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ABSTRACT 
 

The increasing complexity of software systems and rising security concerns due to open-source package 
vulnerabilities have made software vulnerability detection a critical priority. Traditional vulnerability 
detection methods, including static, dynamic, and hybrid approaches, often struggle with high false-positive 
rates and limited efficiency. Recently, graph-based neural networks (GNNs) and Transformer models have 
shown potential in improving vulnerability detection accuracy by representing code as graphs that capture 
syntax and semantics. This paper introduces a hybrid framework combining a Gated Graph Neural Network 
(GGNN) and Transformer encoder to leverage multiple graph representations: Abstract Syntax Tree (AST), 
Data Flow Graph (DFG), Control Flow Graph (CFG), and Code Property Graph (CPG). The GGNN extracts 
graph-level features, while the Transformer enhances sequential context understanding within the graph-
encoded data. The model uses these capabilities to detect vulnerabilities in function-level code snippets. 
Evaluation of our framework on the OWASP WebGoat dataset demonstrates the effectiveness of different 
graph representations across five major vulnerability types: command injection, weak cryptography, path 
traversal, SQL injection, and cross-site scripting. Experimental results show that the GGNN+CPG 
configuration consistently yields high recall for cryptographic weaknesses, while GGNN+CFG excels in 
detecting control-based vulnerabilities, such as command injections. The integration of GGNN and 
Transformer models leads to notable enhancements in accuracy, precision, recall, and F1-score across all 
vulnerability types, with each graph representation contributing unique insights into code structures and 
vulnerability patterns. These findings highlight the potential of hybrid GNN-Transformer frameworks in 
enhancing code vulnerability detection for cybersecurity applications. 

Keywords: Vulnerability Detection; Graph Neural Networks; Software Security, Web Application Security, 
Transformers In Cybersecurity 

 
1. INTRODUCTION  
 

Software vulnerabilities are weaknesses 
within software systems that malicious actors can 
exploit to undermine data integrity, confidentiality, 
and availability. Manually detecting these 
vulnerabilities in source code is a labor-intensive and 
error-prone task due to the complexity of modern 
software systems and their reliance on diverse code 
structures and numerous third-party libraries. 

As the number of identified software 
vulnerabilities grows, detecting these flaws has 
become a critical challenge for the software industry 
and cybersecurity field [1]. 

Recent studies have shown that attackers 
can leverage open-source package managers to 
spread malware, raising significant security risks for 
both developers and users, along with substantial 
financial and social repercussions [1]. 

A key preventive measure involves 
scanning source code with vulnerability detection 
tools before releasing a program. In practice, 
developers and security professionals mainly rely on 
code analysis or testing techniques to detect and fix 
bugs. These methods fall into three categories: static, 
dynamic, and hybrid. Static techniques, such as rule-
based and symbolic analysis, analyze code without 
executing it. These systems frequently produce a 
significant number of false positives, leaving 
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engineers with the arduous task of verifying false 
alarms. Fuzz testing is the most often used dynamic 
approach right now. While effective at detecting 
zero-day vulnerabilities, it has limitations in 
analytical efficiency and code coverage. Hybrid 
techniques aim to combine static and dynamic 
analysis to offset their respective drawbacks, yet they 
remain impractical for widespread use [1], [2]. 

To overcome the limitations of traditional 
code analysis methods, significant advancements 
have been made using machine learning (ML) and 
deep learning (DL) techniques to identify code 
vulnerabilities. However, conventional machine 
learning approaches still struggle to address the full 
range of vulnerabilities effectively [1]. 

To address these limitations, numerous 
deep learning approaches for code vulnerability 
detection have emerged, aiming to develop robust 
neural network models that thoroughly capture code 
semantics and recognize vulnerability patterns [1]. 

The primary objectives of this research are 
to develop a hybrid model that leverages Gated 
Graph Convolutional Networks (GGCNs) to process 
structural relationships within code graphs and 
Transformers to capture contextual dependencies in 
source code, enhancing vulnerability detection. This 
model aims to accurately identify security 
vulnerabilities, particularly SQL injections, with 
high precision and recall while minimizing false 
positives through the integration of graph-based 
learning and contextual pattern recognition. 

