
 Journal of Theoretical and Applied Information Technology 
15th January 2025. Vol.103. No.1 

©   Little Lion Scientific  
 

ISSN: 1992-8645                                                                    www.jatit.org                                                     E-ISSN: 1817-3195 

 

 
285 

 

A HYBRID MODEL COMBINING GRAPH NEURAL 
NETWORKS, REINFORCEMENT LEARNING, AND 

AUTOENCODERS FOR AUTOMATED CODE REFACTORING 
AND OPTIMIZATION 

RAGHUPATHY DURGA PRASAD1,  Dr. MUKTEVI SRIVENKATESH2 

1Research Scholar, GITAM University, Department of Computer Science, Visakhapatnam, India 

2Associate Professor,  GITAM University, Department Computer Science,Visakhapatnam, India 

E-mail:  1deardp@gmail.com, 2smuktevi@gitam.edu   

ABSTRACT 

This research develops a cutting-edge hybrid deep learning architecture, blending Graph Neural Networks 
(GNNs), Reinforcement Learning (RL), and Autoencoders, to optimize and refactor code automatically. 
GNNs are employed to capture hierarchical and structural relationships within code, RL iteratively optimizes 
the refactoring process based on performance metrics, and Autoencoders compress code representations to 
reduce redundancy and enhance efficiency. The proposed model outperforms standalone GNN, RL, and 
Autoencoder models as well as traditional heuristic-based methods, achieving an accuracy of 92.5%, 
precision of 91.8%, recall of 90.7%, and F1-score of 91.2%. Experimental results also demonstrate 
substantial improvements in code complexity metrics, including a 35.2% reduction in cyclomatic complexity, 
28.7% fewer lines of code, and a 40.3% decrease in code coupling, enhancing readability and maintainability. 
Furthermore, the model operates with an average runtime of 1.5 seconds and memory usage of 150 MB, 
significantly outperforming baseline approaches. These findings affirm the model’s efficacy in delivering 
high-quality, resource-efficient code refactoring solutions, making it a robust tool for modern software 
engineering practices. 

Keywords: Hybrid Deep Learning, Code Refactoring, Graph Neural Networks (GNNs) Reinforcement 
Learning (RL), Autoencoders, Software Optimization. 

1. INTRODUCTION 

Software development is an ever-evolving 
field, continuously striving to improve code quality, 
performance, and maintainability. One of the 
primary techniques for achieving these 
improvements is code refactoring, which involves 
restructuring the internal design of software without 
altering its external behavior [1]. Refactoring aims 
to reduce technical debt, enhance readability, and 
facilitate software maintenance. However, the 
manual process of refactoring can be time-
consuming, requiring significant effort, especially 
for large and complex codebases. As software 
systems grow and become complex, the need for 
automated approaches that can streamline the 
refactoring process becomes increasingly important 
[2][3]. Graph Neural Networks (GNNs) have 
emerged as a promising approach for modeling the 
structure and dependencies in code. By representing 
code as a graph, where nodes correspond to code 
entities and edges represent relationships, GNNs can 
capture both the structural and semantic 
characteristics of software [4]. This ability to encode 

complex software structures makes GNNs suitable 
for detecting areas in the code that can benefit from 
refactoring. However, GNNs alone may not be 
sufficient for optimizing the entire refactoring 
process, especially in dynamic and context-sensitive 
software environments [5]. 

Reinforcement Learning (RL) provides a suitable 
framework for optimizing code refactoring through 
iterative learning. RL can be employed to enhance 
the decision-making process by continuously 
refining the refactoring actions based on feedback 
from performance metrics such as execution time, 
memory consumption, and code complexity [6]. 
This approach allows for dynamic adaptation to 
various scenarios, leading to more efficient code 
optimization. Unlike traditional heuristic-based 
techniques, RL offers a data-driven mechanism to 
evolve refactoring strategies over time [7]. In 
addition to GNNs and RL, autoencoders contribute 
to the automated refactoring process by reducing the 
dimensionality of code representations. 
Autoencoders are a type of neural network that learn 
compressed, latent representations of input data 
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while retaining essential information [8]. When 
applied to code, autoencoders can generate 
simplified versions of complex code structures, 
removing redundancies and enhancing code 
readability. This ability to abstract code 
representations makes autoencoders a valuable tool 
for pre-processing and simplifying code before 
further analysis and optimization [9]. 

The integration of GNNs, RL, and autoencoders into 
a hybrid model aims to overcome the limitations of 
traditional approaches to automated code 
refactoring. The proposed model leverages the 
strengths of each component: GNNs capture 
intricate relationships within the code, RL iteratively 
optimizes the refactoring process through feedback-
based learning, and autoencoders reduce redundancy 
and improve code representation [10]. This 
combination provides a comprehensive approach to 
enhancing code quality, runtime efficiency, and 
maintainability. Empirical evaluations show that the 
hybrid model outperforms existing automated 
refactoring techniques in various performance 
metrics, including runtime efficiency, memory 
usage, and code complexity reduction [11]. These 
results demonstrate the effectiveness of the hybrid 
approach in automating the refactoring process and 
highlight the potential for advanced machine 
learning techniques to revolutionize software 
maintenance. The proposed model provides a 
scalable framework for integrating AI-driven 
methods into software engineering practices, making 
it applicable to various programming languages and 
development environments [12]. The problem of 
code smells extends beyond single-language 
systems, as modern software often combines 
multiple programming languages for different 
aspects of functionality. This complexity adds to the 
challenge of detecting code smells, especially in 
systems where similar functionalities are replicated 
across different languages. Traditional approaches to 
code clone detection and code smell identification 
may struggle in such multi-language environments 
due to varying syntax, semantics, and programming 
paradigms [13]. Techniques that rely on syntactic 
analysis or intermediate representations may lack 
deeper semantic similarities, making it difficult to 
identify smells consistently across diverse codebases 
[14]. 

To address these challenges, researchers have 
explored the use of graph-based techniques that 
capture the structural relationships in code. For 
example, Graph Neural Networks (GNNs) have 
shown promise in modeling software systems, where 
nodes can represent methods, classes, or modules, 

and edges capture relationships such as method calls 
or data flows. This graph-based approach allows for 
a more holistic analysis of the code, which is 
particularly useful for detecting complex smells like 
feature envy, where a method depends more on 
external classes than its own [15]. GNNs are also 
advantageous in handling heterogeneous data, 
making them suitable for cross-language code 
analysis [16]. Reinforcement Learning (RL) adds an 
additional layer of intelligence to automated code 
refactoring. Unlike static rule-based methods, RL 
allows the system to learn from feedback by 
iteratively optimizing refactoring decisions based on 
performance metrics. This dynamic adaptation helps 
to improve the software continuously, 
accommodating changes in code structure and 
requirements over time. For instance, RL can help 
decide the most beneficial transformations, 
considering factors such as execution speed, 
memory usage, and code readability. This is 
especially relevant in large projects where manual 
refactoring would be infeasible [17]. 

