
 Journal of Theoretical and Applied Information Technology
15th January 2025. Vol.103. No.1

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

285

A HYBRID MODEL COMBINING GRAPH NEURAL
NETWORKS, REINFORCEMENT LEARNING, AND

AUTOENCODERS FOR AUTOMATED CODE REFACTORING
AND OPTIMIZATION

RAGHUPATHY DURGA PRASAD1, Dr. MUKTEVI SRIVENKATESH2

1Research Scholar, GITAM University, Department of Computer Science, Visakhapatnam, India

2Associate Professor, GITAM University, Department Computer Science,Visakhapatnam, India

E-mail: 1deardp@gmail.com, 2smuktevi@gitam.edu

ABSTRACT

This research develops a cutting-edge hybrid deep learning architecture, blending Graph Neural Networks
(GNNs), Reinforcement Learning (RL), and Autoencoders, to optimize and refactor code automatically.
GNNs are employed to capture hierarchical and structural relationships within code, RL iteratively optimizes
the refactoring process based on performance metrics, and Autoencoders compress code representations to
reduce redundancy and enhance efficiency. The proposed model outperforms standalone GNN, RL, and
Autoencoder models as well as traditional heuristic-based methods, achieving an accuracy of 92.5%,
precision of 91.8%, recall of 90.7%, and F1-score of 91.2%. Experimental results also demonstrate
substantial improvements in code complexity metrics, including a 35.2% reduction in cyclomatic complexity,
28.7% fewer lines of code, and a 40.3% decrease in code coupling, enhancing readability and maintainability.
Furthermore, the model operates with an average runtime of 1.5 seconds and memory usage of 150 MB,
significantly outperforming baseline approaches. These findings affirm the model’s efficacy in delivering
high-quality, resource-efficient code refactoring solutions, making it a robust tool for modern software
engineering practices.

Keywords: Hybrid Deep Learning, Code Refactoring, Graph Neural Networks (GNNs) Reinforcement
Learning (RL), Autoencoders, Software Optimization.

1. INTRODUCTION

Software development is an ever-evolving
field, continuously striving to improve code quality,
performance, and maintainability. One of the
primary techniques for achieving these
improvements is code refactoring, which involves
restructuring the internal design of software without
altering its external behavior [1]. Refactoring aims
to reduce technical debt, enhance readability, and
facilitate software maintenance. However, the
manual process of refactoring can be time-
consuming, requiring significant effort, especially
for large and complex codebases. As software
systems grow and become complex, the need for
automated approaches that can streamline the
refactoring process becomes increasingly important
[2][3]. Graph Neural Networks (GNNs) have
emerged as a promising approach for modeling the
structure and dependencies in code. By representing
code as a graph, where nodes correspond to code
entities and edges represent relationships, GNNs can
capture both the structural and semantic
characteristics of software [4]. This ability to encode

complex software structures makes GNNs suitable
for detecting areas in the code that can benefit from
refactoring. However, GNNs alone may not be
sufficient for optimizing the entire refactoring
process, especially in dynamic and context-sensitive
software environments [5].

Reinforcement Learning (RL) provides a suitable
framework for optimizing code refactoring through
iterative learning. RL can be employed to enhance
the decision-making process by continuously
refining the refactoring actions based on feedback
from performance metrics such as execution time,
memory consumption, and code complexity [6].
This approach allows for dynamic adaptation to
various scenarios, leading to more efficient code
optimization. Unlike traditional heuristic-based
techniques, RL offers a data-driven mechanism to
evolve refactoring strategies over time [7]. In
addition to GNNs and RL, autoencoders contribute
to the automated refactoring process by reducing the
dimensionality of code representations.
Autoencoders are a type of neural network that learn
compressed, latent representations of input data

 Journal of Theoretical and Applied Information Technology
15th January 2025. Vol.103. No.1

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

286

while retaining essential information [8]. When
applied to code, autoencoders can generate
simplified versions of complex code structures,
removing redundancies and enhancing code
readability. This ability to abstract code
representations makes autoencoders a valuable tool
for pre-processing and simplifying code before
further analysis and optimization [9].

The integration of GNNs, RL, and autoencoders into
a hybrid model aims to overcome the limitations of
traditional approaches to automated code
refactoring. The proposed model leverages the
strengths of each component: GNNs capture
intricate relationships within the code, RL iteratively
optimizes the refactoring process through feedback-
based learning, and autoencoders reduce redundancy
and improve code representation [10]. This
combination provides a comprehensive approach to
enhancing code quality, runtime efficiency, and
maintainability. Empirical evaluations show that the
hybrid model outperforms existing automated
refactoring techniques in various performance
metrics, including runtime efficiency, memory
usage, and code complexity reduction [11]. These
results demonstrate the effectiveness of the hybrid
approach in automating the refactoring process and
highlight the potential for advanced machine
learning techniques to revolutionize software
maintenance. The proposed model provides a
scalable framework for integrating AI-driven
methods into software engineering practices, making
it applicable to various programming languages and
development environments [12]. The problem of
code smells extends beyond single-language
systems, as modern software often combines
multiple programming languages for different
aspects of functionality. This complexity adds to the
challenge of detecting code smells, especially in
systems where similar functionalities are replicated
across different languages. Traditional approaches to
code clone detection and code smell identification
may struggle in such multi-language environments
due to varying syntax, semantics, and programming
paradigms [13]. Techniques that rely on syntactic
analysis or intermediate representations may lack
deeper semantic similarities, making it difficult to
identify smells consistently across diverse codebases
[14].

To address these challenges, researchers have
explored the use of graph-based techniques that
capture the structural relationships in code. For
example, Graph Neural Networks (GNNs) have
shown promise in modeling software systems, where
nodes can represent methods, classes, or modules,

and edges capture relationships such as method calls
or data flows. This graph-based approach allows for
a more holistic analysis of the code, which is
particularly useful for detecting complex smells like
feature envy, where a method depends more on
external classes than its own [15]. GNNs are also
advantageous in handling heterogeneous data,
making them suitable for cross-language code
analysis [16]. Reinforcement Learning (RL) adds an
additional layer of intelligence to automated code
refactoring. Unlike static rule-based methods, RL
allows the system to learn from feedback by
iteratively optimizing refactoring decisions based on
performance metrics. This dynamic adaptation helps
to improve the software continuously,
accommodating changes in code structure and
requirements over time. For instance, RL can help
decide the most beneficial transformations,
considering factors such as execution speed,
memory usage, and code readability. This is
especially relevant in large projects where manual
refactoring would be infeasible [17].

The integration of GNNs and RL presents a robust
solution for tackling code smells and optimizing
code quality. While GNNs offer powerful
capabilities for capturing the structural properties of
code, RL provides a mechanism for continuous
improvement through feedback-driven optimization.
Together, they can be used to detect code smells
more accurately and suggest optimal refactoring
strategies that enhance software maintainability and
performance [18]. The use of graph augmentation
techniques further helps in balancing the dataset
during training, ensuring that the model can
effectively learn even when smelly code instances
are rare [19]. Moreover, autoencoders contribute to
this hybrid approach by simplifying the code
representation, compressing the code while retaining
essential characteristics. This helps in reducing
redundancy and improving the overall clarity of the
software, which in turn facilitates more effective
detection and refactoring of code smells. By
leveraging autoencoders to pre-process the data, the
hybrid model can focus on identifying deeper
structural issues within the software [20]. The
proposed approach not only improves the detection
of code smells but also automates the process of
recommending refactoring strategies. The use of
GNNs allows for the identification of complex
dependencies in the code, while RL optimizes the
sequence of refactoring actions to achieve the best
outcome. This approach is a significant advancement
over traditional methods, which often rely on static
analysis and hand-crafted rules. The dynamic nature
of the hybrid model makes it well-suited for modern

 Journal of Theoretical and Applied Information Technology
15th January 2025. Vol.103. No.1

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

287

software systems, where continuous integration and
deployment require adaptive and automated tools for
code quality improvement [21].

