
 Journal of Theoretical and Applied Information Technology 
15th January 2025. Vol.103. No.1 

©   Little Lion Scientific  
 

ISSN: 1992-8645                                                                    www.jatit.org                                                     E-ISSN: 1817-3195 

 

 
141 

 

ADAPTIVE ROUTING PROTOCOL FOR BUOYANT 
WIRELESS SENSOR NETWORK (B-WSN) USING HAMSTER 

OPTIMIZATION-BASED MAXPROP (HOMP) 
 

DIVYA JOSE J1, Dr. D. VIMAL KUMAR2 

1
Assistant Professor, Department of Computer Science,  

Nehru Arts and Science College, Coimbatore, Tamil Nadu, India. 
2
Associate Professor and Head, Department of Computer Science,   

Rathinam College of Arts and Science, Coimbatore, Tamil Nadu, India. 
E-mail: 1divyajose369@gmail.com, 2drvimalcs@gmail.com 

 
ABSTRACT 

This study presents adaptive routing protocol proposed for Buoyant Wireless Sensor Networks (B-WSNs) 
through the integration of Hamster Optimization and Max Prop (HOMP). Buoyant WSNs operate in 
challenging aquatic environments, posing unique challenges such as underwater communication, limited 
energy resources, and prolonged network operation. To address these challenges HOMP the routing protocol 
is proposed which optimizes routing decisions and resource utilization in buoyant WSNs. Through extensive 
experimentation, we evaluate HOMP's performance in terms of packet delivery ratio, throughput, energy 
consumption, and network lifetime, comparing it with existing protocols. Results demonstrate that HOMP 
consistently outperforms other protocols, offering superior efficiency and reliability in data transmission. 
These findings have significant implications for applications in oceanography, environmental monitoring, 
and marine exploration, where reliable underwater sensing and monitoring are essential. By leveraging the 
capabilities of HOMP, buoyant WSNs can achieve greater accuracy, coverage, and longevity, enabling more 
effective data collection and analysis in aquatic environments. 
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1. INTRODUCTION 

Networks serve as the backbone of modern 
communication systems, facilitating the exchange of 
information and resources across various devices 
and locations. Among the numerous types of 
networks, Wireless Sensor Networks (WSNs) 
represent a significant advancement, particularly in 
the realm of data collection and monitoring[1]. 
These networks comprise interconnected sensor 
nodes capable of detecting and relaying data 
wirelessly. When the application extends to 
underwater environments, traditional WSNs face 
limitations. This necessitates the development of 
specialized networks known as Buoyant WSNs (B-
WSNs), tailored for aquatic applications[2]. 

 
WSNs have revolutionized data collection 

across diverse domains, ranging from environmental 
monitoring to industrial automation[3]. These 
networks consist of sensor nodes distributed 
throughout the target area, communicating 
wirelessly to collect and transmit data to a central 
base station[4]. In applications where deploying 
wired infrastructure is impractical or cost-

prohibitive, WSNs offer a flexible and scalable 
solution. They find extensive use in agriculture, 
healthcare, infrastructure monitoring, and more, 
enabling real-time insights and informed decision-
making[5]. 

 
B-WSNs, a subtype of WSNs, address the 

unique challenges posed by underwater 
environments[6]. Traditional WSNs are ill-suited 
for aquatic applications due to their reliance on land-
based infrastructure and wireless communication 
protocols optimized for air or solid mediums. B-
WSNs, on the other hand, are specially designed to 
operate underwater, incorporating buoyant materials 
to maintain desired depths and waterproofing to 
protect against water ingress[7]. These networks 
leverage underwater communication techniques, 
such as acoustic signals, to facilitate data exchange 
in aquatic environments. 

 
The usage of B-WSNs spans a diverse 

array of applications, each harnessing the 
capabilities of underwater sensing and 
communication for specific purposes. In 
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oceanographic research, these networks play a 
crucial role in studying ocean currents, temperature 
variations, and marine biodiversity[8]. By deploying 
sensor nodes across vast expanses of ocean, 
researchers can gather data to better understand 
complex marine ecosystems and their dynamics. 
Environmental monitoring represents another key 
application area for B-WSNs. These networks are 
deployed to assess water quality, monitor pollution 
levels, and track the impact of human activities on 
aquatic environments[9]. By continuously 
monitoring parameters such as dissolved oxygen, 
pH levels, and pollutant concentrations, B-WSNs 
provide valuable insights into the health of aquatic 
ecosystems and aid in conservation efforts. 

 
The field of marine biology also benefits 

from the capabilities of B-WSNs. Researchers use 
these networks to study marine habitats, track the 
movements of marine species, and monitor coral 
reefs[10]. By deploying sensor nodes in strategic 
locations, scientists can gather data on underwater 
flora and fauna, contributing to our understanding of 
marine biodiversity and ecosystem dynamics. 

 
B-WSNs find application in the monitoring 

of offshore infrastructure such as oil rigs, pipelines, 
and underwater cables[11]. By deploying sensor 
nodes around these structures, operators can detect 
potential faults, monitor structural integrity, and 
ensure compliance with safety regulations. This 
proactive approach to infrastructure monitoring 
helps mitigate risks and prevent costly downtime 
due to equipment failures or environmental 
hazards[12]. 

 
1.1. Problem Statement: 

B-WSNs are critical for various underwater 
applications, such as environmental monitoring, 
oceanographic data collection, and marine life 
observation. These networks face significant 
challenges, including limited energy resources, 
dynamic underwater conditions, intermittent 
connectivity, and signal attenuation. Traditional 
routing protocols often struggle to maintain reliable 
communication and efficient resource utilization in 
such environments. There is a need for an adaptive, 
energy-efficient, and resilient routing solution that 
can cope with the unique challenges posed by 
underwater communication. 

 
This research aims to address these issues 

by integrating Hamster Optimization (HO) with the 
Max Prop routing protocol, creating a robust 
solution tailored for buoyant WSNs. Hamster 

Optimization provides dynamic adaptability and 
resource management, while Max Prop enhances 
fault tolerance and probabilistic routing. The 
combined HO-Max Prop approach is expected to 
improve network performance by optimizing energy 
consumption, enhancing fault tolerance, and 
ensuring reliable data delivery. The effectiveness of 
this integrated protocol will be evaluated through 
detailed simulations using ns-3, focusing on key 
performance metrics such as throughput, packet 
delivery ratio, energy consumption, latency, and 
network lifetime.  

 
1.2. Motivation: 

The increasing frequency and severity of 
oil spills in oceans pose a significant threat to marine 
ecosystems and coastal communities. Effective 
monitoring and rapid response are crucial to 
mitigating the environmental damage caused by 
such spills. Traditional monitoring methods often 
fall short due to the vast and dynamic nature of 
ocean environments, necessitating the deployment 
of advanced technologies such as B-WSNs. These 
networks can provide real-time data on the spread 
and impact of oil spills, enabling timely and 
informed decision-making. 

 
The deployment of B-WSNs in underwater 

environments presents unique challenges, including 
limited energy resources, fluctuating underwater 
conditions, and intermittent connectivity. 
Addressing these challenges requires innovative 
solutions to ensure reliable communication and 
efficient resource utilization. Integrating HO with 
the Max Prop routing protocol offers a promising 
approach to enhance the performance of B-WSNs. 
HO's adaptive optimization capabilities, combined 
with Max Prop's probabilistic routing, can improve 
energy efficiency, fault tolerance, and data delivery 
reliability. 

 
1.3. Objective: 

The primary objective of this research is to 
develop and evaluate a robust routing protocol for 
B-WSNs aimed at enhancing the monitoring and 
management of oil spills in ocean environments. By 
integrating HO with the Max Prop routing protocol, 
this study seeks to address the critical challenges 
associated with underwater communication, such as 
limited energy resources, dynamic environmental 
conditions, and intermittent connectivity. The 
integrated HO-Max Prop (HOMP) protocol will be 
designed to optimize energy consumption, improve 
fault tolerance, and ensure reliable data delivery. 
This will involve detailed simulations using the ns-
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3 network simulator to assess the performance of the 
proposed protocol in terms of key metrics such as 
throughput, packet delivery ratio, energy efficiency, 
latency, and network lifetime. The ultimate goal is 
to demonstrate that the HOMP integration can 
significantly enhance the operational efficiency and 
reliability of buoyant WSNs, thereby providing a 
more effective solution for real-time monitoring and 
rapid response to oil spills. A significant 
contribution can be made towards protecting marine 
ecosystems and supporting environmental 
management efforts in the face of increasing oil spill 
incidents is the intention of this work. 

 
2. LITERATURE REVIEW 
  
“UWMOT”[13]explores the fusion of WSNs and 
machine learning for underwater motion tracking 
and monitoring. By integrating sensor data with 
machine learning algorithms, it enables real-time 
detection and analysis of underwater movements, 
contributing to various applications such as marine 
life observation and security surveillance. 
“LoRaWAN”[14] proposes an Internet of Things 
(IoT) system based on the LoRaWAN technology 
for water quality monitoring. Through low-power, 
long-range communication, the system enables 
remote monitoring of water parameters, facilitating 
timely intervention and resource management in 
rural regions. 
 

“Self-Powered WSN”[15] presents a self-
powered wireless sensor system for water 
monitoring, utilizing a low-frequency 
electromagnetic-pendulum energy harvester. The 
system operates autonomously by harvesting 
ambient energy from water movements, providing 
continuous data collection for water quality 
assessment. “Trustworthy DCS”[16] Addressing 
security concerns in unmanned aerial vehicle 
(UAV)-assisted WSNs, this scheme proposes a 
trustworthy data collection approach based on active 
spot-checking. It enhances the reliability of 
collected data while minimizing energy 
consumption by verifying data integrity through 
periodic spot-checks. “Wireless Power and Data 
Transfer System”[17] Introducing a novel system 
for underwater WSNs, this work enables 
simultaneous wireless power and data transfer with 
full-duplex capability. It enhances the efficiency and 
reliability of underwater sensor networks by 
integrating power and data transmission, facilitating 
continuous operation without the need for frequent 
battery replacement. 

 

“SOAM Networks”[18] are designed for 
underwater environments, featuring self-organizing 
capabilities to adapt to dynamic conditions. SOAM 
networks enhance the scalability and resilience of 
underwater sensor networks by enabling 
autonomous node deployment and network 
formation, supporting various monitoring and 
exploration tasks.  “Cooperative Routing Protocol 
Based on Q-Learning”[19]leverages reinforcement 
learning techniques, specifically Q-learning, to 
optimize routing decisions in underwater optical-
acoustic hybrid WSNs. The protocol dynamically 
adjusts routing paths, improving network 
performance and reliability in challenging 
underwater environments based on the experience 
from its past. 

