
 Journal of Theoretical and Applied Information Technology
15th January 2025. Vol.103. No.1

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

257

AN APPROACH FOR VULNERABILITY DETECTION IN
WEB APPLICATIONS USING GRAPH NEURAL NETWORKS

AND TRANSFORMERS

MOHAMMED YAHAYA TANKO 1, ABU BAKAR MD SULTAN 2, MOHD HAFEEZ OSMAN 3,

HAZURA ZULZALIL4
*Department of Software Engineering and Information System, Faculty of Computer Science and

Information Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Malaysia

E-mail: 1tymohammed45@gmail.com, 2abakar@upm.edu.my, 3hafeez@upm.edu.my,
4hazura@upm.edu.my

ABSTRACT

The increasing complexity of software systems and rising security concerns due to open-source package
vulnerabilities have made software vulnerability detection a critical priority. Traditional vulnerability
detection methods, including static, dynamic, and hybrid approaches, often struggle with high false-positive
rates and limited efficiency. Recently, graph-based neural networks (GNNs) and Transformer models have
shown potential in improving vulnerability detection accuracy by representing code as graphs that capture
syntax and semantics. This paper introduces a hybrid framework combining a Gated Graph Neural Network
(GGNN) and Transformer encoder to leverage multiple graph representations: Abstract Syntax Tree (AST),
Data Flow Graph (DFG), Control Flow Graph (CFG), and Code Property Graph (CPG). The GGNN extracts
graph-level features, while the Transformer enhances sequential context understanding within the graph-
encoded data. The model uses these capabilities to detect vulnerabilities in function-level code snippets.
Evaluation of our framework on the OWASP WebGoat dataset demonstrates the effectiveness of different
graph representations across five major vulnerability types: command injection, weak cryptography, path
traversal, SQL injection, and cross-site scripting. Experimental results show that the GGNN+CPG
configuration consistently yields high recall for cryptographic weaknesses, while GGNN+CFG excels in
detecting control-based vulnerabilities, such as command injections. The integration of GGNN and
Transformer models leads to notable enhancements in accuracy, precision, recall, and F1-score across all
vulnerability types, with each graph representation contributing unique insights into code structures and
vulnerability patterns. These findings highlight the potential of hybrid GNN-Transformer frameworks in
enhancing code vulnerability detection for cybersecurity applications.

Keywords: Vulnerability Detection; Graph Neural Networks; Software Security, Web Application Security,
Transformers In Cybersecurity

1. INTRODUCTION

Software vulnerabilities are weaknesses
within software systems that malicious actors can
exploit to undermine data integrity, confidentiality,
and availability. Manually detecting these
vulnerabilities in source code is a labor-intensive and
error-prone task due to the complexity of modern
software systems and their reliance on diverse code
structures and numerous third-party libraries.

As the number of identified software
vulnerabilities grows, detecting these flaws has
become a critical challenge for the software industry
and cybersecurity field [1].

Recent studies have shown that attackers
can leverage open-source package managers to
spread malware, raising significant security risks for
both developers and users, along with substantial
financial and social repercussions [1].

A key preventive measure involves
scanning source code with vulnerability detection
tools before releasing a program. In practice,
developers and security professionals mainly rely on
code analysis or testing techniques to detect and fix
bugs. These methods fall into three categories: static,
dynamic, and hybrid. Static techniques, such as rule-
based and symbolic analysis, analyze code without
executing it. These systems frequently produce a
significant number of false positives, leaving

 Journal of Theoretical and Applied Information Technology
15th January 2025. Vol.103. No.1

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

258

engineers with the arduous task of verifying false
alarms. Fuzz testing is the most often used dynamic
approach right now. While effective at detecting
zero-day vulnerabilities, it has limitations in
analytical efficiency and code coverage. Hybrid
techniques aim to combine static and dynamic
analysis to offset their respective drawbacks, yet they
remain impractical for widespread use [1], [2].

To overcome the limitations of traditional
code analysis methods, significant advancements
have been made using machine learning (ML) and
deep learning (DL) techniques to identify code
vulnerabilities. However, conventional machine
learning approaches still struggle to address the full
range of vulnerabilities effectively [1].

To address these limitations, numerous
deep learning approaches for code vulnerability
detection have emerged, aiming to develop robust
neural network models that thoroughly capture code
semantics and recognize vulnerability patterns [1].