2. RELATED WORKS 

The adoption of graph-based neural 
networks for vulnerability detection in code analysis 
has accelerated over recent years, leveraging various 
advanced architectures and methodologies to capture 
syntactic and semantic program information. Wang 
et al. [3] transform program structures into directed 
graphs, where statements, identifiers, and values are 
nodes with relational edges. Graphs are represented 
in matrices and processed by Graph Neural 
Networks (GNN) for embedding and prediction, 
emphasizing node connectivity. Similarly, Lin et al. 
[4] introduce VulEye, which uses Sub-Dependence 
Graphs (SDG) and Doc2Vec embeddings to enhance 
PHP code vulnerability detection, utilizing 
multilayer perceptron (MLP) for classification.  

Several works emphasize deep semantic 
analysis combined with advanced network 
architectures. Guo et al. [5] use a gated GNN with 
multi-head attention to capture semantic and 
structural code properties, integrating a BILSTM for 

contextual information and taint analysis. Cao et al. 
[6] apply Bidirectional GNNs (BGNN) and 
convolutional neural networks to control flow graphs 
(CFGs) for feature extraction, while Wang et al. [7] 
in DeepVulSeeker employ a multi-stage approach 
that integrates Data Flow Graphs (DFG), Control 
Flow Graphs (CFG), and a self-attention encoder for 
vulnerability prediction. Zhou et al. [8] further 
elaborate this approach with a composite graph 
embedding layer, gated recurrent layers, and a 
convolutional module for enhanced representation 
learning. 

Tensor-based and meta-path approaches 
further augment vulnerability analysis. Fan et al. [9] 
propose CircleGGNN, a tensor-based GNN 
extension that combines multiple graphs, while Wen 
et al. [10] in AMPLE focus on edge-aware graph 
representations, enhancing node features through 
kernel-scaled convolutions. Similarly, Li et al. [11] 
utilize the IVDetect model, which combines graph-
based vulnerability detection with interpretative 
graph-based modules for detailed code vulnerability 
scores. 

Simplifying and refining graph structures 
has also proven effective. Zhuang et al. [12] 
introduce a streamlined 3GNN model that classifies 
source code based on vectorized graph 
representations, while Cheng et al. [13] in 
DeepWukong leverage interprocedural control and 
data-dependence graphs with forward and backward 
traversal for precise vulnerability identification. 
Wen et al. [14] propose a meta-path hierarchical 
attentional graph neural network to efficiently 
process heterogeneous graph relations. 

Machine learning models are also 
increasingly adapted to leverage pre-trained code 
embeddings and specialized slicing methods. Suneja 
et al. [15] utilize code property graphs (CPG) 
encoded with Word2Vec for bug signature learning. 
Li et al. [16] in SySeVR employ semantic and 
syntactic vulnerability components to improve 
vulnerability vector encoding. Other works such as 
VulDeePecker [17] and VulSniper [18] use BLSTM 
and attention models on code property graphs to 
further address vulnerabilities, illustrating a trend 
towards integrating linguistic embedding models 
with graph-based frameworks.  

Collectively, these studies highlight the 
evolution from basic code embeddings to 
sophisticated multi-layered GNNs, incorporating 
techniques such as meta-path construction, 
bidirectional learning, and tensor-based 
enhancements. The continued advancements in 
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model architecture and preprocessing methods 
underscore the field’s commitment to refining 
vulnerability detection through increasingly detailed 
and adaptable graph representations. 

3. METHODOLOGY 

3.1 Problem Definition 
The vulnerability detection task is 

formulated as a binary classification problem. Given 
a code snippet represented by a CPG, the model 

classifies it as either containing a vulnerability (e.g., 
SQL injection) or being secure. 