 
“Tech Node” [20] enabling technologies 

for underwater WSNs, focusing on node deployment 
strategies and data collection challenges. It provides 
insights into optimizing network deployment and 
enhancing data gathering capabilities in underwater 
environments by addressing factors such as 
communication range, node mobility, and energy 
efficiency. “OCPC”[21] Exploring the convergence 
of optical communication and positioning 
techniques, this work advances underwater WSNs' 
flexibility and performance. It enables precise and 
efficient data exchange in dynamic underwater 
environments by integrating optical communication 
for data transmission and positioning for node 
localization. “Sensor Injection Based Routing 
Protocol”[22] proposes a routing scheme based on 
sensor injection for effective load balancing in 
underwater WSNs. It optimizes network resource 
utilization and mitigates congestion, ensuring 
smooth and efficient data transmission in 
underwater environments by dynamically adjusting 
data routing paths through sensor injection. 
“Hierarchical Localization”[23] presents a 
hierarchical framework for localizing nodes in 
large-scale underwater WSNs, contributing to 
sustainable ocean health monitoring. It achieves 
accurate node positioning with minimal energy 
overhead by organizing nodes into hierarchical 
clusters and employing efficient localization 
techniques. The algorithm operates by iteratively 
refining node positions within clusters and 
aggregating location information across the 
network, enabling precise monitoring of underwater 
environments at scale. Several Bio-inspired 
optimizations are implanted in different network to 
enhance the performance of network in different 
means [24] – [45].  
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“MO-CBACORP”[46]introduces a novel 
approach to energy-efficient and secure routing in 
underwater monitoring WSNs. Leveraging a 
combination of energy-aware routing strategies and 
enhanced security measures, MO-CBACORP 
addresses the unique challenges of underwater 
communication, ensuring reliable data transmission 
while optimizing energy consumption. Its working 
mechanism involves dynamically adapting routing 
paths based on energy levels and network 
conditions, thereby prolonging network lifetime and 
enhancing data integrity. “HOCOR”[47]a routing 
protocol designed for underwater WSNs, combining 
optimization techniques with cooperative 
opportunistic routing strategies. HOCOR enhances 
data delivery efficiency and reliability by utilizing 
both network optimization and opportunistic data 
forwarding, improving the overall performance of 
underwater sensor networks. 

 
3.ADAPTIVE ROUTING PROTOCOL FOR 

BUOYANT WIRELESS SENSOR 
NETWORKS (B-WSNs). 

 
3.1. Maximizing Probability Routing: 

Routing protocols enables communication 
and data exchange among sensor nodes. Acoustic-
based routing protocols play a crucial role in 
enabling reliable and efficient communication in B-
WSNs deployed for underwater exploration, 
environmental monitoring, marine research, and 
offshore surveillance. Opportunistic Routing a type 
of Acoustic-based routing protocol which is a 
dynamic and adaptive routing paradigm used in 
wireless communication networks, including B-
WSNs operating in underwater environments. 
Taditional routing protocols rely on predefined 
paths, opportunistic routing takes advantage of 
opportunistic communication opportunities to 
forward data packets through the network. 

 
Maximizing Probability Routing (Max 

Prop) is an Opportunistic Routing protocol designed 
for wireless communication networks, particularly 
Delay-Tolerant Networks (DTNs) and challenged 
environments where traditional routing protocols are 
ineffective due to intermittent connectivity, long 
delays, or limited resources. Max Prop aims to 
maximize the probability of successful data delivery 
by exploiting opportunistic communication 
opportunities and adapting routing decisions 
dynamically.  

 
 
 

3.1.1. Initialization: 
Max Prop begins with the phase where it 

initiates the routing process by distributing initial 
routing information throughout the network, setting 
the stage for further process. This information 
includes node states, contact opportunities, message 
priorities, and other parameters necessary for 
routing decisions. Through this process, nodes 
establish a common understanding of the network 
topology, communication opportunities, and 
message requirements, enabling coordinated routing 
operations. 

 
The initialization phase involves defining 

and distributing initial parameters and states to all 
nodes in the network. Let 𝑁 denote the total number 
of nodes in the network, 𝑆௜represent the state of node 
𝑖, and 𝑃௜  denote the priority assigned to messages 
generated by node 𝑖. The initialization process can 
be expressed mathematically using Eq.(1) and 
Eq.(2). 

𝑆௜
(଴)

= 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒𝑆𝑡𝑎𝑡𝑒(𝑖)  (1) 

𝑃௜
(଴)

= 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦(𝑖) (2) 

where 𝑆௜
(଴)represents the initial state of node 𝑖 and 

𝑃௜
(଴)represents the initial priority assigned to 

messages generated by node 𝑖. The functions 
𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒𝑆𝑡𝑎𝑡𝑒(𝑖) and 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦(𝑖) 
determine the initial state and priority for each node 
based on network-wide parameters and local 
characteristics. 
 

The initialization phase ensures that all 
nodes are equipped with the necessary information 
to participate in the routing process effectively. By 
establishing initial states and priorities, nodes are 
prepared to generate messages, make forwarding 
decisions, and adapt to changing network conditions 
throughout the routing process. This phase sets the 
stage for subsequent steps in the Max Prop protocol. 
Message generation, opportunistic forwarding, 
utility calculation, and other routing operations rely 
on the initial parameters and states established 
during the initialization phase.  

 
3.1.2. Message Generation: 

Message Generation marks the initiation of 
the routing process. In this phase, nodes in the 
network generate messages intended for 
transmission to other nodes. These messages carry 
vital information, such as their destination, priority, 
and any constraints or requirements for delivery. 
The message generation process involves assigning 
priorities to messages based on their importance or 
urgency. Let 𝑀௜represent the set of messages 
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generated by node 𝑖, 𝐷௜௝denote the destination of 
message 𝑗 generated by node 𝑖, and 𝐶௜௝ represent any 
constraints or requirements associated with message 
𝑗. The message generation process can be expressed 
mathematically is shown in Eq.(3) and Eq.(4). 

𝐷௜௝ = 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝐷𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛(𝑖, 𝑗) (3) 
𝐶௜௝ = 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠(𝑖, 𝑗) (4) 

where 𝐷௜௝ represents the destination of message 𝑗 
generated by node 𝑖and 𝐶௜௝represents any constraints 
or requirements associated with message𝑗. The 
functions 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝐷𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛 (𝑖, 𝑗) and 
𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 (𝑖, 𝑗) determine the 
destination and constraints for each message based 
on network-wide parameters and local 
characteristics. 
 

Nodes prioritize the transmission of time-
sensitive information by assigning priorities to 
messages, which ensures the efficiency and effective 
message delivery. The priority assigned to each 
message influences its likelihood of successful 
transmission and impacts subsequent routing 
decisions in the network. The message generation 
phase lays the groundwork for opportunistic 
forwarding, as messages are stored in node buffers 
awaiting suitable forwarding opportunities. The 
destination and constraints associated with each 
message guide subsequent routing decisions, 
determining the optimal relay nodes and 
transmission paths. The effectiveness of the message 
generation phase is crucial for the overall 
performance of the Max Prop protocol. Accurate 
and timely message generation ensures that critical 
information is transmitted efficiently, minimizing 
delays and maximizing the probability of successful 
data delivery. 

 
3.1.3. Opportunistic Forwarding: 

Third phase of Max Prop builds upon the 
message generation phase to facilitate the 
transmission of messages through the network. In 
Opportunistic Forwarding nodes opportunistically 
forward messages to neighbouring nodes based on 
the probability of successful delivery. It allows 
messages to traverse the network efficiently, 
leveraging intermittent communication links and 
dynamic node encounters. 

 
Opportunistic forwarding involves 

selecting relay nodes for message transmission 
based on the probability of successful delivery and 
network conditions. Let 𝑅௜௝ denote the relay node 
selected for message 𝑗 generated by node 𝑖, and 𝑃௜௝  
represent the probability of successful delivery to 

relay node 𝑅௜௝. The opportunistic forwarding 
process can be expressed mathematically with 
Eq.(5) and Eq.(6). 

 
𝑅௜௝ = 𝑆𝑒𝑙𝑒𝑐𝑡𝑅𝑒𝑙𝑎𝑦(𝑖, 𝑗) (5) 

𝑃௜௝ = 𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦൫𝑖, 𝑗, 𝑅௜௝൯ (6) 
where 𝑅௜௝ represents the relay node selected for 
message 𝑗 generated by node 𝑖 and 𝑃௜௝  represents the 
probability of successful delivery to relay node 𝑅௜௝. 
The functions 𝑆𝑒𝑙𝑒𝑐𝑡𝑅𝑒𝑙𝑎𝑦(𝑖, 𝑗) and 
𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦൫𝑖, 𝑗, 𝑅௜௝൯ determine the 
optimal relay node and calculate the probability of 
successful delivery based on network-wide 
parameters and local characteristics. 
 

Nodes optimize the transmission of 
messages through the network, maximizing the 
likelihood of reaching their destinations by selecting 
relay nodes and calculating the probability of 
successful delivery. Opportunistic forwarding 
allows messages to traverse multiple hops, 
leveraging intermittent communication links and 
dynamic node encounters to overcome network 
disruptions and delays. 

 
3.1.4. Utility Calculation: 

The Utility Calculation plays a crucial role 
in guiding opportunistic forwarding decisions by 
assessing the potential benefits of forwarding 
messages to neighboring nodes. In this phase, nodes 
calculate the utility of forwarding messages based 
on various factors, such as node buffer occupancy, 
expected transmission time, and the likelihood of 
successful delivery. Utility calculation enables 
nodes to prioritize relay nodes and optimize message 
transmission through the network. 

 
Utility calculation involves evaluating the 

potential benefits of forwarding messages to 
neighboring nodes. Let 𝑈௜௝  represent the utility of 
forwarding message 𝑗 generated by node 𝑖, and 𝐵௜  
denote the buffer occupancy of node 𝑖. The utility 
calculation process can be expressed in 
mathematical form with Eq.(7). 

𝑈௜௝ = 𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑈𝑡𝑖𝑙𝑖𝑡𝑦(𝑖, 𝑗, 𝐵௜) (7) 
where 𝑈௜௝represents the utility of forwarding 
message 𝑗 generated by node 𝑖 and 𝐵௜  denotes the 
buffer occupancy of node 𝑖. The function 
𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑈𝑡𝑖𝑙𝑖𝑡𝑦(𝑖, 𝑗, 𝐵௜) determines the utility of 
forwarding the message based on network-wide 
parameters and local characteristics. Nodes 
prioritize relay nodes based on their potential 
benefits, such as reducing buffer occupancy by 
calculating the utility of forwarding messages. This 
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optimization process ensures efficient and effective 
message transmission through the network, 
maximizing the likelihood of reaching their 
destinations. 
 
3.1.5. Forwarding Decision: 

Forwarding Decision builds upon the 
utility calculation phase to determine the optimal 
relay nodes for message transmission. Nodes make 
informed decisions about which neighboring nodes 
to forward messages to based on the calculated 
utility values. Forwarding decisions are crucial for 
optimizing message transmission and maximizing 
the likelihood of successful delivery. The 
forwarding decision process involves selecting relay 
nodes based on the utility values calculated in the 
previous step. Let 𝐹௜௝ denote the forwarding decision 
for message 𝑗 generated by node 𝑖, and 𝑈௜௝  represent 
the utility value associated with message 𝑗.  