The primary objectives of this research are
to develop a hybrid model that leverages Gated
Graph Convolutional Networks (GGCNs) to process
structural relationships within code graphs and
Transformers to capture contextual dependencies in
source code, enhancing vulnerability detection. This
model aims to accurately identify security
vulnerabilities, particularly SQL injections, with
high precision and recall while minimizing false
positives through the integration of graph-based
learning and contextual pattern recognition.

2. RELATED WORKS

The adoption of graph-based neural
networks for vulnerability detection in code analysis
has accelerated over recent years, leveraging various
advanced architectures and methodologies to capture
syntactic and semantic program information. Wang
et al. [3] transform program structures into directed
graphs, where statements, identifiers, and values are
nodes with relational edges. Graphs are represented
in matrices and processed by Graph Neural
Networks (GNN) for embedding and prediction,
emphasizing node connectivity. Similarly, Lin et al.
[4] introduce VulEye, which uses Sub-Dependence
Graphs (SDG) and Doc2Vec embeddings to enhance
PHP code vulnerability detection, utilizing
multilayer perceptron (MLP) for classification.

Several works emphasize deep semantic
analysis combined with advanced network
architectures. Guo et al. [5] use a gated GNN with
multi-head attention to capture semantic and
structural code properties, integrating a BILSTM for

contextual information and taint analysis. Cao et al.
[6] apply Bidirectional GNNs (BGNN) and
convolutional neural networks to control flow graphs
(CFGs) for feature extraction, while Wang et al. [7]
in DeepVulSeeker employ a multi-stage approach
that integrates Data Flow Graphs (DFG), Control
Flow Graphs (CFG), and a self-attention encoder for
vulnerability prediction. Zhou et al. [8] further
elaborate this approach with a composite graph
embedding layer, gated recurrent layers, and a
convolutional module for enhanced representation
learning.

Tensor-based and meta-path approaches
further augment vulnerability analysis. Fan et al. [9]
propose CircleGGNN, a tensor-based GNN
extension that combines multiple graphs, while Wen
et al. [10] in AMPLE focus on edge-aware graph
representations, enhancing node features through
kernel-scaled convolutions. Similarly, Li et al. [11]
utilize the IVDetect model, which combines graph-
based vulnerability detection with interpretative
graph-based modules for detailed code vulnerability
scores.

Simplifying and refining graph structures
has also proven effective. Zhuang et al. [12]
introduce a streamlined 3GNN model that classifies
source code based on vectorized graph
representations, while Cheng et al. [13] in
DeepWukong leverage interprocedural control and
data-dependence graphs with forward and backward
traversal for precise vulnerability identification.
Wen et al. [14] propose a meta-path hierarchical
attentional graph neural network to efficiently
process heterogeneous graph relations.

Machine learning models are also
increasingly adapted to leverage pre-trained code
embeddings and specialized slicing methods. Suneja
et al. [15] utilize code property graphs (CPG)
encoded with Word2Vec for bug signature learning.
Li et al. [16] in SySeVR employ semantic and
syntactic vulnerability components to improve
vulnerability vector encoding. Other works such as
VulDeePecker [17] and VulSniper [18] use BLSTM
and attention models on code property graphs to
further address vulnerabilities, illustrating a trend
towards integrating linguistic embedding models
with graph-based frameworks.

Collectively, these studies highlight the
evolution from basic code embeddings to
sophisticated multi-layered GNNs, incorporating
techniques such as meta-path construction,
bidirectional learning, and tensor-based
enhancements. The continued advancements in

 Journal of Theoretical and Applied Information Technology
15th January 2025. Vol.103. No.1

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

259

model architecture and preprocessing methods
underscore the field’s commitment to refining
vulnerability detection through increasingly detailed
and adaptable graph representations.

3. METHODOLOGY

3.1 Problem Definition
The vulnerability detection task is

formulated as a binary classification problem. Given
a code snippet represented by a CPG, the model

classifies it as either containing a vulnerability (e.g.,
SQL injection) or being secure.

