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ABSTRACT 
 

Brain tumors are considered one of the serious types of cancer and catching them early is crucial for better 
patient results. The use of Magnetic Resonance Imaging (MRI) plays a role in spotting and categorizing brain 
tumors; however, it can be tough and time consuming for radiologists to interpret these images. To address 
this issue, this study introduces a Quantum Inspired Convolutional Neural Network (QCNN) that integrates 
concepts from quantum mechanics, such as superposition and entanglement, with traditional Convolutional 
Neural Network (CNN) architectures. This innovative approach enhances feature extraction capabilities, 
allowing the model to recognize intricate patterns within MRI images more effectively. The QCNN achieved 
impressive results, reaching a peak validation accuracy of 99.44% and demonstrating significantly improved 
classification for various types of brain tumors, including Glioma and Meningitis. These findings highlight 
the potential of the QCNN framework to revolutionize tumor detection, offering radiologists a powerful tool 
that enhances diagnostic accuracy and efficiency in clinical practice, ultimately leading to better patient care 
and outcomes in the medical imaging field. 
Keywords:  Quantum, CNN, Architecture, Brain Tumor, Classification  
 
 
1.  INTRODUCTION 
Brain tumors are considered to be one of the serious 
and life-threatening types of cancer worldwide [1]. 
They consist of malignant growths such as gliomas 
and meningiomas that differ in aggressiveness and 
prognosis [2]. Detecting such tumors on and 
accurately identifying them are crucial for effective 
treatment due, to their ability to impact vital 
neurological functions. Detecting brain tumors at a 
stage can greatly enhance the chances of survival by 
allowing for prompt surgical procedures or 
treatments like radiation therapy and chemotherapy 
[3]. It is crucial to differentiate between types of 
brain tumors such as benign and malignant since 
this helps in devising the right treatment plan 
accordingly. However classifying brain tumors 
accurately is quite challenging due to the structure 
of the brain the diverse manifestations of tumors 
and the similarities in characteristics, among 
different tumor varieties [4]. 

Magnetic Resonance Imaging (MRI) a choice 
for diagnosing brain tumors due to its high contrast 
resolution and detailed soft tissue images that are 

essential, for tumor visualization purposes. MRI 
provides a range of imaging techniques like T1 
weighted and T2 sequences along with FLAIR to 
highlight various tissue characteristics that help in 
pinpoint the boundaries of tumors and detect 
infiltration as well as surrounding edema [5]. Even 
though MRI has its advantages in medical imaging 
interpretation; understanding MRI images is often a 
time-consuming task that demands specialized 
radiological knowledge and expertise. To make a 
diagnosis, radiologists must review several MRI 
slices from various angles, record the sequences 
employed, and evaluate minute differences in tissue 
properties [6]. It takes a long time to utilize this 
approach. This approach can vary depending on 
how each individual interprets it, as different people 
hold different ideas. Moreover, the growing amount 
of imaging data produced in settings intensifies the 
workload for radiologists increasing the chance of 
mistakes in diagnoses or delays in identification [2]. 
These obstacles highlight the necessity, for fast 
automated solutions to support the identification 
and categorization of brain tumors. Systems like 
these could enhance the skills of radiologists by 
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offering quick evaluations of MRI images. The 
progress in intelligence (AI) and deep learning has 
paved the way, for creating such automated systems 
[7]. Through the use of datasets and advanced 
algorithms AI driven tools are able to identify 
characteristics and patterns linked to various brain 
tumors. This process greatly assists in their 
identification and categorization [8]. 

Deep learning techniques like Convolutional 
Neural Networks (CNN) have transformed medical 
image analysis by excelling in tasks such as 
segmentation and detection and by recognizing 
patterns related to various medical conditions from 
pixel level data [9]. Their success in tasks, like 
tumor detection and organ segmentation has often 
surpassed image processing methods. CNNs main 
advantage is their capability to grasp levels of 
abstract feature representations by using 
convolutional layers in a stacked manner [10, 11]. 
The initial layers can identify features like edges 
and textures whereas the later stages focus on 
recognizing intricate patterns like shapes and 
objects. This hierarchical learning approach 
empowers CNN to perform well in tasks such as 
image classification that necessitate the 
differentiation of subtle distinctions, between 
different categories [12]. CNN networks are 
extensively used in imaging because of their 
capacity to process vast datasets and adapt 
effectively to various types of imaging such as MRI 
scans and ultrasounds [13]. For instance, in 
identifying types of brain tumors from MRI scans 
for accurate diagnoses [14] CNN networks have 
proven helpful, to radiologists; despite this benefit 
conventional CNN structures encounter challenges 
when dealing with intricate medical images. 
Medical images frequently display patterns and 
nuanced differences that traditional CNN models 
might not capture entirely accurately. Additionally, 
CNN models heavily lean on spatial hierarchies and 
localized patterns which might not be 
comprehensive enough to identify intricate 
relationships and dependencies across various parts 
of the image [15]. 

