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ABSTRACT 

 
Students often face difficulties in understanding abstract concepts in thermodynamics, such as thermal system 
efficiency, temperature distribution, and inter-variable interactions in thermal phenomena. These challenges 
are compounded by traditional teaching methods, which typically rely only on text and mathematical 
calculations. This research aims to develop a lab data-based visualization model to enhance students' 
understanding of thermodynamics concepts. The model utilizes experimental data collected by Mechanical 
Engineering students at Universitas Negeri Padang on various instructional apparatus, including steam power 
plants, internal combustion engines, wind turbines, and crank mechanisms, gathered between 2022 and 2024. 
This visualization model includes several key features: a CRUD-based data storage system using Pymongo, 
2D data visualization with Pygwalker, 3D visualizations in contour and surface diagrams, correlation analysis 
using heatmaps, and machine learning-based predictions with PyCaret. Evaluation results indicate that this 
model significantly improves students' comprehension of abstract thermodynamics concepts. Based on 
assessments from four thermodynamics expert lecturers, the information accuracy aspect received an average 
score of 4 (Good), visualization quality received an average score of 4.25 (Very Good), and ease of use 
received the highest average score of 4.5 (Very Good). The relevance of the model to learning objectives 
received an average score of 3.75, slightly below the Good category, indicating room for improvement in 
terms of educational relevance. Overall, this research demonstrates that integrating EDA and machine 
learning through the developed visualization model is effective in supporting more interactive and data-
driven thermodynamics learning, aligned with the needs of education in the digital era. 
Keywords: Exploratory Data Analysis, thermodynamics, machine learning, correlation, analysis 
 
1. INTRODUCTION  

 
 Thermodynamics is a branch of physics that 

studies the relationships between heat, energy, and 
work within a system. It focuses on how energy is 
transferred and transformed, as well as how these 
processes affect the properties of matter, such as 
pressure, temperature, and volume. In mechanical 
engineering, thermodynamics is crucial for 
analyzing and designing machines and systems that 
utilize energy, such as combustion engines, turbines, 
and cooling systems. The fundamental principles of 
thermodynamics include the laws of 
thermodynamics, thermodynamic cycles, and 
thermodynamic processes. A solid understanding of 
the laws of thermodynamics enables students to 
enhance their ability to design and optimize more 
efficient and environmentally friendly systems, as 
well as to predict and address technical challenges 

encountered in real-world applications [1]. Despite 
its importance, thermodynamics is known as a 
challenging subject for many engineering students. 
Previous studies have found that thermodynamics is 
often perceived as one of the most complex and 
difficult subjects to grasp [2], [3].  

Traditional teaching methods that rely on lectures 
and theoretical explanations tend to be less effective 
in helping students comprehend abstract and 
complex concepts. These methods often fail to 
provide students with opportunities to observe the 
practical applications of the theories being taught, 
resulting in difficulties in connecting theoretical 
concepts to real-world scenarios [4]. Consequently, 
many students struggle to understand and effectively 
apply thermodynamic principles. This is consistent 
with the findings of a study [5] involving 200 
engineering students from various programs at the 
University of Mataram, Indonesia. The results 
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showed that most students faced difficulties in 
understanding abstract concepts in thermodynamics, 
such as the laws of thermodynamics, energy 
transformations, and thermodynamic cycles. The 
data revealed that only 40% of respondents could 
accurately explain the concepts of the first and 
second laws of thermodynamics. Furthermore, more 
than 60% of students experienced challenges in 
applying these concepts to real-world situations, 
such as analyzing thermal systems or heat engines. 
Therefore, there is a need for more interactive 
teaching methods and effective learning media to 
visualize thermodynamics concepts. 

Exploratory Data Analysis (EDA) is a data 
analysis technique used to explore and visualize data 
to make it easier to understand. EDA helps identify 
patterns, trends, and relationships in data that might 
not be apparent through traditional analysis [6]. In 
the context of thermodynamics education, EDA can 
transform students' experimental data into more 
comprehensible graphs and diagrams, helping them 
connect theory with practice. Machine Learning, on 
the other hand, is a technology that enables 
computers to learn from data and make predictions 
or recommendations without explicit programming. 
In thermodynamics education, machine learning can 
be employed to simulate various scenarios in 
thermodynamic systems based on experimental data. 
This allows students to test how changes in 
parameters like temperature or pressure affect 
system performance, enhancing their understanding 
of the real-world impact of the theories they study. 
Currently, experimental data generated by students 
is often underutilized in the learning process. By 
employing EDA, this data can be visualized to 
provide students with direct insights into how 
thermodynamic theories are applied in real-world 
scenarios. Machine learning can then be used to 
create predictive models, enabling students to test 
various scenarios virtually, thereby deepening their 
understanding of abstract concepts such as 
thermodynamic cycles or the laws of 
thermodynamics. By integrating EDA and machine 
learning, thermodynamics education becomes more 
interactive. This creates a more effective and 
dynamic learning environment where experimental 
data is not merely an end product but a tool for 
interactive learning. 