Figure 1: Proposed Framework

3.2 Framework

Figure 1 illustrates our GNN-based
approach, which consists of three main components:
graph representation and normalization, graph-level
feature extraction, and vulnerability prediction. This
approach currently supports function-level
vulnerability detection. For each program input, we
represent the entire class using four types of graphs:
Abstract Syntax Tree (AST), Data Flow Graph
(DFG), Control Flow Graph (CFG), and Code
Property Graph (CPG), which integrates the first
three. We use Joern, a powerful code analysis
platform to generate these graphs. Afterward, we
encode the nodes within the graph, creating the
foundation for the learning phase that follows. We

then apply a GNN-based learning approach to train
a model for vulnerability prediction using this
vectorized data.

The proposed model consists of the
following components:

(a) Gated Graph Neural Network (GGNN):
This module is used to process graph-based
representations of program code, where
nodes represent program elements, and
edges capture relationships between them.
The GGNN outputs an enhanced feature
representation of each node in the graph,
incorporating information from its
neighborhood.

(b) Transformer Encoder: A multi-layer
Transformer encoder is employed to

 Journal of Theoretical and Applied Information Technology
15th January 2025. Vol.103. No.1

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

260

process sequential data extracted from the
graph representation. The encoder uses
self-attention mechanisms to model long-
range dependencies between nodes in the
graph.

(c) Convolutional Neural Network: This
module combines the graph-based features
from the GGNN and the sequential features
from the Transformer encoder. Two 1D
convolutional layers with batch
normalization and max-pooling operations
extract hierarchical patterns from the data.
Fully connected layers further process the
features, with dropout applied to prevent
overfitting.

(d) Final Classification Layer: A sigmoid
activation function is used at the output to
predict the presence or absence of a
vulnerability in the input.

3.2.1 Graph Representation and
Normalization
We examine four graph representations:

Abstract Syntax Tree (AST), Data Flow Graph
(DFG), Control Flow Graph (CFG), and Code
Property Graph (CPG). The AST provides a
hierarchical view of the program’s syntax, while the
DFG tracks variable declarations and usage
throughout the code. The CFG captures the
program’s data and control flows. The CPG
integrates AST, DFG, CFG, and Call Graph (CG)
elements into one comprehensive graph.

3.2.2 Graph Level Feature Extraction

To support the subsequent model training
with the GNN learning approach, an initial encoding
of each node in the graphs is required. There are
various approaches for such encoding. In this study,
we use the Word2Vec [2]. Word2Vec employs the
standard word embedding technique to train the
model, utilizing node type sequences created by
traversing the graphs in a specified order.

3.2.3 Vulnerability Prediction
This study introduces a neural network

architecture integrating a Gated Graph Neural
Network (GGNN) with a Transformer-based
convolutional network to detect vulnerabilities in
web applications. The model leverages graph-based
data representations to capture complex
dependencies between program elements while
utilizing a convolutional architecture to extract
meaningful features for classification. To predict the
vulnerabilities within a class, we feed the graph

encoding of the class into the respective prediction
model for each vulnerability.

4. EXPERIMENTS
4.1 Dataset

The model was tested using the OWASP
WebGoat dataset [19], a recognized benchmark that
includes Java-based applications with labeled
vulnerabilities, such as SQL injection flaws. Version
1.1 of this dataset was chosen due to its greater
number of test cases compared to version 1.2. Five
of the top ten vulnerabilities from the OWASP
benchmark were chosen. The dataset was divided
into training (70%), validation (15%), and testing
(15%) subsets. Table 1 outlines the selected
vulnerabilities and the number of test cases
associated with each.

Table 1: Description of Dataset

Vulnerability
Area

Number
of Test
Cases

CWE
Number

Command Injection 2708 78
Weak Cryptography
Path Traversal
SQL Injection
XSS (Cross-Site Scripting)

1440
2630
3529
3449

327
22
89
79

4.2 Evaluation Metrics

To comprehensively evaluate our model’s
performance, we use commonly applied metrics:
Accuracy, Precision, Recall, and F1-score. These
metrics are calculated based on a confusion matrix
that contains True Positives (TP), False Positives
(FP), True Negatives (TN), and False Negatives
(FN).