2. RELATED WORKS

The development of hybrid models for code
refactoring and optimization has drawn significant
attention in recent research. Various approaches have
been explored, combining elements such as graph
theory, machine learning, and evolutionary
algorithms to enhance software refactoring
processes. Nasagh et al. [22] proposed a fuzzy
genetic automatic refactoring approach (FGARA)
that leverages a graph model to measure metrics
such as load, betweenness, out-degree, in-degree,
and closeness centrality to identify code smells. By
integrating fuzzy logic with a genetic algorithm
(GA), this approach has demonstrated significant
improvements in identifying and refactoring bad
classes, achieving a 68.92% success rate on the
Fontana dataset and properly refactoring 77% of the
types based on coupling metrics. This research
represents a notable advancement in identifying
code smells and executing refactoring processes,
setting a benchmark for future studies. Sharif [23]
developed the Code Analysis Tool (CAT) designed
to assist developers in identifying extract class
refactoring opportunities, focusing on improving
software quality through object-oriented metrics.
This study achieved a notable 79% accuracy in
detecting refactoring possibilities, highlighting the
potential of CAT in providing actionable insights for
developers seeking to enhance their code’s
maintainability. Mohan and Greer [24] introduced a
Many-Objective Approach (MOA) to automated
refactoring, contrasting it with traditional mono-
objective methods. Their research highlighted that a
multi-objective refactoring approach could
outperform mono-objective techniques, particularly
in terms of objective scores across various Java
programs. However, the study also pointed out
limitations, such as the reduced effectiveness of
priority and component recentness objectives in
many-objective setups when used together.

Meng and Su [25] proposed a Worst-Case Execution
Time (WCET) optimization strategy that utilizes
source code refactoring to minimize execution times
in critical software paths. Their approach involved
extracting the worst-case execution path (WCEP)
from control flow charts and mapping it back to the
source code. By dividing the source code into
optimization zones, their method effectively reduced
the search scope and prevented improper refactoring.
This technique is particularly valuable in real-time

systems where minimizing execution time is critical.
In the context of automated code reviews, Zhou et al.
[26] examined the use of generation-based methods
for code review automation, revealing limitations in
existing techniques and emphasizing the need for
more advanced models to handle complex review
tasks effectively. Their work laid the groundwork for
integrating advanced models such as ChatGPT into
the code review process, which could streamline
refactoring and optimization tasks. The potential of
large language models (LLMs) like ChatGPT [27]
has been explored in automating various software
engineering tasks, including code reviews. Ouyang
et al. [28] and Stiennon et al. [31] demonstrated that
ChatGPT, trained using Reinforcement Learning
from Human Feedback (RLHF), could generate
high-quality responses to human inputs and self-
correct based on subsequent dialogues. By
leveraging ChatGPT’s conversational capabilities, it
becomes feasible to automate code refinement tasks
by providing the original code and review comments
as task inputs, which the model uses to return revised
code along with explanations for the changes. This
body of work highlights the growing interest in
hybrid models that combine elements such as
reinforcement learning, graph neural networks, and
autoencoders to enhance the code refactoring
process. These models aim to automate various
aspects of code optimization, from identifying
refactoring opportunities to implementing changes
based on feedback, ultimately improving software
quality and reducing developer workload

A. Metric-Based Approaches: The initial efforts to
detect feature envy relied on simple handcrafted
metrics that quantify specific attributes of software
code. These approaches typically measure
similarities between methods or attributes within
classes and compare them to external class entities
to detect code smells. Simon et al. [30] introduced
one of the first metric-based approaches, suggesting
that the similarity between two software entities
depends on the shared set of methods or attributes.
They defined a distance metric to quantify the
similarity, arguing that feature envy can be detected
when a method shows a stronger relationship with
entities in an external class than with entities within
its own class. Tsantalis and Chatzigeorgiou [31]
extended the metric-based approach by proposing a
methodology to identify opportunities for moving
methods to different classes. Their work was based
on two conditions: (1) the move should satisfy all
compilation requirements, and (2) the distance
between the method and the target class should be
minimized. Their approach was implemented in
JDeodorant, a widely recognized code smell

 Journal of Theoretical and Applied Information Technology
15th January 2025. Vol.103. No.1

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

288

detection tool used as a benchmark for evaluating
various refactoring techniques. Sales et al. [32]
offered a different metric-based solution by using
static dependencies to detect feature envy. In their
approach, they calculated the similarity between
methods based on dependencies, defining the
relationship between a method and a class as the
average similarity with all methods in that class. This
approach was further developed into the JMove tool,
another well-known benchmark used for code smell
detection and refactoring tasks.

B. Machine Learning-Based Approaches: As
limitations in handcrafted metrics became apparent,
researchers began incorporating machine learning
(ML) techniques to enhance feature envy detection.
ML-based approaches utilize code metrics and
various features extracted from the source code,
feeding these into machine learning models to
predict the presence of feature envy. Liu et al. [29]
combined traditional metric-based methods with
machine learning techniques. They used the distance
metric defined by Tsantalis et al. [15], along with
textual similarity between method names and class
names and fed these features into a Convolutional
Neural Network (CNN) model to detect feature envy.
Their work represents one of the earliest applications
of deep learning to code smell detection.

Wang et al. [33] introduced the Self-Attention
Mechanism in feature envy detection. Their method
employed Bidirectional Long-Short Term Memory
(BiLSTM) networks to extract semantic information
from the code and utilized embedding techniques to
improve structural distance information. This
combination of semantic and structural analysis
yielded more accurate predictions compared to
traditional approaches. Yin et al. [17] proposed a
model that incorporates local and global features for
explainable feature envy detection. Their approach
uses different representation models for local code
(e.g., method-level features) and global code (e.g.,
class-level features), providing explanations that
help developers better understand the results and
make informed decisions regarding code refactoring.

C. Graph Neural Network-Based Approaches:
Despite the advancements in both metric-based and
ML-based approaches, these methods often overlook
the inherent relationships between methods within a
program. To address this gap, recent research has
explored the use of Graph Neural Networks (GNNs)
for feature envy detection, as GNNs can effectively
capture relationships between nodes (methods) and
edges (method calls) in a graph structure. The use of
graph structures allows for a more nuanced analysis

of calling relationships, which are often crucial for
detecting feature envy. By representing the code as a
directed graph where nodes represent methods and
edges represent calling relationships, GNN-based
models can better identify code smells and provide
more accurate refactoring recommendations.

D. Related Work on Automated Code Refactoring: In
addition to feature envy detection, automated code
refactoring has been explored through various other
approaches. For instance, Nasagh et al. [22]
proposed a fuzzy genetic algorithm for refactoring,
which utilizes graph models to measure code quality
and perform refactoring based on fuzzy logic and
genetic algorithms. Similarly, Sharif [23] introduced
a tool to identify extract class refactoring
opportunities using object-oriented metrics. Mohan
and Greer [24] examined multi-objective
optimization techniques for automated refactoring,
demonstrating that combining multiple objectives
can improve refactoring results over single-objective
approaches. On the other hand, Meng and Su [25]
focused on optimizing the worst-case execution time
(WCET) through source code refactoring, dividing
code into optimization zones to identify refactoring
opportunities.

E. Reinforcement Learning in Code Optimization:
Reinforcement Learning (RL) has emerged as a
promising approach for software optimization tasks,
including program synthesis, software testing, and
automated code refactoring. For instance, Bunel et
al. [34] used RL for program synthesis tasks by
training agents to generate optimized versions of
programs while checking for syntax correctness.
Heo et al. [35] applied RL for program debloating,
showing that RL can reduce program size while
maintaining functionality. Recent studies have also
explored the combination of RL with graph-based
representations. For example, Nie et al. [36]
surveyed the use of RL in graphs for various tasks,
suggesting that RL can be applied effectively to
optimize code representations by leveraging graph
structures for state embedding definitions. While
significant progress has been made in feature envy
detection and automated code refactoring, there is
still room for improvement in utilizing GNNs and
RL-based techniques for more accurate and
comprehensive solutions. This study aims to address
these gaps by proposing a hybrid model combining
GNNs, RL, and Autoencoders to automate code
refactoring and optimization.

3. METHODOLOGY

The proposed hybrid model integrates
Graph Neural Networks (GNNs), Reinforcement

 Journal of Theoretical and Applied Information Technology
15th January 2025. Vol.103. No.1

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

289

Learning (RL), and Autoencoders to achieve
automated code refactoring and optimization. This
section delineates the approach, including the
individual roles of each component in the refactoring
pipeline and their integration. The model follows a
pipeline that leverages GNNs for structural analysis,
RL for iterative optimization, and Autoencoders for
dimensionality reduction and redundancy
minimization, thereby enhancing code quality,
maintainability, and performance.

3.1. Graph Neural Network-Based Structural
Analysis: Graph Representation of Code: Each code
snippet is represented as an Abstract Syntax Tree
(AST), where nodes represent various code elements
(e.g., methods, variables), and edges denote
relationships such as data flow or control flow. This
representation allows the capture of hierarchical and
relational features essential for understanding code
structure.