The integration of GNNs and RL presents a robust 
solution for tackling code smells and optimizing 
code quality. While GNNs offer powerful 
capabilities for capturing the structural properties of 
code, RL provides a mechanism for continuous 
improvement through feedback-driven optimization. 
Together, they can be used to detect code smells 
more accurately and suggest optimal refactoring 
strategies that enhance software maintainability and 
performance [18]. The use of graph augmentation 
techniques further helps in balancing the dataset 
during training, ensuring that the model can 
effectively learn even when smelly code instances 
are rare [19]. Moreover, autoencoders contribute to 
this hybrid approach by simplifying the code 
representation, compressing the code while retaining 
essential characteristics. This helps in reducing 
redundancy and improving the overall clarity of the 
software, which in turn facilitates more effective 
detection and refactoring of code smells. By 
leveraging autoencoders to pre-process the data, the 
hybrid model can focus on identifying deeper 
structural issues within the software [20]. The 
proposed approach not only improves the detection 
of code smells but also automates the process of 
recommending refactoring strategies. The use of 
GNNs allows for the identification of complex 
dependencies in the code, while RL optimizes the 
sequence of refactoring actions to achieve the best 
outcome. This approach is a significant advancement 
over traditional methods, which often rely on static 
analysis and hand-crafted rules. The dynamic nature 
of the hybrid model makes it well-suited for modern 
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software systems, where continuous integration and 
deployment require adaptive and automated tools for 
code quality improvement [21]. 

2. RELATED WORKS 

The development of hybrid models for code 
refactoring and optimization has drawn significant 
attention in recent research. Various approaches have 
been explored, combining elements such as graph 
theory, machine learning, and evolutionary 
algorithms to enhance software refactoring 
processes. Nasagh et al. [22] proposed a fuzzy 
genetic automatic refactoring approach (FGARA) 
that leverages a graph model to measure metrics 
such as load, betweenness, out-degree, in-degree, 
and closeness centrality to identify code smells. By 
integrating fuzzy logic with a genetic algorithm 
(GA), this approach has demonstrated significant 
improvements in identifying and refactoring bad 
classes, achieving a 68.92% success rate on the 
Fontana dataset and properly refactoring 77% of the 
types based on coupling metrics. This research 
represents a notable advancement in identifying 
code smells and executing refactoring processes, 
setting a benchmark for future studies. Sharif [23] 
developed the Code Analysis Tool (CAT) designed 
to assist developers in identifying extract class 
refactoring opportunities, focusing on improving 
software quality through object-oriented metrics. 
This study achieved a notable 79% accuracy in 
detecting refactoring possibilities, highlighting the 
potential of CAT in providing actionable insights for 
developers seeking to enhance their code’s 
maintainability. Mohan and Greer [24] introduced a 
Many-Objective Approach (MOA) to automated 
refactoring, contrasting it with traditional mono-
objective methods. Their research highlighted that a 
multi-objective refactoring approach could 
outperform mono-objective techniques, particularly 
in terms of objective scores across various Java 
programs. However, the study also pointed out 
limitations, such as the reduced effectiveness of 
priority and component recentness objectives in 
many-objective setups when used together. 

Meng and Su [25] proposed a Worst-Case Execution 
Time (WCET) optimization strategy that utilizes 
source code refactoring to minimize execution times 
in critical software paths. Their approach involved 
extracting the worst-case execution path (WCEP) 
from control flow charts and mapping it back to the 
source code. By dividing the source code into 
optimization zones, their method effectively reduced 
the search scope and prevented improper refactoring. 
This technique is particularly valuable in real-time 

systems where minimizing execution time is critical. 
In the context of automated code reviews, Zhou et al. 
[26] examined the use of generation-based methods 
for code review automation, revealing limitations in 
existing techniques and emphasizing the need for 
more advanced models to handle complex review 
tasks effectively. Their work laid the groundwork for 
integrating advanced models such as ChatGPT into 
the code review process, which could streamline 
refactoring and optimization tasks. The potential of 
large language models (LLMs) like ChatGPT [27] 
has been explored in automating various software 
engineering tasks, including code reviews. Ouyang 
et al. [28] and Stiennon et al. [31] demonstrated that 
ChatGPT, trained using Reinforcement Learning 
from Human Feedback (RLHF), could generate 
high-quality responses to human inputs and self-
correct based on subsequent dialogues. By 
leveraging ChatGPT’s conversational capabilities, it 
becomes feasible to automate code refinement tasks 
by providing the original code and review comments 
as task inputs, which the model uses to return revised 
code along with explanations for the changes. This 
body of work highlights the growing interest in 
hybrid models that combine elements such as 
reinforcement learning, graph neural networks, and 
autoencoders to enhance the code refactoring 
process. These models aim to automate various 
aspects of code optimization, from identifying 
refactoring opportunities to implementing changes 
based on feedback, ultimately improving software 
quality and reducing developer workload 

A. Metric-Based Approaches: The initial efforts to 
detect feature envy relied on simple handcrafted 
metrics that quantify specific attributes of software 
code. These approaches typically measure 
similarities between methods or attributes within 
classes and compare them to external class entities 
to detect code smells. Simon et al. [30] introduced 
one of the first metric-based approaches, suggesting 
that the similarity between two software entities 
depends on the shared set of methods or attributes. 
They defined a distance metric to quantify the 
similarity, arguing that feature envy can be detected 
when a method shows a stronger relationship with 
entities in an external class than with entities within 
its own class. Tsantalis and Chatzigeorgiou [31] 
extended the metric-based approach by proposing a 
methodology to identify opportunities for moving 
methods to different classes. Their work was based 
on two conditions: (1) the move should satisfy all 
compilation requirements, and (2) the distance 
between the method and the target class should be 
minimized. Their approach was implemented in 
JDeodorant, a widely recognized code smell 
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detection tool used as a benchmark for evaluating 
various refactoring techniques. Sales et al. [32] 
offered a different metric-based solution by using 
static dependencies to detect feature envy. In their 
approach, they calculated the similarity between 
methods based on dependencies, defining the 
relationship between a method and a class as the 
average similarity with all methods in that class. This 
approach was further developed into the JMove tool, 
another well-known benchmark used for code smell 
detection and refactoring tasks. 

B. Machine Learning-Based Approaches: As 
limitations in handcrafted metrics became apparent, 
researchers began incorporating machine learning 
(ML) techniques to enhance feature envy detection. 
ML-based approaches utilize code metrics and 
various features extracted from the source code, 
feeding these into machine learning models to 
predict the presence of feature envy. Liu et al. [29] 
combined traditional metric-based methods with 
machine learning techniques. They used the distance 
metric defined by Tsantalis et al. [15], along with 
textual similarity between method names and class 
names and fed these features into a Convolutional 
Neural Network (CNN) model to detect feature envy. 
Their work represents one of the earliest applications 
of deep learning to code smell detection. 

Wang et al. [33] introduced the Self-Attention 
Mechanism in feature envy detection. Their method 
employed Bidirectional Long-Short Term Memory 
(BiLSTM) networks to extract semantic information 
from the code and utilized embedding techniques to 
improve structural distance information. This 
combination of semantic and structural analysis 
yielded more accurate predictions compared to 
traditional approaches. Yin et al. [17] proposed a 
model that incorporates local and global features for 
explainable feature envy detection. Their approach 
uses different representation models for local code 
(e.g., method-level features) and global code (e.g., 
class-level features), providing explanations that 
help developers better understand the results and 
make informed decisions regarding code refactoring. 

C. Graph Neural Network-Based Approaches: 
Despite the advancements in both metric-based and 
ML-based approaches, these methods often overlook 
the inherent relationships between methods within a 
program. To address this gap, recent research has 
explored the use of Graph Neural Networks (GNNs) 
for feature envy detection, as GNNs can effectively 
capture relationships between nodes (methods) and 
edges (method calls) in a graph structure. The use of 
graph structures allows for a more nuanced analysis 

of calling relationships, which are often crucial for 
detecting feature envy. By representing the code as a 
directed graph where nodes represent methods and 
edges represent calling relationships, GNN-based 
models can better identify code smells and provide 
more accurate refactoring recommendations. 