Accuracy: The overall performance of the model in
correctly identifying vulnerable and non-vulnerable
code snippets. It is computed as follows:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (1)

Precision: The proportion of true positives among
all predicted positives, reflecting the model's
capability to minimize false positives. It is computed
as follows:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (2)

 Journal of Theoretical and Applied Information Technology
15th January 2025. Vol.103. No.1

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

261

Recall: The ratio of true positives to all actual
positives, measuring the model’s detection power. It
is computed as follows:

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (3)

F1-Score: The weighted average of precision and
recall, calculated as their harmonic mean. It is
determined by the following formula:

𝐹1 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (4)

In machine learning models, it is optimal to achieve
high values for both Precision and Recall. However,
these metrics often exhibit a trade-off, where
improving one can decrease the other. Furthermore,
Accuracy can be affected by an imbalanced sample
distribution. To overcome these issues, the F1-
measure was introduced [9].

Our goal is to reduce both false positive and false
negative rates in the model’s detection as much as
possible. To accomplish this, we focus on creating a
model with high precision and recall. Among the
four evaluation metrics, precision, recall, and F1-
score are the most crucial for evaluating the model's
performance.

4.3 Experimental Setup

Table 2 provides an overview of the hardware and
software environments used.

Table 2: Experimental Setup

Hardware CPU Intel Core i5
GPU V100
Memory 32 GB
Disk 2 TB

Software OS Windows 11
Python 3.9.18
Pandas 2.1.3
Pytorch 2.10
Scikit-learn 1.3.0
torch_geometric 2.4.0
joern 2.0.201

4.4 Result and Discussion
The results shown in tables 3, 4 and 5 reveal

insights into the model's performance when applied
to different vulnerability types using various graph
representations (AST, CFG, DFG, and CPG)
alongside a Gated Graph Neural Network (GGNN).
Each graph representation captures unique aspects of
the code's structure and behavior, impacting the

Table 3: Performance of Different Methods on CWE-78 and CWE-327

Table 4: Performance of Different Methods on CWE-22 and CWE-89

Method Accuracy Precision Recall F1-Measure

CWE-22 CWE-89 CWE-22 CWE-89 CWE-22 CWE-89 CWE-22 CWE-89
GGNN+AST 68.66% 66.40% 64.81% 50.00% 70.00% 50.40% 67.31% 66.67%
GGNN+CFG 75.28% 53.33% 73.56% 51.85% 75.28% 40.00% 73.56% 50.00%
GGNN+DFG 70.37% 72..22% 73.47% 70.41% 65.45% 69.00% 69.23% 69.70%
GGNN+CPG 67.74% 66.40% 100.0% 63.22% 35.19% 78.40% 52.05% 70.00%

Table 5: Performance of Different Methods on CWE-79

Method Accuracy
CWE-79

Precision
CWE-79

Recall
CWE-79

F1-Measure
CWE-79

GGNN+AST 76.67% 64.10% 60.00% 69.80%

Method Accuracy Precision Recall F1-Measure
CWE-78 CWE-327 CWE-78 CWE-327 CWE-78 CWE-327 CWE-78 CWE-327

GGNN+AST 60.80% 50.00% 63.37% 50.00% 51.20% 100.0% 56.64% 66.67%
GGNN+CFG 74.07% 50.00% 79.59% 50.00% 75.58% 100.0% 77.53% 66.67%
GGNN+DFG 69.91% 66.67% 69.39% 66.33% 66.10% 62.50% 67.71% 64.36%
GGNN+CPG 64.80% 50.00% 66.09% 50.00% 60.80% 100.0% 63.33% 66.67%

 Journal of Theoretical and Applied Information Technology
15th January 2025. Vol.103. No.1

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

262

GGNN+CFG 80.00% 61.32% 75.28% 73.56%
GGNN+DFG 78.42% 60.67% 90.00% 80.22%
GGNN+CPG 82.80% 74.40% 100.0% 85.32%

4.4.1 CWE-78 and CWE-327

For CWE-78 (Command Injection) and CWE-
327 (Broken Weak Cryptography), the GGNN with
CFG (Control Flow Graph) yielded the highest
accuracy for CWE-78 (74.07%) and matched other
models for CWE-327 (50.00%) as shown in Table 3
and Figure 2. CFG provided strong results in recall
and F1-measure for CWE-78, suggesting that control
flow structure is valuable for detecting Command
Injections, which often involve sequences of
sensitive operations.

 AST Performance: The Abstract Syntax
Tree (AST) representation, focusing on the
syntax of the code, achieved the lowest
accuracy and recall for CWE-78. However,
it performed notably well in CWE-327,
attaining 100% recall, which may indicate
that syntactic patterns alone can be highly
indicative for certain cryptographic
vulnerabilities.