The use of data-driven technologies such as 
Exploratory Data Analysis (EDA) and Machine 
Learning in education has shown positive results in 
recent years. Research [7] demonstrates that the 
application of EDA in online statistics courses 
facilitates students' understanding of hidden patterns 
in data through visualization, leading to improved 

comprehension of previously abstract materials. 
Simplified data visualization through EDA allows 
students to see relationships between variables, 
making it easier to apply theoretical concepts. 
Research [8] on science education further explores 
how the implementation of EDA in exact sciences, 
including thermodynamics, enables students to more 
easily interpret laboratory experiment results. EDA 
transforms raw data into more accessible graphs and 
visualizations, helping students map the taught 
theories to the practical results they observe, 
effectively bridging the gap between theory and 
practice. 

In addition to EDA, Machine Learning has 
also been introduced as a tool in thermodynamics 
education to simulate and estimate thermodynamic 
phenomena [9]. In thermodynamics learning, 
Machine Learning can be used to predict how 
changes in variables such as temperature or pressure 
affect the efficiency of thermal systems. This helps 
students understand the impact of these variable 
changes through simulations without the need for 
physical experiments. Consistent with research [10], 
Machine Learning can be used to develop predictive 
models that assist students in simulating various 
scenarios in thermodynamic systems. Through these 
simulations, students can explore the effects of 
parameter changes in real-time without conducting 
laboratory experiments. Another study [11] 
highlights that the combination of EDA and Machine 
Learning provides significant benefits in data-driven 
learning, particularly in engineering disciplines. The 
integration of these two methods not only accelerates 
students' understanding of complex concepts but 
also promotes interactivity and active participation 
in the learning process. With the help of EDA, 
students can visually analyze data, while Machine 
Learning enables them to predict and test theories 
under various conditions practically. 

Based on previous studies, the application 
of EDA and Machine Learning has been proven to 
not only enhance students' understanding but also 
transform monotonous learning into a more 
interactive and dynamic process, aligned with 
current technological advancements. This research 
aims to develop a visualization-based learning 
model utilizing students' experimental data in 
thermodynamics education. Through this approach, 
it is expected that students' understanding of abstract 
thermodynamics concepts will improve through 
more concrete and easily comprehensible visual 
illustrations. 
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2. RESEARCH METHODS 
 
The approach used in this research is a 

quantitative and experimental approach [8], [12], 
aimed at developing and testing a data visualization-
based learning model to enhance students' 
understanding of thermodynamics concepts. This 
approach involves the collection of students’ 
experimental data, the application of Exploratory 
Data Analysis (EDA) techniques for data 
visualization, and the use of Machine Learning to 
simulate various variable-change scenarios. This 
enables students to comprehend how these 
parameters influence thermodynamic systems. The 
final stage involves evaluating the model through 
internal testing and expert assessment to ensure the 
accuracy, visualization quality, learning relevance, 
and ease of use of the model. 
1. Collection of Students’ Experimental Data 

The data used in this research comes from 
laboratory thermodynamics experiments conducted 
by students. Experimental data was collected from 
laboratory practices and independent tests carried 
out by students as part of thermodynamics learning 
from 2022 to 2024. This data covers various topics 
in thermodynamics, such as steam power plants, 
internal combustion engines, wind turbines, and 
crank mechanisms. This stage also includes data 
preprocessing aimed at cleaning anomalies and 
incomplete data to facilitate further analysis using 
EDA and machine learning [13]. 

 
2. EDA Visualization Design 

The design of the visualization system based on 
Exploratory Data Analysis (EDA) aims to make it 
easier for students to understand experimental data 
more intuitively through interactive graphics [14]. 
This visualization includes several main features, 
such as Automated Visualization (Sweetviz), which 
automatically generates a comprehensive visual 
report from the data, enabling students to quickly see 
summaries and important insights. The 2D 
Visualization feature is used to display relationships 
between variables in a simpler manner, while 3D 
Visualization allows for data exploration with richer 
and more interactive visual depth, especially for 
datasets with more than two dimensions [15]. In 
addition, this visualization system is also equipped 
with correlation analysis using a correlation 
heatmap, which helps students understand 
relationships between variables through the visual 
representation of correlations. This feature enables 
the identification of significantly related variables in 
thermodynamic processes. The correlation heatmap 

uses the Pearson correlation equation, which can be 
calculated using the following formula: 

r୶୷ =
∑ ୶୷

(୬ିଵ)ୱ౮.௦
                                        (2) 

where r_xy represents the Pearson correlation 
coefficient, Σxy denotes the sum of the products of x 
and y, n indicates the sample size, x stands for the 
independent variable, y represents the depen-dent 
variable, and S signifies the standard deviation [16]. 
The correlation coefficient ranges from -1 to 1. A 
value of -1 indicates a strong negative correlation 
between the two variables, a value of 0 indicates no 
correlation, and a value of 1 indicates a strong 
positive correlation. 

By combining these various types of 
visualizations, students can explore data 
independently and test hypotheses more effectively, 
ultimately improving their understanding of abstract 
concepts in thermodynamics. This integration of 
dynamic visualizations provides an interactive 
learning experience, where students can observe the 
impact of each variable change in real-time, making 
previously abstract concepts more concrete and 
easier to understand. 
 