 
 
 
 
 
 
 

 
Figure 1: Proposed Framework

 
3.2 Framework 

Figure 1 illustrates our GNN-based 
approach, which consists of three main components: 
graph representation and normalization, graph-level 
feature extraction, and vulnerability prediction. This 
approach currently supports function-level 
vulnerability detection. For each program input, we 
represent the entire class using four types of graphs: 
Abstract Syntax Tree (AST), Data Flow Graph 
(DFG), Control Flow Graph (CFG), and Code 
Property Graph (CPG), which integrates the first 
three. We use Joern, a powerful code analysis 
platform to generate these graphs. Afterward, we 
encode the nodes within the graph, creating the 
foundation for the learning phase that follows. We 

then apply a GNN-based learning approach to train 
a model for vulnerability prediction using this 
vectorized data. 

The proposed model consists of the 
following components: 

(a) Gated Graph Neural Network (GGNN): 
This module is used to process graph-based 
representations of program code, where 
nodes represent program elements, and 
edges capture relationships between them. 
The GGNN outputs an enhanced feature 
representation of each node in the graph, 
incorporating information from its 
neighborhood. 

(b) Transformer Encoder: A multi-layer 
Transformer encoder is employed to 
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process sequential data extracted from the 
graph representation. The encoder uses 
self-attention mechanisms to model long-
range dependencies between nodes in the 
graph. 

(c) Convolutional Neural Network: This 
module combines the graph-based features 
from the GGNN and the sequential features 
from the Transformer encoder. Two 1D 
convolutional layers with batch 
normalization and max-pooling operations 
extract hierarchical patterns from the data. 
Fully connected layers further process the 
features, with dropout applied to prevent 
overfitting. 

(d) Final Classification Layer: A sigmoid 
activation function is used at the output to 
predict the presence or absence of a 
vulnerability in the input. 

3.2.1 Graph Representation and 
Normalization 
We examine four graph representations: 

Abstract Syntax Tree (AST), Data Flow Graph 
(DFG), Control Flow Graph (CFG), and Code 
Property Graph (CPG). The AST provides a 
hierarchical view of the program’s syntax, while the 
DFG tracks variable declarations and usage 
throughout the code. The CFG captures the 
program’s data and control flows. The CPG 
integrates AST, DFG, CFG, and Call Graph (CG) 
elements into one comprehensive graph. 

 
3.2.2 Graph Level Feature Extraction 

To support the subsequent model training 
with the GNN learning approach, an initial encoding 
of each node in the graphs is required. There are 
various approaches for such encoding. In this study, 
we use the Word2Vec [2]. Word2Vec employs the 
standard word embedding technique to train the 
model, utilizing node type sequences created by 
traversing the graphs in a specified order. 

 
 

3.2.3 Vulnerability Prediction 
This study introduces a neural network 

architecture integrating a Gated Graph Neural 
Network (GGNN) with a Transformer-based 
convolutional network to detect vulnerabilities in 
web applications. The model leverages graph-based 
data representations to capture complex 
dependencies between program elements while 
utilizing a convolutional architecture to extract 
meaningful features for classification. To predict the 
vulnerabilities within a class, we feed the graph 

encoding of the class into the respective prediction 
model for each vulnerability. 
 
4. EXPERIMENTS 
4.1   Dataset 

The model was tested using the OWASP 
WebGoat dataset [19], a recognized benchmark that 
includes Java-based applications with labeled 
vulnerabilities, such as SQL injection flaws. Version 
1.1 of this dataset was chosen due to its greater 
number of test cases compared to version 1.2. Five 
of the top ten vulnerabilities from the OWASP 
benchmark were chosen. The dataset was divided 
into training (70%), validation (15%), and testing 
(15%) subsets.  Table 1 outlines the selected 
vulnerabilities and the number of test cases 
associated with each. 