D. Related Work on Automated Code Refactoring: In 
addition to feature envy detection, automated code 
refactoring has been explored through various other 
approaches. For instance, Nasagh et al. [22] 
proposed a fuzzy genetic algorithm for refactoring, 
which utilizes graph models to measure code quality 
and perform refactoring based on fuzzy logic and 
genetic algorithms. Similarly, Sharif [23] introduced 
a tool to identify extract class refactoring 
opportunities using object-oriented metrics. Mohan 
and Greer [24] examined multi-objective 
optimization techniques for automated refactoring, 
demonstrating that combining multiple objectives 
can improve refactoring results over single-objective 
approaches. On the other hand, Meng and Su [25] 
focused on optimizing the worst-case execution time 
(WCET) through source code refactoring, dividing 
code into optimization zones to identify refactoring 
opportunities. 

E. Reinforcement Learning in Code Optimization: 
Reinforcement Learning (RL) has emerged as a 
promising approach for software optimization tasks, 
including program synthesis, software testing, and 
automated code refactoring. For instance, Bunel et 
al. [34] used RL for program synthesis tasks by 
training agents to generate optimized versions of 
programs while checking for syntax correctness. 
Heo et al. [35] applied RL for program debloating, 
showing that RL can reduce program size while 
maintaining functionality. Recent studies have also 
explored the combination of RL with graph-based 
representations. For example, Nie et al. [36] 
surveyed the use of RL in graphs for various tasks, 
suggesting that RL can be applied effectively to 
optimize code representations by leveraging graph 
structures for state embedding definitions. While 
significant progress has been made in feature envy 
detection and automated code refactoring, there is 
still room for improvement in utilizing GNNs and 
RL-based techniques for more accurate and 
comprehensive solutions. This study aims to address 
these gaps by proposing a hybrid model combining 
GNNs, RL, and Autoencoders to automate code 
refactoring and optimization. 

3. METHODOLOGY 

The proposed hybrid model integrates 
Graph Neural Networks (GNNs), Reinforcement 
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Learning (RL), and Autoencoders to achieve 
automated code refactoring and optimization. This 
section delineates the approach, including the 
individual roles of each component in the refactoring 
pipeline and their integration. The model follows a 
pipeline that leverages GNNs for structural analysis, 
RL for iterative optimization, and Autoencoders for 
dimensionality reduction and redundancy 
minimization, thereby enhancing code quality, 
maintainability, and performance. 

3.1. Graph Neural Network-Based Structural 
Analysis:  Graph Representation of Code: Each code 
snippet is represented as an Abstract Syntax Tree 
(AST), where nodes represent various code elements 
(e.g., methods, variables), and edges denote 
relationships such as data flow or control flow. This 
representation allows the capture of hierarchical and 
relational features essential for understanding code 
structure. 

To construct this graph, we define nodes  

𝑉 = {𝜈ଵ, 𝜈ଶ … … . . 𝜈௡} 

and edges  𝐸 = {𝑒ଵ, 𝑒ଶ … … . . 𝑒௠}, where each node 
corresponds to a code element, and each edge 
represents a specific interaction or dependency 
within the code. The input graph G= (V, E) is fed into 
the GNN for further processing. 

GNN Processing and Feature Extraction: Using a 
GNN, we compute embeddings for each node in the 
AST(Abstract Syntax Tree) to capture both local and 
global structural information. Given an input feature 
matrix X and adjacency matrix A, the GNN 
iteratively updates the node embeddings through the 
message-passing mechanism: 

𝐻(௟ାଵ) = 𝜎(𝐴𝐻(௟)𝑊(௟)) 

where H(l) is the node embedding matrix at layer l, 
W(l) is the weight matrix, and σ is a non-linear 
activation function. This process enables the model 
to learn from both the code structure and 
relationships between elements, identifying areas 
that could benefit from refactoring, such as feature 
envy or code smells [37].  

3.2. Reinforcement Learning for Iterative 
Optimization: Defining the RL Environment: In the 
RL framework, code refactoring is framed as a 
sequential decision-making problem. Here, each 
potential refactoring action (e.g., moving a method, 
renaming variables) is an action at taken by the agent 
in state st (the current code representation). The 
agent’s goal is to optimize a reward function 

designed to improve code quality metrics (e.g., code 
complexity, cohesion). 

Reward Function Design: The reward function R(st, 
at) is critical in guiding the agent towards beneficial 
transformations. It incorporates factors such as: 

𝑅(𝑠௧ , 𝛼௧) = 𝛼. 𝑐𝑜𝑑𝑒_complexity_reduction
+ 𝛽. 𝑚𝑒𝑚𝑜𝑟𝑦_efϐiciency
+  𝛾. 𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛_speed 

where α, β, and γ are weighting factors that balance 
the influence of different performance metrics. This 
reward function encourages the agent to favor 
actions that reduce code complexity, improve 
memory usage, and enhance execution speed [38].  

Training the RL Agent: A Q-learning approach is 
applied, where the agent learns a policy π(a∣s) by 
updating Q-values: 

𝑄(𝑠௧ , 𝑎௧) = 𝑄(𝑠௧ , 𝑎௧)
+ 𝜂(𝑅(𝑠௧ , 𝑎௧) + 𝜆𝑚𝑎𝑥𝑄(𝑆௧ାଵ, 𝑎)
− 𝑄(𝑠௧ , 𝑎௧)) 

where η is the learning rate, and λ is the discount 
factor. Over time, this process allows the agent to 
predict the most rewarding transformations for any 
given state [37, 38].  

3.3. Autoencoder for Dimensionality Reduction: 
Encoding and Decoding Code Representations: To 
handle large and complex code representations, an 
autoencoder is employed. The autoencoder consists 
of an encoder network that compresses the input 
code representation X into a lower-dimensional 
latent space Z, and a decoder that reconstructs the 
original input from Z: 

𝑍 = 𝑓௘௡௖௢ௗ௘௥(𝑋),     𝑋ᇱ = 𝑓ௗ௘௖௢ௗ௘௥(𝑍) 

where fencoder and fdecoder are learned mappings. This 
dimensionality reduction removes redundancies in 
the code, making the model more efficient in terms 
of memory and computation [38].  

Loss Function for Reconstruction Accuracy: The 
autoencoder is trained to minimize the 
reconstruction error, defined as: 

L=∥X−X′∥2 

This ensures that the latent representation preserves 
essential code information while discarding 
irrelevant details, thereby enhancing the efficiency 
of the RL-based refactoring process [37]. 

3.4. Integration and Execution Pipeline: The hybrid 
model combines GNN, RL, and autoencoder 
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modules in a single pipeline. Each code snippet 
undergoes the following process: Graph Generation 
and Feature Extraction: Using GNNs, we extract 
features from the AST representation of code, 
capturing structural dependencies. RL-Based 
Refactoring: The RL agent iteratively refines the 
code, using the extracted features to inform actions 
that optimize the reward function. Dimensionality 
Reduction with Autoencoders: The autoencoder 
compresses intermediate representations to enhance 
computational efficiency without losing critical 
information. Final Code Output: The refined code is 
output, displaying improved metrics in runtime 
efficiency, memory usage, and maintainability. 

Evaluation Metrics: The effectiveness of the 
proposed model is evaluated using: (i) Code 
Complexity (e.g., Cyclomatic Complexity): 
Measures the simplicity of the code structure post-
refactoring. (ii) Runtime Efficiency: Assessed 
through execution speed comparisons before and 
after optimization. (iii) Memory Usage: Examined 
by analyzing the memory footprint of the code after 
refactoring. This methodology leverages the 
strengths of GNNs, RL, and autoencoders to create a 
robust, efficient approach to automated code 
refactoring and optimization, advancing both the 
quality and maintainability of software systems. 