𝐹௜௝ = 
𝑀𝑎𝑘𝑒𝐹𝑜𝑟𝑤𝑎𝑟𝑑𝑖𝑛𝑔𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛൫𝑖, 𝑗, 𝑈௜௝൯ 

(8) 

where in Eq.(8),𝐹௜௝ represents the forwarding 
decision for message 𝑗 generated by node 𝑖 and 𝑈௜௝  
denotes the utility value associated with message 𝑗. 
The function 𝑀𝑎𝑘𝑒𝐹𝑜𝑟𝑤𝑎𝑟𝑑𝑖𝑛𝑔𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛൫𝑖, 𝑗, 𝑈௜௝൯ 
determines the optimal relay node based on the 
calculated utility value and network-wide 
parameters.Nodes prioritize relay nodes based on 
their utility values by by making informed 
forwarding decisions, ensuring efficient and 
effective message transmission through the network. 
Forwarding decisions consider factors such as buffer 
occupancy, expected transmission time, and the 
likelihood of successful delivery, optimizing 
message routing to maximize the probability of 
reaching their destinations. 
 
3.1.6. Feedback and Adaptation: 

This phase enhances the robustness and 
efficiency of the routing process by enabling nodes 
to dynamically adjust their behavior in response to 
changes in the network environment. 

 
Feedback and adaptation involve updating 

routing parameters and strategies based on feedback 
information exchanged between nodes. Let 𝐹௜௝ 
represent the feedback information received by node 
𝑖 from node 𝑗, and 𝐴௜ denote the adaptation 
parameter for node 𝑖. The feedback and adaptation 
process can be mathematically expressed as shown 
in Eq.(9). 

𝐴௜ = 𝐴𝑑𝑎𝑝𝑡𝑅𝑜𝑢𝑡𝑖𝑛𝑔൫𝑖, 𝐹௜௝൯ (9) 
where 𝐴௜ represents the adaptation parameter for 
node 𝑖 and 𝐹௜௝ denotes the feedback information 

received by node 𝑖 from node 𝑗. The function 
𝐴𝑑𝑎𝑝𝑡𝑅𝑜𝑢𝑡𝑖𝑛𝑔൫𝑖, 𝐹௜௝൯ updates the routing 
parameters and strategies of node 𝑖i based on the 
received feedback information. By exchanging 
feedback information and adapting routing 
parameters, nodes optimize their routing strategies 
to better suit the current network conditions and 
improve overall routing performance. Feedback 
information may include acknowledgments 
(ACKs), local observations of communication links, 
or performance metrics such as message delivery 
rates or transmission delays. Feedback and 
adaptation enable nodes to address network 
dynamics and mitigate the effects of link failures, 
node mobility, and channel fading. By dynamically 
adjusting their routing strategies, nodes can respond 
to changes in the network environment and maintain 
efficient and robust message transmission. 
 
3.1.7. Buffer Management 

Buffer Management focuses on optimizing 
the utilization of node buffers to ensure efficient 
message storage and transmission. Nodes manage 
their buffers by prioritizing messages based on their 
importance, urgency, or delivery constraints. Buffer 
management plays a crucial role in maximizing the 
probability of successful message delivery while 
minimizing buffer overflow and resource wastage. 
Buffer management involves prioritizing messages 
in node buffers based on their characteristics and 
network conditions. Let 𝑀௜ represent the set of 
messages stored in the buffer of node 𝑖, and 𝑃௜௝  
denote the priority assigned to message 𝑗 stored in 
the buffer of node 𝑖. 

𝑃௜௝ = 𝐴𝑠𝑠𝑖𝑔𝑛𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦(𝑖, 𝑗) (10) 
where 𝑃௜௝ represents the priority assigned to 
message 𝑗 stored in the buffer of node 𝑖. The 
function 𝐴𝑠𝑠𝑖𝑔𝑛𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦(𝑖, 𝑗) determines the 
priority of each message based on its characteristics, 
such as importance, urgency, or delivery constraints. 
By prioritizing messages in node buffers, buffer 
management ensures that critical or time-sensitive 
information is transmitted promptly, maximizing the 
likelihood of successful delivery.  
 

Buffer management strategies may include 
FIFO (First-In-First-Out), LIFO (Last-In-First-Out), 
or priority-based scheduling algorithms, depending 
on the specific requirements of the network and 
application. Buffer management helps prevent 
buffer overflow and resource wastage by discarding 
low-priority or expired messages when buffer space 
is limited. This ensures efficient utilization of node 
resources and improves overall network 
performance. 
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3.1.8. Termination and Convergence: 

In this last phase of Max Prop the routing 
process iterates until a termination criterion is met, 
signaling the convergence of the protocol. 
Termination and convergence are essential for 
determining when to halt the routing process and 
finalize the routing decisions made by nodes. It 
involve defining a termination criterion and 
monitoring the convergence of the routing process. 
Let 𝑇represent the termination criterion, 𝐼denote the 
current iteration of the routing process, and 𝐶 signify 
the convergence status of the protocol. The 
termination and convergence process is represented 
mathematically in Eq.(11). 

𝑇𝐶 = 𝐶ℎ𝑒𝑐𝑘𝐶𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒(𝐼) (11) 
where 𝐶 represents the convergence status of the 
protocol based on the current iteration 𝐼. The 
function 𝐶ℎ𝑒𝑐𝑘𝐶𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒(𝐼) evaluates whether 
the routing process has converged based on 
predefined convergence criteria, such as the number 
of iterations, message delivery rates, or network 
stability.Once the convergence status 𝐶 indicates 
that the routing process has converged, the protocol 
terminates, and the final routing decisions are 
established. The termination criterion 𝑇 may be a 
maximum number of iterations, a threshold for 
message delivery rates, or a predefined convergence 
threshold. Termination and convergence ensure that 
the routing process halts when the protocol reaches 
a stable state and the optimal routing decisions are 
finalized. By monitoring convergence and defining 
a termination criterion, the protocol prevents 
unnecessary iterations and conserves network 
resources. 
 
3.2. Hamster Optimization: 

Hamsters are nocturnal rodents known for 
their cheek pouches, which they use to store food. 
They exhibit burrowing behavior, creating intricate 
tunnels. Hamsters are solitary and territorial, often 
showing aggression. They are active and enjoy 
burrowing such a curious creatures. They require 
exercise and mental stimulation to stay healthy and 
happy. Its characteristics are unique which is the 
inspiration to constructthe phases of Hamster 
Optimization (HO). 

 
3.2.1. Exploration and Nesting: 

Exploration and Nesting initiates the 
optimization process by initializing a population of 
candidate solutions and encouraging exploration of 
the solution space. This step mimics the behavior of 
hamsters as they explore their environment to find 
suitable nesting spots and gather resources for their 

nests.The exploration and nesting phase involves 
generating an initial population of candidate 
solutions. Let 𝑆 represent the set of candidate 
solutions, 𝑁 denote the population size, and 𝑠௜ 
represent an individual solution in the population. 
The exploration and nesting process can be 
expressed in Eq.(12). 

𝑆 = {𝑠ଵ, 𝑠ଶ, ⋯ 𝑠ே} (12) 
 

The exploration and nesting phase 
encourages diversity among the candidate solutions 
to explore different regions of the solution space. Let 
(𝑠𝑖,) denote the dissimilarity between solutions 𝑠𝑖 
and 𝑠𝑗, and 𝑑max represent the maximum 
dissimilarity threshold. The exploration process 
aims to ensure that solutions in the population are 
sufficiently different from each other. This can be 
expressed mathematically in Eq.(13). 

D൫𝑠௜ , 𝑠௝൯  ≥ 𝑑௠௔௫ , ∀𝑠௜ , 𝑠௝ ∈ 𝑆, 𝑖 ≠ 𝑗 (13) 

where D൫𝑠௜ , 𝑠௝൯represents the dissimilarity between 
solutions 𝑠௜ and 𝑠௝, and 𝑑௠௔௫ is the maximum 
dissimilarity threshold. 
 

The exploration and nesting phase may 
involve the initialization of solution parameters 
within predefined ranges. Let 𝑝௞ represent the 𝑘௧௛ 
parameter of solution 𝑠௜, 𝑝௠௜௡

௞ denote the minimum 
allowable value for parameter 𝑝௞, and 𝑝௠௔௫

௞  
represent the maximum allowable value for 
parameter 𝑝௞. The initialization process ensures that 
solution parameters are within feasible ranges is 
shown in Eq.(14). 

𝑝௠௜௡
௞ ≤ 𝑝௞ ≤ 𝑝௠௔௫

௞ , ∀𝑠௜ ∈ 𝑆, ∀𝑘 (14) 
where 𝑝௞ represents the 𝑘௧௛ parameter of solution 𝑠௜, 
and 𝑝௠௜௡

௞  and 𝑝௠௔௫
௞  are the minimum and maximum 

allowable values for parameter 𝑝௞, respectively.The 
exploration and nesting phase may involve the 
generation of diverse initial solutions using 
stochastic techniques such as random sampling or 
initialization based on domain-specific knowledge. 
Let 𝑓(𝑠௜)denote the fitness of solution 𝑠௜, which 
represents its quality or performance with respect to 
the optimization problem. The exploration process 
aims to generate a diverse set of initial solutions with 
acceptable fitness values are mathematically 
represented in Eq.(15). 

𝑓(𝑠௜) ≥ 𝑓௠௜௡ , ∀𝑠௜ ∈ 𝑆 (15) 
where 𝑓(𝑠௜) represents the fitness of solution 𝑠௜, and 
𝑓௠௜௡is the minimum acceptable fitness threshold. 
 
3.2.2. Randomization: 

Randomization is a key mechanism for 
escaping local optima and discovering novel regions 
of the solution space, akin to how hamsters explore 
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their environment by taking random paths to 
uncover new territories. The randomization phase 
involves introducing stochastic elements into the 
optimization process. Let 𝑆represent the set of 
candidate solutions, 𝑠௜ denote an individual solution 
in the population, and 𝑅 represent the randomization 
parameter. The randomization process can be 
mathematically exrpressed shown in Eq.(16). 

𝑠௜
ᇱ = 𝑅𝑎𝑛𝑑𝑜𝑚𝑖𝑧𝑒(𝑠௜ , 𝑅) (16) 

where 𝑠௜
ᇱ represents the modified solution after 

randomization, and 𝑅𝑎𝑛𝑑𝑜𝑚𝑖𝑧𝑒(𝑠௜ , 𝑅) is a function 
that applies random perturbations to solution 𝑠௜ 
based on the randomization parameter 𝑅. This 
introduces variability into the solutions, allowing for 
exploration of different regions of the solution 
space. 

The randomization phase may involve the 
introduction of noise or uncertainty into solution 
parameters to promote exploration. Let 𝑝௞ represent 
the 𝑘௧௛ parameter of solution 𝑠௜, 𝑝௠௜௡

௞  denote the 
minimum allowable value for parameter 𝑝௞, and 
𝑝௠௔௫

௞  represent the maximum allowable value for 
parameter 𝑝௞. The randomization process can 
perturb solution parameters within feasible ranges is 
mathematically represented in Eq.(17) and Eq.(18). 