Table 1: Description of Dataset 

Vulnerability  
Area 

Number 
of Test 
Cases 

CWE 
Number 

Command Injection 2708 78 
Weak Cryptography 
Path Traversal 
SQL Injection 
XSS (Cross-Site Scripting) 

1440 
2630 
3529 
3449 

327 
22 
89 
79 

 
 
4.2   Evaluation Metrics 

To comprehensively evaluate our model’s 
performance, we use commonly applied metrics: 
Accuracy, Precision, Recall, and F1-score. These 
metrics are calculated based on a confusion matrix 
that contains True Positives (TP), False Positives 
(FP), True Negatives (TN), and False Negatives 
(FN). 

Accuracy: The overall performance of the model in 
correctly identifying vulnerable and non-vulnerable 
code snippets. It is computed as follows:  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
           (1) 

Precision: The proportion of true positives among 
all predicted positives, reflecting the model's 
capability to minimize false positives. It is computed 
as follows: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
                              (2) 
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Recall: The ratio of true positives to all actual 
positives, measuring the model’s detection power. It 
is computed as follows: 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
                                   (3) 

F1-Score: The weighted average of precision and 
recall, calculated as their harmonic mean. It is 
determined by the following formula: 

𝐹1 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
                (4) 

In machine learning models, it is optimal to achieve 
high values for both Precision and Recall. However, 
these metrics often exhibit a trade-off, where 
improving one can decrease the other. Furthermore, 
Accuracy can be affected by an imbalanced sample 
distribution. To overcome these issues, the F1-
measure was introduced [9]. 

Our goal is to reduce both false positive and false 
negative rates in the model’s detection as much as 
possible. To accomplish this, we focus on creating a 
model with high precision and recall. Among the 
four evaluation metrics, precision, recall, and F1-
score are the most crucial for evaluating the model's 
performance. 
 

 
4.3   Experimental Setup 

Table 2 provides an overview of the hardware and 
software environments used.  

Table 2: Experimental Setup 

Hardware CPU                           Intel Core i5 
GPU                           V100 
Memory                     32 GB 
Disk                            2   TB 

Software OS                                Windows 11 
Python                         3.9.18 
Pandas                         2.1.3 
Pytorch                        2.10 
Scikit-learn                  1.3.0    
torch_geometric          2.4.0 
joern                             2.0.201 

4.4   Result and Discussion 
The results shown in tables 3, 4 and 5 reveal 

insights into the model's performance when applied 
to different vulnerability types using various graph 
representations (AST, CFG, DFG, and CPG) 
alongside a Gated Graph Neural Network (GGNN). 
Each graph representation captures unique aspects of 
the code's structure and behavior, impacting the 

 
 
 
 

 
Table 3: Performance of Different Methods on CWE-78 and CWE-327

 

 
Table 4: Performance of Different Methods on CWE-22 and CWE-89 

 
Method Accuracy               Precision  Recall               F1-Measure  

CWE-22   CWE-89 CWE-22   CWE-89 CWE-22   CWE-89 CWE-22   CWE-89 
GGNN+AST    68.66%   66.40%        64.81%       50.00%    70.00%   50.40%        67.31%       66.67% 
GGNN+CFG    75.28%   53.33%               73.56%       51.85%    75.28%   40.00%               73.56%       50.00% 
GGNN+DFG    70.37%   72..22%  73.47%       70.41%    65.45%   69.00%  69.23%       69.70% 
GGNN+CPG                       67.74%   66.40%                          100.0%       63.22%    35.19%   78.40%                          52.05%       70.00% 

Table 5: Performance of Different Methods on CWE-79

Method Accuracy 
CWE-79 

Precision 
CWE-79  

Recall 
CWE-79 

F1-Measure  
CWE-79 

GGNN+AST 76.67% 64.10% 60.00%        69.80% 

Method Accuracy               Precision  Recall               F1-Measure  
CWE-78   CWE-327 CWE-78   CWE-327 CWE-78   CWE-327 CWE-78   CWE-327 