To construct this graph, we define nodes

𝑉 = {𝜈ଵ, 𝜈ଶ … … . . 𝜈௡}

and edges 𝐸 = {𝑒ଵ, 𝑒ଶ … … . . 𝑒௠}, where each node
corresponds to a code element, and each edge
represents a specific interaction or dependency
within the code. The input graph G= (V, E) is fed into
the GNN for further processing.

GNN Processing and Feature Extraction: Using a
GNN, we compute embeddings for each node in the
AST(Abstract Syntax Tree) to capture both local and
global structural information. Given an input feature
matrix X and adjacency matrix A, the GNN
iteratively updates the node embeddings through the
message-passing mechanism:

𝐻(௟ାଵ) = 𝜎(𝐴𝐻(௟)𝑊(௟))

where H(l) is the node embedding matrix at layer l,
W(l) is the weight matrix, and σ is a non-linear
activation function. This process enables the model
to learn from both the code structure and
relationships between elements, identifying areas
that could benefit from refactoring, such as feature
envy or code smells [37].

3.2. Reinforcement Learning for Iterative
Optimization: Defining the RL Environment: In the
RL framework, code refactoring is framed as a
sequential decision-making problem. Here, each
potential refactoring action (e.g., moving a method,
renaming variables) is an action at taken by the agent
in state st (the current code representation). The
agent’s goal is to optimize a reward function

designed to improve code quality metrics (e.g., code
complexity, cohesion).

Reward Function Design: The reward function R(st,
at) is critical in guiding the agent towards beneficial
transformations. It incorporates factors such as:

𝑅(𝑠௧ , 𝛼௧) = 𝛼. 𝑐𝑜𝑑𝑒_complexity_reduction
+ 𝛽. 𝑚𝑒𝑚𝑜𝑟𝑦_efϐiciency
+ 𝛾. 𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛_speed

where α, β, and γ are weighting factors that balance
the influence of different performance metrics. This
reward function encourages the agent to favor
actions that reduce code complexity, improve
memory usage, and enhance execution speed [38].

Training the RL Agent: A Q-learning approach is
applied, where the agent learns a policy π(a∣s) by
updating Q-values:

𝑄(𝑠௧ , 𝑎௧) = 𝑄(𝑠௧ , 𝑎௧)
+ 𝜂(𝑅(𝑠௧ , 𝑎௧) + 𝜆𝑚𝑎𝑥𝑄(𝑆௧ାଵ, 𝑎)
− 𝑄(𝑠௧ , 𝑎௧))

where η is the learning rate, and λ is the discount
factor. Over time, this process allows the agent to
predict the most rewarding transformations for any
given state [37, 38].

3.3. Autoencoder for Dimensionality Reduction:
Encoding and Decoding Code Representations: To
handle large and complex code representations, an
autoencoder is employed. The autoencoder consists
of an encoder network that compresses the input
code representation X into a lower-dimensional
latent space Z, and a decoder that reconstructs the
original input from Z:

𝑍 = 𝑓௘௡௖௢ௗ௘௥(𝑋), 𝑋ᇱ = 𝑓ௗ௘௖௢ௗ௘௥(𝑍)

where fencoder and fdecoder are learned mappings. This
dimensionality reduction removes redundancies in
the code, making the model more efficient in terms
of memory and computation [38].

Loss Function for Reconstruction Accuracy: The
autoencoder is trained to minimize the
reconstruction error, defined as:

L=∥X−X′∥2

This ensures that the latent representation preserves
essential code information while discarding
irrelevant details, thereby enhancing the efficiency
of the RL-based refactoring process [37].

3.4. Integration and Execution Pipeline: The hybrid
model combines GNN, RL, and autoencoder

 Journal of Theoretical and Applied Information Technology
15th January 2025. Vol.103. No.1

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

290

modules in a single pipeline. Each code snippet
undergoes the following process: Graph Generation
and Feature Extraction: Using GNNs, we extract
features from the AST representation of code,
capturing structural dependencies. RL-Based
Refactoring: The RL agent iteratively refines the
code, using the extracted features to inform actions
that optimize the reward function. Dimensionality
Reduction with Autoencoders: The autoencoder
compresses intermediate representations to enhance
computational efficiency without losing critical
information. Final Code Output: The refined code is
output, displaying improved metrics in runtime
efficiency, memory usage, and maintainability.

Evaluation Metrics: The effectiveness of the
proposed model is evaluated using: (i) Code
Complexity (e.g., Cyclomatic Complexity):
Measures the simplicity of the code structure post-
refactoring. (ii) Runtime Efficiency: Assessed
through execution speed comparisons before and
after optimization. (iii) Memory Usage: Examined
by analyzing the memory footprint of the code after
refactoring. This methodology leverages the
strengths of GNNs, RL, and autoencoders to create a
robust, efficient approach to automated code
refactoring and optimization, advancing both the
quality and maintainability of software systems.

3.5 Dataset Details: For this work, we leverage the
Feature Envy Dataset created by Sharma et al.,
which is specifically tailored for detecting and
analyzing feature envy code smells [39]. Feature
envy is a common code smell that occurs when a
method in a class is more focused on interacting with
methods or attributes of another class rather than its
own. This dataset is highly suitable for our hybrid
model as it enables the training and evaluation of
Graph Neural Networks (GNNs), Reinforcement
Learning (RL), and Autoencoder components by
providing detailed, labeled instances of feature envy
across various codebases. The Feature Envy Dataset
includes: (i) Labeled Code Samples: The dataset
contains code snippets that are labeled for the
presence of feature envy code smells. Each labeled
instance includes metadata indicating whether the
method in question is feature-envious, which
provides a strong foundation for training GNNs to
identify structural and dependency patterns
associated with this smell. Structural and Semantic
Annotations: Each code snippet in the dataset is
annotated with structural relationships between
classes and methods, as well as semantic information
about method usage patterns. These annotations are

essential for GNNs to capture the inherent structural
hierarchies and dependencies in the code, allowing
the network to effectively represent complex class-
method interactions. (ii) Code Metrics: The dataset
also includes various metrics, such as method
invocation frequencies, coupling levels, and
cohesion scores, which help in quantitatively
assessing the degree of feature envy in each sample.
These metrics are instrumental for the RL
component, providing a basis for reward
mechanisms that encourage the model to optimize
refactoring decisions. (iii) Diverse Programming
Projects: The Feature Envy Dataset encompasses
multiple open-source Java projects, offering a
diverse set of programming styles and practices. This
diversity enhances the generalizability of the model,
as it enables the autoencoder to learn effective
encoding and compression strategies that apply
across different coding environments. (iv)
Refactoring Suggestions: In addition to identifying
feature envy, the dataset includes potential
refactoring suggestions, such as moving methods to
more relevant classes. These suggestions serve as
ground truth for evaluating the effectiveness of the
RL-based refactoring module, ensuring that the
proposed refactoring’s led to improvements in code
structure and maintainability. By utilizing this
dataset, our model can effectively learn to identify,
represent, and refactor instances of feature envy in a
wide range of code samples. The dataset’s
comprehensive annotations provide a solid
foundation for training the hybrid model to achieve
significant improvements in code quality,
performance, and maintainability. The structured
format and diverse content of this dataset make it
well-suited to the goals of our proposed approach,
facilitating robust training and meaningful
evaluation of the model’s refactoring capabilities.
The Feature Envy Dataset by Sharma et al. provides
comprehensive metrics to identify feature envy
instances in software code, focusing on code quality
improvement. This dataset includes a variety of code
samples, each tagged with feature envy annotations
that serve as indicators for suboptimal method
placement. The data features method-level metrics
such as method invocation frequency, inter-class
dependencies, and textual similarity with class
identifiers.

Data preprocessing involves cleaning the raw dataset
by removing duplicate entries, handling missing
values, and standardizing metrics to ensure
uniformity. Methods unrelated to feature envy are
filtered out to focus on relevant cases, enhancing
model training efficiency. Each method entry is also
tokenized to extract essential syntactic and semantic

 Journal of Theoretical and Applied Information Technology
15th January 2025. Vol.103. No.1

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

291

information for further processing. For model
training and evaluation, the dataset is divided into
80% training and 20% testing sets, ensuring a
representative balance of feature envy and non-
feature envy instances. The training set allows the
model to learn feature envy patterns, while the
testing set evaluates the model’s generalizability and
performance.

The training data undergoes representation through
a Graph Neural Network (GNN) to capture
hierarchical code structure, while an autoencoder
processes features to optimize representations by
compressing redundant information. This pipeline
aids in achieving a robust, generalized model
capable of detecting feature envy with high accuracy.
Key performance metrics include accuracy, F1-
score, and confusion matrices to evaluate the
effectiveness of refactoring suggestions. These
metrics allow for a comprehensive understanding of
model performance across different feature envy
cases.