 CFG and DFG: CFG’s control flow
capture appears advantageous for CWE-78,
likely due to the sequential and conditional
logic associated with command injections.
The DFG (Data Flow Graph) scored
moderately well across all metrics,
achieving balanced performance,
particularly for CWE-327, which involves
tracking data dependencies that are critical
in cryptographic operations.

 CPG: The Code Property Graph (CPG),
which combines AST, CFG, and DFG
elements, displayed a mixed performance,
suggesting that while it can capture
extensive information, this complexity may
not always benefit vulnerability detection
directly. Nevertheless, CPG’s ability to
reach 100% recall in CWE-327 indicates its
potential strength in detecting
cryptographic issues when high recall is
prioritized.

4.4.2 CWE-22 and CWE-89

For CWE-22 (Path Traversal) and CWE-89
(SQL Injection), GGNN with CFG again
demonstrated strong performance for CWE-22,
achieving 75.28% accuracy and a high F1-measure
(73.56%), suggesting that control flow is crucial in

path traversal vulnerability detection. In contrast, the
DFG representation achieved the highest accuracy
for CWE-89 (72.22%), pointing to the importance of
data flow in identifying SQL injections, where data
dependencies heavily influence vulnerability
manifestation.

 AST: GGNN combined with AST achieved
satisfactory results for CWE-22, with
68.66% accuracy, although it fell short for
CWE-89, possibly due to the limitations of
syntactic analysis alone in capturing
complex interactions of user input and
database operations, as required in SQL
injection detection.

 DFG: GGNN+DFG’s high performance
for CWE-89 demonstrates that the data
flow relationships are pivotal in detecting
SQL injection vulnerabilities.

 CPG: In CWE-22, CPG attained 100%
precision, though its recall was limited.
This discrepancy suggests that while CPG
is effective in identifying path traversal
vulnerabilities precisely, it may not cover
all instances exhaustively. In CWE-89,
CPG provided relatively balanced
performance, achieving a high F1-measure
of 70.00%.

 Journal of Theoretical and Applied Information Technology
15th January 2025. Vol.103. No.1

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

263

Figure 2: Accuracies Figure 3: Precision

4.4.3 CWE-79

For CWE-79 (Cross-Site Scripting), the
GGNN combined with CPG reached the highest
accuracy (82.80%), precision (74.40%), and F1-
measure (85.32%). This strong performance likely
stems from CPG’s comprehensive representation of
code elements, including data and control flow,
essential for capturing cross-site scripting
characteristics.

 AST: GGNN+AST performed
adequately for CWE-79, though it fell
short in precision (64.10%) and recall
(60.00%) compared to other methods.
AST may miss dynamic relationships in
code execution paths, which are often

crucial in detecting the injection points
of cross-site scripting vulnerabilities.

 CFG and DFG: CFG and DFG
achieved strong recall and balanced
precision, with CFG providing 80.00%
accuracy. The data dependencies
captured by DFG and the flow
sequences captured by CFG help trace
how untrusted data might reach client-
side scripts, explaining their
effectiveness for CWE-79 detection.

 Figure 4: Recall Figure 5: F-1 Measure

Figures 2, 3, 4, and 5 represent the charts
for the GGNN with AST, CFG, DFG, and CPG for

0
20

40

60

80

100

AST CFG DFG CPG

Accuracy

CWE-78 CWE-327 CWE-22

CWE-89 CWE-79

0

50

100

150

AST CFG DFG CPG

Recall

CWE-78 CWE-327 CWE-22

CWE-89 CWE-79

0
20
40
60
80

100

AST CFG DFG CPG

F1-Measure

CWE-78 CWE-327 CWE-22

CWE-89 CWE-79

0

50

100

150

AST CFG DFG CPG

Precision

CWE-78 CWE-327 CWE-22

CWE-89 CWE-79

 Journal of Theoretical and Applied Information Technology
15th January 2025. Vol.103. No.1

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

264

each metric, showing their relative strengths and
weaknesses across different vulnerabilities. The
accuracy of the model shows fluctuations across
various across vulnerability types as shown in figure
2, with CFG generally yielding high values for
CWE-78, CWE-22, and CWE-79, while DFG shows
a peak for CWE-89. CPG has a prominent accuracy
for CWE-79, whereas AST generally has moderate
accuracy across most vulnerabilities, except CWE-
327 where it performs lower. Figure 2 shows the
chart for precision values of the model which vary,
with CPG achieving a high value in CWE-22 due to
perfect identification, but with relatively low recall.
For CWE-79, CPG and DFG tend to be high. CFG
performs well in CWE-78 and CWE-22, while AST
shows moderate precision across all vulnerability
areas except CWE-327.

