a reasonable 
trade-off between precision and recall, making 
it suitable for applications where a moderate 
level of accuracy is acceptable. 

 ANN (256 Units): Demonstrating high accuracy 
and precision alongside moderate recall, this 
configuration showcases strong capabilities in 
pattern recognition and classification. The 
significant F1-score emphasizes the model's 
balanced performance, making it a competitive 
option for complex tasks. 
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5.2.12.2 Advanced Neural Networks: 
 CNN ([128,256] Units): Exhibiting high 

accuracy, precision, and recall, this 
configuration underscores the CNN's excellent 
spatial feature extraction and classification 
capabilities. The high F1-score suggests an 
effective balance between precision and recall, 
making it particularly suitable for tasks 
involving spatial data. 

 RNN ([128,256] Units): This model stands out 
with superior accuracy, precision, and recall, 
highlighting its exceptional ability to capture 
temporal sequences and dependencies. The 
elevated F1-score accentuates its efficacy in 
sequence prediction tasks. 

 LSTM ([64,128] Units): With high accuracy 
and the highest precision among all models, 
coupled with moderate recall, this configuration 
reveals LSTM's strength in handling long-term 
dependencies. The commendable F1-score 
indicates a well-balanced model suitable for 
complex sequential tasks. 

 GRU (256 Units): Achieving the highest 
accuracy and F1-score, along with very high 
precision and recall, this model configuration 
showcases its efficiency in temporal pattern 
recognition. Its performance suggests a slight 
edge over LSTM in efficiency, making it highly 
suitable for sequence modeling tasks. 

 
5.2.12.3 Hybrid Models: 
 CNN_RNN (256 Units): Very high accuracy, 

precision, recall, and F1-score in this 
configuration indicate a robust capability to 
analyze spatial-temporal data, making it ideal 
for applications involving both spatial and 
temporal dynamics 

 CNN_LSTM (256 Units): Achieving top marks 
in accuracy, precision, recall, and the highest 
F1-score, this model highlights the synergy 
between CNN's spatial analysis and LSTM's 
temporal processing capabilities. It's 
particularly effective for complex spatial-
temporal challenges. 

 CNN_GRU (256 Units): With the highest 
accuracy and strong performance across all 
metrics, this configuration combines CNN's 
spatial feature extraction with GRU's efficient 
temporal modeling. It stands out for spatial-
temporal analysis tasks, especially where 
computational efficiency is paramount. 

Table 27 indicates that the CNN_LSTM 
hybrid model with 256 units is the most optimal, 
given its unparalleled balance and performance in 
handling datasets with both spatial and temporal 

dimensions. This model is the preferred choice for 
tackling complex spatial-temporal analysis tasks, 
offering the best of both worlds in terms of spatial 
and temporal data processing capabilities. 

Table 27: Comparison of the Best Model Configurations 
Across Different Model Types 

Models Config Accuracy Precision Recall F1-score 
SVM 0.01 0.448 0.789 0.330 0.290 
DT 64 0.512 0.425 0.382 0.717 

KNN 8 0.483 0.455 0.338 0.583 
ANN 256 0.790 0.817 0.595 0.659 
CNN [128,256] 0.858 0.831 0.667 0.760 
RNN [128,256] 0.973 0.976 0.806 0.817 

LSTM [64,128] 0.794 0.847 0.584 0.613 
GRU 256 0.978 0.981 0.817 0.827 

CNN_RNN 256 0.968 0.983 0.798 0.810 
CNN_LSTM 256 0.978 0.980 0.826 0.833 
CNN_GRU 256 0.979 0.971 0.818 0.828 

 

 
Figure 14: Visual Representation of Optimal Model 

Configurations and Their Performance Metrics 

In our study, while the integration of AI 
with IIoT for fault detection in three-phase systems 
has shown promising results, there are limitations 
that warrant further discussion. The complexity of 
real-world industrial environments, with their 
myriad operational variables and conditions, poses 
significant challenges to the universal applicability 
of our findings. Additionally, the scope of our 
research was constrained by the available data and 
the specific types of faults analyzed, which may not 
encompass the full spectrum of anomalies 
encountered in industrial settings. 

Furthermore, the computational demands 
of advanced AI models necessitate a balance 
between accuracy and real-time processing 
capabilities, which could limit their deployment in 
resource-constrained environments. These 
limitations highlight the need for ongoing research 
to refine AI methodologies, enhance their 
adaptability to diverse industrial contexts, and 
optimize their computational efficiency. 

Addressing these open issues will require a 
multifaceted approach, including the development of 
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more robust datasets that capture a wider range of 
fault scenarios, the exploration of scalable AI 
models that maintain high accuracy without 
excessive computational costs, and the 
implementation of adaptive algorithms that can learn 
from new data in dynamic industrial environments. 

 
6. CONCLUSION 
 

Building on the diverse contributions of 
previous works, which have underscored the 
potential of AI-based solutions in fault detection 
across various electrical systems and industries, our 
study aims to delve deeper within the context of 
Industry 4.0, particularly through the Industrial 
Internet of Things (IIoT) framework. Unlike prior 
research that often concentrated on specific AI 
models or fault types, we conduct a comprehensive 
analysis of a broad spectrum of machine learning 
and AI models. This includes Support Vector 
Machines (SVM), Decision Trees, K-Nearest 
Neighbors (KNN), Artificial Neural Networks 
(ANN), Convolutional Neural Networks (CNN), 
Recurrent Neural Networks (RNN), Long Short-
Term Memory (LSTM) networks, and Gated 
Recurrent Units (GRU). Our research is distinctive 
in its inclusivity, considering any type of three-phase 
load and even accommodating single-phase 
scenarios, thus extending the applicability of our 
findings across a broader range of industrial settings. 

Moreover, our solution addresses a 
multiclass classification problem, testing on an 
extensive array of faults, specifically 57 different 
types, which surpasses the scope of fault types 
considered in previous studies. This comprehensive 
fault coverage ensures a more robust and versatile 
fault detection system. Additionally, our approach 
uniquely focuses on electrical parameters, 47 in 
total, as its input, which streamlines the data 
acquisition process and enhances the model's 
applicability and ease of integration into existing 
industrial systems. While previous studies have laid 
a solid foundation by demonstrating the 
effectiveness of AI and ML in fault detection, they 
often limit their focus to specific fault types or 
aspects of electrical systems. Our study seeks to 
overcome these limitations by providing a holistic 
and inclusive solution that not only covers a broader 
spectrum of fault types but also supports a wider 
variety of load conditions within the IIoT framework 
of Industry 4.0. This holistic approach not only 
advances fault detection technologies but also aligns 
with the evolving needs of modern industrial 
environments, where versatility, 

comprehensiveness, and seamless integration are 
paramount. 
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