 

3.5 Dataset Details: For this work, we leverage the 
Feature Envy Dataset created by Sharma et al., 
which is specifically tailored for detecting and 
analyzing feature envy code smells [39]. Feature 
envy is a common code smell that occurs when a 
method in a class is more focused on interacting with 
methods or attributes of another class rather than its 
own. This dataset is highly suitable for our hybrid 
model as it enables the training and evaluation of 
Graph Neural Networks (GNNs), Reinforcement 
Learning (RL), and Autoencoder components by 
providing detailed, labeled instances of feature envy 
across various codebases. The Feature Envy Dataset 
includes: (i) Labeled Code Samples: The dataset 
contains code snippets that are labeled for the 
presence of feature envy code smells. Each labeled 
instance includes metadata indicating whether the 
method in question is feature-envious, which 
provides a strong foundation for training GNNs to 
identify structural and dependency patterns 
associated with this smell. Structural and Semantic 
Annotations: Each code snippet in the dataset is 
annotated with structural relationships between 
classes and methods, as well as semantic information 
about method usage patterns. These annotations are 

essential for GNNs to capture the inherent structural 
hierarchies and dependencies in the code, allowing 
the network to effectively represent complex class-
method interactions. (ii) Code Metrics: The dataset 
also includes various metrics, such as method 
invocation frequencies, coupling levels, and 
cohesion scores, which help in quantitatively 
assessing the degree of feature envy in each sample. 
These metrics are instrumental for the RL 
component, providing a basis for reward 
mechanisms that encourage the model to optimize 
refactoring decisions. (iii) Diverse Programming 
Projects: The Feature Envy Dataset encompasses 
multiple open-source Java projects, offering a 
diverse set of programming styles and practices. This 
diversity enhances the generalizability of the model, 
as it enables the autoencoder to learn effective 
encoding and compression strategies that apply 
across different coding environments. (iv) 
Refactoring Suggestions: In addition to identifying 
feature envy, the dataset includes potential 
refactoring suggestions, such as moving methods to 
more relevant classes. These suggestions serve as 
ground truth for evaluating the effectiveness of the 
RL-based refactoring module, ensuring that the 
proposed refactoring’s led to improvements in code 
structure and maintainability. By utilizing this 
dataset, our model can effectively learn to identify, 
represent, and refactor instances of feature envy in a 
wide range of code samples. The dataset’s 
comprehensive annotations provide a solid 
foundation for training the hybrid model to achieve 
significant improvements in code quality, 
performance, and maintainability. The structured 
format and diverse content of this dataset make it 
well-suited to the goals of our proposed approach, 
facilitating robust training and meaningful 
evaluation of the model’s refactoring capabilities. 
The Feature Envy Dataset by Sharma et al. provides 
comprehensive metrics to identify feature envy 
instances in software code, focusing on code quality 
improvement. This dataset includes a variety of code 
samples, each tagged with feature envy annotations 
that serve as indicators for suboptimal method 
placement. The data features method-level metrics 
such as method invocation frequency, inter-class 
dependencies, and textual similarity with class 
identifiers. 

Data preprocessing involves cleaning the raw dataset 
by removing duplicate entries, handling missing 
values, and standardizing metrics to ensure 
uniformity. Methods unrelated to feature envy are 
filtered out to focus on relevant cases, enhancing 
model training efficiency. Each method entry is also 
tokenized to extract essential syntactic and semantic 
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information for further processing. For model 
training and evaluation, the dataset is divided into 
80% training and 20% testing sets, ensuring a 
representative balance of feature envy and non-
feature envy instances. The training set allows the 
model to learn feature envy patterns, while the 
testing set evaluates the model’s generalizability and 
performance. 

The training data undergoes representation through 
a Graph Neural Network (GNN) to capture 
hierarchical code structure, while an autoencoder 
processes features to optimize representations by 
compressing redundant information. This pipeline 
aids in achieving a robust, generalized model 
capable of detecting feature envy with high accuracy. 
Key performance metrics include accuracy, F1-
score, and confusion matrices to evaluate the 
effectiveness of refactoring suggestions. These 
metrics allow for a comprehensive understanding of 
model performance across different feature envy 
cases. 

For the dataset curation, we gathered 1027 Java 
repositories and 1700 C# repositories, utilizing 
RepoReapers to filter out low-quality repositories. 
The dataset's key components include labeled 
instances that identify whether a method within a 
class exhibits feature envy, structural annotations 
that capture relationships between classes and 
methods to reveal the code's structural hierarchy, and 
code metrics such as method invocation frequencies, 
class coupling levels, and cohesion scores to 
evaluate and quantify code characteristics. 
Additionally, the dataset provides refactoring 
suggestions, such as relocating methods or 
restructuring code, to effectively address feature 
envy issues. This diverse dataset, sourced from a 
wide range of open-source Java and C# projects, 
encompasses various programming styles and 
practices, ensuring a comprehensive representation 
for robust analysis and modeling. 

3.6. Pseudo-Algorithm 

To facilitate a clear understanding of the processes 
involved, the following pseudo-algorithm outlines 
the general procedure applied in training and 
evaluating the hybrid model for automated code 
refactoring and optimization. 

Pseudo-Algorithm: 

1. Input: 

 Dataset D={(xi,yi)}, where xi 
represents the input code samples 

and yi the corresponding labels 
(e.g., feature envy or code 
complexity metrics). 

2. Initialize: 

 Graph Neural Network (GNN) for 
structural analysis, Autoencoder 
(AE) for dimensionality 
reduction, Reinforcement 
Learning (RL) agent for 
optimization. 

 Learning rate η, number of 
episodes N, batch size B, and 
reward thresholds for performance 
metrics. 

3. Preprocess Data: 

 Extract structural and dependency 
features from xi (e.g., function 
calls, class relationships). 

 Construct graph representations 
for each code sample in D. 

4. For each episode t=1 to N: 

4.1.1 Feature Extraction and 
Embedding: 

Pass graph representation G(xi) 
through the GNN to obtain 
structural embeddings EG(xi). 

              4.2 Dimensionality Reduction: 

                     Feed EG(xi) into the Autoencoder. 

Obtain compressed representation 
EA(xi) from the bottleneck layer to 
reduce redundancy and maintain 
key information. 

4.3 Refactoring Optimization via RL 
Agent: 

o Define RL environment where: 

State: Compressed code 
representation EA(xi). 

Actions: Refactoring operations (e.g., 
move method, extract class). 

Reward: Based on improvements in 
code complexity, runtime, memory 
usage, and feature envy detection rates. 

o For each batch Bj in dataset D: 
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Select an action aaa based on the 
current policy and apply it to EA(xi). 

Generate a new state EA(xi)′ and 
compute the reward based on metrics 
(e.g., reduction in cyclomatic 
complexity, LOC, coupling). 

Update the RL agent’s policy using 
backpropagation to maximize 
cumulative reward. 

        4.4 Evaluate on Validation Set Dval: 

Track performance metrics (e.g., accuracy, 
precision, recall, F1-score) on the 
validation set to ensure convergence and 
stability. 

5. End For 

6. Output: Trained model MMM, optimized 
code representations C′, and performance 
metrics showing improvements in code 
quality, maintainability, and efficiency. 

3.7. Architecture: The architecture flowchart 
outlines (figure 1) the steps involved in the hybrid 
model's code refactoring process. This system 
combines Graph Neural Networks (GNN), 
Reinforcement Learning (RL), and Autoencoders to 
enhance code quality, efficiency, and maintainability 
through automated refactoring. Here’s a breakdown 
of each component in the flow: 

Input Code Samples: Raw code samples are fed into 
the model as input. These samples represent code 
sections needing refactoring or optimization, 
allowing the system to analyze the existing structure 
and detect inefficiencies. 