For the dataset curation, we gathered 1027 Java
repositories and 1700 C# repositories, utilizing
RepoReapers to filter out low-quality repositories.
The dataset's key components include labeled
instances that identify whether a method within a
class exhibits feature envy, structural annotations
that capture relationships between classes and
methods to reveal the code's structural hierarchy, and
code metrics such as method invocation frequencies,
class coupling levels, and cohesion scores to
evaluate and quantify code characteristics.
Additionally, the dataset provides refactoring
suggestions, such as relocating methods or
restructuring code, to effectively address feature
envy issues. This diverse dataset, sourced from a
wide range of open-source Java and C# projects,
encompasses various programming styles and
practices, ensuring a comprehensive representation
for robust analysis and modeling.

3.6. Pseudo-Algorithm

To facilitate a clear understanding of the processes
involved, the following pseudo-algorithm outlines
the general procedure applied in training and
evaluating the hybrid model for automated code
refactoring and optimization.

Pseudo-Algorithm:

1. Input:

 Dataset D={(xi,yi)}, where xi
represents the input code samples

and yi the corresponding labels
(e.g., feature envy or code
complexity metrics).

2. Initialize:

 Graph Neural Network (GNN) for
structural analysis, Autoencoder
(AE) for dimensionality
reduction, Reinforcement
Learning (RL) agent for
optimization.

 Learning rate η, number of
episodes N, batch size B, and
reward thresholds for performance
metrics.

3. Preprocess Data:

 Extract structural and dependency
features from xi (e.g., function
calls, class relationships).

 Construct graph representations
for each code sample in D.

4. For each episode t=1 to N:

4.1.1 Feature Extraction and
Embedding:

Pass graph representation G(xi)
through the GNN to obtain
structural embeddings EG(xi).

 4.2 Dimensionality Reduction:

 Feed EG(xi) into the Autoencoder.

Obtain compressed representation
EA(xi) from the bottleneck layer to
reduce redundancy and maintain
key information.

4.3 Refactoring Optimization via RL
Agent:

o Define RL environment where:

State: Compressed code
representation EA(xi).

Actions: Refactoring operations (e.g.,
move method, extract class).

Reward: Based on improvements in
code complexity, runtime, memory
usage, and feature envy detection rates.

o For each batch Bj in dataset D:

 Journal of Theoretical and Applied Information Technology
15th January 2025. Vol.103. No.1

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

292

Select an action aaa based on the
current policy and apply it to EA(xi).

Generate a new state EA(xi)′ and
compute the reward based on metrics
(e.g., reduction in cyclomatic
complexity, LOC, coupling).

Update the RL agent’s policy using
backpropagation to maximize
cumulative reward.

 4.4 Evaluate on Validation Set Dval:

Track performance metrics (e.g., accuracy,
precision, recall, F1-score) on the
validation set to ensure convergence and
stability.

5. End For

6. Output: Trained model MMM, optimized
code representations C′, and performance
metrics showing improvements in code
quality, maintainability, and efficiency.

3.7. Architecture: The architecture flowchart
outlines (figure 1) the steps involved in the hybrid
model's code refactoring process. This system
combines Graph Neural Networks (GNN),
Reinforcement Learning (RL), and Autoencoders to
enhance code quality, efficiency, and maintainability
through automated refactoring. Here’s a breakdown
of each component in the flow:

Input Code Samples: Raw code samples are fed into
the model as input. These samples represent code
sections needing refactoring or optimization,
allowing the system to analyze the existing structure
and detect inefficiencies.

The input code samples are curated from 1027 Java
repositories and 1700 C# repositories. These
samples collectively provide thousands of labeled
instances for training and evaluation.

Major details of raw code samples are structural
annotations, code metrics, Invocation frequency and
cohesion.

Graph Neural Network (GNN) Layer: The GNN
processes the input code, transforming it into a graph
structure where nodes represent code elements (e.g.,
functions, classes) and edges represent relationships
(e.g., function calls, inheritance). This step captures
the structural and hierarchical relationships inherent
in the code, enabling the model to understand the
dependencies and interactions between code
components.

The output of the Graph Neural Network (GNN)
layer is a set of node embeddings, where each node
(representing a code element like a function, class,
or method) is transformed into a vector embedding
that captures structural, semantic, and hierarchical
relationships. Additionally, edge weights represent
the strength or type of relationships (e.g., function
calls or inheritance) between nodes, while a global
graph-level embedding summarizes the overall
structure of the input graph. These embeddings are
used to classify code elements, such as detecting
feature envy, and to identify important nodes or
edges contributing to the task. For instance, the
model might predict a method as feature-envious
with high confidence or suggest refactoring by
recommending the relocation of a method to a more
appropriate class, thereby improving code structure
and maintainability.

Feature Extraction: From the GNN output, relevant
features are extracted to represent the code in a
compact and informative manner. These features
encompass code metrics, dependency relations, and
structural patterns, serving as the foundation for
further processing. This step simplifies the code
representation, making it suitable for further
transformation.

The output of the feature extraction step consists of
a compact representation of code that includes key
elements such as code metrics, dependency
relations, and structural patterns. Code metrics refer
to quantitative attributes like method invocation
frequency, class coupling levels, and cohesion
scores, which help assess the complexity and
interactions within the code. Dependency relations
capture the connections between various code
elements, such as function calls, inheritance
hierarchies, and method dependencies, indicating
how different components are interrelated.
Structural patterns represent higher-level
relationships and hierarchies within the code, such as
the flow of data or control across classes and
methods. These extracted features provide an
enriched representation of the input code, enabling
subsequent steps, like refactoring or anomaly
detection, to identify and address inefficiencies
effectively.

Autoencoder Layer: The autoencoder receives the
extracted features and compresses them into a
reduced-dimensionality representation. By
compressing and reconstructing the input, the
autoencoder identifies and removes redundant
information, creating a streamlined version of the
code representation. This step enhances the

 Journal of Theoretical and Applied Information Technology
15th January 2025. Vol.103. No.1

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

293

efficiency of the code by simplifying its internal
structure while retaining essential details.

The output of the autoencoder layer in this context is
a compressed and streamlined representation of the
input code features. By compressing and
reconstructing the input data, the autoencoder
identifies redundant or non-essential information
and removes it while preserving the critical
structural and semantic details. This process results
in a reduced-dimensionality version of the code
representation, which is more efficient for analysis
and processing. The streamlined representation
retains the essential information needed for tasks like
refactoring or anomaly detection, making the
subsequent steps of the pipeline more effective and
computationally efficient.

Reinforcement Learning (RL) Agent: The RL agent,
trained to optimize the refactoring process, takes the
autoencoder output as input. It iteratively refines the
code based on a reward function designed to
improve specific performance metrics, such as
runtime efficiency, memory usage, and
maintainability. The agent explores various
refactoring options and learns through trial and error,
guided by the reward feedback, to achieve optimal
refactoring.

The output of the Reinforcement Learning (RL)
agent in this context is an optimized version of the
input code, refined based on a reward function
tailored to improve specific performance metrics
such as runtime efficiency, memory usage, and
maintainability. The RL agent utilizes the
compressed code representation from the
autoencoder and iteratively explores various
refactoring strategies. Guided by the reward
feedback, the agent learns to prioritize changes that
yield the highest performance gains, ensuring that
the refactored code not only adheres to best practices
but also achieves enhanced structural and functional
efficiency. This process results in a well-refactored,
maintainable, and high-performing codebase.

Refactoring Process: Using the insights from the RL
agent, the model initiates the code refactoring
process. This involves making changes to the code
structure, such as moving methods, restructuring
classes, or simplifying logic to achieve a more
optimal and maintainable form. The refactoring
process is executed in a way that preserves the
original functionality of the code while improving its
quality.

The output of the refactoring process involves a
transformed version of the input code, where

structural improvements have been made while
preserving the original functionality. These
improvements include moving methods to more
appropriate classes, restructuring class hierarchies,
and simplifying complex logic to enhance
readability and maintainability. The refactored code
is optimized to reduce redundancy, improve
cohesion, and minimize coupling, resulting in a
cleaner and more efficient codebase that adheres to
best practices. This process ensures that the code is
easier to maintain, understand, and scale while
retaining its intended behavior.

Evaluation Metrics: After refactoring, the modified
code is evaluated based on predefined metrics. These
metrics measure improvements in areas such as
runtime efficiency, memory usage, and code
complexity. The evaluation helps ensure that the
refactoring process aligns with the desired
performance goals and does not introduce any new
issues.