3. Machine Learning Implementation 

Machine Learning is utilized to build predictive 
models based on experimental data. These models 
are used to simulate various scenarios of variable 
changes, allowing students to understand how these 
parameters affect thermodynamic systems. The 
machine learning models in this study were 
developed using the PyCaret library. This library 
functions as an automation tool that enables users to 
quickly and easily build, train, and evaluate Machine 
Learning models without requiring deep knowledge 
of algorithms or complex programming [17], [18]. 
Using PyCaret, users can perform data 
preprocessing, select the best model from various 
available algorithms, and optimize the model 
through parameter tuning [19]. PyCaret is highly 
useful for predictive modeling in the context of data-
driven education and research. The data used for 
training and testing the models is divided into two 
parts: 80% training data and 20% testing data. Each 
machine learning model is validated using cross-
validation. This technique allows the training data to 
be divided into multiple subsets or folds, and 
iterations are performed on each subset, where one 
subset is used as testing data while the others serve 
as training data. The evaluation metrics used in this 
study consist of [20], [21]: 
1. Mean absolute error (MAE) 

Measures the average absolute error between 
predicted values and actual values. The smaller 
the MAE, the better the model's performance. 
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    𝑀𝐴𝐸 =
ଵ


∑ (𝑦𝑖 − 𝑦𝚤ෝ )

ୀଵ                                  (2) 

2. Mean Squared Error (MSE) 
Measures the average squared difference 
between predicted values and actual target values 
in a dataset. 

     𝑀𝑆𝐸 =
ଵ


∑ (𝑦𝑖 − 𝑦𝚤ෝ )ଶ

ୀଵ                                (3) 

 
3. Root Mean Squared Error (RMSE) 

RMSE is the square root of MSE, used to 
interpret errors in the same units as the data. 

𝑀𝑆𝐸 = ට
ଵ


∑ (𝑦𝑖 − 𝑦𝚤ෝ )ଶ

ୀଵ                                 (4) 

4. 𝑅ଶ  
The coefficient of determination measures how 
well the predictor variables explain the variance 
in the actual data. Values close to 1 indicate a 
better model. 

 
 

𝑅ଶ = 1 −  
∑ (௬ି௬పෞ)మ

సభ

∑ (௬ି௬పതതത)మ
సభ

                              (5)                    

          
5. Root Mean Squared Logarithmic Error (RMSLE) 

This metric is used to measure the error between 
predicted values and actual values in regression 
problems. 

 

𝑀𝑆𝐸 = ට
ଵ


∑ (log (1 + 𝑦𝑖) − log (1 + 𝑦𝚤ෝ ))ଶ

ୀଵ  (6) 

 
6. Mean Absolute Percentage Error (MAPE) 

This metric is useful for measuring absolute error 
as a percentage, making it suitable for evaluating 
relative error. 

 

𝑀𝐴𝑃𝐸 =
ଵ


∑ ቚ

௬ି௬ෞ

௬
ቚ

ୀଵ                              (7) 

 
Where 𝑛 is the total number of data points, 𝑦𝑖 is the 
actual value for the i-th data point, and 𝑦𝚤ෝ  is the 
predicted value for the i-th data point. 𝑦ො represents 
the mean of all actual values. log (1 + 𝑦𝑖) denotes 
the logarithm of the actual value incremented by 1, 
and log (1 + 𝑦𝚤ෝ ) denotes the logarithm of the 
predicted value incremented by 1. 
4. System Testing and Validation 

The visualization-based learning model for 
thermodynamics education will be evaluated 
through a series of tests to ensure its 
effectiveness. This evaluation involves two main 
aspects [12], [22], [23]: 
1. Internal Testing 

This testing aims to ensure that all functions 
and components within the model work as 
expected. Each feature, including data 

input, visualization, and prediction, will be 
thoroughly tested to verify that the system 
operates smoothly and without errors. This 
process also helps identify areas that may 
require further refinement to make the 
model more effective and user-friendly. 

2. Expert Assessment 
After completing internal testing, the model 
will be evaluated by experts in the field of 
thermodynamics. This assessment will 
cover several key aspects, including the 
accuracy of the information displayed, the 
quality of the visualizations, the alignment 
of the model with educational objectives, 
and its ease of use for students. The 
evaluation will be conducted using a Likert 
scale, enabling experts to objectively rate 
each aspect and provide a comprehensive 
overview of the model's performance and 
quality. 
 

3. RESULTS AND DISCUSSION 

In project-based thermodynamics learning, the 
testing of thermodynamic simulation tools such as 
steam power plants, internal combustion engines, 
wind turbines, and crank mechanisms is often 
conducted. However, so far, this test data has only 
been used to fulfill assignments given by lecturers. 
In fact, this data could be leveraged for more 
interactive learning. A study [24] shows that 
learning platforms combining real-time data from 
laboratories with visualization tools can create a 
more dynamic and relevant learning experience. In 
the digital era, data has become a critical element in 
decision-making and analysis across various fields. 
According to study [25], data serves as an interactive 
medium that helps students visualize experimental 
results. Modern visualization technologies enable 
students to better understand complex patterns and 
parameter relationships in thermodynamics. 
Research [26] found that the use of interactive 
visualization software in thermodynamics courses 
enhances students' analytical abilities, particularly in 
understanding the Rankine cycle and steam turbine 
efficiency. Additionally, study [27] demonstrates 
that data-driven simulations help students grasp 
isentropic and isobaric processes more effectively. 
Therefore, integrating data and visualization not 
only strengthens thermodynamics learning but also 
prepares students for challenges in the workforce, 
which increasingly emphasizes technology and data. 