𝑝௞
ᇱ = 𝑝௞ + 𝜖 (17) 

𝑝௞
ᇱ = 𝐶𝑙𝑖𝑝൫𝑝௞

ᇱ , 𝑝௠௜௡
௞ , 𝑝௠௔௫

௞ ൯ (18) 
where 𝑝௞

ᇱ  represents the perturbed value of 
parameter 𝑝௞, 𝜖 is a random perturbation term, and 
𝐶𝑙𝑖𝑝൫𝑝௞

ᇱ , 𝑝௠௜௡
௞ , 𝑝௠௔௫

௞ ൯ ensures that 𝑝௞
ᇱ  remains within 

the feasible range defined by 𝑝௠௜௡
௞  and 𝑝௠௔௫

௞ . 
 

The randomization phase may also involve 
the introduction of randomness into the selection of 
candidate solutions for further exploration. Let 𝑁 
represent the population size, and 𝑠௜and 𝑠௝ denote 
individual solutions in the population. The 
randomization process can select candidate 
solutions randomly from the population is expressed 
in Eq.(19). 

𝑠௜
ᇱ = 𝑠௝ , 

𝑠௝ ∈ 𝑆, 
𝑖, 𝑗 ∈  {1,2, ⋯ , 𝑁}, 

𝑖 ≠ 𝑗 

(19) 

where 𝑠௜
ᇱ represents the modified solution after 

randomization, and 𝑠௝ is a randomly selected 
solution from the population 𝑆. 
 

The randomization phase may involve the 
introduction of probabilistic decision-making 
mechanisms to determine the extent of random 
perturbations applied to solutions. Let 𝑃 represent 
the probability distribution governing the 
randomization process, and 𝑝(𝑠௜

ᇱ) denote the 

probability of selecting the perturbed solution 𝑠௜
ᇱ. 

The randomization process can be probabilistic in 
nature is mathematically represented in Eq.(20). 

𝑝(𝑠௜
ᇱ) = 𝑃(𝑅𝑎𝑛𝑑𝑜𝑚𝑖𝑧𝑒) (20) 

where 𝑝(𝑠௜
ᇱ) represents the probability of selecting 

the perturbed solution 𝑠௜
ᇱ, and 𝑃(𝑅𝑎𝑛𝑑𝑜𝑚𝑖𝑧𝑒) is the 

probability distribution governing the 
randomization process. 
 
3.2.3. Food Foraging: 

This phase simulates the behavior of 
hamsters as they search for food and gather 
resources for their nests. This step focuses on 
evaluating the quality of candidate solutions, akin to 
the nutritional value of food sources for hamsters, 
and selecting the most promising solutions for 
further exploration. The food foraging phase 
involves evaluating the fitness or quality of 
candidate solutions based on their performance in 
solving the optimization problem. Let 𝑆 represent 
the set of candidate solutions, (𝑠௜) denote the fitness 
of solution,𝑠௜ and 𝑓௕௘௦௧ represent the fitness of the 
best solution found so far. The food foraging process 
can be expressed mathematically in Eq.(21) and 
Eq.(22). 

(𝑠௜) = 𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒𝐹𝑖𝑡𝑛𝑒𝑠𝑠(𝑠௜) (21) 
𝑓௕௘௦௧ = max൫𝑓௕௘௦௧ , 𝑓(𝑠௜)൯ , ∀𝑠௜ ∈ 𝑆 (22) 

where 𝑓(𝑠௜)represents the fitness of solution 𝑠௜, and 
𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒𝐹𝑖𝑡𝑛𝑒𝑠𝑠(𝑠௜) is a function that assesses the 
quality of the solution. In Addition𝑓௕௘௦௧ is updated 
to store the fitness of the best solution found so far. 
 

The food foraging phase may involve the 
exploration of neighboring solutions to assess their 
quality and potential for improvement. Let 𝑠௜

ᇱ 
represent a neighboring solution obtained through 
perturbation or modification of solution 𝑠௜, and 
𝛿(𝑠௜ , 𝑠௜

ᇱ) denote the change in fitness between 
solutions 𝑠௜ and 𝑠௜

ᇱ. The food foraging process can 
consider neighboring solutions for evaluation is 
shown in Eq.(23) and Eq.(24). 

(𝑠௜
ᇱ) = 𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒𝐹𝑖𝑡𝑛𝑒𝑠𝑠(𝑠௜

ᇱ) (23) 
𝛿(𝑠௜ , 𝑠௜

ᇱ) = 𝑓(𝑠௜
ᇱ) − 𝑓(𝑠௜) (24) 

where 𝑓(𝑠௜
ᇱ) represents the fitness of neighboring 

solution 𝑠௜
ᇱ, and 𝛿(𝑠௜ , 𝑠௜

ᇱ) quantifies the change in 
fitness between solutions 𝑠௜ and 𝑠௜

ᇱ. 
 

The food foraging phase may involve the 
selection of candidate solutions based on their 
fitness values, prioritizing solutions with higher 
fitness for further exploration. Let 𝑆௦௘௟௘௖௧௘ௗ  
represent the subset of candidate solutions selected 
for further processing, and 𝜃 denote a selection 
threshold. The food foraging process can select 
promising solutions based on their fitness values: 
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𝑆௦௘௟௘௖௧௘ௗ = {𝑠௜|𝑓(𝑠௜) ≥ 𝜃} (25) 
where 𝑆௦௘௟௘௖௧௘ௗ contains candidate solutions with 
fitness values exceeding the selection threshold 
𝜃.The food foraging phase may involve the 
exploration of multiple regions of the solution space 
simultaneously to ensure thorough exploration and 
avoid premature convergence to suboptimal 
solutions. This can be achieved through parallel 
exploration or distributed evaluation of candidate 
solutions. 
 
3.2.4. Burrow Construction: 

This phase Burrow Construction focuses 
on the modification and refinement of candidate 
solutions to construct improved solutions iteratively. 
It analogous to how hamsters arrange bedding 
material and create tunnels and chambers in their 
nests to optimize their living space and ensure 
comfort and safety. Burrow construction involves 
modifying candidate solutions to improve their 
quality and fitness. Let 𝑆 represent the set of 
candidate solutions, 𝑠௜ denote an individual solution 
in the population, and 𝑠௜

ᇱ represent the modified 
solution after burrow construction. The burrow 
construction process can be expressed 
mathematically in Eq.(26). 

𝑠௜
ᇱ = 𝐶𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝐵𝑢𝑟𝑟𝑜𝑤(𝑠௜) (26) 

where 𝑠௜
ᇱ represents the modified solution obtained 

through burrow construction, and 
𝐶𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝐵𝑢𝑟𝑟𝑜𝑤(𝑠௜)is a function that modifies 
solution 𝑠௜ to improve its quality and fitness. 

It also involve the integration of 
information from neighboring solutions to guide the 
modification process. Let (𝑠௜) represent the 
neighborhood of solution 𝑠௜, 𝑠௝ denote a neighboring 
solution, and 𝑤௜௝ represent the weight or influence 
of solution 𝑠௝ on the modification of 𝑠௜. The burrow 
construction process can consider information from 
neighboring solutions. 

𝑠௜
ᇱ = ෍ ∈ 𝑁(𝑠௜)

௦ೕ

𝑤௜௝ ∙ 𝑠௝ (27) 

where in Eq.(27),𝑠௜
ᇱ represents the modified solution 

obtained through burrow construction, and the sum 
aggregates the contributions of neighboring 
solutions weighted by their influence. 
 

Burrow construction may involve the 
application of local search techniques to fine-tune 
candidate solutions and explore nearby regions of 
the solution space. Let 𝑠௜ represent the current 
solution, 𝑠௜

ᇱ denote the modified solution after local 
search, and 𝛥 denote the perturbation applied during 
the local search process. The burrow construction 

process can incorporate local search is shown in 
Eq.(28). 

𝑠௜
ᇱ = 𝑠௜ + ∆ (28) 

where 𝑠௜
ᇱ represents the modified solution obtained 

through local search, and 𝛥 represents the 
perturbation applied to the current solution 𝑠௜ during 
the local search process. 
 

Burrow construction may involve the 
application of adaptive strategies to guide the 
modification process based on feedback information 
and problem characteristics. Let (𝑠௜) represent the 
fitness of solution 𝑠௜, 𝐹௕௘௦௧ denote the fitness of the 
best solution found, and 𝛼 represent an adaptation 
parameter. The burrow construction process can 
adaptively adjust the modification process is 
mathematically represented in Eq.(29). 

𝑠௜
ᇱ = 𝑠௜ + 𝛼 ∙ ൫𝐹௕௘௦௧ − 𝐹(𝑠௜)൯ (29) 

where 𝑠௜
ᇱrepresents the modified solution obtained 

through adaptive burrow construction, and the 
adaptation parameter 𝛼 scales the magnitude of the 
modification based on the difference between the 
fitness of the current solution and the fitness of the 
best solution. 
 
3.2.5. Memory and Adaptation: 

This phase mimics the behavior of 
hamsters, which rely on memory and past 
experiences to navigate their environment 
efficiently and adapt to changing conditions. The 
memory and adaptation phase involve the storage 
and utilization of information from past iterations to 
guide the optimization process. Let 𝑆 represent the 
set of candidate solutions, 𝑠𝑖 denote an individual 
solution in the population, and 𝑀 represent the 
memory matrix storing information about past 
solutions and their performance. The memory and 
adaptation process is mathematically expressed in 
Eq.(30). 

𝑀 = 𝑈𝑝𝑑𝑎𝑡𝑒𝑀𝑒𝑚𝑜𝑟𝑦(𝑀, 𝑆) (30) 
where 𝑀 represents the updated memory matrix 
containing information about past solutions and 
their performance, and 𝑈𝑝𝑑𝑎𝑡𝑒𝑀𝑒𝑚𝑜𝑟𝑦(𝑀, 𝑆) is a 
function that updates the memory matrix based on 
the current population of candidate solutions 𝑆. 

The memory and adaptation phase may 
involve the retrieval of information from the 
memory matrix to guide the modification and 
selection of candidate solutions. Let 𝑠௜

ᇱ represent the 
modified solution obtained through memory-based 
adaptation, and 𝑤௜  denote the weight or influence of 
solution 𝑠௜ based on its performance stored in the 
memory matrix. The memory-based adaptation 
process can be expressed with Eq.(31). 
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𝑠௜
ᇱ = ෍ ∈ 𝑀𝑤௜௝ ∙ 𝑠௝

௦ೕ

 (31) 

where 𝑠௜
ᇱrepresents the modified solution obtained 

through memory-based adaptation, and the sum 
aggregates the contributions of past solutions 
weighted by their influence stored in the memory 
matrix. 
 

This phase may involve the adaptation of 
solution parameters based on past experiences and 
performance feedback. Let 𝑝௞ represent the 𝑘௧௛ 
parameter of solution 𝑠௜, 𝑝௕௘௦௧

௞  denote the best-
performing value for parameter 𝑝௞ stored in the 
memory matrix, and 𝛽 represent an adaptation 
parameter. The parameter adaptation process can be 
expressed mathematically in Eq.(32). 