The output of the evaluation metrics involves
quantitative assessments of the refactored code to
verify its improvements. These metrics include
runtime efficiency, memory usage, and code
complexity, which help determine whether the
refactoring process has optimized the code’s
performance and maintainability. For example,
reduced execution time, lower memory
consumption, and simplified code structure indicate
successful refactoring. By analyzing these metrics,
the evaluation ensures that the refactored code aligns
with performance goals, maintains functionality, and
avoids introducing new inefficiencies or issues.

Final Refactored Code Output: The system
generates the final refactored code as output. This
version of the code has been optimized to reduce
redundancy, improve maintainability, and enhance
overall performance. The refactored code is ready
for deployment or further development, with
enhanced quality achieved through the automated
hybrid model.
 The flow of this hybrid model moves
sequentially from input code samples to the final
optimized output. Each component builds on the
previous one, creating a streamlined process that
leverages GNN for structural understanding,
autoencoders for redundancy reduction, and RL for
iterative optimization. This flowchart reflects the
systematic approach of the model in enhancing code
quality through automated, intelligent refactoring.

 Journal of Theoretical and Applied Information Technology
15th January 2025. Vol.103. No.1

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

294

Figure
1: Architecture Flowchart of the Hybrid Model

Integrating Graph Neural Networks, Reinforcement
Learning, and Autoencoders for Automated Code

Refactoring

The final output of the hybrid model is a fully
optimized and refactored version of the input code.
This refactored code minimizes redundancy,
improves maintainability, and enhances overall
performance while preserving the original
functionality. The streamlined process involves
leveraging a Graph Neural Network (GNN) for
structural understanding, an autoencoder for feature
compression and redundancy elimination, and a
Reinforcement Learning (RL) agent for iterative
optimization guided by performance metrics. This
systematic approach ensures the code is ready for
deployment or further development, achieving
significant improvements in quality and efficiency
through intelligent, automated refactoring.

4. RESULTS AND DISCUSSION

These performance metrics illustrate the
clear advantages of the proposed hybrid model,
which combines GNN, RL, and Autoencoders for
enhanced automated code refactoring. The hybrid
model’s superior accuracy, precision, recall, and F1-
score values validate its ability to deliver significant
improvements in code quality and maintainability
compared to individual models and traditional
heuristic-based approaches. The following sections
will delve deeper into these results, examining how
each component contributes to the overall
performance and exploring the practical implications
of the hybrid model’s superior metrics for real-world
code optimization tasks.

Figure 2: Performance Comparison of Different Models
in Terms of Accuracy, Precision, Recall, and F1-Score for

Automated Code Refactoring

The performance analysis presented in Figure 2 (see
Table 1) underscores the effectiveness of the
proposed hybrid model, which combines Graph
Neural Networks (GNN), Reinforcement Learning
(RL), and Autoencoders to achieve substantial
improvements in automated code refactoring. With
an accuracy of 92.5%, the hybrid model significantly
outperforms the GNN-only model (85.3%), the RL-
only model (82.6%), and the Autoencoder-only
model (78.5%). The heuristic-based baseline,
achieving only 70.3% accuracy, highlights the
limitations of traditional methods when compared to
advanced learning models. The hybrid model also
demonstrates high precision at 91.8%, indicating its
strong ability to correctly identify relevant code
changes with minimal false positives, which is a
marked

improvement over the standalone models and the
baseline. Additionally, the model’s recall of 90.7%
reveals its success in identifying a vast majority of
relevant instances for refactoring, surpassing the
GNN-only (83.9%), RL-only (79.7%), and
Autoencoder-only (75.8%) models, and vastly
outperforming the heuristic-based approach
(69.2%). Finally, the F1-score of 91.2% reflects a
well-balanced performance between precision and
recall, solidifying the hybrid model’s role as the most
effective approach among those tested.

 Journal of Theoretical and Applied Information Technology
15th January 2025. Vol.103. No.1

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

295

Model
Accurac

y
Precisio

n
Recal

l
F1-

Score

Proposed
Hybrid Model

92.5% 91.8% 90.7%
91.2
%

GNN Only 85.3% 84.1% 83.9%
84.0
%

Reinforcemen
t Learning
Only

82.6% 80.4% 79.7%
80.0
%

Autoencoder
Only

78.5% 76.9% 75.8%
76.3
%

Heuristic-
based
Baseline

70.3% 68.7% 69.2%
68.9
%

Table 1: Model Performance Metrics Comparison

The hybrid model’s performance across all metrics
validates its unique architecture, which combines the
structural representation capabilities of GNN, the
optimization benefits of RL, and the dimensionality
reduction of Autoencoders. Each component
contributes distinct advantages that enhance the
model's overall efficacy in code refactoring. GNNs
capture the hierarchical and dependency
relationships within the code, providing a structured
representation that helps in accurately identifying
refactoring needs. RL, on the other hand, brings an
iterative learning approach that dynamically
optimizes refactoring actions based on predefined
performance metrics, leading to more effective and
targeted improvements. Meanwhile, Autoencoders
compress and simplify code representations,
reducing redundancy and enhancing the model’s
ability to handle complex, large-scale codebases
without compromising accuracy. The comparative
results demonstrate that while individual models,
such as GNN-only or RL-only approaches, can
achieve reasonable performance, they fall short of
the hybrid model's capabilities. For example, the
GNN-only model performs well in capturing
structural information but lacks the dynamic
optimization provided by RL, resulting in lower
accuracy and precision. Similarly, the RL-only
model offers iterative improvements but struggles
without the structural insights from GNN, leading to
reduced recall. The Autoencoder-only model, while
beneficial in managing large datasets through
dimensionality reduction, lacks sufficient context

from both structural and optimization perspectives,
leading to moderate performance across all metrics.
The hybrid model’s significant improvement over
the heuristic-based baseline further emphasizes the
limitations of traditional refactoring techniques,
which lack the adaptability and nuanced learning
capabilities of advanced models. The heuristic-based
approach’s comparatively low F1-score of 68.9%
indicates its struggle to balance precision and recall,
often resulting in a high rate of false positives and
missed refactoring opportunities. This reinforces the
necessity of integrating machine learning
techniques, such as GNN, RL, and Autoencoders, to
achieve robust, scalable, and efficient code
optimization. In this proposed hybrid model
showcases a powerful and versatile approach for
automated code refactoring. Its superior
performance metrics — particularly the accuracy of
92.5% and the F1-score of 91.2% — highlight its
potential to enhance code quality, reduce complexity,
and improve maintainability in software projects.
This model’s success suggests a promising direction
for future work in code optimization, where
integrating various machine learning techniques can
lead to more effective and intelligent refactoring
solutions.

Figure 3: Code Metrics Reduction Across Different
Model Approaches

Figure 3 (see Table 2) illustrates the performance of
various models in terms of code complexity
reduction metrics, including Cyclomatic Complexity
Reduction, Lines of Code (LOC) Reduction, and
Code Coupling Reduction. Each metric is
represented as a percentage, indicating the
effectiveness of each model in simplifying and
optimizing code structure. The Proposed Hybrid
Model demonstrates the highest reduction across all
metrics, achieving 35.2% reduction in Cyclomatic
Complexity, 28.7% reduction in LOC, and a
significant 40.3% reduction in Code Coupling. This
model, which integrates Graph Neural Networks
(GNN), Reinforcement Learning (RL), and

 Journal of Theoretical and Applied Information Technology
15th January 2025. Vol.103. No.1

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

296

Autoencoders, shows a clear advantage in
minimizing code complexity and dependencies,
thereby enhancing code maintainability and
readability. In comparison, the GNN Only model
achieves moderate reductions: 20.1% in Cyclomatic
Complexity, 18.5% in LOC, and 23.4% in Code
Coupling. This indicates that while GNNs alone are
effective in capturing structural information, they
lack the optimization capabilities that the hybrid
model leverages through the integration of RL and
Autoencoders. The Reinforcement Learning Only
approach performs slightly lower, with reductions of
15.4% in Cyclomatic Complexity, 12.9% in LOC,
and 17.1% in Code Coupling. This suggests that
while RL can improve code efficiency by learning
optimal refactoring strategies, it is more effective
when combined with GNNs and Autoencoders for a
holistic view of code structure and content. Finally,
the Autoencoder Only model yields the least
reduction, with 10.7% in Cyclomatic Complexity,
8.3% in LOC, and 14.8% in Code Coupling. While
Autoencoders are useful for compressing code
representations, their standalone application is less
impactful in terms of complexity and dependency
reduction.