In recent years, quantum-inspired principles, 
particularly entanglement and superposition, have 
shown promise in overcoming the limitations of 
traditional deep learning methods. These principles, 
rooted in quantum mechanics, offer new avenues 
for feature extraction and pattern recognition that 
are especially valuable in medical imaging, where 
subtle differences in complex images play a critical 
role in diagnosis. Incorporating quantum inspired 
ideas is crucial here. Key principles such as 
entanglement and superposition from quantum 

mechanics can actually boost how deep learning 
models extract features and recognize patterns [16]. 
In the realm of quantum physics entanglement deals 
with the connection, between quantum states that 
can represent relationships not easily captured using 
traditional approaches [17]. This concept, when 
adapted into neural networks, enables models to 
capture dependencies and relationships between 
distant regions in an image, which is crucial for 
identifying patterns across diverse areas of MRI 
scans. In conventional CNNs, such relationships are 
often challenging to capture, as they primarily rely 
on localized filters that may miss broader 
connections within the image. On the hand 
superposition allows for exploring multiple 
scenarios simultaneously potentially enhancing a 
model’s capacity to generalize across various 
patterns in medical images [18]. This enables the 
network to consider multiple potential 
interpretations of complex patterns, which is 
particularly beneficial in distinguishing between 
similar-looking structures in brain images. By 
incorporating this quantum inspired concepts into 
CNN designs scientists seek to surpass the 
constraints of CNN models. For instance, quantum 
inspired CNN models may enhance their ability to 
capture both overall characteristics by utilizing 
entanglement to depict connections among various 
sections of the picture [19]. This upgraded feature 
extraction could result in enhanced precision in 
healthcare image examination assignments in 
situations where slight distinctions hold significant 
importance, for diagnosis. Moreover, the quantum 
inspired method could bring about a degree of 
parallelism in calculations akin to quantum 
superposition enabling the network to handle 
various hypotheses all at once [20]. This could lead 
to convergence in training and more effective 
exploration of potential solutions, in complex 
medical image tasks ultimately boosting the 
model’s performance. 

In tackling the issue of identifying brain tumors 
in intricate medical images this article presents a 
novel Quantum Inspired Convolutional Neural 
Network (QCNN) structure that merges quantum 
computing concepts with the conventional CNN 
framework. The goal is to enhance the efficiency of 
automated brain tumor detection systems by 
combining quantum inspired layers with CNN 
layers in the QCNN model to detect complex 
features and connections, in multi-modality MRI 
images more effectively.  

The main contributions of the proposed 
Quantum Convolutional Neural Network (QCNN) 
model for brain tumor classification: 
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 Integration of Quantum Principles: 
Incorporates quantum principles like superposition 
and entanglement, known to enhance pattern 
recognition, to improve the learning process for 
more effective analysis of image details. 

 Enhanced Precision in Tumor 
Classification: Aims to achieve higher accuracy in 
distinguishing between healthy and abnormal 
tissues, improving identification of different brain 
tumor types. 

 Improved Feature Extraction: Enhances 
feature extraction capabilities, allowing the model 
to better capture and analyze critical details in MRI 
data. 

 Greater Generalization Ability: Increases 
the model's ability to generalize across different 
MRI data types, ensuring robustness across various 
datasets. 

 Reduced Risk of Misidentification: 
Provides reliable performance, lowering the 
chances of misidentification through improved 
accuracy and generalization. 

 Efficiency in Computational Resources: 
Quantum-inspired methods reduce computational 
load, making the QCNN model more resource-
efficient when processing complex and large MRI 
datasets. 

 Enhanced Processing Speeds: Enables 
faster processing, which is critical for clinical 
applications where prompt diagnosis is essential. 

 Suitability for Clinical Applications: The 
QCNN's efficiency and precision make it highly 
suitable for use in clinical environments, supporting 
quick and accurate diagnoses of brain tumors. 

Ultimately, the introduction of the QCNN 
architecture in brain tumor detection aims to 
contribute to better patient outcomes by providing 
more accurate and reliable diagnostic tools. The rest 
of the article has been organized as follows. Section 
II discussing the related works focusing on Machine 
learning and Deep Learning in Brain Tumor 
Detection, Challenges in Conventional CNN 
Architectures and Quantum-Inspired Approaches. 
Section III discussing the proposed methodology 
using quantum inspired concepts. Section IV 
analyzing the results of the proposed method with 
explainability analysis and finally section V 
concludes with the results obtained and future 
aspects of the proposed method. 