1. Data Collection 
The data used in this study consists of various 
tests conducted on thermodynamic teaching 
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aids by Mechanical Engineering Education 
students at Universitas Negeri Padang. The tests 
include experiments on steam power plants, 
internal combustion engines, wind turbines, and 
crank mechanisms. During thermodynamics 
learning, students were divided into small 
groups of 4 to 5 members. Each group was 
assigned to observe and collect data from 
various teaching aids, such as: 
a. Internal Combustion Engine Performance 

Dataset 
In the internal combustion engine tests, 

students were trained to understand the concept 
of thermal efficiency, the impact of fuel 

consumption on performance, and strategies to 
improve energy efficiency. This also helped 
them grasp real-world applications of 
thermodynamic principles in the design and 
operation of combustion engines. Table 1 
presents the statistics from the internal 
combustion engine performance tests collected 
from the practical experiments conducted by 
Mechanical Engineering Education students at 
Universitas Negeri Padang between 2022 and 
2024. After data cleaning, the dataset comprises 
157 samples with seven input variables and one 
output variable. 

 
 
 

Table 1. Internal Combustion Engine Performance Dataset 
Parameter Variable Min Max Mean 

Engine Speed (rpm) Input 2000 3500 2785.701 

Fuel Volume (cc) Input 7 15 11.701 

Fuel Mass (gram) Input 5.25 11.25 9.025 
Manometer Reading (H) (m) Input 2.5 10 5.285 
Fuel Mass Flow Rate (Kg/s) Input 0.00052 0.00067 0.00061 
Specific Fuel Consumption (SFC) Input 0.0024 0.0076 0.0047 

Combustion Heat Energy (KJ/kg) Input 177409.5 369603 286801.896 

Thermal Efficiency (%) Output 3.25 4.16 3.627 

 

b. Savonius Wind Turbine Testing Dataset 
This testing aims to provide students with a 

deep understanding of applying thermodynamic 
principles in renewable energy systems, 
particularly through the utilization of wind 
energy. Through this experiment, students learn 
about converting wind kinetic energy into 
mechanical energy and evaluating the 
performance efficiency of Savonius wind 
turbines. Parameters such as wind speed, turbine 
rotation, and braking force are used to measure 
the system's performance. In addition to helping 
students understand energy efficiency, this test 

also prepares them to face challenges in 
developing renewable energy technologies, 
such as designing more efficient and 
environmentally friendly wind turbines. During 
data collection, 112 samples were initially 
gathered, but after data cleaning, 75 valid 
samples remained. This dataset includes three 
main input variables and one output variable, as 
shown in Table 2. Students learn the importance 
of data quality through cleaning and analysis 
processes, as well as how to use valid data to 
model and visualize turbine performance 
accurately. 

Table 2. Savonius Wind Turbine Dataset 
Parameter Variable Min Max Mean 

Wind Speed (V) (m/s) Input 1.8 6.5 4.03333 

Turbine Rotation (n) (rpm) Input 675.7 1090.5 884.525 

Braking Force (F) (N) Input 0.2 3 1.525 

Velocity Ratio (ℷ) Output 1.45 3.24 2.05833 
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c. Crank Mechanism Dataset 
The crank mechanism testing aims to measure 

the efficiency and accuracy of converting rotational 
motion into linear motion. This test also helps 
students understand the factors that influence the 
performance of the mechanism, such as friction and 
the discrepancies between ideal and actual 
conditions. The crank mechanism plays a crucial 
role in internal combustion engines and pumps, 
directly related to fundamental concepts in 
thermodynamics and fluid mechanics. Students gain 
insights into how crank motion drives pistons, 
forming the basis for understanding thermodynamic 
cycles, such as the Otto and Diesel cycles, used in 
internal combustion engines. Furthermore, this 

testing allows students to observe how friction and 
other factors reduce engine efficiency and how to 
analyze and mitigate these effects in real-world 
systems. The dataset used for this testing initially 
consisted of 98 samples, but after data cleaning, 77 
valid samples remained. It includes seven input 
variables, such as crank angle, theoretical and actual 
piston stroke, piston mass, actual torque, and ideal 
torque. By utilizing this dataset, students can 
perform in-depth analyses of friction losses and 
understand the differences between theory and 
practice, which are invaluable for designing more 
efficient machines. 
 

Table 3. Crank Mechanism Dataset 
Parameter Variable Min Max Mean 

Crank Angle (θ) Input 0 180 90 

Practical Piston Stroke (mm) Input 0.0005 0.07 0.03732 

Theoretical Piston Stroke (mm) Input 0.105 0.245 0.17453 

Error (%) Input 99 99.9 99.6526 

Mass (m) Kg (10^-3) Input 5 370 212.316 

Actual Torque (Ta) Input 0.01 0.58 0.33368 

Ideal Torque (Ti) Input 0 112.01 58.1437 

Friction Loss (%) Output 93 100 98.2105 

Friction Loss (%) Output 93 100 98.2105 
 

d. Steam Power Plant Dataset 
The data was collected from previous student 
experiments and simulation assignments related 
to steam turbine trainers. The initial dataset 
consisted of 312 samples with 9 variables, 
including 8 input variables and 1 output 
variable, as listed in Table 4. After data 
cleaning, the number of samples was reduced to 
300 due to missing values, duplicates, and 

significant scale discrepancies. Additionally, 
data on energy flow in each component of the 
steam power plant, such as the boiler, turbine, 
condenser, and generator, was also collected. 
This data cleaning process is essential to ensure 
reliable analysis and modeling. 
 