Table 2: Code Complexity Reduction Metrics

Model

Cyclomati
c

Complexit
y

Reduction
(%)

LOC
Reductio

n (%)

Code
Coupling
Reductio

n (%)

Proposed
Hybrid Model

35.2% 28.7% 40.3%

GNN Only 20.1% 18.5% 23.4%

Reinforcemen
t Learning
Only

15.4% 12.9% 17.1%

Autoencoder
Only

10.7% 8.3% 14.8%

The results indicate that combining GNN, RL, and
Autoencoder models leads to superior performance
in code refactoring tasks. The hybrid model’s higher
reduction rates in all metrics confirm its ability to
capture structural, relational, and semantic patterns
within code, facilitating more comprehensive
refactoring. The high percentage in Code Coupling
Reduction (40.3%) for the hybrid model is
particularly noteworthy, highlighting its capacity to

decrease interdependencies and enhance modularity,
which are critical for scalable and maintainable
codebases. The performance differences between
individual models also provide insight into their
respective strengths and limitations. GNNs excel in
structural analysis, RL in optimization via iterative
feedback, and Autoencoders in dimensionality
reduction, but only the hybrid approach maximizes
these capabilities through a unified model. This
suggests that future code refactoring and
optimization efforts should consider hybrid
architectures to exploit the unique strengths of
multiple learning approaches.

The results demonstrate the superior performance of
the proposed hybrid model in optimizing code
quality compared to individual components such as
GNN, Reinforcement Learning (RL), and
Autoencoder. The hybrid model achieves a 35.2%
reduction in cyclomatic complexity, a 28.7%
reduction in lines of code (LOC), and a 40.3%
reduction in code coupling, showcasing its ability to
streamline code structure, simplify logic, and reduce
interdependencies effectively. In contrast, the GNN-
only model, while proficient at capturing structural
relationships, achieves lower improvements due to
its limited focus on other optimization aspects.
Similarly, the RL-only approach offers iterative
optimization but lacks the structural understanding
of GNNs or the compression capabilities of
Autoencoders, resulting in moderate improvements.
The Autoencoder-only model provides the least
gains, focusing primarily on redundancy reduction
without addressing structural or dependency-level
complexities. These results highlight the combined
strength of integrating GNNs for structural insights,
Autoencoders for compression, and RL for iterative
optimization, making the hybrid model a holistic
solution for code refactoring and quality
improvement.

 Journal of Theoretical and Applied Information Technology
15th January 2025. Vol.103. No.1

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

297

Figure 4: Runtime and Memory Usage Analysis Across
Different Model Approaches

Figure 4 (see Table 3) illustrates the runtime
efficiency and memory usage across various model
approaches for automated code refactoring and
optimization. The Proposed Hybrid Model exhibits
superior performance in terms of both runtime and
memory efficiency, achieving an average runtime of
1.5 seconds and memory usage of 150 MB. This is a
clear improvement over other models, indicating that
the hybrid model effectively optimizes
computational resources while maintaining high
performance. Comparatively, the GNN Only model
shows an average runtime of 2.8 seconds and
memory usage of 180 MB, which is slower and more
memory-intensive than the hybrid model but still
relatively efficient. The Reinforcement Learning
Only model demonstrates a further increase in
runtime, requiring 3.5 seconds on average and
consuming 190 MB of memory, reflecting the
computational demands of reinforcement learning
when used alone. The Autoencoder Only model,
while more efficient than reinforcement learning,
still lags the hybrid model with a runtime of 2.3
seconds and 160 MB memory usage. Finally, the
Heuristic-based Baseline model performs the worst
in terms of computational efficiency, with a runtime
of 4.5 seconds and memory usage reaching 220 MB.
This highlights the limitations of heuristic
approaches in handling complex refactoring tasks
efficiently. The results depicted in Figure 4
underscore the efficiency of the hybrid model in
handling both runtime and memory demands. The
integration of GNNs, RL, and Autoencoders allows
the hybrid model to leverage each component’s
strengths while minimizing their individual resource
constraints.

Table 3: Runtime and Memory Usage Analysis

Model
Average

Runtime (s)
Memory

Usage (MB)

Proposed Hybrid
Model

1.5 150

GNN Only 2.8 180

Reinforcement
Learning Only

3.5 190

Autoencoder Only 2.3 160

Heuristic-based
Baseline

4.5 220

Specifically, the hybrid model’s faster runtime and
lower memory usage suggest that it can process code
refactoring tasks more swiftly and with less resource
consumption, making it suitable for large-scale
applications in real-time environments. The
comparison also highlights the limitations of using
individual models in isolation. While GNN and
Autoencoder models perform moderately well, they
do not match the hybrid model’s efficiency due to
their isolated limitations in either structure
representation or feature compression. The
reinforcement learning model, despite its iterative
optimization strength, is slower due to the
computational intensity of training through trial and
error. The heuristic-based approach, as shown by its
high runtime and memory demands, is less effective
for complex and iterative refactoring tasks. These
findings emphasize the value of combining
complementary deep learning approaches for
optimized performance, suggesting that future work
in code refactoring should consider hybrid models
for enhanced efficiency and scalability.

 Journal of Theoretical and Applied Information Technology
15th January 2025. Vol.103. No.1

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

298

The performance metrics clearly indicate the
efficiency of the proposed hybrid model compared
to standalone approaches and the heuristic-based
baseline. With an average runtime of 1.5 seconds and
memory usage of 150 MB, the hybrid model
demonstrates its ability to process code efficiently
while maintaining low resource consumption. This
is attributed to its balanced integration of GNNs for
structural analysis, Autoencoders for dimensionality
reduction, and RL for targeted optimization,
minimizing redundant computations. In comparison,
the GNN-only model has a longer runtime of 2.8
seconds and higher memory usage of 180 MB due to
its computationally intensive graph processing. The
RL-only approach is even more resource-heavy, with
a 3.5-second runtime and 190 MB memory usage, as
it involves iterative trial-and-error learning. The
Autoencoder-only model, while more efficient than
the GNN and RL models, still lags behind the hybrid
model with a runtime of 2.3 seconds and memory
usage of 160 MB. The heuristic-based baseline is the
least efficient, requiring 4.5 seconds and 220 MB,
highlighting the limitations of traditional, rule-based
approaches. These results validate the hybrid
model's design, which effectively balances
performance and resource efficiency for optimized
code refactoring.

Figure 5: Feature Envy Detection Effectiveness Across
Different Model Approaches

Figure 5 (Table 4) presents the effectiveness of
various model approaches in detecting feature envy,
a critical code smell that impacts software
maintainability. The Proposed Hybrid Model
outperforms all other approaches with a Feature
Envy Detection Rate of 93.4%, which indicates its
superior ability to identify instances of feature envy
accurately. Additionally, the hybrid model maintains
a low False Positive Rate (5.2%) and False Negative
Rate (4.1%), underscoring its precision and
reliability in minimizing erroneous detections. In
contrast, the GNN Only model achieves a Detection

Rate of 87.1%, with slightly higher False Positive
and False Negative Rates of 7.8% and 9.3%,
respectively. This shows that while GNNs are
effective in detecting feature envy, their performance
diminishes without the reinforcement learning and
autoencoder components, resulting in slightly more
misclassifications. The Reinforcement Learning
Only model shows a further reduction in accuracy,
with a Detection Rate of 82.3%, False Positive Rate
of 10.2%, and False Negative Rate of 11.4%. These
values indicate that while reinforcement learning
aids in iterative learning and optimization, its
isolated application is less effective in detecting
complex structural issues like feature envy. The
Autoencoder Only model, which focuses on
compression and redundancy reduction, yields the
lowest detection performance with a Detection Rate
of 79.5%, False Positive Rate of 11.5%, and False
Negative Rate of 13.8%. This indicates that although
autoencoders are beneficial in data simplification,
they lack the necessary analytical depth to address
feature envy detection effectively when used alone.
The analysis depicted in Figure 5 underscores the
effectiveness of a hybrid approach in accurately
identifying feature envy in code. By combining
GNNs for structural insight, reinforcement learning
for iterative optimization, and autoencoders for data
compression, the hybrid model achieves a balance
that maximizes detection rates while minimizing
both false positives and false negatives. The
Proposed Hybrid Model's ability to achieve a 93.4%
detection rate reflects its robustness and suitability
for complex refactoring tasks where accurate code
smell detection is paramount. The comparative
performance of individual models highlights the
limitations inherent in isolated applications of GNN,
reinforcement learning, and autoencoder techniques.
While GNNs provide valuable structural insights,
they lack optimization capabilities without
reinforcement learning. Similarly, reinforcement
learning benefits from the iterative learning
approach but fails to capture the inherent structure of
the code effectively. Autoencoders, while efficient in
handling redundant information, lack the analytical
power needed for accurate detection of nuanced code
issues. This discussion supports the rationale for
integrating these three methods into a cohesive
hybrid model. The combined strengths of each
component contribute to a more accurate, efficient,
and effective system for automated code refactoring
and optimization, offering substantial improvements
over traditional or single-method approaches. This
model provides a promising direction for further
advancements in automated code analysis and
refactoring.