Figures 4 and 5 show the chats for the recall
and F1-measure of the model respectively. The
recall chart highlights CPG’s strength in CWE-327,
reaching 100% recall, while DFG and CFG show
generally balanced recall across other
vulnerabilities. AST tends to show lower recall for
CWE-78 and CWE-22 but performs adequately for
CWE-327. For CWE-89, DFG achieves high recall
due to effective data flow tracking. F1-measure lines
are similar to recall, with CPG reaching high F1
scores for CWE-79 and CWE-327. CFG and DFG
both achieve high F1 scores for CWE-78 and CWE-
89 respectively, reflecting their strengths in control
flow and data flow dependencies, while AST has
moderate F1-scores across most vulnerabilities but
drops for CWE-89 and CWE-79.

5. CONCLUSION AND FUTURE RESEARCH

This research presents a Gated Graph

Neural Network (GGNN) framework that utilizes
multi-graph representations (AST, DFG, CFG, and
CPG) for enhanced vulnerability detection in
software code, applied to five major vulnerabilities
in the OWASP WebGoat dataset. Our results
demonstrate that different graph structures capture
unique aspects of code vulnerabilities, allowing the
GGNN model to achieve notable performance
improvements. Specifically, CFG and DFG
representations are effective for identifying
vulnerabilities that rely on control and data flow
patterns, while CPG’s composite structure supports
high recall for cryptographic weaknesses and cross-
site scripting.

Despite these advancements, the study has
limitations. The model's performance is partially
constrained by the quality and quantity of available
vulnerability-labeled datasets, which impacts

generalization to new or less common
vulnerabilities. Additionally, certain
vulnerabilities—such as those requiring contextual
understanding beyond code structure (e.g., business
logic flaws)—may not be fully captured by the graph
representations used. The reliance on manual graph
normalization and node encoding introduces
potential inefficiencies and may limit scalability
across large codebases.

Future research can address these limitations
by exploring automated graph representation and
encoding techniques to reduce preprocessing time
and enhance model scalability. Additionally,
incorporating contextual information from software
documentation and runtime behaviors could enrich
vulnerability detection, particularly for logic-based or
dynamic vulnerabilities. Lastly, testing this
framework on more diverse datasets, including non-
Java applications, could further validate and refine its
effectiveness across different programming
environments.

ACKNOWLEDGMENT

This research was supported by the Faculty of
Information Technology and Computer Science,
Universiti Putra Malaysia.

REFERENCES:

[1] B. Wu and F. Zou, “Code Vulnerability

Detection Based on Deep Sequence and Graph
Models: A Survey,” Secur. Commun. Networks,
vol. 2022, 2022, doi: 10.1155/2022/1176898.

[2] G. Lin, S. Wen, Q. L. Han, J. Zhang, and Y.
Xiang, “Software Vulnerability Detection Using
Deep Neural Networks: A Survey,” Proc. IEEE,
vol. 108, no. 10, pp. 1825–1848, 2020, doi:
10.1109/JPROC.2020.2993293.

[3] H. Wang et al., “Combining Graph-Based
Learning with Automated Data Collection for
Code Vulnerability Detection,” IEEE Trans. Inf.
Forensics Secur., vol. 16, pp. 1943–1958, 2021,
doi: 10.1109/TIFS.2020.3044773.

[4] C. Lin, Y. Xu, Y. Fang, and Z. Liu, “VulEye: A
Novel Graph Neural Network Vulnerability
Detection Approach for PHP Application,”
Appl. Sci., vol. 13, no. 2, 2023, doi:
10.3390/app13020825.

[5] W. Guo, Y. Fang, C. Huang, H. Ou, C. Lin, and
Y. Guo, “HyVulDect: A hybrid semantic
vulnerability mining system based on graph
neural network,” Comput. Secur., vol. 121, p.
102823, 2022, doi: 10.1016/j.cose.2022.102823.