 

Tabel 4. Steam Power Plant Dataset 
Parameter Variabel Min Max Mean 

Steam pressure inside the 
boiler (bar) 

Input 3.44 4.36 3.9 

Boiler steam temperature (°C) Input 141.37 151.31 147.62 

Fuel consumption (L/h) Input 50 51 50 

Turbine RPM Input 1247.77 1285.164 1260.44 
Inlet turbine temperature (°C) Input 109 123 113 

Outlet turbine temperature (°C) Input 96 106 100 

Inlet turbine pressure (bar) Input 2.79 3.58 2.72 

Outlet turbine pressure (bar) Input 0.05 1 0.4 

Generator Output (Watt) Output 2.22 3.41 2.73 
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2. EDA Visualization Design 
Exploratory Data Analysis (EDA) is a data 

analysis technique used to explore and visualize data 
to make it easier to understand. EDA helps identify 
patterns, trends, and relationships in data that may 
not be apparent through traditional analysis. To 
maximize students' learning experience in 
understanding thermodynamic concepts, this EDA-
based visualization system is equipped with key 
features systematically designed to enhance 
interactivity and student engagement in the learning 
process. Each feature plays a strategic role, both in 
experimental data storage and in visually presenting 
the data. 

1. Student Experimental Data Storage Feature 
In the field of science and engineering 
education, the ability to effectively store, 
access, and analyze experimental data has 
become a key aspect of enhancing students' 
understanding and engagement. Numerous 
previous studies have shown that effective 
data management plays a crucial role in 
enriching the learning process and 
facilitating the exploration of theoretical 

concepts through empirical data [28], [29]. 
In thermodynamics education, structured 
data storage from various experiments, such 
as tests on steam power plants, internal 
combustion engines, wind turbines, and 
crank mechanisms, provides students with 
continuous access to information that can be 
used for further analysis, including model 
development and comparison of results 
across practical sessions. Consistent with 
prior research [30],  effective data storage 
systems encourage students to engage in 
data-driven learning, enabling them to 
revisit historical data and identify relevant 
patterns or trends in a scientific context. 
Easy access to historical data helps students 
understand the variability of experimental 
results and allows them to evaluate and 
compare outcomes under different testing 
conditions. An example of the student 
experimental data storage feature is shown in 
Figure 1.  
 

 
Figure 1: Student Experimental Data Storage Database 

 
The database is equipped with CRUD (Create, 

Read, Update, Delete) functionality, built using the 
NoSQL database framework Pymongo, allowing 
students to efficiently store, access, and manage 
experimental data from practical sessions. This 
feature provides flexibility in storing data derived 
from various experimental apparatus, such as steam 
power plants, internal combustion engines, wind 

turbines, and crank mechanisms. With CRUD 
capabilities, experimental data can be stored in a 
structured format, enabling students to retrieve data 
as needed. This CRUD-based database enhances the 
quality of thermodynamics learning by empowering 
students to independently manage and organize 
experimental data. Students are not only presented 
with data as a final outcome but are also trained to 
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appreciate the importance of structured data 
management. By accessing historical data, students 
can compare results across testing periods, identify 
anomalies, and observe long-term trends in 
experimental data. This fosters a deeper 
understanding of the variability and complexity of 
real-world systems while improving their analytical 
and data management skills. 
2. 2D Visualization Feature 

The 2D visualization feature in this study was 
developed using Pygwalker, an interactive Python-
based visualization library. One of the main 
capabilities of Pygwalker is its ability to 

automatically generate visualizations based on the 
structure of the provided data. Students only need to 
select the variables they wish to visualize, and 
Pygwalker instantly generates relevant graphs. This 
feature saves time and effort, allowing students to 
focus on data analysis without worrying about the 
technicalities of graph creation. Additionally, the 
tool offers options to customize visualization 
elements, such as color, opacity, and plot type, 
making it easy to adjust graphs to meet specific 
analysis needs. The interface for the 2D visualization 
feature in the EDA system can be seen in Figure 2. 

 
Figure 2: 2D Visualization Using Pygwalker 

 
From Figure 3, it can be observed that the 

Pygwalker feature supports direct interaction with 
data through drag-and-drop functionality, filters, and 
various variable setting options. Students can easily 
change axis variables, filter data based on specific 
conditions, and add various visual elements to view 
data from different perspectives. For instance, in 
thermodynamics studies, students can explore how 
input variables like pressure and temperature affect 
output variables such as thermal efficiency with just 
a few clicks. This interactive feature enables deeper 
exploration of data, allowing students not only to 
view the final results but also to understand the 
processes within the data. In the digital age and data-
driven learning, visualization technology plays a 
critical role in helping students better understand 
data. Interactive visualizations allow them to 
identify patterns and distributions that might be 
difficult to detect using traditional methods, making 
abstract concepts easier to grasp. In line with 
research [31], interactive visualization tools have 
been shown to support students in drawing more 
accurate conclusions, as they can explore data from 

various angles and variables to meet their specific 
analysis needs. These findings indicate that 
visualization methods can be utilized as tools to aid 
in understanding complex concepts, particularly in 
the field of thermodynamics. 