 
2. RELATED WORKS 
 
2.1. Machine learning and Deep Learning in 
Brain Tumor Detection 

In this section, we discuss the various ways 
machine learning and deep learning have been 
applied to studying infectious brain tumors and 
interpreting medical images. Over the past two 
decades, medical image analysis has attracted a lot 
of attention and research interest because of the 
wide range of uses it offers in healthcare, 
particularly in the investigation and diagnosis of 
patients. In order to classify brain images and 
analyze brain architecture, studies suggest machine 
learning-based strategies [21]. Abd-Ellah et al. [22] 
conducted an in-depth study of the available 
methods for diagnosing brain MRI scans, 
comparing and contrasting the strengths and 
weaknesses of traditional machine learning and 
deep learning approaches. Additionally, the authors 
presented a new semi-automatic segmentation 
approach for images of brain tumors [23]. For 3D 
MRI segmentation, this model made use of a T1W 
configuration. Another CNN-based architecture 
was presented for breast cancer picture 
categorization [24]. This system’s maximum 
accuracy for tumor segmentation and localization 
was due to its architectural design, which extracted 
data from fitting scales. Additionally, a CNN-based 
model for diagnosing brain tumors used 
GoogLeNet, InceptionV3, DenseNet201, AlexNet, 
and ResNet50 [25]. The results indicated that the 
proposed method was able to detect and categorize 
cancers in MR images with high precision. Overall, 
the corpus of work shows substantial advancement 
in segmenting and classifying brain tumors from 
MRI scans, as well as their 3D visualization. 
However, there is still a requirement for innovative 
methodologies to increase the efficacy of feature 
extraction, tumour classification, and localization. 
 
2.2. Challenges in Conventional CNN 
Architectures 
For image recognition, several CNN models, such 
as AlexNet [26], GoogleNet [27], and ResNet [28], 
have been trained on large datasets like ImageNet. 
Afterward, these models can be applied to different 
tasks without requiring additional training. 
Furthermore, aside from a few learned features, the 
weights remain unchanged. These models are 
particularly useful when data samples are 
limited. There are several reasons for using pre-
trained models. First, training large models on 
enormous datasets requires significant 
computational power. Second, training such models 
can take weeks or even months. Lastly, a pre-
trained model can accelerate convergence and 
improve network generalization. Training deep 
learning (DL) methods requires a vast number of 
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images, but achieving high performance in such 
cases can be challenging. When large datasets are 
available, deep convolutional neural networks 
(DCNNs) with multiple layers can produce 
excellent results in image classification or 
recognition tasks, sometimes even surpassing 
human performance [29]. However, to avoid 
overfitting, both large datasets and well-
generalizing DCNN models are essential in these 
applications. There is no strict lower limit on 
dataset size when training a DCNN model. 
However, when smaller datasets are used for 
training, overfitting or underfitting issues arise, 
especially with models that have fewer layers, 
resulting in inadequate accuracy. Models with 
fewer layers perform poorly because they cannot 
leverage the hierarchical features present in large 
datasets. Acquiring sufficient training data for deep 
learning models is a significant challenge. For 
example, obtaining labeled datasets is particularly 
expensive in fields like environmental science and 
medical imaging. CNN models trained on the 
ImageNet dataset, which contains natural images, 
are often used to enhance performance in medical 
image classification. However, these natural images 
differ significantly from raw medical images, 
limiting improvements in model performance. 
Additionally, lightweight models trained from 
scratch often outperform conventional ImageNet-
transferred models, highlighting that transfer 
learning (TL) from unrelated domains may not 
enhance performance in medical imaging tasks 
[30]. Therefore, in some cases, using pre-trained 
models may not be a cost-effective solution. In 
2020, a few researchers successfully employed 
same-domain TL, reporting excellent results [31, 
32]. 
 
2.3. Quantum-Inspired Approaches  
Gonaygunta et al. [33] introduced quantum-inspired 
algorithms for pattern recognition, laying the 
groundwork for quantum-enhanced deep learning 
models. Shi et al. [34] and Fan et al. [35] developed 
a quantum-inspired neural network, demonstrating 
the potential benefits of quantum principles like 
entanglement and superposition in enhancing 
feature extraction and improving model 
performance. This work provides a direct link to the 
concept of quantum-inspired CNNs. The major 
challenges in quantum-inspired models can 
introduce additional complexity in their design and 
implementation. This can make them harder to 
understand and optimize compared to traditional 
models, potentially hindering their adoption in 
practical applications [36]. Many quantum-inspired 

algorithms do not scale well with increasing data 
size or complexity. This can limit their 
effectiveness in large-scale applications where 
traditional deep learning models excel [37]. While 
quantum-inspired methods often promise improved 
performance through principles like entanglement 
and superposition, empirical evidence is sometimes 
inconclusive, and the performance gains over 
classical methods can vary significantly depending 
on the specific application and implementation 
[38]. 
 
3. METHODOLOGY 
 
The new Quantum Inspired CNN design depicted in 
figure 1 brings changes to the standard CNN layout 
by integrating concepts inspired by quantum 
mechanics. These adjustments are geared towards 
improving the model’s capacity to recognize 
patterns and relationships within MRI data, for 
more precise tumor classification. 
 