𝑝௞
ᇱ = 𝑝௞ + 𝛽 ∙ ൫𝑝௕௘௦௧

௞ − 𝑝௞൯ (32) 
where 𝑝௞

ᇱ represents the adapted value of parameter 
𝑝௞, and the adaptation parameter 𝛽 scales the 
magnitude of the adaptation based on the difference 
between the current parameter value 𝑝௞ and the best-
performing value 𝑝best𝑘 stored in the memory 
matrix. 

The exploitation of promising solutions 
identified in past iterations to guide the optimization 
process. Let 𝑆௘௫௣௟௢௜௧ represent the subset of 
candidate solutions selected for exploitation, and 
Nୣ୶୮୪୭୧୲ denote the number of solutions to exploit 
from the memory matrix. The exploitation process 
can be expressed in Eq.(35). 

𝑆௘௫௣௟௢௜௧

=  Select Exploitable Solutions (M, Nୣ୶୮୪୭୧୲) 
 
(33) 

where 𝑆௘௫௣௟௢௜௧ contains candidate solutions selected 
for exploitation from the memory 
matrix,and  Select  Exploitable  Solutions 
 (M, Nୣ୶୮୪୭୧୲) is a function that selects the most 
promising solutions from the memory matrix based 
on their performance. 
 
3.2.6. Local Search and Optimization: 

This phase is analogous to how hamsters 
explore the nearby areas of their nests to find food 
and resources efficiently. Local search and 
optimization involve exploring neighboring 
solutions to improve the quality and fitness of 
candidate solutions. Let 𝑆 represent the set of 
candidate solutions, 𝑠௜ denote an individual solution 
in the population, and 𝑠௜

ᇱ represent the modified 
solution obtained through local search. The local 
search and optimization process can be expressed 
asEq.(34). 

𝑠௜
ᇱ = 𝐿𝑜𝑐𝑎𝑙𝑆𝑒𝑎𝑟𝑐ℎ(𝑠௜) (34) 

where 𝑠௜
ᇱrepresents the modified solution obtained 

through local search, and 𝐿𝑜𝑐𝑎𝑙𝑆𝑒𝑎𝑟𝑐ℎ(𝑠௜)is a 

function that explores the neighborhood of solution 
𝑠𝑖 to identify improvements. 
 

The local search and optimization phase 
may involve the exploration of multiple neighboring 
solutions to identify the most promising 
modifications. Let 𝑁(𝑠௜) represent the 
neighborhood of solution 𝑠௜, 𝑠௝ denote a neighboring 

solution, and 𝑓൫𝑠௝൯ represent the fitness of solution 
𝑠௝. The local search process can select the most 
promising neighboring solution for modification is 
mathematically represented in Eq.(35). 

𝑠௜
ᇱ = 𝑎𝑟𝑔𝑚𝑎𝑥௦ೕ∈ே(௦೔)𝑓൫𝑠௝൯ (35) 

where 𝑠௜
ᇱ represents the modified solution obtained 

through local search, and 
𝑎𝑟𝑔𝑚𝑎𝑥௦ೕ∈ே(௦೔)𝑓൫𝑠௝൯selects the neighboring 

solution with the highest fitness value within the 
neighborhood of solution 𝑠௜. 
 
The local search and optimization phase may 
involve the application of gradient-based 
optimization techniques to guide the exploration 
process. Let ∇(𝑠௜) denote the gradient of the fitness 
function with respect to solution 𝑠௜, and η represent 
the step size or learning rate. The local search 
process can update the solution based on the 
gradient direction is expressed in Eq.(36). 

𝑠௜
ᇱ = 𝑠௜ − η ⋅ ∇(𝑠௜) (36) 

where 𝑠௜
ᇱ represents the modified solution obtained 

through local search, and the gradient descent step 
η ⋅ ∇(𝑠௜) moves the solution towards the direction of 
steepest descent in the fitness landscape.Local 
search and optimization phase may involve the 
incorporation of problem-specific knowledge or 
heuristics to guide the exploration process. Let 𝐻 
represent the set of problem-specific heuristics, and 
ℎ௞ denote a heuristic function. The local search 
process can apply problem-specific heuristics to 
guide solution modifications: 

𝑠௜
ᇱ = 𝐴𝑝𝑝𝑙𝑦𝐻𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐(𝑠௜ , 𝐻) (37) 

where 𝑠௜
ᇱ represents the modified solution obtained 

through local search, and 𝐴𝑝𝑝𝑙𝑦𝐻𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐(𝑠௜ , 𝐻) is 
a function that applies problem-specific heuristics 
from the set 𝐻 to solution 𝑠௜. 
 
3.2.7. Social Interaction and Communication: 

In HO the concept of interaction and 
communication among candidate solutions to 
facilitate knowledge sharing and collective decision-
making. This phase replicates the social behavior 
observed in hamsters, where individuals interact 
with one another to exchange information and 
coordinate activities for mutual benefit. Social 
interaction and communication involve the 
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exchange of information among candidate solutions 
to improve the overall performance of the 
optimization process. Let 𝑆 represent the set of 
candidate solutions, 𝑠௜ denote an individual solution 
in the population, and 𝑠௜

ᇱ represent the modified 
solution obtained through social interaction. The 
social interaction and communication process can be 
expressed as Eq.(38). 

𝑠௜
ᇱ = 𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡(𝑠௜ , 𝑆) (38) 

where 𝑠௜
ᇱ represents the modified solution obtained 

through social interaction, and 𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡(𝑠௜ , 𝑆) is a 
function that enables solution 𝑠௜ to interact with 
other solutions in the population 𝑆 to exchange 
information. 
 

Social interaction and communication may 
involve the sharing of knowledge or experiences 
among neighboring solutions to facilitate collective 
learning. Let 𝑁(𝑠௜) represent the neighborhood of 
solution 𝑠௜, 𝑠௝ denote a neighboring solution, and 
𝑓(𝑠௝) represent the fitness of solution 𝑠௝. The social 
interaction process can leverage information from 
neighboring solutions is represented mathematically 
in Eq.(27). where 𝑠௜

ᇱ represents the modified solution 
obtained through social interaction, and the sum 
aggregates the contributions of neighboring 
solutions weighted by their influence 𝑤௜௝ .Social 
interaction and communication may involve the 
formation of groups or communities within the 
population to facilitate more effective knowledge 
sharing and collaboration. Let 𝐺 represent the set of 
groups or communities formed within the 
population, and 𝑔𝑘 denote a group containing a 
subset of candidate solutions. The social interaction 
process can promote collaboration within groups is 
shown in mathematical form as Eq.(39). 

𝑠௜
ᇱ = 𝐶𝑜𝑙𝑙𝑎𝑏𝑜𝑟𝑎𝑡𝑒(𝑠௜ , 𝐺) (39) 

where 𝑠௜
ᇱ represents the modified solution obtained 

through social interaction, and 𝐶𝑜𝑙𝑙𝑎𝑏𝑜𝑟𝑎𝑡𝑒(𝑠௜ , 𝐺) 
is a function that enables solution 𝑠௜ to collaborate 
with other solutions in the group 𝐺 to exchange 
information and coordinate activities. 
 

In Addition social interaction and 
communication may involve the establishment of 
communication channels or mechanisms for 
exchanging information efficiently. Let 𝐶 represent 
the set of communication channels established 
among candidate solutions, and 𝑐௜௝  denote a 
communication channel between solutions 𝑠௜ and 𝑠௝. 
The social interaction process can enable 
communication between solutions is shown in 
Eq.(40). 

𝑠௜
ᇱ = 𝐶𝑜𝑚𝑚𝑢𝑛𝑖𝑐𝑎𝑡𝑒(𝑠௜ , 𝐶) (40) 

where 𝑠௜
ᇱ represents the modified solution obtained 

through social interaction, and 
𝐶𝑜𝑚𝑚𝑢𝑛𝑖𝑐𝑎𝑡𝑒(𝑠௜ , 𝐶) is a function that enables 
solution 𝑠𝑖 to communicate with other solutions via 
established communication channels 𝐶. 
 
3.2.8. Termination and Convergence: 

Termination and Convergence focuses on 
determining when to end the optimization process 
and assessing whether the algorithm has converged 
to a satisfactory solution. This phase ensures that the 
optimization process concludes in a timely manner 
while achieving the desired level of solution quality. 
It involves monitoring the convergence criteria and 
terminating the optimization process once certain 
conditions are met. Let 𝐹௧௔௥௚௘௧  represent the target 
fitness value or threshold indicating the desired level 
of solution quality, and 𝐹௕௘௦௧ denote the fitness of 
the best solution found so far. The termination and 
convergence process can be expressed as Eq.(41). 

𝐶𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑑 =  ൫𝐹௕௘௦௧ ≥ 𝐹௧௔௥௚௘௧൯ (41) 
where 𝐶𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑑 is a binary indicator variable that 
evaluates whether the optimization process has 
converged to a satisfactory solution based on the 
comparison between the fitness of the best solution 
found so far and the target fitness value 𝐹௧௔௥௚௘௧ . 

It may involve monitoring the change in the 
fitness of candidate solutions over successive 
iterations to detect stagnation or lack of 
improvement. Let 𝐹(௧) represent the fitness of the 
best solution found at iteration 𝑡, and 𝐹(௧ିଵ) denote 
the fitness of the best solution found at the previous 
iteration 𝑡 − 1. The termination and convergence 
process can assess the rate of change in fitness is 
mathematically represented in Eq.(42). 

𝑆𝑡𝑎𝑔𝑛𝑎𝑛𝑡 = (𝐹(௧) − 𝐹(௧ିଵ) <∈) (42) 
where 𝑆𝑡𝑎𝑔𝑛𝑎𝑛𝑡 is a binary indicator variable that 
evaluates whether the optimization process has 
stagnated, indicating a lack of significant 
improvement in the fitness of candidate solutions 
over successive iterations. 
 

It also deals with setting a maximum 
number of iterations or a predefined time limit for 
the optimization process to ensure computational 
efficiency and prevent excessive computational 
burden. Let 𝑇௠௔௫  represent the maximum number of 
iterations, and 𝑡 denote the current iteration. The 
termination and convergence process can terminate 
the optimization process after reaching the 
maximum number of iterations is mathematically 
expressed in Eq.(43) 

𝑇𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒𝑑 = (𝑡 ≥ 𝑇௠௔௫) (43) 
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where 𝑇𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒𝑑 is a binary indicator variable 
that evaluates whether the optimization process has 
been terminated after reaching the maximum 
number of iterations 𝑇max. 
 
3.3. Maximizing Buoyancy: Integrating Hamster 
Optimization with MaxProp for Buoyant WSNs: 

B-WSNs offer unique capabilities for 
underwater monitoring and exploration. Optimizing 
their performance, particularly in challenging 
underwater environments, remains a significant 
challenge. Integrating HO with Max Prop, a routing 
protocol designed for underwater communication, 
can enhance the efficiency and reliability of Buoyant 
WSNs. This integrated approach, dubbed 
"HamsterProp," combines the adaptive nature of HO 
with the efficient routing of Max Prop to navigate 
the complexities of underwater environments. 