3. 3D Visualization with Contour and Surface 
Area Diagrams 

In thermodynamics education, 3D visualization 
plays a crucial role in providing a deeper 
understanding of complex physical phenomena. 
Representations in the form of contour diagrams and 
surface area plots allow students to observe variable 
interactions in three-dimensional space, offering a 
richer perspective compared to 2D graphs. These 
visualizations are particularly useful for explaining 
concepts such as temperature distribution, pressure 
variations, or other variables affecting 
thermodynamic systems. Contour diagrams help 
students visually understand heat transfer and 
pressure differences, which are critical elements in 
thermodynamics. These representations enable them 
to see how variables change spatially, identify 
relevant patterns, and conduct a deeper analysis of 
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the physical phenomena at play. On the other hand, 
3D surface area plots provide an even richer 
representation by showcasing the relationships 
between three variables simultaneously. This type of 
visualization is especially beneficial when students 
aim to comprehend the complex interactions 
between variables, such as how pressure and 
temperature jointly affect the efficiency of a thermal 
system. In a surface area plot, data is mapped onto a 
three-dimensional surface, where each point on the 
surface represents a combination of values for three 
different variables. For example, in a crank 

mechanism experiment, students can use a surface 
area plot to observe how changes in crank angle and 
mass influence the generated torque. This approach 
allows students to identify areas on the graph that 
indicate optimal results. Surface area plots provide a 
comprehensive view of interdependent variables, 
helping students understand how changes in one 
variable affect the overall outcome of the system. 
The display of the 3D visualization feature 
integrated into the EDA system can be seen in Figure 
3. 

 
Figure 3: 3D Visualization 

 
Recent studies have shown that 3D visualization 

significantly enhances students' understanding of 
complex concepts in science and engineering 
education, including thermodynamics. 3D 
visualization allows students to explore variable 
relationships in depth and helps them grasp 
phenomena that are challenging to explain using 
only 2D graphs or theoretical explanations. 
According to study [32], interactive 3D 
representations help students visualize abstract 
concepts and improve their understanding of 
parameter interactions within a thermal system. 
Study [33] on the benefits of 3D visualization in 
fostering active learning highlights how students 
actively engage with data and explore interrelated 
variables. The study found that when students 
manipulate 3D visualizations, they not only find it 
easier to understand the data but also show 
improvements in analytical skills and the ability to 
draw more critical conclusions from experimental 

data. With 3D representations, thermodynamics 
students can quickly identify how changes in 
parameters such as temperature, pressure, or crank 
angle affect the overall system performance. This 
aligns with the increasingly emphasized data-driven 
learning approach in engineering education, where 
students are encouraged to view processes 
holistically and develop a deeper understanding 
through detailed visual exploration. 
4. Correlation Analysis Using Heatmap 

A correlation heatmap is a visual tool used to 
display relationships or correlations between various 
variables in a dataset. In thermodynamics research, 
correlation heatmaps play a crucial role in helping 
students understand the interconnections between 
variables that may influence the performance or 
outcomes of a system. With a heatmap, students can 
visually identify which variables are significantly 
correlated, providing deeper insights into how 
thermodynamic systems function and how these 
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variables interact. In a correlation heatmap, each cell 
represents the correlation value between two 
variables, typically illustrated with a color scale to 
indicate the strength and direction of the 
relationship, as shown in Figure 4. Strong positive 

correlations are displayed in yellow, while strong 
negative correlations are visualized in purple. This 
allows students to quickly identify which variables 
have strong correlations, whether positive or 
negative, with others. 

 
Figure 4: Visualization of Correlation Analysis Using Heatmap 

 
Correlation heatmaps also serve as a tool for 

identifying key variables that may require further 
attention in thermodynamic analysis. Variables 
strongly correlated with output variables or other 
important system variables can become the focus of 
deeper analysis. Students can use this information to 
narrow their analysis to the most relevant variables, 
saving time and effort in understanding the overall 
system. In experiments involving crank 
mechanisms, for instance, a correlation heatmap can 
reveal relationships between crank angle, piston 
mass, and generated torque. If students observe a 
strong correlation between crank angle and actual 
torque, they can focus on those parameters to 
optimize the mechanism’s performance. Conversely, 
if a variable shows no significant correlation with 
others, students may choose to exclude it from 
further analysis, allowing them to focus on variables 
with greater impact. Using a correlation heatmap 
provides students with a highly beneficial visual 
framework for analyzing and prioritizing variables 
in thermodynamics studies. By recognizing 
significant correlation patterns, students can direct 
their efforts toward key variables that most influence 
experimental outcomes or system design. This 
enhances their analytical skills, provides a more 
structured understanding, and prepares them for 

challenges in the workforce, where data analysis is 
increasingly emphasized. 
3. Machine Learning Design 