GGNN+AST    60.80%     50.00%        63.37%       50.00%    51.20%     100.0%       56.64%       66.67% 
GGNN+CFG    74.07%     50.00%               79.59%       50.00%    75.58%     100.0%              77.53%       66.67% 
GGNN+DFG    69.91%     66.67%  69.39%       66.33%    66.10%      62.50% 67.71%       64.36% 
GGNN+CPG                       64.80%     50.00%                          66.09%       50.00%    60.80%     100.0%                         63.33%       66.67% 
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GGNN+CFG 80.00% 61.32% 75.28%        73.56% 
GGNN+DFG 78.42% 60.67% 90.00%        80.22% 
GGNN+CPG                    82.80% 74.40% 100.0%        85.32% 

 
 
 
4.4.1   CWE-78 and CWE-327
 

For CWE-78 (Command Injection) and CWE-
327 (Broken Weak Cryptography), the GGNN with 
CFG (Control Flow Graph) yielded the highest 
accuracy for CWE-78 (74.07%) and matched other 
models for CWE-327 (50.00%) as shown in Table 3 
and Figure 2. CFG provided strong results in recall 
and F1-measure for CWE-78, suggesting that control 
flow structure is valuable for detecting Command 
Injections, which often involve sequences of 
sensitive operations. 

 AST Performance: The Abstract Syntax 
Tree (AST) representation, focusing on the 
syntax of the code, achieved the lowest 
accuracy and recall for CWE-78. However, 
it performed notably well in CWE-327, 
attaining 100% recall, which may indicate 
that syntactic patterns alone can be highly 
indicative for certain cryptographic 
vulnerabilities. 

 CFG and DFG: CFG’s control flow 
capture appears advantageous for CWE-78, 
likely due to the sequential and conditional 
logic associated with command injections. 
The DFG (Data Flow Graph) scored 
moderately well across all metrics, 
achieving balanced performance, 
particularly for CWE-327, which involves 
tracking data dependencies that are critical 
in cryptographic operations. 

 CPG: The Code Property Graph (CPG), 
which combines AST, CFG, and DFG 
elements, displayed a mixed performance, 
suggesting that while it can capture 
extensive information, this complexity may 
not always benefit vulnerability detection 
directly. Nevertheless, CPG’s ability to 
reach 100% recall in CWE-327 indicates its 
potential strength in detecting 
cryptographic issues when high recall is 
prioritized. 

 
4.4.2   CWE-22 and CWE-89 

For CWE-22 (Path Traversal) and CWE-89 
(SQL Injection), GGNN with CFG again 
demonstrated strong performance for CWE-22, 
achieving 75.28% accuracy and a high F1-measure 
(73.56%), suggesting that control flow is crucial in 

path traversal vulnerability detection. In contrast, the 
DFG representation achieved the highest accuracy 
for CWE-89 (72.22%), pointing to the importance of 
data flow in identifying SQL injections, where data 
dependencies heavily influence vulnerability 
manifestation. 

 AST: GGNN combined with AST achieved 
satisfactory results for CWE-22, with 
68.66% accuracy, although it fell short for 
CWE-89, possibly due to the limitations of 
syntactic analysis alone in capturing 
complex interactions of user input and 
database operations, as required in SQL 
injection detection. 

 DFG: GGNN+DFG’s high performance 
for CWE-89 demonstrates that the data 
flow relationships are pivotal in detecting 
SQL injection vulnerabilities. 

 CPG: In CWE-22, CPG attained 100% 
precision, though its recall was limited. 
This discrepancy suggests that while CPG 
is effective in identifying path traversal 
vulnerabilities precisely, it may not cover 
all instances exhaustively. In CWE-89, 
CPG provided relatively balanced 
performance, achieving a high F1-measure 
of 70.00%. 
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Figure 2: Accuracies                                                                       Figure 3: Precision
 

 
4.4.3   CWE-79 

For CWE-79 (Cross-Site Scripting), the 
GGNN combined with CPG reached the highest 
accuracy (82.80%), precision (74.40%), and F1-
measure (85.32%). This strong performance likely 
stems from CPG’s comprehensive representation of 
code elements, including data and control flow, 
essential for capturing cross-site scripting 
characteristics. 