 
3.3.1. HOMP Initialization and Deployment: 

This phase sets the foundation for a B-
WSNs by strategically deploying sensor nodes 
within the target environment. This step is crucial as 
it establishes the initial configuration and spatial 
distribution of sensor nodes, laying the groundwork 
for subsequent optimization efforts. 
Deployment Strategy: The deployment strategy 
aims to achieve optimal coverage and connectivity 
while considering environmental constraints and 
application requirements. Let 𝐷 represent the 
deployment area, 𝑁 denote the total number of 
sensor nodes to be deployed, and 𝑑௜ represent the 
location of sensor node 𝑖. The deployment process 
can be mathematically expressed as Eq.(44). 

𝑑௜ ∈ 𝐷, ∀𝑖 ∈ [1, 𝑁] (44) 
This equation ensures that each sensor node is 
deployed within the designated deployment area 𝐷, 
ensuring full coverage and avoiding out-of-bounds 
placements. 
 
Spatial Distribution: The spatial distribution of 
sensor nodes plays a crucial role in achieving 
uniform coverage and minimizing coverage 
overlaps. Let 𝐶 represent the coverage area of each 
sensor node, and 𝑑௜௝  denote the distance between 
sensor nodes 𝑖 and 𝑗. The spatial distribution process 
aims to maximize coverage while minimizing inter-
node distances, ensuring efficient resource 
utilization. This can be mathematically represented 
as Eq.(45). 

෍ ෍ 𝑑௜௝ ∙ 𝛿௜௝

ே

௝ୀଵ

ே

௜ୀଵ
 (45) 

where 𝛿௜௝ is a binary variable indicating whether 
sensor nodes 𝑖 and 𝑗 are deployed within each other's 
coverage range. 

 
Connectivity Constraints: In addition to coverage 
considerations, connectivity constraints must be 
satisfied to ensure seamless communication among 
sensor nodes. Let 𝑅 denote the communication 
range of each sensor node, and 𝑑௜௝  represent the 
distance between sensor nodes 𝑖 and 𝑗. The 
connectivity constraints ensure that neighboring 
sensor nodes are within communication range of 
each other, facilitating data exchange and network 
coordination this can be expressed as Eq.(46). 

𝑑௜௝ ≤ 𝑅, ∀𝑖, 𝑗 ∈ [1, 𝑁], 𝑖 ≠ 𝑗 (46) 
This equation ensures that the distance between any 
pair of sensor nodes is within the communication 
range 𝑅, enabling direct communication and 
connectivity among neighboring nodes. 
 
Energy Considerations: Energy efficiency is a 
critical factor in WSNs, especially in scenarios 
where sensor nodes are battery-powered and 
deployed in remote or inaccessible locations. Let 𝐸௜ 
represent the initial energy level of sensor node 𝑖, 
and 𝐸௠௜௡ denote the minimum energy threshold. The 
deployment process must ensure that sensor nodes 
are adequately powered to perform their designated 
tasks throughout the network's operational lifetime 
is mathematically represented as Eq.(47). 

𝐸௜ ≥ 𝐸௠௜௡ , ∀𝑖 ∈ [1, 𝑁] (47) 
This equation ensures that each sensor node is 
deployed with sufficient initial energy reserves, 
preventing premature depletion and ensuring 
continuous operation. 
 
3.3.2. HOMP Exploration and Nesting: 

This step is crucial for discovering 
promising regions of the solution space and guiding 
subsequent optimization efforts towards them. 
Environmental Sensing: Exploration begins with 
sensor nodes actively sensing their environment to 
gather information about their surroundings. Let 𝑆 
represent the set of sensor nodes, and 𝑠௜denote an 
individual sensor node. Environmental sensing 
involves collecting data about the local 
environment, which can be expressed asEq.(48). 

𝐷𝑎𝑡𝑎(𝑠௜) = 𝑆𝑒𝑛𝑠𝑒(𝑠௜) (48) 
where 𝐷𝑎𝑡𝑎(𝑠௜) represents the data collected by 
sensor node 𝑠௜ and 𝑆𝑒𝑛𝑠𝑒(𝑠௜) is a function that 
enables the node to sense its environment and gather 
relevant information. 
 
Adaptive Movement: To explore the solution space 
effectively, sensor nodes adapt their movement 
patterns based on environmental cues and 
neighboring nodes information. Let 𝑀 represent the 
set of possible movement directions, and 𝑚௜ denote 
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a movement direction. Adaptive movement involves 
selecting the most promising direction for 
exploration, which can be expressed in Eq.(49). 

𝑚௜ = 𝑆𝑒𝑙𝑒𝑐𝑡𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛(𝑠௜ , 𝑀) (49) 
where 𝑚௜ represents the selected movement 
direction for sensor node 𝑠௜, and 
𝑆𝑒𝑙𝑒𝑐𝑡𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛(𝑠௜ , 𝑀) is a function that evaluates 
the potential of each direction and selects the most 
promising one. 
 
Exploration Strategy: Different exploration 
strategies can be employed based on the 
characteristics of the problem and the environment. 
Let 𝐸 represent the set of exploration strategies, and 
𝑒௜ denote an exploration strategy. Selecting an 
exploration strategy involves evaluating the 
performance of each strategy and selecting the most 
suitable one is represented in Eq.(50). 

𝑒௜ = 𝑆𝑒𝑙𝑒𝑐𝑡𝑆𝑡𝑟𝑎𝑡𝑒𝑔𝑦(𝐸) (50) 
where 𝑒௜ represents the selected exploration 
strategy, and 𝑆𝑒𝑙𝑒𝑐𝑡𝑆𝑡𝑟𝑎𝑡𝑒𝑔𝑦(𝐸) is a function that 
evaluates the effectiveness of each strategy and 
selects the most appropriate one. 
 
Resource Allocation: During exploration, it is 
essential to allocate resources efficiently to 
maximize coverage and minimize resource wastage. 
Let 𝑅 represent the set of available resources, and 𝑟௜ 
denote an individual resource. Resource allocation 
involves distributing resources among sensor nodes 
based on their exploration needs, which can be 
expressed as Eq.(51). 

𝑟௜ = 𝐴𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒(𝑆, 𝑅) (51) 
where 𝑟௜ represents the allocated resource for sensor 
node 𝑠௜, and 𝐴𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒(𝑆, 𝑅) is a function 
that determines the optimal distribution of resources 
based on the exploration requirements of each node. 
 
Coordination and Collaboration: To enhance 
exploration efficiency, sensor nodes can coordinate 
and collaborate with each other by sharing 
information and coordinating. 
 
3.3.3. HOMP Randomization and 
Synchronization: 
To enhance the efficiency and reliability of data 
transmission by introducing randomization and 
synchronization mechanisms. These mechanisms 
help mitigate issues such as interference and packet 
collisions, which can arise in WSNs due to the 
shared wireless medium and concurrent 
transmissions. 
 
Randomized Transmission Schedules: To avoid 
collisions and maximize channel utilization, sensor 

nodes employ randomized transmission schedules. 
Let 𝑇௜  represent the transmission schedule for sensor 
node 𝑖, and 𝑡௜௝ denote the transmission time slot 
between nodes 𝑖and 𝑗. The randomized transmission 
schedule can be expressed asEq.(52). 

𝑇௜ = 𝐺𝑒𝑛𝑒𝑟𝑎𝑙𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑒(𝑖) (52) 
where 𝐺𝑒𝑛𝑒𝑟𝑎𝑙𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑒(𝑖) is a function that 
generates a random transmission schedule for sensor 
node 𝑖, ensuring that transmission times are 
randomly distributed to minimize the likelihood of 
collisions. 
 
Synchronized Listening Periods: In addition to 
randomized transmission schedules, sensor nodes 
synchronize their listening periods to receive data 
from neighboring nodes efficiently. Let 𝐿௜ represent 
the listening period for sensor node 𝑖, and 𝑙௜௝  denote 
the listening time slot between nodes 𝑖 and 𝑗. 
Synchronized listening periods can be expressed as 
shown in Eq.(53). 
 

𝐿௜ = 𝑆𝑦𝑛𝑐𝐿𝑖𝑠𝑡𝑒𝑛𝑖𝑛𝑔(𝑖) (53) 
where 𝑆𝑦𝑛𝑐𝐿𝑖𝑠𝑡𝑒𝑛𝑖𝑛𝑔(𝑖) is a function that 
synchronizes the listening period for sensor node 𝑖 
with neighboring nodes, ensuring that data 
transmissions are received promptly and minimizing 
delays. 
Random Backoff Mechanisms: To further reduce 
the likelihood of collisions, sensor nodes implement 
random backoff mechanisms before initiating 
transmissions. Let 𝐵௜  represent the backoff time for 
sensor node 𝑖, and 𝑏௜௝  denote the backoff time slot 
between nodes 𝑖 and 𝑗. The random backoff 
mechanism can be expressed asEq.(54). 

𝐵௜ = 𝐵𝑎𝑐𝑘𝑜𝑓𝑓(𝑖) (54) 
where 𝐵𝑎𝑐𝑘𝑜𝑓𝑓(𝑖) is a function that generates a 
random backoff time for sensor node 𝑖, ensuring that 
nodes delay their transmissions randomly to 
minimize the probability of collisions. 
 
Carrier Sense Multiple Access (CSMA): In 
addition to randomization, sensor nodes employ 
carrier sense multiple access (CSMA) protocols to 
detect channel activity before initiating 
transmissions. Let 𝐶௜ represent the carrier sense 
threshold for sensor node 𝑖, and 𝑐௜௝  denote the 
channel activity level between nodes 𝑖and 𝑗. The 
process of CSMA can be expressed mathemathically 
in Eq.(55). 

𝐶௜ = 𝑆𝑒𝑛𝑠𝑒𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑(𝑖) (55) 
where 𝑆𝑒𝑛𝑠𝑒𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑(𝑖) is a function that sets the 
carrier sense threshold for sensor node𝑖, ensuring 
that nodes sense the channel before transmitting and 
avoiding collisions with ongoing transmissions. 
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3.3.4. HOMP Food Foraging and Routing 
Optimization: 
Food Foraging and Routing Optimization focuses on 
optimizing data routing paths and energy-efficient 
foraging strategies to maximize network 
performance. This step aims to ensure that data is 
routed effectively to its destination while 
minimizing energy consumption and prolonging the 
network's operational lifetime. 
Energy-Aware Routing: One aspect of food 
foraging and routing optimization involves 
developing energy-aware routing protocols that 
consider the energy levels of sensor nodes when 
selecting routing paths. Let 𝐸௜represent the 
remaining energy level of sensor node 𝑖, and 𝐸௠௜௡  
denote the minimum energy threshold required for 
operation. Energy-aware routing can be expressed 
asEq.(56). 