The Machine Learning approach used in this 
research leverages PyCaret, a Python-based library 
designed to simplify the process of modeling and 
evaluating Machine Learning. PyCaret enables users 
to automate various Machine Learning tasks, 
including model selection, training, evaluation, and 
optimization [17], [18]. In thermodynamics 
education, PyCaret assists students in conducting 
faster and more accurate analysis and predictions 
without requiring a deep understanding of the 
technical details of Machine Learning algorithms. 
Thermodynamic data collected in experiments often 
involve multiple variables with complex 
relationships, such as system efficiency. To handle 
such data, PyCaret offers a variety of Machine 
Learning algorithms that can be selected based on 
the analysis needs. Model selection in PyCaret is 
performed by comparing several suitable algorithms 
and choosing the one with the best performance 
based on evaluation metrics. PyCaret makes it easy 
for students to objectively evaluate each model, 
providing insights into which model is most suitable 
for their data. This feature allows students to input 
their practical experiment data into designated input 
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columns based on the variables measured during the 
experiments. Using these input variables, students 
can predict target variables in thermodynamic 
phenomena, such as thermal efficiency in internal 
combustion engine performance tests, friction 

percentage in crank mechanisms, or generator output 
power in steam power plants. The implementation of 
the Machine Learning model using PyCaret is 
displayed in Figure 5. 

 

 
Figure 5: Machine Learning Model Interface Using PyCaret 

 
Through a simple interface, this feature allows 

students to quickly test various algorithms and 
compare prediction results with experimental 
outcomes. Students can evaluate multiple models in 
a short time, obtaining comprehensive results 
without the need for complex programming. This 
accelerates the learning process and enables students 
to gain insights from their data more efficiently. One 
example of thermal efficiency prediction results 
from internal combustion engine performance tests 
using PyCaret demonstrates that several regression 
models perform exceptionally well in predicting 
engine thermal efficiency. Based on evaluation 
metrics such as MAE, MSE, RMSE, R-squared, 

RMSLE, MAPE, and execution time (TT), Linear 
Regression (lr) emerged as the best model with an R-
squared value of 0.9779, indicating an almost perfect 
predictive capability in understanding the 
relationship between input and output variables. This 
model also showed low error rates (MAE: 0.0115), 
making it highly accurate for predicting thermal 
efficiency. Other models, such as Ridge and 
Bayesian Ridge (br), also performed well, while the 
Passive Aggressive Regressor (par) showed poor 
performance with a negative R-squared value of -
25.0259. The results of the Machine Learning 
models using PyCaret are summarized in Table 5. 
 

 
Table 5. Prediction Results of Thermal Efficiency Using Machine Learning Models 

Model MAE MSE RMSE R2 RMSLE MAPE 
TT 
(Sec) 

lr 0.0115 0.0002 0.0133 0.9779 0.0029 0.0031 0.282 

ridge 0.0164 0.0004 0.0193 0.9572 0.0042 0.0046 0.003 

br 0.0144 0.0003 0.0172 0.9499 0.0038 0.004 0.004 

lar 0.0168 0.0005 0.0204 0.877 0.0044 0.0046 0.003 

et 0.0295 0.0019 0.0379 0.8743 0.0079 0.0078 0.014 

rf 0.0319 0.0029 0.0414 0.8688 0.0087 0.0085 0.019 

ada 0.0296 0.0025 0.0394 0.8687 0.0082 0.0079 0.008 

en 0.0326 0.0016 0.0376 0.8622 0.0081 0.0089 0.003 

gbr 0.0315 0.0026 0.0396 0.8617 0.0083 0.0084 0.007 
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llar 0.0348 0.0018 0.0399 0.8552 0.0086 0.0095 0.003 

lasso 0.0348 0.0018 0.04 0.8551 0.0086 0.0095 0.003 

dt 0.0374 0.0039 0.0507 0.7459 0.0104 0.0099 0.003 

omp 0.0934 0.0141 0.1123 -0.129 0.0242 0.0255 0.003 

knn 0.093 0.0142 0.1106 -0.1718 0.0237 0.0252 0.005 

lightgbm 0.1137 0.0223 0.1372 -0.447 0.0293 0.0309 0.005 

dummy 0.1137 0.0223 0.1372 -0.447 0.0293 0.0309 0.003 

huber 0.217 0.1207 0.285 -7.3916 0.064 0.0591 0.004 

par 0.3972 0.3169 0.4899 -25.0259 0.1126 0.1062 0.003 
 
     With the predictive results from the Machine 
Learning models, students can gain deeper insights 
into how variables such as engine speed, fuel 
volume, and temperature influence the thermal 
efficiency of an internal combustion engine. In 
thermodynamics education, this understanding is 
crucial, as thermal efficiency is one of the key 
parameters in evaluating the performance of thermal 
systems. Accurate predictions from the models allow 
students to explore different scenarios, such as how 
increasing temperature or altering rotational speed 
would impact thermal efficiency. This engagement 
enhances the learning process as students can 
directly observe the relationships between 
thermodynamic parameters. The use of Machine 
Learning provides a more interactive learning 
experience, enabling students to make predictions 
based on real experimental data. Students can predict 
thermal efficiency for conditions that have not been 
tested in the laboratory, allowing them to explore 
scenarios without the need for time- and resource-
intensive physical experiments. This practical and 
efficient approach helps students understand the 
effects of input variable changes on output variables. 
Additionally, the experience of using Machine 
Learning prepares students for data-driven decision-
making in the professional world. They are not only 
taught thermodynamics theory but also how to apply 
it in data analysis and prediction using modern 
technology. This application of Machine Learning 
bridges the gap between theory and practice, making 
learning more relevant and contextual in the digital 
era. Overall, the Machine Learning approach using 
PyCaret helps students not only to interpret 
experimental results but also to perform effective 
predictive analyses. This enriches thermodynamics 
education by enabling students to combine technical 
knowledge with data analysis skills, ultimately 
providing them with a more comprehensive and 
profound understanding of the concepts they study.  
 