3.1 Data Preprocessing and Augmentation: 
The input dataset used in this study consists of brain 
tumor MRI images, resized to standardized 
dimensions of 128×128 pixels with three color 
channels (128×128×3) to ensure consistency across 
the dataset. To improve the model’s generalization 
capabilities and mitigate overfitting, extensive data 
augmentation techniques are applied. This 
augmentation process includes random rotations 
within a specified degree range and horizontal and 
vertical shifts, allowing the model to encounter 
varied perspectives of the same image. These 
augmented images effectively increase the diversity 
of the dataset, helping the model learn more robust 
features representative of brain tumor patterns. 
During training, the augmented images are 
organized into mini-batches of 32, ensuring an 
efficient and stable learning process while 
optimizing computational resources. 
 
3.2 Initial Layers (Convolution and Pooling) 
The architecture begins with standard convolutional 
layers that extract features from the input MRI 
images. These features are representations of edges, 
textures, and other important structures in the 
images. The layers typically consist of convolution 
operations followed by non-linear activation 
functions and pooling operations to reduce the 
spatial dimensions. The convolution operation 
involves applying a set of filters (or kernels) to the 
input image to produce feature maps. 
Mathematically, this is expressed as: 
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𝐹,
 = (𝑋 ∗ 𝑊), + 𝑏                                                

(1) 
Where 𝑋 is the input image, 𝑊is the k-th filter, 

𝑏 is the bias term for the k-th filter, 𝐹,
  is the 

resulting feature map at position (i,j). Pooling layers 
downsample the feature maps, reducing their 
dimensions while preserving important features. 
This operation is crucial for reducing computational 
complexity and avoiding overfitting. 
 
3.3 Quantum Convolution and Addition 

 
3.3.1 Quantum-Inspired Layer 
In classical CNN architectures, the ability to 
recognize complex patterns is primarily driven by 
spatial hierarchies formed through convolutional 
layers and local feature extraction. However, this 
structure may overlook subtle global dependencies 
and intricate relationships within data, which are 
especially significant in medical imaging tasks such 
as brain tumor classification. Quantum mechanics 
introduces powerful principles—superposition and 
entanglement—that can address these limitations 
by enabling a more holistic, interconnected 
understanding of image data. 
 
3.3.2 Quantum Superposition and Feature 
Combination 
In quantum physics superposition denotes the 
capacity of a quantum system to be present in states, 
at the same time. Similarly in the quantum inspired 
layer the feature maps derived from the layers are 
merged in a way that enables the model to 
investigate numerous feature combinations 
concurrently. For instance, when we possess two 
feature maps labeled as F₁ and F₂ the quantum 
inspired amalgamation can be represented as: 

𝐹௦௨ = 𝛼𝐹ଵ + 𝛽𝐹ଶ                                 (2) 
where α and β are coefficients that determine 

the contribution of each feature map. This 
resembles the principle of quantum superposition, 
where different states contribute to the overall 
system. 

In QCNN, feature maps from convolutional 
layers are combined in a manner that allows 
simultaneous consideration of multiple feature 
interactions. This enables the network to learn more 
complex patterns in MRI images helping to identify 
subtle yet diagnostically significant variations 
across different tumor types. 

In conventional CNNs, feature maps are 
processed sequentially, limiting combinations 
primarily to spatial hierarchies. However, with 
superposition, the network can explore a range of 
potential feature relationships concurrently, 

enhancing the model’s ability to learn complex, 
nuanced patterns. This approach can capture subtle 
but diagnostically critical variations in MRI images, 
such as minor changes in tumor shape or texture, by 
allowing the model to investigate multiple feature 
interactions at once. 

 
3.3.3Quantum Interference and Convolution with 
Small Kernels 
Quantum interference refers to the phenomenon 
where the probability amplitude of quantum states 
can add or subtract, leading to constructive or 
destructive interference. This concept is mimicked 
in the architecture by using small convolutional 
kernels (1x1 convolutions) that focus on fine-
grained details of the feature maps. The 1x1 
convolution operation is defined as: 

𝐹,
ᇱ =  𝑊ଵ௫ଵ ∙ 𝐹, + 𝑏ଵ௫ଵ                           (3) 

Where 𝑊ଵ௫ଵ is the weight matrix of the 1x1 
convolution filter, 𝐹,  is the input feature map, 𝐹,

ᇱ  
is the output feature map after the 1x1 convolution.  
This operation allows the network to emphasize 
specific fine details within the feature maps, similar 
to how quantum interference can highlight or 
suppress certain quantum states. 