 Journal of Theoretical and Applied Information Technology
15th January 2025. Vol.103. No.1

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

299

Table 4: Feature Envy Detection Effectiveness

Model

Feature
Envy

Detection
Rate (%)

False
Positive

Rate
(%)

False
Negative Rate

(%)

Proposed
Hybrid Model

93.4% 5.2% 4.1%

GNN Only 87.1% 7.8% 9.3%

Reinforcement
Learning Only

82.3% 10.2% 11.4%

Autoencoder
Only

79.5% 11.5% 13.8%

The results of this study reveal the
substantial advantages of the proposed hybrid
model, which integrates Graph Neural Networks
(GNN), Reinforcement Learning (RL), and
Autoencoders, for automated code refactoring and
optimization. Each figure provides a unique
perspective on the model’s effectiveness across
different performance metrics, consistently
demonstrating that the hybrid approach surpasses
traditional and individual component models in
multiple critical dimensions. Performance Metrics
(Accuracy, Precision, Recall, F1-Score): The hybrid
model achieves the highest performance across all
key metrics, with an accuracy of 92.5%, precision of
91.8%, recall of 90.7%, and F1-score of 91.2%. This
significant outperformance over standalone GNN,
RL, and autoencoder models, as well as the
heuristic-based baseline, highlights the hybrid
model's ability to capture complex relationships in
code effectively while maintaining high levels of
accuracy and consistency in detecting code smells.
These metrics are particularly crucial in software
maintenance, as they imply a reliable and consistent
refactoring process with minimal errors. Code
Complexity Reduction (Cyclomatic Complexity,
LOC, Code Coupling): The hybrid model’s impact
on reducing code complexity is evident, with
reductions of 35.2% in cyclomatic complexity,
28.7% in lines of code (LOC), and 40.3% in code
coupling. These reductions indicate a significant
improvement in code maintainability and
readability, facilitating easier debugging and
updates. By comparison, the individual models and
baseline approach exhibit lower reduction rates,
affirming the hybrid model’s capability in generating
cleaner and more maintainable code structures. The
success in minimizing code complexity underscores

the benefit of combining structural insights from
GNN, optimization from RL, and redundancy
reduction from autoencoders. Runtime and Memory
Efficiency: The hybrid model shows an optimal
balance between runtime and memory usage, with an
average runtime of 1.5 seconds and memory usage
of 150 MB. This balance highlights the hybrid
model’s efficiency, as it performs more complex
computations than standalone models while
maintaining lower resource consumption. By
contrast, the heuristic-based baseline and individual
models demonstrate higher runtimes and memory
usage, which can limit scalability and practical
application in real-world, resource-constrained
environments. These efficiency gains make the
hybrid model particularly suitable for large-scale
software projects requiring automated refactoring.
Feature Envy Detection (Detection Rate, False
Positive, and False Negative Rates): In feature envy
detection, the hybrid model achieves a detection rate
of 93.4%, with low false positive and false negative
rates of 5.2% and 4.1%, respectively. This
performance demonstrates its robustness and
reliability in identifying complex code smells that
impact cohesion and class structure. Individual
models, such as GNN and RL-only configurations,
show reduced detection rates and higher error rates,
underscoring the limitations of relying solely on one
type of analysis. The hybrid approach's ability to
combine GNN's structural understanding with RL's
optimization and autoencoder's data compression
ensures a comprehensive assessment of code
relationships and dependencies. The comprehensive
results across various metrics suggest that the hybrid
model offers a balanced, powerful solution for
automated code refactoring. By combining GNN’s
structural capabilities, RL’s iterative learning, and
the compression strength of autoencoders, this
model not only enhances accuracy in code smell
detection but also ensures more maintainable and
efficient code through complexity reduction and
optimal resource usage. This integration addresses
the limitations observed in single-method
approaches, providing a robust framework for real-
time, scalable refactoring solutions in diverse
software engineering applications. The findings
advocate for broader adoption of hybrid models in
software refactoring and code optimization tasks, as
they demonstrate superior outcomes in accuracy,
efficiency, and detection reliability compared to
traditional or isolated methodologies.

5. CONCLUSIONS

In conclusion, this research introduces a
hybrid model that effectively combines Graph

 Journal of Theoretical and Applied Information Technology
15th January 2025. Vol.103. No.1

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

300

Neural Networks (GNN), Reinforcement Learning
(RL), and Autoencoders to automate and optimize
code refactoring processes. The model leverages the
specific strengths of each component: GNNs capture
intricate structural and hierarchical relationships in
code, RL facilitates iterative optimization based on
performance metrics, and Autoencoders compress
code representations, reducing redundancy and
enhancing efficiency. Our results demonstrate that
this approach significantly improves various aspects
of code performance and maintainability,
showcasing the model’s utility in practical software
engineering contexts. The model’s performance
evaluations highlight its impact on critical metrics.
Specifically, runtime efficiency showed a notable
improvement, with the hybrid model achieving an
average reduction in execution time by
approximately 22% compared to traditional
refactoring methods. Additionally, memory usage
was optimized, with a decrease of around 18%,
facilitated largely by the Autoencoder's capability to
compress and simplify code representations.
Furthermore, code complexity was reduced by 15%,
enhancing readability and maintainability, which are
essential for long-term code quality. These results
underscore the model’s ability to streamline
computational resource usage, making it a viable
tool for large-scale software systems where
efficiency is paramount. The hybrid model's
adaptability is another significant outcome, as it
performed consistently across various code
structures, demonstrating its potential for broader
application in different programming languages and
environments. This generalizability is due to GNN’s
capacity to model complex code structures, allowing
the approach to handle a range of programming
patterns and complexities with minimal adjustments.
While the results are promising, there remains room
for further exploration to enhance the model's
versatility and applicability. Future research could
integrate additional machine learning methods to
cater to language-specific refactoring needs or refine
the model for real-time, in-development code
refinement. These directions could further optimize
code quality and developer productivity in dynamic
coding environments. In summary, this work
provides a robust framework for automated code
refactoring, offering significant enhancements in
efficiency, maintainability, and code quality. By
combining GNNs, RL, and Autoencoders, this
hybrid approach addresses the challenges of
traditional refactoring techniques, contributing a
sophisticated, adaptable tool to the field of
intelligent code analysis and optimization.

REFERENCES

[1]. Arie Van Deursen, Leon Moonen, Alex Van Den
Bergh, and Gerard Kok. 2001. Refactoring test
code. In Proceedings of the 2nd international
conference on extreme programming and
flexible processes in software engineering
(XP2001). Citeseer, 92–95.

[2]. Almogahed, A. and Omar, M., 2021.
Refactoring techniques for improving software
quality: Practitioners’ perspectives. Journal of
Information and Communication Technology,
20(04), pp.511-539.

[3]. Davide Spadini, Fabio Palomba, Andy
Zaidman, Magiel Bruntink, and Alberto
Bacchelli. 2018. On the relation of test smells to
software code quality. In 2018 IEEE
International Conference on Software
Maintenance and Evolution (ICSME). IEEE, 1–
12.

[4]. Zhiyu Li, Shuai Lu, Daya Guo, Nan Duan,
Shailesh Jannu, Grant Jenks, Deep Majumder,
Jared Green, Alexey Svyatkovskiy, Shengyu Fu,
and Neel Sundaresan. 2022. CodeReviewer:
Pre-Training for Automating Code Review
Activities. arXiv preprint arXiv:2203.09095v1
(2022).

[5]. Michele Tufano, Jevgenija Pantiuchina, Cody
Watson, Gabriele Bavota, and Denys
Poshyvanyk. 2019. On learning meaningful
code changes via neural machine translation. In
2019 IEEE/ACM 41st International Conference
on Software Engineering (ICSE). IEEE, 25–36.

[6]. Nisan Stiennon, Long Ouyang, Jeff Wu, Daniel
M. Ziegler, Ryan Lowe, Chelsea Voss, Alec
Radford, Dario Amodei, and Paul Christiano.
2020. Learning to Summarize from Human
Feedback. In Proceedings of the 34th
International Conference on Neural Information
Processing Systems (NIPS’20). Curran
Associates Inc., Red Hook, NY, USA, Article
253, 14 pages.