 

4. System Testing and Validation 
The evaluation of the thermodynamic 

visualization model was conducted in two main 
stages: internal testing and expert assessment, 
involving thermodynamics lecturers from 
Universitas Negeri Padang. Internal testing aimed to 
ensure that the visualization model functions as 
expected. During this phase, each feature of the 
model was tested to confirm smooth operations, 
including quick responsiveness to user inputs and 
seamless transitions between features. This 
evaluation also included testing the visualization 
loading times, which needed to remain within ideal 
limits to ensure users could access the model without 
difficulty. Based on the results, the model 
demonstrated stable performance and successfully 
integrated simulation data and experimental data 
from students with high accuracy. No technical 
disruptions or recurring issues were found that could 
hinder user experience. Next, the model was 
evaluated by experts using a Likert scale to measure 
various aspects, including the accuracy of the 
presented information, visualization quality, the 
relevance of the model to the learning process, and 
ease of use. The assessment was conducted by four 
lecturers experienced in teaching thermodynamics at 
Universitas Negeri Padang. The results of this 
evaluation are presented in Figure 6. 

 
Figure 6: Evaluation Results of the Visualization 

Model by Experts 
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Based on the evaluation results, the accuracy of 
information aspect received an average score of 4, 
classified as "Good," indicating that the visualization 
model effectively conveys thermodynamics 
concepts accurately. For the visualization quality 
aspect, experts gave an average score of 4.25, 
suggesting that the model presents high-quality 
visualizations, rated between "Good" and "Very 
Good." The relevance of the model to learning 
objectives scored an average of 3.75, slightly below 
"Good," showing that while the model aligns with 
educational goals, there is room for improvement to 
better meet learning needs. The ease of use aspect 
received a high average score of 4.5, indicating that 
the model is considered user-friendly with a 
responsive and intuitive user experience. Overall, 
the evaluation results reflect positive feedback from 
the experts, demonstrating that the model effectively 
delivers information and is easy to use. However, 
there are opportunities to enhance its relevance to 
learning objectives to better support students in 
understanding thermodynamics concepts. 
      This visualization-based learning model in 
thermodynamics aligns with current educational 
trends that heavily integrate digital technologies 
[34], [35], [36]. In an era where traditional 
approaches often fail to address the needs of 
interactive and practical learning, the visualization 
and data analysis-based learning model designed in 
this study offers a novel approach. By utilizing tools 
such as EDA visualizations, correlation heatmaps, 
and Machine Learning predictions through PyCaret, 
the model enables students to learn through hands-
on experience and in-depth analysis—an approach 
more suited to the digital generation's learning style. 
The study's findings indicate that a data-driven 
visualization model can enhance students' 
understanding of abstract thermodynamics concepts. 
Through interactive 2D and 3D visualizations, 
students can directly observe the relationships and 
interactions between variables in thermodynamic 
systems. With Machine Learning-based prediction 
features, students also have the opportunity to test 
hypothetical scenarios that are difficult to implement 
physically. They can simulate changes in certain 
parameters to observe their impact on target 
variables.This model positively impacts students' 
learning of thermodynamics. Instead of relying 
solely on theory or instructor-led instruction, 
students actively engage in the learning process 
through data exploration. They can use experimental 
data to make predictions about thermal efficiency in 
internal combustion engines or identify the most 
influential variables in steam power plant systems. 
This allows students to practice critical thinking, 

analyze data, and interpret results directly. By 
bridging the gap between theory and practice, this 
model equips students with the skills needed in a 
data-driven world, enabling them to better 
understand thermodynamic concepts while fostering 
analytical and problem-solving abilities essential for 
their future careers. 
 

5. CONCLUSION 
 
This study demonstrates that the visualization-

based learning model developed using students' 
experimental data in thermodynamics education is 
effective in enhancing understanding of abstract 
concepts. The model successfully visualizes 
complex thermodynamic phenomena by 
transforming practical data into easily 
comprehensible visual representations. Features 
such as data storage databases, 2D and 3D 
visualizations, correlation analysis with heatmaps, 
and predictions using machine learning significantly 
enrich the learning process. The visualization model 
helps students grasp relationships and interactions 
between variables in thermodynamic systems, which 
are often difficult to understand theoretically. These 
visualizations make abstract concepts more tangible, 
enabling students to connect theory with real-world 
phenomena in thermal systems and reinforcing their 
understanding through interactive, data-driven 
experiences. The evaluation of this model yielded 
positive results, with high ratings for information 
accuracy, visualization quality, and ease of use. 
Although there is room to improve the model's 
relevance in supporting more specific learning 
objectives, overall, it is considered effective and 
appropriate for the learning process. This study 
demonstrates that the integration of EDA and 
machine learning offers an innovative approach to 
science and engineering education, supporting a 
learning process that is more interactive, practical, 
and aligned with industry needs in the digital era. 
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