 
3.3.4 Addition Layer and Quantum Entanglement 
Quantum entanglement allows for the correlation of 
states across different regions which translates in 
QCNN to the ability to capture dependencies across 
spatially separated features. This property is crucial 
in medical imaging where identifying diffuse 
patterns and relationships across different regions in 
an MRI can greatly impact diagnosis. This 
entanglement inspired layers help the model grasp 
these non-local connections improving its overall 
classification capability. In the CNN architecture, 
this concept is loosely mimicked by an addition 
layer that combines outputs from different 
pathways within the network. For instance, if two 
pathways produce outputs 𝑃ଵ and 𝑃ଶ, the addition 
layer computes:𝑃 = 𝑃ଵ + 𝑃ଶ. This operation 
integrates information from different parts of the 
network, allowing the architecture to capture 
complex dependencies between features, similar to 
quantum entanglement. 

In MRI-based brain tumor detection, 
entanglement allows the network to model 
relationships between distant parts of the image, 
vital for detecting diffuse patterns or spread in 
tumor regions. By capturing these complex 
dependencies, the network gains the capacity to 
detect subtle and spatially dispersed features that 
signify tumor presence, leading to improved 
classification performance. 
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3.4 Deeper Layers and Final Classification 
After the quantum-inspired layer, the architecture 
continues with deeper convolutional and fully 
connected layers, which further process the 
combined features. The final layer is a softmax 
layer that outputs the probabilities for each tumor 
class. The fully connected (FC) layer aggregates the 

features extracted by the previous layers and makes 
the final prediction. It is mathematically 
represented as: 𝑦 = 𝜎(𝑊ி ∙ 𝐹 + 𝑏ி)                                      
(4) 

Where 𝑊ி  and 𝑏ி  are the weights and biases 
of the FC layer, and σ is the softmax function that 
converts the outputs into probabilities. 

 

 
Figure 1 The Quantum Cnn Architecture 

 
3.4.1. Quantum CNN flow structure 
The flowchart shown in figure 2 illustrates the step-
by-step procedure for setting up a Quantum 
Inspired Convolutional Neural Network to detect 
brain tumors effectively. To kick start the process; 
MRI data is first loaded and undergone 
preprocessing to normalize and refine the images 
for input, into the network. After this stage, the data 
is split into training and validation sets to enable 
precise assessment of the model’s performance as it 
progresses. Once the data has been divided into 
sections and the image to be entered into the system 
is resized to comply with the CNN design 
parameters. The layers and components that will 
form the network's basis are outlined in detail in this 
part of the procedure, which describes the CNN 
structure. Feature extraction inspired by quantum 
mechanics is then integrated into the architecture. 
After that, the network is assessed to ensure that the 
components inspired by quantum mechanics are 
functioning correctly within the CNN framework.  

The training process begins once the network is 
configured and ready. Each time a new epoch 

begins the network undergoes training while 
adjusting the learning rate to enhance its 
performance whenever necessary. Following that 
phase, the model gets evaluated using the validation 
set to determine how accurate it is. In case the 
model’s accuracy shows improvement, the best 
version of it is saved and updated; if not the training 
proceeds with adjustments and fine tuning, for 
better results. After selecting the optimal model, a 
confusion matrix is generated to evaluate the 
classification performance for each category. 
Following this assessment, ROC curves are utilized 
to evaluate the networks capability to differentiate 
among tumor types. The last step consists of 
preserving the model and finalizing the training 
procedure.  This process covers the path from 
preparing the data to developing the final trained 
model. It highlights how utilizing quantum inspired 
layers can enhance feature extraction and boost the 
accuracy of brain tumor classification. 
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Figure 2: Quantum CNN Flow Structure 

 
3.4.2. Quantum-Inspired Learning Rate 
The Quantum Inspired Learning Rate introduces a 
method that utilizes concepts from quantum 
mechanics to adapt the learning rate in real time 
during training sessions. The idea takes inspiration 
from the nature of quantum mechanics and often 
employs functions like sine and cosine to mimic the 
oscillating motions of quantum states in models. 
The learning rate in this approach is adjusted using 
a cosine function that varies the rate between a peak 
and a minimum level, throughout the training 
sessions.  This is mathematically represented by the 
following equation: 

𝑙𝑟(𝑒𝑝𝑜𝑐ℎ) = max ቆ10ି
ଵషర×ቀଵାୡ ቀ

ഏ×

ೌೣಶೞ
ቁቁ

ଶ
ቇ                                 

(5) 
The cosine function within the equation models 

a smooth, periodic decay of the learning rate over 
time. The argument of the cosine function is: 

                                      
గ×

௫ா௦
                                                                      

(6) 
This term ensures that the cosine function 

completes half of its period over the total number of 
training epochs (maxEpochs). The learning rate 
starts at its maximum value and decreases smoothly 
to its minimum value as training progresses. 