 AST: GGNN+AST performed 
adequately for CWE-79, though it fell 
short in precision (64.10%) and recall 
(60.00%) compared to other methods.  
AST may miss dynamic relationships in 
code execution paths, which are often 

crucial in detecting the injection points 
of cross-site scripting vulnerabilities. 

 CFG and DFG: CFG and DFG 
achieved strong recall and balanced 
precision, with CFG providing 80.00% 
accuracy. The data dependencies 
captured by DFG and the flow 
sequences captured by CFG help trace 
how untrusted data might reach client-
side scripts, explaining their 
effectiveness for CWE-79 detection. 

 
 

 
 
 
 

 

    
  
                                           Figure 4: Recall                                                              Figure 5: F-1 Measure

 
 

Figures 2, 3, 4, and 5 represent the charts 
for the GGNN with AST, CFG, DFG, and CPG for 
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each metric, showing their relative strengths and 
weaknesses across different vulnerabilities. The 
accuracy of the model shows fluctuations across 
various across vulnerability types as shown in figure 
2, with CFG generally yielding high values for 
CWE-78, CWE-22, and CWE-79, while DFG shows 
a peak for CWE-89. CPG has a prominent accuracy 
for CWE-79, whereas AST generally has moderate 
accuracy across most vulnerabilities, except CWE-
327 where it performs lower. Figure 2 shows the 
chart for precision values of the model which vary, 
with CPG achieving a high value in CWE-22 due to 
perfect identification, but with relatively low recall. 
For CWE-79, CPG and DFG tend to be high. CFG 
performs well in CWE-78 and CWE-22, while AST 
shows moderate precision across all vulnerability 
areas except CWE-327. 

Figures 4 and 5 show the chats for the recall 
and F1-measure of the model respectively. The 
recall chart highlights CPG’s strength in CWE-327, 
reaching 100% recall, while DFG and CFG show 
generally balanced recall across other 
vulnerabilities. AST tends to show lower recall for 
CWE-78 and CWE-22 but performs adequately for 
CWE-327. For CWE-89, DFG achieves high recall 
due to effective data flow tracking. F1-measure lines 
are similar to recall, with CPG reaching high F1 
scores for CWE-79 and CWE-327. CFG and DFG 
both achieve high F1 scores for CWE-78 and CWE-
89 respectively, reflecting their strengths in control 
flow and data flow dependencies, while AST has 
moderate F1-scores across most vulnerabilities but 
drops for CWE-89 and CWE-79. 

 

5. CONCLUSION AND FUTURE RESEARCH 

 
This research presents a Gated Graph 

Neural Network (GGNN) framework that utilizes 
multi-graph representations (AST, DFG, CFG, and 
CPG) for enhanced vulnerability detection in 
software code, applied to five major vulnerabilities 
in the OWASP WebGoat dataset. Our results 
demonstrate that different graph structures capture 
unique aspects of code vulnerabilities, allowing the 
GGNN model to achieve notable performance 
improvements. Specifically, CFG and DFG 
representations are effective for identifying 
vulnerabilities that rely on control and data flow 
patterns, while CPG’s composite structure supports 
high recall for cryptographic weaknesses and cross-
site scripting. 

Despite these advancements, the study has 
limitations. The model's performance is partially 
constrained by the quality and quantity of available 
vulnerability-labeled datasets, which impacts 

generalization to new or less common 
vulnerabilities. Additionally, certain 
vulnerabilities—such as those requiring contextual 
understanding beyond code structure (e.g., business 
logic flaws)—may not be fully captured by the graph 
representations used. The reliance on manual graph 
normalization and node encoding introduces 
potential inefficiencies and may limit scalability 
across large codebases. 

Future research can address these limitations 
by exploring automated graph representation and 
encoding techniques to reduce preprocessing time 
and enhance model scalability. Additionally, 
incorporating contextual information from software 
documentation and runtime behaviors could enrich 
vulnerability detection, particularly for logic-based or 
dynamic vulnerabilities. Lastly, testing this 
framework on more diverse datasets, including non-
Java applications, could further validate and refine its 
effectiveness across different programming 
environments. 
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