𝑅𝑜𝑢𝑡𝑒൫𝑠௜ , 𝑠௝൯ = 𝑆𝑒𝑙𝑒𝑐𝑡𝑅𝑜𝑢𝑡𝑒(𝑠௜ , 𝑠௝ , 𝐸௜) (56) 
where 𝑅𝑜𝑢𝑡𝑒൫𝑠௜ , 𝑠௝൯ represents the selected routing 
path from sensor node 𝑠௜ to 𝑠௝, and 
𝑆𝑒𝑙𝑒𝑐𝑡𝑅𝑜𝑢𝑡𝑒(𝑠௜ , 𝑠௝ , 𝐸௜) is a function that selects the 
most energy-efficient routing path based on the 
energy level of sensor node 𝑖. 
 
Optimal Path Selection: To optimize data routing 
paths, sensor nodes evaluate multiple candidate 
paths and select the most optimal one based on 
various criteria such as hop count, link quality, and 
energy efficiency. Let 𝑃௜௝  represent the set of 
candidate paths from node 𝑖 to node 𝑗, and 
𝑝௜௝௞denote an individual path. The optimal path 
selection process can be expressed asEq.(57). 

𝑂𝑝𝑡𝑖𝑚𝑎𝑙𝑃𝑎𝑡ℎ൫𝑠௜ , 𝑠௝൯ = 𝑆𝑒𝑙𝑒𝑐𝑡𝑃𝑎𝑡ℎ(𝑃௜௝) (57) 
where 𝑂𝑝𝑡𝑖𝑚𝑎𝑙𝑃𝑎𝑡ℎ൫𝑠௜ , 𝑠௝൯ represents the selected 
optimal path from sensor node 𝑠௜ to 𝑠௝, and 
𝑆𝑒𝑙𝑒𝑐𝑡𝑃𝑎𝑡ℎ(𝑃௜௝) is a function that evaluates the 
candidate paths and selects the most suitable one 
based on predefined optimization criteria. 
 
Dynamic Routing Adaptation: In dynamic 
environments where network conditions may 
change over time, sensor nodes adapt their routing 
strategies dynamically to accommodate variations in 
traffic load, link quality, and energy availability. Let 
𝑇௜௝represent the traffic load between nodes 𝑖 and 𝑗, 
and 𝑄௜௝denote the link quality. This dynamic routing 
adaptation can be mathematically expressed as 
Eq.(58). 

𝐴𝑑𝑎𝑝𝑡𝑅𝑜𝑢𝑡𝑖𝑛𝑔൫𝑠௜ , 𝑠௝൯

= 𝑈𝑝𝑑𝑎𝑡𝑒𝑅𝑜𝑢𝑡𝑒(𝑠௜ , 𝑠௝ , 𝑇௜௝ , 𝑄௜௝) 
(58) 

where 𝐴𝑑𝑎𝑝𝑡𝑅𝑜𝑢𝑡𝑖𝑛𝑔൫𝑠௜ , 𝑠௝൯ represents the adapted 
routing strategy between sensor nodes 𝑠𝑖 and 𝑠𝑗, and 
𝑈𝑝𝑑𝑎𝑡𝑒𝑅𝑜𝑢𝑡𝑒(𝑠௜ , 𝑠௝ , 𝑇௜௝ , 𝑄௜௝) is a function that 
updates the routing path based on changes in traffic 
load and link quality. 
 
Load Balancing: To distribute traffic evenly across 
the network and prevent congestion in certain 
regions, sensor nodes implement load balancing 
mechanisms that dynamically adjust routing paths 
based on traffic distribution. Let 𝐿௜௝  represent the 
current traffic load on link 𝑖𝑗, and 𝐶௠௔௫ denote the 
maximum capacity of each link. This load balancing 
can be mathematically expressed asEq.(59). 

𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑𝑅𝑜𝑢𝑡𝑖𝑛𝑔൫𝑠௜ , 𝑠௝൯

= 𝐴𝑑𝑗𝑢𝑠𝑡𝑅𝑜𝑢𝑡𝑒(𝑠௜ , 𝑠௝ , 𝐿௜௝ , 𝐶௠௔௫) 

(59) 

where 𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑𝑅𝑜𝑢𝑡𝑖𝑛𝑔൫𝑠௜ , 𝑠௝൯ represents the 
balanced routing strategy between sensor nodes 𝑠௜ 
and 𝑠௝, and 𝐴𝑑𝑗𝑢𝑠𝑡𝑅𝑜𝑢𝑡𝑒(𝑠௜ , 𝑠௝ , 𝐿௜௝ , 𝐶௠௔௫) is a 
function that adjusts the routing path to ensure that 
traffic is distributed evenly across the network. 
 
3.3.5. Memory and Adaptation: 
Memory and Adaptation focuses on leveraging 
memory mechanisms and adaptive strategies to 
enhance the network's performance and resilience. 
This step incorporating historical data and 
environmental feedback to adaptively adjust 
network parameters and behaviors. 
 
Historical Data Storage: To facilitate adaptive 
decision-making, sensor nodes store historical data 
related to network performance, environmental 
conditions, and past events. Let 𝐻௜  represent the 
historical data stored by sensor node 𝑖, and ℎ௜௝ 
denote an individual historical record. Historical 
data storage can be expressed asEq.(60). 

𝐻௜ = {ℎଵ, ℎଶ, ⋯ ℎ௜௠} (60) 
where 𝐻௜  is a set of historical records stored by 
sensor node 𝑖, containing information relevant to 
past network operations and environmental 
observations. 
 
Adaptive Parameter Adjustment: Based on the 
analysis of historical data and current environmental 
conditions, sensor nodes adaptively adjust network 
parameters to optimize performance. Let 𝑃௜  
represent the set of network parameters controlled 
by sensor node 𝑖, and 𝑝௜௝  denote an individual 
parameter. The adaptive parameter adjustment can 
be expressed in Eq.(61). 

𝑃௜ = 𝐴𝑑𝑎𝑝𝑡𝑃𝑎𝑟𝑎𝑚𝑠(𝐻௜ , 𝐸௜) (61) 
where 𝐴𝑑𝑎𝑝𝑡𝑃𝑎𝑟𝑎𝑚𝑠(𝐻௜ , 𝐸௜) is a function that 
analyzes historical data 𝐻௜  and current 
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environmental conditions 𝐸௜ to determine the 
optimal values for network parameters 𝑃௜ . 
 
Environmental Feedback Integration: Sensor 
nodes receive feedback from the environment 
regarding changes in conditions such as 
temperature, humidity, and signal strength. Let 𝐹௜ 
represent the environmental feedback received by 
sensor node 𝑖, and 𝑓௜௝ denote an individual feedback 
signal. This environmental feedback integration can 
be expressed asEq.(62). 

𝐹௜ = {𝑓௜ଵ, 𝑓௜ଶ, ⋯ 𝑓௜௡} (62) 
where 𝐹௜ is a set of feedback signals received by 
sensor node 𝑖, providing information about the 
current environmental state and potential changes. 
 
Adaptive Behavior Modification: Based on the 
analysis of historical data and environmental 
feedback, sensor nodes modify their behavior 
adaptively to adapt to changing conditions and 
optimize network performance. Let 𝐵௜  represent the 
set of behaviors exhibited by sensor node 𝑖, and 𝑏௜௝  
denote an individual behavior. This adaptive 
behavior modification can be expressed asEq.(63). 

𝐵௜ = 𝐴𝑑𝑎𝑝𝑡𝐵𝑒ℎ𝑎𝑣𝑖𝑜𝑟(𝐻௜ , 𝐹௜) (63) 
where 𝐴𝑑𝑎𝑝𝑡𝐵𝑒ℎ𝑎𝑣𝑖𝑜𝑟(𝐻௜ , 𝐹௜) is a function that 
analyzes historical data 𝐻௜  and environmental 
feedback 𝐹௜ to adjust the behavior of sensor node 𝑖 
accordingly. 
Learning and Prediction: Sensor nodes utilize 
machine learning techniques to analyze historical 
data, identify patterns, and make predictions about 
future network behavior and environmental 
changes. Let 𝐿௜ represent the learning model used by 
sensor node 𝑖, and 𝑙௜௝  denote an individual learned 
pattern or prediction. The mathematical 
representation of learning and prediction can be 
expressed asEq.(64). 

𝐿௜ = 𝐿𝑒𝑎𝑟𝑛(𝐻௜) (64) 
where 𝐿𝑒𝑎𝑟𝑛(𝐻௜) is a function that trains a learning 
model using historical data 𝐻௜  to make predictions 
and identify patterns relevant to network operation 
and environmental conditions. 
 
3.3.6. HOMP Termination and Convergence: 

Termination and Convergence the final 
stage where the optimization process is terminated, 
and convergence is achieved. It ensures that the 
optimization process concludes efficiently and 
effectively, leading to stable and optimal network 
configurations. 

 
Convergence Criterion: To determine when the 
optimization process has converged, a convergence 
criterion is established based on predefined 

thresholds or conditions. Let 𝐶represent the 
convergence criterion, and 𝑐௜ denote an individual 
convergence condition. The convergence criterion 
can be expressed as Eq.(65). 

𝐶 = {𝑐ଵ, 𝑐ଶ, ⋯ 𝑐௠} (65) 
where 𝐶 is a set of convergence conditions, and 𝑐௜ 
represents an individual condition that must be 
satisfied for convergence to be achieved. 
 
Global Optimization Metric: To assess the overall 
performance of the optimized network 
configuration, a global optimization metric is 
calculated based on various network parameters and 
objectives. Let 𝐺 represent the global optimization 
metric, and 𝑔௜ denote an individual component of 
the metric. The global optimization metric can be 
expressed asEq.(66). 

𝐺 = ෍ 𝑔௜

௡

௜ୀଵ
 (66) 

where 𝐺 represents the total global optimization 
metric, computed as the sum of individual 
components 𝑔௜ that capture different aspects of 
network performance and efficiency. 
 
Termination Condition: Once the convergence 
criterion is met and the global optimization metric 
reaches a satisfactory level, the optimization process 
is terminated. Let 𝑇 represent the termination 
condition, and 𝑡௜ denote an individual termination 
criterion. The termination condition can be 
expressed as Eq.(67). 

𝑇 = {𝑡ଵ, 𝑡ଶ ⋯ , 𝑡௞} (67) 
where 𝑇 is a set of termination criteria, and 𝑡௜ 
represents an individual condition that, when 
satisfied, triggers the termination of the optimization 
process. 
 
Network Stability Assessment: Before terminating 
the optimization process, the stability of the network 
configuration is assessed to ensure that the 
optimized solution is robust and resilient to 
environmental changes or disturbances. Let 𝑆 
represent the network stability assessment, and 𝑠௜ 
denote an individual stability indicator. The network 
stability assessment can be expressed asEq.(68). 

𝑆 = {𝑠ଵ, 𝑠ଶ ⋯ , 𝑠௟} (68) 
where 𝑆 is a set of stability indicators, and 𝑠௜ 
represents an individual indicator that evaluates the 
stability and robustness of the optimized network 
configuration. 
 
Dynamic Adjustment Mechanism: In some cases, 
the optimization process may need to be 
dynamically adjusted based on real-time feedback or 
changes in network conditions. Let 𝐷represent the 
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dynamic adjustment mechanism, and 𝑑 denote an 
individual adjustment parameter. The dynamic 
adjustment mechanism can be expressed asEq.(69). 