 
Table 1: Learning Rate Formula Components 

 
Components values 
epoch 10 
maxEpochs 10 
The initial maximum 
learning rate 

10ିସ 

The minimum allowable 
learning rate 

10ି 

 
Cosine Function Scaling: Cosine Function Scaling 
produces a value that oscillates smoothly between 
0 and 1 as epoch progresses from 0 to maxEpochs. 
This term modulates the learning rate, starting from 
its maximum value (when epoch = 0 and cosine is 
1) and decreasing it gradually to its minimum value 
(when epoch = maxEpochs and cosine is -1). 

               Cosine Function Scaling =
ଵାୡ୭ୱቀ

ഏ×

ೌೣಶ
ቁ

ଶ
                        (7) 

 
Dynamic Range Control: The entire expression is 
multiplied by 10ିସ as shown in Table 1, setting the 
initial learning rate. The max function ensures that 
the learning rate does not fall below a defined 
minimum threshold of 10ି, preventing the 
learning rate from becoming too small, which might 
slow down the convergence excessively or lead to 
premature stagnation. 
 
Intuition Behind Quantum-Inspired Learning Rate: 
The application of a cosine function mirrors the 
undulating patterns seen in quantum phenomena; 
wherein probabilities fluctuate and may interact 
positively or negatively with each other. Similarly, 
through the implementation of a cosine schedule the 
learning rate fluctuates enabling the model to 
investigate areas of the loss landscape in greater 
depth. The recurring rise and fall in the learning rate 
assist the model, in steering of becoming trapped in 
local minimum points. Occasionally boosting the 
learning rate can nudge the model away from a low 
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point and enable it to delve into a wider range of 
parameter options in search of a superior overall 
solution. The gradual decrease in the learning rate 
guarantees that as the model nears convergence the 
adjustments it makes become finer tailoring and 
reducing losses with precision. The quantum 
inspired approach to adjusting the learning rate 
proves beneficial, in complex deep learning setups 
where the loss terrain is intricate and filled with 
numerous smaller low points. By adapting the 
learning rate as needed in time this technique 
effectively manages the tradeoff between exploring 
new possibilities (with higher learning rates) and 
leveraging existing knowledge (with lower learning 
rates) leading to effective and smooth training 
processes. 
 
4. RESULTS AND DISCUSSION 
 
4.1. Dataset used for proposed model analysis 
 

Table 2: Dataset 1 [45-47] Details On Brats 2019 & 
2020 

 
Class Number of Images 

Ependimoma T1 70 
Ganglioglioma T1 20 
Glioblastoma T1 90 
Medulloblastoma T1 26 
Oligodendroglioma T1 152 
Schwannoma T1 276 

 
Table 3: Dataset 2 Based On [39] 

 
Class Number of Images  

Glioma Tumor 1427 
Meningioma Tumor 708 
No Tumor 1500 
Pituitary Tumor 930 

 
The proposed model analysis utilizes two 

datasets for evaluating tumor classification 
performance: Dataset 1 [42-44], which includes 

details on the BraTS 2019 & 2020 dataset, and 
Dataset 2, which offers is based on [39] which was 
acquired from Nanfang Hospital, Guangzhou, 
China, and General Hospital, Tianjing Medical 
University, China. Dataset 1, presented in Table 2 
and figure 3, provides a diverse array of brain tumor 
images from the BraTS 2019 & 2020 datasets. The 
table reveals six specific tumor types, with varying 
sample sizes. Schwannoma T1 represents the 
largest class with 276 images, while Ganglioglioma 
T1 has the fewest, with only 20 images. 
Glioblastoma T1, another prominent tumor type, is 
represented by 90 images, making it a key focus for 
model training. Ependimoma T1 and 
Medulloblastoma T1, with 70 and 26 images 
respectively, provide additional variety and 
challenge to the dataset. The largest group, 
Oligodendroglioma T1, contains 152 images, 
offering a considerable volume for analyzing this 
particular tumor type. This dataset is significant for 
evaluating the model’s ability to handle both 
abundant and sparse classes, simulating real-world 
scenarios where certain tumor types are more 
prevalent than others. Dataset 2 [36], outlined in 
Table 3 and figure 4, is from the BraTS-2020 
dataset, which offers a larger and more balanced set 
of tumor and non-tumor images, focusing on four 
major categories. The No Tumor class has the 
highest number of images at 1,500, indicating its 
critical role in ensuring the model can differentiate 
between healthy and diseased brain scans. Glioma 
Tumor, with 1,427 images, and Meningioma 
Tumor, with 708 images, are well-represented, 
ensuring the model has sufficient data to learn from 
these common tumor types. The Pituitary Tumor 
class, though smaller with 940 images, still 
provides a significant number of examples for 
analysis. The inclusion of a large number of images 
across multiple classes in this dataset enhances the 
robustness of the model and improves its capacity 
to generalize across different types of brain 
abnormalities. 