The input code samples are curated from 1027 Java 
repositories and 1700 C# repositories. These 
samples collectively provide thousands of labeled 
instances for training and evaluation. 

Major details of raw code samples are structural 
annotations, code metrics, Invocation frequency and 
cohesion. 

Graph Neural Network (GNN) Layer: The GNN 
processes the input code, transforming it into a graph 
structure where nodes represent code elements (e.g., 
functions, classes) and edges represent relationships 
(e.g., function calls, inheritance). This step captures 
the structural and hierarchical relationships inherent 
in the code, enabling the model to understand the 
dependencies and interactions between code 
components. 

The output of the Graph Neural Network (GNN) 
layer is a set of node embeddings, where each node 
(representing a code element like a function, class, 
or method) is transformed into a vector embedding 
that captures structural, semantic, and hierarchical 
relationships. Additionally, edge weights represent 
the strength or type of relationships (e.g., function 
calls or inheritance) between nodes, while a global 
graph-level embedding summarizes the overall 
structure of the input graph. These embeddings are 
used to classify code elements, such as detecting 
feature envy, and to identify important nodes or 
edges contributing to the task. For instance, the 
model might predict a method as feature-envious 
with high confidence or suggest refactoring by 
recommending the relocation of a method to a more 
appropriate class, thereby improving code structure 
and maintainability. 

Feature Extraction: From the GNN output, relevant 
features are extracted to represent the code in a 
compact and informative manner. These features 
encompass code metrics, dependency relations, and 
structural patterns, serving as the foundation for 
further processing. This step simplifies the code 
representation, making it suitable for further 
transformation. 

The output of the feature extraction step consists of 
a compact representation of code that includes key 
elements such as code metrics, dependency 
relations, and structural patterns. Code metrics refer 
to quantitative attributes like method invocation 
frequency, class coupling levels, and cohesion 
scores, which help assess the complexity and 
interactions within the code. Dependency relations 
capture the connections between various code 
elements, such as function calls, inheritance 
hierarchies, and method dependencies, indicating 
how different components are interrelated. 
Structural patterns represent higher-level 
relationships and hierarchies within the code, such as 
the flow of data or control across classes and 
methods. These extracted features provide an 
enriched representation of the input code, enabling 
subsequent steps, like refactoring or anomaly 
detection, to identify and address inefficiencies 
effectively. 

Autoencoder Layer: The autoencoder receives the 
extracted features and compresses them into a 
reduced-dimensionality representation. By 
compressing and reconstructing the input, the 
autoencoder identifies and removes redundant 
information, creating a streamlined version of the 
code representation. This step enhances the 
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efficiency of the code by simplifying its internal 
structure while retaining essential details. 

The output of the autoencoder layer in this context is 
a compressed and streamlined representation of the 
input code features. By compressing and 
reconstructing the input data, the autoencoder 
identifies redundant or non-essential information 
and removes it while preserving the critical 
structural and semantic details. This process results 
in a reduced-dimensionality version of the code 
representation, which is more efficient for analysis 
and processing. The streamlined representation 
retains the essential information needed for tasks like 
refactoring or anomaly detection, making the 
subsequent steps of the pipeline more effective and 
computationally efficient. 

Reinforcement Learning (RL) Agent: The RL agent, 
trained to optimize the refactoring process, takes the 
autoencoder output as input. It iteratively refines the 
code based on a reward function designed to 
improve specific performance metrics, such as 
runtime efficiency, memory usage, and 
maintainability. The agent explores various 
refactoring options and learns through trial and error, 
guided by the reward feedback, to achieve optimal 
refactoring. 

The output of the Reinforcement Learning (RL) 
agent in this context is an optimized version of the 
input code, refined based on a reward function 
tailored to improve specific performance metrics 
such as runtime efficiency, memory usage, and 
maintainability. The RL agent utilizes the 
compressed code representation from the 
autoencoder and iteratively explores various 
refactoring strategies. Guided by the reward 
feedback, the agent learns to prioritize changes that 
yield the highest performance gains, ensuring that 
the refactored code not only adheres to best practices 
but also achieves enhanced structural and functional 
efficiency. This process results in a well-refactored, 
maintainable, and high-performing codebase. 

Refactoring Process: Using the insights from the RL 
agent, the model initiates the code refactoring 
process. This involves making changes to the code 
structure, such as moving methods, restructuring 
classes, or simplifying logic to achieve a more 
optimal and maintainable form. The refactoring 
process is executed in a way that preserves the 
original functionality of the code while improving its 
quality. 

The output of the refactoring process involves a 
transformed version of the input code, where 

structural improvements have been made while 
preserving the original functionality. These 
improvements include moving methods to more 
appropriate classes, restructuring class hierarchies, 
and simplifying complex logic to enhance 
readability and maintainability. The refactored code 
is optimized to reduce redundancy, improve 
cohesion, and minimize coupling, resulting in a 
cleaner and more efficient codebase that adheres to 
best practices. This process ensures that the code is 
easier to maintain, understand, and scale while 
retaining its intended behavior. 

Evaluation Metrics: After refactoring, the modified 
code is evaluated based on predefined metrics. These 
metrics measure improvements in areas such as 
runtime efficiency, memory usage, and code 
complexity. The evaluation helps ensure that the 
refactoring process aligns with the desired 
performance goals and does not introduce any new 
issues. 

The output of the evaluation metrics involves 
quantitative assessments of the refactored code to 
verify its improvements. These metrics include 
runtime efficiency, memory usage, and code 
complexity, which help determine whether the 
refactoring process has optimized the code’s 
performance and maintainability. For example, 
reduced execution time, lower memory 
consumption, and simplified code structure indicate 
successful refactoring. By analyzing these metrics, 
the evaluation ensures that the refactored code aligns 
with performance goals, maintains functionality, and 
avoids introducing new inefficiencies or issues. 

Final Refactored Code Output: The system 
generates the final refactored code as output. This 
version of the code has been optimized to reduce 
redundancy, improve maintainability, and enhance 
overall performance. The refactored code is ready 
for deployment or further development, with 
enhanced quality achieved through the automated 
hybrid model. 
  The flow of this hybrid model moves 
sequentially from input code samples to the final 
optimized output. Each component builds on the 
previous one, creating a streamlined process that 
leverages GNN for structural understanding, 
autoencoders for redundancy reduction, and RL for 
iterative optimization. This flowchart reflects the 
systematic approach of the model in enhancing code 
quality through automated, intelligent refactoring. 
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Figure 
1: Architecture Flowchart of the Hybrid Model 

Integrating Graph Neural Networks, Reinforcement 
Learning, and Autoencoders for Automated Code 

Refactoring 

The final output of the hybrid model is a fully 
optimized and refactored version of the input code. 
This refactored code minimizes redundancy, 
improves maintainability, and enhances overall 
performance while preserving the original 
functionality. The streamlined process involves 
leveraging a Graph Neural Network (GNN) for 
structural understanding, an autoencoder for feature 
compression and redundancy elimination, and a 
Reinforcement Learning (RL) agent for iterative 
optimization guided by performance metrics. This 
systematic approach ensures the code is ready for 
deployment or further development, achieving 
significant improvements in quality and efficiency 
through intelligent, automated refactoring. 