𝐷 = ൛𝑑ଵ, 𝑑ଶ ⋯ , 𝑑௣ൟ (69) 

where 𝐷 is a set of adjustment parameters, and 
𝑑௜ represents an individual parameter that controls 
the dynamic adaptation of the optimization process. 
 
3.4. Advantages of HOMP: 

HO is a nature-inspired optimization 
algorithm inspired by the foraging behavior of 
hamsters. It mimics the actions of hamsters in 
searching for food, nesting, and adapting to changes 
in their environment. HO involves iterative 
optimization processes where sensor nodes 
dynamically adjust their parameters and behaviors 
based on environmental feedback and historical data 
to achieve optimal network configurations. Max 
Prop is a routing protocol designed specifically for 
DTNs, where connectivity between nodes is 
intermittent or unpredictable. It employs a message-
centric approach, allowing nodes to make 
forwarding decisions based on the probability of 
successful delivery to the destination. Max Prop 
optimizes message delivery by selecting the most 
promising forwarders based on the history of 
successful message transmissions. Buoyant WSNs 
are specialized networks designed for underwater 
environments, where traditional communication 
methods are not feasible. These networks utilize 
buoyant platforms equipped with underwater sensor 
nodes to collect and transmit data for various 
applications such as oceanography, environmental 
monitoring, and underwater exploration. The 
advantages of infusing HO with MaxProp for 
buoyant WSNs areas follows. 

 
Adaptability to Dynamic Environments: Buoyant 
WSNs operate in highly dynamic underwater 
environments characterized by fluctuating currents, 
varying water temperatures, and changing pressure 
levels. By combining HO's adaptive capabilities 
with MaxProp'sprobabilistic routing, the infused 
approach enables sensor nodes to dynamically 
adjust their routing decisions based on real-time 
environmental conditions, ensuring robust and 
reliable communication even in challenging 
underwater environments. 
 
Energy-Efficient Routing: Energy efficiency is 
crucial in buoyant WSNs due to limited battery 
capacity and the difficulty of replacing batteries in 
underwater nodes. Max Prop's message-centric 
approach minimizes energy consumption by 
selecting the most energy-efficient routes for 

message transmission. When combined with HO's 
optimization capabilities, the infused approach 
further enhances energy efficiency by optimizing 
parameters such as transmission power, routing 
paths, and duty cycles based on the energy levels of 
sensor nodes and the current network conditions. 
 
Fault Tolerance and Resilience: Buoyant WSNs 
are prone to communication disruptions and node 
failures due to factors such as signal attenuation, 
node mobility, and harsh underwater conditions. 
Max Prop's probabilistic routing enables the 
network to adapt to intermittent connectivity by 
selecting multiple potential forwarders for message 
delivery. Integrating HO with Max Prop enhances 
fault tolerance and resilience by enabling sensor 
nodes to dynamically adjust their routing strategies 
and behaviors in response to communication failures 
or changes in network topology. 
 
Optimal Resource Utilization: In buoyant WSNs, 
resources such as bandwidth, energy, and 
computational capacity are limited and must be 
utilized efficiently to prolong network lifetime and 
maximize performance. The infused approach 
optimizes resource utilization by dynamically 
allocating resources based on the current network 
conditions and application requirements. HO's 
adaptive capabilities ensure that resources are 
allocated optimally, while MaxProp's message-
centric routing minimizes resource consumption 
during message transmission. 
 
Scalability and Scalable Routing: As buoyant 
WSNs continue to grow in size and complexity, 
scalability becomes a critical consideration. The 
infused HO-MaxProp approach offers scalable 
routing solutions by dynamically adapting routing 
decisions and behaviors to accommodate changes in 
network size, density, and topology. By leveraging 
HO's iterative optimization process and MaxProp's 
probabilistic routing, the infused approach scales 
effectively to large-scale buoyant WSN 
deployments without sacrificing performance  or 
efficiency. 
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Table 1: Simulation Setting 

 
  
4. SIMULATION SETTINGS AND 

PARAMETERS: 
 
Simulation refers to the process of imitating the 
operation of a real-world system or process over 
time. This involves creating a model that represents 
the key characteristics and behaviors of the system 
under study. By manipulating the model's variables 
and observing the outcomes, valuable insights can 
be gained about how the system operates, allowing 
for testing and analysis of various scenarios without 
the need for physical implementation. NS-3 is a 
discrete-event network simulator widely used for 
research and educational purposes. It is an open-
source tool designed to provide substantial support 
for simulation of internet systems, which can be 
utilized to model the performance of various 
network protocols and architectures. ns-3 is written 
in C++ with optional Python bindings, enabling 
detailed and scalable simulations. The simulator 
includes a wide range of models for wireless and 
wired networks, facilitating studies in diverse 
networking environments. To simulate Buoyant 
WSNs using ns-3, a detailed simulation setting is 
required. This setting includes the configuration of 

network parameters, deployment scenarios, and 
performance metrics. 
 

This simulation setting aims to emulate a 
realistic underwater environment for buoyant 
WSNs, focusing on key performance metrics to 
evaluate the efficiency and reliability of the 
network. 

 
5. RESULTS AND DISCUSSION: 

The packet delivery ratio (PDR) and packet 
drop ratio (PDR) were evaluated across three routing 
protocols: MO-CBACORP, HOCOR, and HOMP, 
with varying numbers of nodes in the network. As 
depicted in Fig 1, both metrics demonstrate trends 
with the increase in nodes. 

 
HOMP consistently outperforms the other 

protocols, exhibiting the highest delivery ratios 
across all node counts. 

Fig 1. Packet Delivery and Pack Drop Ratio Analysis 
 

 MO-CBACORP consistently shows the 
lowest delivery ratio, indicating comparatively less 
efficient packet delivery. Regarding drop rate that as 
the number of nodes increases, there is a general 
decrease in the delivery ratio across all protocols. 
HOCOR tends to maintain a slightly higher 
compared to MO-CBACORP, especially with larger 
node counts. HOMP demonstrates superior 
performance in both PDR and PDR, while MO-
CBACORP exhibits the least favorable results. 
These findings highlight the importance of protocol 
selection in achieving optimal performance in 
wireless sensor networks.  

Through put refers to the rate of successful 
message delivery over a communication channel 
within a specified period.  It  is  a  crucial  
performance  metric  in B-WSNs as it directly 
influences the efficiency of data transmission and 
network utilization. Higher throughput indicates a 
network's ability to deliver a greater volume of data 
within a given timeframe.  The Outcome shows that 
the three routing protocols MO-CBACORP, 
HOCOR, and HOMP reveals insights into their 
respective throughput performances with varying 
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node counts. As pictorially depicted in Fig 2, 
throughput generally increases with the number of 
nodes in the network for all protocols. 
 

 
Fig 2. Throughput Analysis 

 
HOMP consistently exhibits the highest 

throughput values across different node counts, 
followed by HOCOR and MO-CBACORP. This 
shows the superior efficiency of HOMP in data 
transmission and network utilization. MO-
CBACORP consistently records the lowest 
throughput values, indicating comparatively lower 
data transmission rates and network efficiency. The 
average throughput values further reinforce these 
observations, with HOMP leading with the highest 
average throughput, followed by HOCOR and MO-
CBACORP.  

 
Energy consumption in B-WSNs refers to 

the amount of energy utilized by sensor nodes to 
perform various operations such as sensing, 
processing, and communication.Minimizing energy 
consumption is critical in WSNs to prolong network 
lifetime and ensure sustainable operation.Analyzing 
the provided data across three routing protocols 
MO-CBACORP, HOCOR, and HOMPoffers 
insights into their respective energy consumption 
performances with different node counts. As 
depicted in the table and graph Fig 3, energy 
consumption varies across protocols and node 
counts. 
 

 
 Fig 3. Energy Consumption 

 
HOMP consistently demonstrates the 

lowest energy consumption values across different 
node counts, indicating its efficiency in energy 
utilization. In contrast MO-CBACORP records the 
highest energy consumption values, suggesting 
relatively higher energy utilization for data 
transmission and network operations. The average 
energy consumption values further confirm these 
trends, with HOMP exhibiting the lowest average 
energy consumption, followed by HOCOR and MO-
CBACORP. These findings demonstrates the 
importance of protocol selection in optimizing 
energy efficiency in WSNs. Implementing energy-
efficient protocols like HOMP can significantly 
contribute to prolonging network lifetime and 
enhancing overall network sustainability. 

 
Network lifetime in B-WSNs refers to the 

duration for which the network can sustain its 
operations before the depletion of energy resources 
in sensor nodes. Maximizing network lifetime is 
crucial in WSNs to ensure continuous monitoring 
and data collection over extended periods. 
Analyzing results obtained by these three routing 
protocols MO-CBACORP, HOCOR, and HOMP 
provides insights into their respective network 
lifetime performances with varying node counts. As 
illustrated in Fig 4, network lifetime exhibits distinct 
trends across protocols and node counts. 

 
HOMP consistently demonstrates the 

longest network lifetime values across different 
node density, indicating its effectiveness in 
prolonging network operation duration by 
efficiently managing energy resources.MO-
CBACORP generally records the shortest network 
lifetime values, suggesting relatively less efficient 
energy utilization and shorter network operation 
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durations. The average network lifetime values 
further confirm these developments, with HOMP 
exhibiting the highest average network lifetime, 
followed by HOCOR and MO-CBACORP. These 
findings highlight the critical role of protocol 
selection in optimizing network lifetime in WSNs. 
Implementing energy-efficient protocols like 
HOMP can significantly enhance network 
sustainability and ensure prolonged operation, 
thereby improving the reliability and effectiveness 
of WSN deployments. 

 

 
Fig 4. Network Lifetime 

 
6. CONCLUSION 

 
The article is concluded as the investigated 

the performance of adaptive routing protocol for B-
WSNs using Hamster Optimization based Max Prop 
(HOMP). Through extensive experimentation and 
analysis, our findings demonstrate the significant 
advantages of HOMP over existing protocols in 
terms of packet delivery ratio, throughput, energy 
consumption, and network lifetime. The integration 
of Hamster Optimization and Max Prop enhances 
the efficiency and reliability of data transmission in 
B-WSNs, thereby improving overall network 
performance and sustainability. HOMP consistently 
outperformed other protocols across various metrics 
and node counts, highlighting its effectiveness in 
optimizing routing decisions and resource 
utilization in underwater environments. These 
results have significant implications for applications 
in oceanography, environmental monitoring, and 
marine exploration, where reliable data transmission 
and prolonged network operation are paramount. By 
leveraging the capabilities of HOMP, buoyant 
WSNs can achieve greater accuracy, coverage, and 
longevity, enabling more effective data collection 
and analysis in challenging aquatic environments. 

The findings presented in this study highlights the 
potential of enhanced routing protocol HOMP to 
address the unique challenges of B-WSNs and 
makes the way for advancements in underwater 
sensing and monitoring technologies. 
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