 

   
      (a)                                  (b)                                 (c) 
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            (d)                                  (e)                                   (f) 

 
Figure 3: Samples Of Dataset 1 By Brats 2019 & 2020 [42-44] (A) Ependimoma T1 (B) Ganglioglioma T1 (C) 

Glioblastoma T1 (D) Medulloblastoma T1 (E) Oligodendroglioma T1 (F) Schwannoma T1 
 

   
          (a)                                    (b)                                  (c) 

 
Figure 4: Samples Of Dataset 2 Provided By Cheng Et. Al. [36] (A) Meningioma Tumor (B) Glioma Tumor (C) 

Pituitary Tumor 
 
Training Trials for dataset 1: The model was 
trained using a hybrid architecture that combines 
classical and quantum-inspired convolutional 
layers. The training process employed a cosine 
annealing learning rate schedule, inspired by 
quantum mechanical principles, which helps 
dynamically adjust the learning rate, allowing the 
model to explore different parameter spaces more 
effectively and avoid local minima. The training 
was conducted over multiple epochs as shown in 
Table 2. Early stopping was applied to prevent 
overfitting, ensuring that training would halt if the 
model's performance on a validation set stopped 
improving. A moderate batch size was chosen to 
balance the computational efficiency and 
generalization capability. Adam Optimizer were 
utilized to adjust the weights in the neural network, 
while regularization techniques, such as dropout, 
were employed to prevent overfitting. 

 
Table 4: Validation Accuracy and Learning Rate 

across Trials 
 

Trial Learning Rate Validation Accuracy (%) 
1 9.0451E-05 95.24 
2 9.7553E-05 95.81 
3 7.9389E-05 97.62 
4 6.5451E-05 93.65 
5 5.0000E-05 96.03 
6 3.4549E-05 94.44 
7 2.0611E-05 96.83 

8 9.5492E-05 96.83 
9 2.4472E-05 92.86 

10 1.0000E-06 84.13 
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Figure 5: Validation Accuracy And Learning Rate Across Trials 
 

The table 4 and figure 5 presents the results of 
various trials during the training of a hybrid 
architecture that combines classical and quantum-
inspired convolutional layers. The training 
employed a cosine annealing learning rate schedule, 
which is designed to dynamically adjust the 
learning rate, mimicking principles from quantum 
mechanics to explore parameter spaces more 
effectively and avoid local minima. The cosine 
annealing schedule helps adjust the learning rate 
throughout training, and the table reflects the 
impact of these adjustments on validation accuracy. 
Trials with higher validation accuracy likely 
benefited from optimal learning rates at key points 
during training, enabling the model to escape local 
minima and converge more effectively. In Trial 3, 
with a learning rate of 7.9389 × 10ିହ, achieved 
the highest validation accuracy of 97.62%. This 
suggests that the cosine annealing schedule allowed 
the model to find an effective learning rate that 
enabled robust feature extraction, particularly in a 
complex architecture combining classical and 
quantum-inspired layers. Early stopping was used 
to prevent overfitting, which is evident from the 
moderate-to-high validation accuracy across most 
trials. The table shows that the model consistently 

avoided overfitting, as seen in Trials 2, 5, and 7, 
where validation accuracies remained high 
(95.81%, 96.03%, and 96.83%, respectively). This 
indicates that the training process effectively halted 
before performance on the validation set could 
degrade. rials with lower validation accuracy, such 
as Trial 10 (84.13%) with a very low learning rate 
of 1.0000 × 10ି, suggest that the learning rate 
was too small for effective training. The cosine 
annealing schedule might have reduced the learning 
rate too much, hindering the model's ability to 
adjust weights sufficiently, leading to slower 
convergence or suboptimal solutions. The use of a 
moderate batch size likely helped strike a balance 
between computational efficiency and the model's 
ability to generalize, as reflected in the relatively 
high validation accuracies across different learning 
rates. Regularization techniques, like dropout, 
contributed to preventing overfitting, particularly in 
trials with higher learning rates where the risk of 
overfitting might have been more significant. The 
consistency in validation accuracy (above 92% in 
most trials) suggests that these techniques 
effectively stabilized the training process. 
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Table 5: Performance Metrics 
 