4. RESULTS AND DISCUSSION 

These performance metrics illustrate the 
clear advantages of the proposed hybrid model, 
which combines GNN, RL, and Autoencoders for 
enhanced automated code refactoring. The hybrid 
model’s superior accuracy, precision, recall, and F1-
score values validate its ability to deliver significant 
improvements in code quality and maintainability 
compared to individual models and traditional 
heuristic-based approaches. The following sections 
will delve deeper into these results, examining how 
each component contributes to the overall 
performance and exploring the practical implications 
of the hybrid model’s superior metrics for real-world 
code optimization tasks. 

 

Figure 2: Performance Comparison of Different Models 
in Terms of Accuracy, Precision, Recall, and F1-Score for 

Automated Code Refactoring 

The performance analysis presented in Figure 2 (see 
Table 1) underscores the effectiveness of the 
proposed hybrid model, which combines Graph 
Neural Networks (GNN), Reinforcement Learning 
(RL), and Autoencoders to achieve substantial 
improvements in automated code refactoring. With 
an accuracy of 92.5%, the hybrid model significantly 
outperforms the GNN-only model (85.3%), the RL-
only model (82.6%), and the Autoencoder-only 
model (78.5%). The heuristic-based baseline, 
achieving only 70.3% accuracy, highlights the 
limitations of traditional methods when compared to 
advanced learning models. The hybrid model also 
demonstrates high precision at 91.8%, indicating its 
strong ability to correctly identify relevant code 
changes with minimal false positives, which is a 
marked  

improvement over the standalone models and the 
baseline. Additionally, the model’s recall of 90.7% 
reveals its success in identifying a vast majority of 
relevant instances for refactoring, surpassing the 
GNN-only (83.9%), RL-only (79.7%), and 
Autoencoder-only (75.8%) models, and vastly 
outperforming the heuristic-based approach 
(69.2%). Finally, the F1-score of 91.2% reflects a 
well-balanced performance between precision and 
recall, solidifying the hybrid model’s role as the most 
effective approach among those tested. 
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Model 
Accurac

y 
Precisio

n 
Recal

l 
F1-

Score 

Proposed 
Hybrid Model 

92.5% 91.8% 90.7% 
91.2
% 

GNN Only 85.3% 84.1% 83.9% 
84.0
% 

Reinforcemen
t Learning 
Only 

82.6% 80.4% 79.7% 
80.0
% 

Autoencoder 
Only 

78.5% 76.9% 75.8% 
76.3
% 

Heuristic-
based 
Baseline 

70.3% 68.7% 69.2% 
68.9
% 

Table 1: Model Performance Metrics Comparison 

The hybrid model’s performance across all metrics 
validates its unique architecture, which combines the 
structural representation capabilities of GNN, the 
optimization benefits of RL, and the dimensionality 
reduction of Autoencoders. Each component 
contributes distinct advantages that enhance the 
model's overall efficacy in code refactoring. GNNs 
capture the hierarchical and dependency 
relationships within the code, providing a structured 
representation that helps in accurately identifying 
refactoring needs. RL, on the other hand, brings an 
iterative learning approach that dynamically 
optimizes refactoring actions based on predefined 
performance metrics, leading to more effective and 
targeted improvements. Meanwhile, Autoencoders 
compress and simplify code representations, 
reducing redundancy and enhancing the model’s 
ability to handle complex, large-scale codebases 
without compromising accuracy. The comparative 
results demonstrate that while individual models, 
such as GNN-only or RL-only approaches, can 
achieve reasonable performance, they fall short of 
the hybrid model's capabilities. For example, the 
GNN-only model performs well in capturing 
structural information but lacks the dynamic 
optimization provided by RL, resulting in lower 
accuracy and precision. Similarly, the RL-only 
model offers iterative improvements but struggles 
without the structural insights from GNN, leading to 
reduced recall. The Autoencoder-only model, while 
beneficial in managing large datasets through 
dimensionality reduction, lacks sufficient context 

from both structural and optimization perspectives, 
leading to moderate performance across all metrics. 
The hybrid model’s significant improvement over 
the heuristic-based baseline further emphasizes the 
limitations of traditional refactoring techniques, 
which lack the adaptability and nuanced learning 
capabilities of advanced models. The heuristic-based 
approach’s comparatively low F1-score of 68.9% 
indicates its struggle to balance precision and recall, 
often resulting in a high rate of false positives and 
missed refactoring opportunities. This reinforces the 
necessity of integrating machine learning 
techniques, such as GNN, RL, and Autoencoders, to 
achieve robust, scalable, and efficient code 
optimization. In this proposed hybrid model 
showcases a powerful and versatile approach for 
automated code refactoring. Its superior 
performance metrics — particularly the accuracy of 
92.5% and the F1-score of 91.2% — highlight its 
potential to enhance code quality, reduce complexity, 
and improve maintainability in software projects. 
This model’s success suggests a promising direction 
for future work in code optimization, where 
integrating various machine learning techniques can 
lead to more effective and intelligent refactoring 
solutions. 

Figure 3: Code Metrics Reduction Across Different 
Model Approaches 

Figure 3 (see Table 2) illustrates the performance of 
various models in terms of code complexity 
reduction metrics, including Cyclomatic Complexity 
Reduction, Lines of Code (LOC) Reduction, and 
Code Coupling Reduction. Each metric is 
represented as a percentage, indicating the 
effectiveness of each model in simplifying and 
optimizing code structure. The Proposed Hybrid 
Model demonstrates the highest reduction across all 
metrics, achieving 35.2% reduction in Cyclomatic 
Complexity, 28.7% reduction in LOC, and a 
significant 40.3% reduction in Code Coupling. This 
model, which integrates Graph Neural Networks 
(GNN), Reinforcement Learning (RL), and 
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Autoencoders, shows a clear advantage in 
minimizing code complexity and dependencies, 
thereby enhancing code maintainability and 
readability. In comparison, the GNN Only model 
achieves moderate reductions: 20.1% in Cyclomatic 
Complexity, 18.5% in LOC, and 23.4% in Code 
Coupling. This indicates that while GNNs alone are 
effective in capturing structural information, they 
lack the optimization capabilities that the hybrid 
model leverages through the integration of RL and 
Autoencoders. The Reinforcement Learning Only 
approach performs slightly lower, with reductions of 
15.4% in Cyclomatic Complexity, 12.9% in LOC, 
and 17.1% in Code Coupling. This suggests that 
while RL can improve code efficiency by learning 
optimal refactoring strategies, it is more effective 
when combined with GNNs and Autoencoders for a 
holistic view of code structure and content. Finally, 
the Autoencoder Only model yields the least 
reduction, with 10.7% in Cyclomatic Complexity, 
8.3% in LOC, and 14.8% in Code Coupling. While 
Autoencoders are useful for compressing code 
representations, their standalone application is less 
impactful in terms of complexity and dependency 
reduction. 

Table 2: Code Complexity Reduction Metrics 

Model 

Cyclomati
c 

Complexit
y 

Reduction 
(%) 

LOC 
Reductio

n (%) 

Code 
Coupling 
Reductio

n (%) 

Proposed 
Hybrid Model 

35.2% 28.7% 40.3% 

GNN Only 20.1% 18.5% 23.4% 

Reinforcemen
t Learning 
Only 

15.4% 12.9% 17.1% 

Autoencoder 
Only 

10.7% 8.3% 14.8% 

The results indicate that combining GNN, RL, and 
Autoencoder models leads to superior performance 
in code refactoring tasks. The hybrid model’s higher 
reduction rates in all metrics confirm its ability to 
capture structural, relational, and semantic patterns 
within code, facilitating more comprehensive 
refactoring. The high percentage in Code Coupling 
Reduction (40.3%) for the hybrid model is 
particularly noteworthy, highlighting its capacity to 

decrease interdependencies and enhance modularity, 
which are critical for scalable and maintainable 
codebases. The performance differences between 
individual models also provide insight into their 
respective strengths and limitations. GNNs excel in 
structural analysis, RL in optimization via iterative 
feedback, and Autoencoders in dimensionality 
reduction, but only the hybrid approach maximizes 
these capabilities through a unified model. This 
suggests that future code refactoring and 
optimization efforts should consider hybrid 
architectures to exploit the unique strengths of 
multiple learning approaches. 