 Journal of Theoretical and Applied Information Technology
15th January 2025. Vol.103. No.1

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

265

[6] S. Cao, X. Sun, L. Bo, Y. Wei, and B. Li,
“BGNN4VD: Constructing Bidirectional Graph
Neural-Network for Vulnerability Detection,”
Inf. Softw. Technol., vol. 136, no. October 2020,
p. 106576, 2021, doi:
10.1016/j.infsof.2021.106576.

[7] J. Wang, H. Xiao, S. Zhong, and Y. Xiao,
“DeepVulSeeker: A novel vulnerability
identification framework via code graph
structure and pre-training mechanism,” Futur.
Gener. Comput. Syst., vol. 148, pp. 15–26, 2023,
doi: 10.1016/j.future.2023.05.016.

[8] Y. Zhou, S. Liu, J. Siow, X. Du, and Y. Liu,
“Devign: Effective vulnerability identification
by learning comprehensive program semantics
via graph neural networks,” Adv. Neural Inf.
Process. Syst., vol. 32, no. NeurIPS, pp. 1–11,
2019.

[9] Y. Fan, C. Wan, C. Fu, L. Han, and H. Xu,
“VDoTR: Vulnerability detection based on
tensor representation of comprehensive code
graphs,” Comput. Secur., vol. 130, p. 103247,
2023, doi: 10.1016/j.cose.2023.103247.

[10] X.-C. Wen, Y. Chen, C. Gao, H. Zhang, J. M.
Zhang, and Q. Liao, “Vulnerability Detection
with Graph Simplification and Enhanced Graph
Representation Learning,” pp. 2275–2286, 2023,
doi: 10.1109/icse48619.2023.00191.

[11] Y. Li, S. Wang, and T. N. Nguyen,
“Vulnerability detection with fine-grained
interpretations,” ESEC/FSE 2021 - Proc. 29th
ACM Jt. Meet. Eur. Softw. Eng. Conf. Symp.
Found. Softw. Eng., pp. 292–303, 2021, doi:
10.1145/3468264.3468597.

[12] Y. Zhuang, S. Suneja, V. Thost, G. Domeniconi,
A. Morari, and J. Laredo, “Software
Vulnerability Detection via Deep Learning over
Disaggregated Code Graph Representation,”
2021, [Online]. Available:
http://arxiv.org/abs/2109.03341.

[13] X. Cheng, H. Wang, J. Hua, G. Xu, and Y. Sui,
“DeepWukong: Statically Detecting Software
Vulnerabilities Using Deep Graph Neural
Network,” ACM Trans. Softw. Eng. Methodol.,
vol. 30, no. 3, 2021, doi: 10.1145/3436877.

[14] X.-C. Wen, C. Gao, J. Ye, Z. Tian, Y. Jia, and X.
Wang, “Meta-Path Based Attentional Graph
Learning Model for Vulnerability Detection,”
pp. 1–13, 2022, [Online]. Available:
http://arxiv.org/abs/2212.14274.

[15] S. Suneja, Y. Zheng, Y. Zhuang, J. Laredo, and
A. Morari, “Learning to map source code to
software vulnerability using code-as-a-graph,”

pp. 1–8, 2020, [Online]. Available:
http://arxiv.org/abs/2006.08614.

[16] Z. Li, D. Zou, S. Xu, H. Jin, Y. Zhu, and Z. Chen,
“SySeVR: A Framework for Using Deep
Learning to Detect Software Vulnerabilities,”
IEEE Trans. Dependable Secur. Comput., vol.
19, no. 4, pp. 2244–2258, 2022, doi:
10.1109/TDSC.2021.3051525.

[17] Z. Li et al., “VulDeePecker: A Deep Learning-
Based System for Vulnerability Detection,” vol.
18, no. 5, pp. 2224–2236, 2018, doi:
10.14722/ndss.2018.23158.

[18] X. Duan et al., “Vulsniper: Focus your attention
to shoot fine-grained vulnerabilities,” IJCAI Int.
Jt. Conf. Artif. Intell., vol. 2019-Augus, pp.
4665–4671, 2019, doi: 10.24963/ijcai.2019/648.

[19] “OWASP Benchmark Project.”
https://owasp.org/www-project-benchmark/
(accessed Jan. 23, 2022).