[7]. W. F. Opdyke. "Refactoring: A program
restructuring aid in designing object-oriented
application frameworks." Ph.D. dissertation,
University of Illinois at Urbana-Champaign,
1992.

[8]. D. Guo, S. Ren, S. Lu, Z. Feng, D. Tang, S. Liu,
L. Zhou, N. Duan, A. Svyatkovskiy, S. Fu, M.
Tufano, S. K. Deng, C. B. Clement, D. Drain, N.
Sundaresan, J. Yin, D. Jiang, and M. Zhou.
"GraphCodeBERT: Pre-training code
representations with data flow." CoRR, vol.
abs/2009.08366, 2020.

[9]. Patanamon Thongtanunam, Chanathip
Pornprasit, and Chakkrit Tantithamthavorn.
2022. AutoTransform: automated code

 Journal of Theoretical and Applied Information Technology
15th January 2025. Vol.103. No.1

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

301

transformation to support modern code review
process. In Proceedings of the 44th International
Conference on Software Engineering. 237–248.

[10]. John Schulman, Filip Wolski, Prafulla
Dhariwal, Alec Radford, and Oleg Klimov.
2017. Proximal Policy Optimization
Algorithms. arXiv:1707.06347 [cs.LG].

[11]. Michele Tufano, Cody Watson, Gabriele
Bavota, and Denys Poshyvanyk. 2019. On
learning meaningful code changes via neural
machine translation. In 2019 IEEE/ACM 41st
International Conference on Software
Engineering (ICSE). IEEE, 25–36.

[12]. Davide Spadini, Fabio Palomba, Andy
Zaidman, Magiel Bruntink, and Alberto
Bacchelli. 2018. On the relation of test smells to
software code quality. In 2018 IEEE
International Conference on Software
Maintenance and Evolution (ICSME). IEEE, 1–
12.

[13]. N. A. Kraft, B. W. Bonds, and R. K. Smith,
“Cross-language clone detection,” in Proc. 20th
Int. Conf. Softw. Eng. Knowl. Eng. (SEKE),
San Francisco, CA, USA: Knowl. Syst. Inst.
Graduate School, Jul. 2008, pp. 54–59.

[14]. G. Zhao and J. Huang, “Deepsim: Deep
learning code functional similarity,” in Proc.
26th ACM Joint Meeting Eur. Softw. Eng. Conf.
Symp. Found. Softw. Eng. (ESEC/FSE). New
York, NY, USA: ACM, 2018, pp. 141–151.

[15]. Pereira dos Reis, J., Brito e Abreu, F., de
Figueiredo Carneiro, G. and Anslow, C., 2022.
Code smells detection and visualization: a
systematic literature review. Archives of
Computational Methods in Engineering, 29(1),
pp.47-94.

[16]. S. Thummalapenta, L. Cerulo, L. Aversano,
and M. Di Penta, “An empirical study on the
maintenance of source code clones,” Empirical
Software Engineering, vol. 15, pp. 1–34, Feb.
2010.

[17]. X. Yin, C. Shi, and S. Zhao, “Local and
global feature based explainable feature envy
detection,” in IEEE 45th Annual Computers,
Software, and Applications Conference
(COMPSAC), Madrid, Spain, Jul. 12-16, 2021,
pp. 942–951. [Online]. Available:
https://doi.org/10.1109/COMPSAC51774.2021
.001

[18]. D. Guo, S. Ren, S. Lu, Z. Feng, D. Tang, S.
Liu, L. Zhou, N. Duan, A. Svyatkovskiy, S. Fu,
M. Tufano, S. K. Deng, C. B. Clement, D.
Drain, N. Sundaresan, J. Yin, D. Jiang, and M.
Zhou, “GraphCodeBERT: Pre-training code

representations with data flow,” CoRR, vol.
abs/2009.08366, 2020.

[19]. B. Ray, M. Kim, S. Person, and N. Rungta,
“Detecting and characterizing semantic
inconsistencies in ported code,” in Proc. 28th
IEEE/ACM Int. Conf. Automated Softw. Eng.
(ASE), 2013, pp. 367–377.

[20]. Tayeh, T., 2021. An Anomaly Detection
System for Smart Manufacturing Using Deep
Learning (Master's thesis, The University of
Western Ontario (Canada)).

[21]. S. Džeroski, L. De Raedt, and H. Blockeel,
“Relational reinforcement learning,” in
International Conference on Inductive Logic
Programming, pp. 11-22. Springer, 1998.

[22]. Nasagh RS, Shahidi M, Ashtiani M. A
fuzzy genetic automatic refactoring approach to
improve software maintainability and
flexibility. Soft Computing. 2021;25(6):4295-
4325.

[23]. Sharif KY. Code analysis tool to detect
extract class refactoring activity in Vb. Net
classes. Turk J Comput Math Educ
(TURCOMAT). 2021;12(3):2172-2177.

[24]. Mohan M, Greer D. Using a many-
objective approach to investigate automated
refactoring. Inform Softw Technol.
2019;112:83-101.

[25]. Meng F, Su X. WCET optimization strategy
based on source code refactoring. Cluster
Computing. 2019;22(3):5563-5572.

[26]. Zhou X, Kim K, Xu B, Han D, He J, Lo D.
Generation-based code review automation:
How far are we? arXiv preprint. 2023.

[27]. Ouyang L, Wu J, Jiang X, Almeida D,
Wainwright CL, Mishkin P, Zhang C, Agarwal
S, Slama K, Ray A, Schulman J, Hilton J, Kelton
F, Miller L, Simens M, Askell A, Welinder P,
Christiano P, Leike J, Lowe R. Training
language models to follow instructions with
human feedback. arXiv preprint. 2022.

[28]. Stiennon N, Ouyang L, Wu J, Ziegler D,
Lowe R, Voss C, Radford A, Amodei D,
Christiano PF. Learning to summarize with
human feedback. Advances in Neural
Information Processing Systems.
2020;33:3008-3021.

[29]. Liu, H., Jin, J., Xu, Z., Zou, Y., Bu, Y., &
Zhang, L. (2021). Deep learning-based code
smell detection. IEEE Transactions on Software
Engineering, 47(9), 1811-1837.

[30]. Simon, F., Steinbruckner, F., & Lewerentz,
C. (2001). Metrics-based refactoring. In Fifth
Conference on Software Maintenance and

 Journal of Theoretical and Applied Information Technology
15th January 2025. Vol.103. No.1

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

302

Reengineering (CSMR 2001), Lisbon, Portugal,
30-38.

[31]. Tsantalis, N., & Chatzigeorgiou, A. (2009).
Identification of move method refactoring
opportunities. IEEE Transactions on Software
Engineering, 35(3), 347-367.

[32]. Sales, V., Terra, R., Miranda, L. F., &
Valente, M. T. (2013). Recommending move
method refactorings using dependency sets. In
20th Working Conference on Reverse
Engineering (WCRE 2013), Koblenz, Germany,
232-241.

[33]. Wang, H., Liu, J., Kang, J., Yin, W., Sun,
H., & Wang, H. (2020). Feature envy detection
based on Bi-LSTM with self-attention
mechanism. In IEEE International Conference
on Parallel & Distributed Processing with
Applications (ISPA 2020), Exeter, UK, 448-
457.

[34]. Bunel, R., Hausknecht, M., Devlin, J.,
Singh, R., & Kohli, P. (2018). Leveraging
grammar and reinforcement learning for neural
program synthesis. Advances in Neural
Information Processing Systems, 31.

[35]. Heo, K., Lee, W., Pashakhanloo, P., & Naik,
M. (2018). Effective program debloating via
reinforcement learning. In Proceedings of the
2018 ACM SIGSAC Conference on Computer
and Communications Security, 380-394.

[36]. Nie, M., Chen, D., & Wang, D. (2023).
Reinforcement learning on graphs: A survey.

[37]. Sukur, N., Milošević, N., Pracner, D. and
Budimac, Z., 2024. Automated program
improvement with reinforcement learning and
graph neural networks. Soft Computing, 28(3),
pp.2593-2604.

[38]. Abadeh, M.N., 2024. Knowledge-enhanced
software refinement: leveraging reinforcement
learning for search-based quality engineering.
Automated Software Engineering, 31(2), p.57.

[39]. Sharma, T., Efstathiou, V., Louridas, P., &
Spinellis, D. (2021). Code smell detection by
deep direct-learning and transfer-learning.
Journal of Systems and Software, 176, 110936.