The results demonstrate the superior performance of 
the proposed hybrid model in optimizing code 
quality compared to individual components such as 
GNN, Reinforcement Learning (RL), and 
Autoencoder. The hybrid model achieves a 35.2% 
reduction in cyclomatic complexity, a 28.7% 
reduction in lines of code (LOC), and a 40.3% 
reduction in code coupling, showcasing its ability to 
streamline code structure, simplify logic, and reduce 
interdependencies effectively. In contrast, the GNN-
only model, while proficient at capturing structural 
relationships, achieves lower improvements due to 
its limited focus on other optimization aspects. 
Similarly, the RL-only approach offers iterative 
optimization but lacks the structural understanding 
of GNNs or the compression capabilities of 
Autoencoders, resulting in moderate improvements. 
The Autoencoder-only model provides the least 
gains, focusing primarily on redundancy reduction 
without addressing structural or dependency-level 
complexities. These results highlight the combined 
strength of integrating GNNs for structural insights, 
Autoencoders for compression, and RL for iterative 
optimization, making the hybrid model a holistic 
solution for code refactoring and quality 
improvement. 
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Figure 4: Runtime and Memory Usage Analysis Across 
Different Model Approaches 

Figure 4 (see Table 3) illustrates the runtime 
efficiency and memory usage across various model 
approaches for automated code refactoring and 
optimization. The Proposed Hybrid Model exhibits 
superior performance in terms of both runtime and 
memory efficiency, achieving an average runtime of 
1.5 seconds and memory usage of 150 MB. This is a 
clear improvement over other models, indicating that 
the hybrid model effectively optimizes 
computational resources while maintaining high 
performance. Comparatively, the GNN Only model 
shows an average runtime of 2.8 seconds and 
memory usage of 180 MB, which is slower and more 
memory-intensive than the hybrid model but still 
relatively efficient. The Reinforcement Learning 
Only model demonstrates a further increase in 
runtime, requiring 3.5 seconds on average and 
consuming 190 MB of memory, reflecting the 
computational demands of reinforcement learning 
when used alone. The Autoencoder Only model, 
while more efficient than reinforcement learning, 
still lags the hybrid model with a runtime of 2.3 
seconds and 160 MB memory usage. Finally, the 
Heuristic-based Baseline model performs the worst 
in terms of computational efficiency, with a runtime 
of 4.5 seconds and memory usage reaching 220 MB. 
This highlights the limitations of heuristic 
approaches in handling complex refactoring tasks 
efficiently. The results depicted in Figure 4 
underscore the efficiency of the hybrid model in 
handling both runtime and memory demands. The 
integration of GNNs, RL, and Autoencoders allows 
the hybrid model to leverage each component’s 
strengths while minimizing their individual resource 
constraints.  

 

 

 

Table 3: Runtime and Memory Usage Analysis 

 

Model 
Average 

Runtime (s) 
Memory 

Usage (MB) 

Proposed Hybrid 
Model 

1.5 150 

GNN Only 2.8 180 

Reinforcement 
Learning Only 

3.5 190 

Autoencoder Only 2.3 160 

Heuristic-based 
Baseline 

4.5 220 

 

Specifically, the hybrid model’s faster runtime and 
lower memory usage suggest that it can process code 
refactoring tasks more swiftly and with less resource 
consumption, making it suitable for large-scale 
applications in real-time environments. The 
comparison also highlights the limitations of using 
individual models in isolation. While GNN and 
Autoencoder models perform moderately well, they 
do not match the hybrid model’s efficiency due to 
their isolated limitations in either structure 
representation or feature compression. The 
reinforcement learning model, despite its iterative 
optimization strength, is slower due to the 
computational intensity of training through trial and 
error. The heuristic-based approach, as shown by its 
high runtime and memory demands, is less effective 
for complex and iterative refactoring tasks. These 
findings emphasize the value of combining 
complementary deep learning approaches for 
optimized performance, suggesting that future work 
in code refactoring should consider hybrid models 
for enhanced efficiency and scalability. 
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The performance metrics clearly indicate the 
efficiency of the proposed hybrid model compared 
to standalone approaches and the heuristic-based 
baseline. With an average runtime of 1.5 seconds and 
memory usage of 150 MB, the hybrid model 
demonstrates its ability to process code efficiently 
while maintaining low resource consumption. This 
is attributed to its balanced integration of GNNs for 
structural analysis, Autoencoders for dimensionality 
reduction, and RL for targeted optimization, 
minimizing redundant computations. In comparison, 
the GNN-only model has a longer runtime of 2.8 
seconds and higher memory usage of 180 MB due to 
its computationally intensive graph processing. The 
RL-only approach is even more resource-heavy, with 
a 3.5-second runtime and 190 MB memory usage, as 
it involves iterative trial-and-error learning. The 
Autoencoder-only model, while more efficient than 
the GNN and RL models, still lags behind the hybrid 
model with a runtime of 2.3 seconds and memory 
usage of 160 MB. The heuristic-based baseline is the 
least efficient, requiring 4.5 seconds and 220 MB, 
highlighting the limitations of traditional, rule-based 
approaches. These results validate the hybrid 
model's design, which effectively balances 
performance and resource efficiency for optimized 
code refactoring. 

Figure 5: Feature Envy Detection Effectiveness Across 
Different Model Approaches 

Figure 5 (Table 4) presents the effectiveness of 
various model approaches in detecting feature envy, 
a critical code smell that impacts software 
maintainability. The Proposed Hybrid Model 
outperforms all other approaches with a Feature 
Envy Detection Rate of 93.4%, which indicates its 
superior ability to identify instances of feature envy 
accurately. Additionally, the hybrid model maintains 
a low False Positive Rate (5.2%) and False Negative 
Rate (4.1%), underscoring its precision and 
reliability in minimizing erroneous detections. In 
contrast, the GNN Only model achieves a Detection 

Rate of 87.1%, with slightly higher False Positive 
and False Negative Rates of 7.8% and 9.3%, 
respectively. This shows that while GNNs are 
effective in detecting feature envy, their performance 
diminishes without the reinforcement learning and 
autoencoder components, resulting in slightly more 
misclassifications. The Reinforcement Learning 
Only model shows a further reduction in accuracy, 
with a Detection Rate of 82.3%, False Positive Rate 
of 10.2%, and False Negative Rate of 11.4%. These 
values indicate that while reinforcement learning 
aids in iterative learning and optimization, its 
isolated application is less effective in detecting 
complex structural issues like feature envy. The 
Autoencoder Only model, which focuses on 
compression and redundancy reduction, yields the 
lowest detection performance with a Detection Rate 
of 79.5%, False Positive Rate of 11.5%, and False 
Negative Rate of 13.8%. This indicates that although 
autoencoders are beneficial in data simplification, 
they lack the necessary analytical depth to address 
feature envy detection effectively when used alone. 
The analysis depicted in Figure 5 underscores the 
effectiveness of a hybrid approach in accurately 
identifying feature envy in code. By combining 
GNNs for structural insight, reinforcement learning 
for iterative optimization, and autoencoders for data 
compression, the hybrid model achieves a balance 
that maximizes detection rates while minimizing 
both false positives and false negatives. The 
Proposed Hybrid Model's ability to achieve a 93.4% 
detection rate reflects its robustness and suitability 
for complex refactoring tasks where accurate code 
smell detection is paramount. The comparative 
performance of individual models highlights the 
limitations inherent in isolated applications of GNN, 
reinforcement learning, and autoencoder techniques. 
While GNNs provide valuable structural insights, 
they lack optimization capabilities without 
reinforcement learning. Similarly, reinforcement 
learning benefits from the iterative learning 
approach but fails to capture the inherent structure of 
the code effectively. Autoencoders, while efficient in 
handling redundant information, lack the analytical 
power needed for accurate detection of nuanced code 
issues. This discussion supports the rationale for 
integrating these three methods into a cohesive 
hybrid model. The combined strengths of each 
component contribute to a more accurate, efficient, 
and effective system for automated code refactoring 
and optimization, offering substantial improvements 
over traditional or single-method approaches. This 
model provides a promising direction for further 
advancements in automated code analysis and 
refactoring. 
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Table 4: Feature Envy Detection Effectiveness 

Model 

Feature 
Envy 

Detection 
Rate (%) 

False 
Positive 

Rate 
(%) 

False 
Negative Rate 

(%) 

Proposed 
Hybrid Model 

93.4% 5.2% 4.1% 

GNN Only 87.1% 7.8% 9.3% 

Reinforcement 
Learning Only 

82.3% 10.2% 11.4% 

Autoencoder 
Only 

79.5% 11.5% 13.8% 

The results of this study reveal the 
substantial advantages of the proposed hybrid 
model, which integrates Graph Neural Networks 
(GNN), Reinforcement Learning (RL), and 
Autoencoders, for automated code refactoring and 
optimization. Each figure provides a unique 
perspective on the model’s effectiveness across 
different performance metrics, consistently 
demonstrating that the hybrid approach surpasses 
traditional and individual component models in 
multiple critical dimensions. Performance Metrics 
(Accuracy, Precision, Recall, F1-Score): The hybrid 
model achieves the highest performance across all 
key metrics, with an accuracy of 92.5%, precision of 
91.8%, recall of 90.7%, and F1-score of 91.2%. This 
significant outperformance over standalone GNN, 
RL, and autoencoder models, as well as the 
heuristic-based baseline, highlights the hybrid 
model's ability to capture complex relationships in 
code effectively while maintaining high levels of 
accuracy and consistency in detecting code smells. 
These metrics are particularly crucial in software 
maintenance, as they imply a reliable and consistent 
refactoring process with minimal errors. Code 
Complexity Reduction (Cyclomatic Complexity, 
LOC, Code Coupling): The hybrid model’s impact 
on reducing code complexity is evident, with 
reductions of 35.2% in cyclomatic complexity, 
28.7% in lines of code (LOC), and 40.3% in code 
coupling. These reductions indicate a significant 
improvement in code maintainability and 
readability, facilitating easier debugging and 
updates. By comparison, the individual models and 
baseline approach exhibit lower reduction rates, 
affirming the hybrid model’s capability in generating 
cleaner and more maintainable code structures. The 
success in minimizing code complexity underscores 

the benefit of combining structural insights from 
GNN, optimization from RL, and redundancy 
reduction from autoencoders. Runtime and Memory 
Efficiency: The hybrid model shows an optimal 
balance between runtime and memory usage, with an 
average runtime of 1.5 seconds and memory usage 
of 150 MB. This balance highlights the hybrid 
model’s efficiency, as it performs more complex 
computations than standalone models while 
maintaining lower resource consumption. By 
contrast, the heuristic-based baseline and individual 
models demonstrate higher runtimes and memory 
usage, which can limit scalability and practical 
application in real-world, resource-constrained 
environments. These efficiency gains make the 
hybrid model particularly suitable for large-scale 
software projects requiring automated refactoring. 
Feature Envy Detection (Detection Rate, False 
Positive, and False Negative Rates): In feature envy 
detection, the hybrid model achieves a detection rate 
of 93.4%, with low false positive and false negative 
rates of 5.2% and 4.1%, respectively. This 
performance demonstrates its robustness and 
reliability in identifying complex code smells that 
impact cohesion and class structure. Individual 
models, such as GNN and RL-only configurations, 
show reduced detection rates and higher error rates, 
underscoring the limitations of relying solely on one 
type of analysis. The hybrid approach's ability to 
combine GNN's structural understanding with RL's 
optimization and autoencoder's data compression 
ensures a comprehensive assessment of code 
relationships and dependencies. The comprehensive 
results across various metrics suggest that the hybrid 
model offers a balanced, powerful solution for 
automated code refactoring. By combining GNN’s 
structural capabilities, RL’s iterative learning, and 
the compression strength of autoencoders, this 
model not only enhances accuracy in code smell 
detection but also ensures more maintainable and 
efficient code through complexity reduction and 
optimal resource usage. This integration addresses 
the limitations observed in single-method 
approaches, providing a robust framework for real-
time, scalable refactoring solutions in diverse 
software engineering applications. The findings 
advocate for broader adoption of hybrid models in 
software refactoring and code optimization tasks, as 
they demonstrate superior outcomes in accuracy, 
efficiency, and detection reliability compared to 
traditional or isolated methodologies. 

5. CONCLUSIONS 

In conclusion, this research introduces a 
hybrid model that effectively combines Graph 
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Neural Networks (GNN), Reinforcement Learning 
(RL), and Autoencoders to automate and optimize 
code refactoring processes. The model leverages the 
specific strengths of each component: GNNs capture 
intricate structural and hierarchical relationships in 
code, RL facilitates iterative optimization based on 
performance metrics, and Autoencoders compress 
code representations, reducing redundancy and 
enhancing efficiency. Our results demonstrate that 
this approach significantly improves various aspects 
of code performance and maintainability, 
showcasing the model’s utility in practical software 
engineering contexts. The model’s performance 
evaluations highlight its impact on critical metrics. 
Specifically, runtime efficiency showed a notable 
improvement, with the hybrid model achieving an 
average reduction in execution time by 
approximately 22% compared to traditional 
refactoring methods. Additionally, memory usage 
was optimized, with a decrease of around 18%, 
facilitated largely by the Autoencoder's capability to 
compress and simplify code representations. 
Furthermore, code complexity was reduced by 15%, 
enhancing readability and maintainability, which are 
essential for long-term code quality. These results 
underscore the model’s ability to streamline 
computational resource usage, making it a viable 
tool for large-scale software systems where 
efficiency is paramount. The hybrid model's 
adaptability is another significant outcome, as it 
performed consistently across various code 
structures, demonstrating its potential for broader 
application in different programming languages and 
environments. This generalizability is due to GNN’s 
capacity to model complex code structures, allowing 
the approach to handle a range of programming 
patterns and complexities with minimal adjustments. 
While the results are promising, there remains room 
for further exploration to enhance the model's 
versatility and applicability. Future research could 
integrate additional machine learning methods to 
cater to language-specific refactoring needs or refine 
the model for real-time, in-development code 
refinement. These directions could further optimize 
code quality and developer productivity in dynamic 
coding environments. In summary, this work 
provides a robust framework for automated code 
refactoring, offering significant enhancements in 
efficiency, maintainability, and code quality. By 
combining GNNs, RL, and Autoencoders, this 
hybrid approach addresses the challenges of 
traditional refactoring techniques, contributing a 
sophisticated, adaptable tool to the field of 
intelligent code analysis and optimization. 
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