Class Accuracy Precision Recall F1-Score Specificity AUC 

Ependimoma T1 0.992 1.000 0.928 0.963 1.000 0.97 

Ganglioglioma T1 1.000 1.000 1.000 1.000 1.000 1.00 

Glioblastoma T1 0.992 1.000 0.944 0.971 1.000 1.00 

Meduloblastoma T1 1.000 1.000 1.000 1.000 1.000 1.00 

Oligodendroglioma T1 1.000 1.000 1.000 1.000 1.000 1.00 

Schwannoma T1 0.984 0.965 1.000 0.982 0.971 1.00 

 
The table 5 presents performance metrics for 

different brain tumor types, indicating how well the 
model performed across various evaluation criteria. 
The high accuracy scores nearing 1 for each class 
indicate the model’s capability, in accurately 
recognizing different types of tumors very 
effectively. Recall, which measures the model's 
ability to identify all actual cases of a tumor type, is 
slightly lower for Ependimoma T1 (0.928) and 
Glioblastoma T1 (0.944). This suggests that while 
the model performs exceptionally well overall, it 
misses a small number of true positive cases for 
these specific tumor types. The F1-Score, which 
balances precision and recall, also reflects this 

trend, with slightly lower values for Ependimoma 
T1 (0.963) and Glioblastoma T1 (0.971), although 
the scores remain high across all classes. 
Specificity, which measures the model's ability to 
correctly identify non-tumor cases or distinguish 
between different tumor types, is perfect (1.000) for 
all classes, indicating that the model effectively 
avoids false negatives. Lastly, the AUC scores, with 
most classes achieving a score of 1.00, suggest that 
the model has an excellent ability to distinguish 
between classes. Overall, the table highlights the 
robustness of the model across various metrics, with 
only minor variations in recall and F1-Score for 
certain tumor types. 

 

 
 

Figure 6: ROC curve on proposed model in dataset 1 
 

The ROC curve shown in Figure 6 for each class 
demonstrates accurate classification performance 
with close to perfect AUC values shown under the 
curve for most tumor types except Ependymoma 

Tumor 1 which shows an AUC value of 0.97 
indicating the classifiers outstanding discrimination 
ability with just a slight margin of imperfection, in 
classification. The ROC curve of Ependymoma 
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Tumor 1 shows a shift away from the upper left 
corner indicating a slightly elevated false positive 
rate compared to other types of tumors. This aligns 
with the recall rate of 92% and F1- score of 96% for 
this category as seen in the table 5; these values are 
slightly lower than those, for the other categories. 
The ROC curves of Ganglioglioma T1 differ 
significantly from those of Glioblastoma T1 and 
Medulloblastoma T1 due to the characteristics of 
each tumor type observed in their precision recall 
and sensitivity specificity values being close, to 
100%. 

Training Trials for dataset 2 
The table 6 and figure 7 presented outline the 

results of various trials conducted during the 
training of a model, with a specific focus on tuning 
the learning rate and its impact on validation 
accuracy. The learning rate schedule appears to 
follow a dynamic adjustment mechanism, allowing 
for fine-tuning of the model's parameters over the 
course of the training process. As shown in the 
table, the learning rate varies across trials, with the 
highest validation accuracy achieved during Trial 4 
at 99.44%, corresponding to a learning rate of 
6.5451 × 10ିହ. This suggests that during this trial, 

the model reached an optimal learning rate, which 
enabled effective training and allowed it to 
converge without falling into local minima. The 
results highlight how the choice of learning rate 
plays a crucial role in balancing the model’s ability 
to generalize and improve performance during 
training. 

 
 
 

Table 6: Validation Accuracy and Learning Rate across 
Trials using dataset 2 

 
Trail Learning rate Validation Accuracy % 

1 9.7553E-05 98.12 
2 9.0451E-05 99.09 
3 7.9389E-05 99.37 
4 6.5451E-05 99.44 
5 5.0000E-05 98.99 
6 3.4549E-05 98.85 
7 2.0611E-05 98.99 
8 9.5492E-05 98.26 
9 2.4472E-05 98.85 
10 1.0000E-06 98.24 

 

 
 

Figure 7: Validation Accuracy and Learning Rate across Trials using dataset 2 
 

Throughout the trials, validation accuracy 
remains consistently high, with values ranging from 
98.12% in Trial 1 to 99.44% in Trial 4, before 
gradually decreasing to 98.24% by Trial 10. The use 
of an appropriate learning rate likely allowed the 
model to avoid overfitting and converge effectively. 
For instance, the learning rate in Trial 5 (5.0000 ×

10ିହ) maintained high validation accuracy at 
98.99%, suggesting that the model still benefited 
from an adequately tuned rate, despite the slightly 
reduced performance compared to the peak 
observed in Trial 4. Interestingly, Trial 8 shows a 
significant spike in learning rate (9.5492× 10ିହ), 
which coincides with a drop in validation accuracy 
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to 98.26%. This suggests that the increased learning 
rate may have been too aggressive for the model, 
resulting in suboptimal weight adjustments and 
preventing further improvement in performance. 
Similarly, Trial 10, where the learning rate was 
reduced to (1.0000 × 10ି), demonstrated one of 
the lowest validation accuracies (98.24%), 
indicating that an overly small learning rate slowed 
down the convergence process and led to 
diminished results. Overall, the table 6 and figure 7 
underscore the importance of finding a balance in 
learning rate tuning during training. Learning rates 
that are too high or too low can negatively impact 

performance, either by overshooting optimal weight 
values or slowing down convergence. By trialing 
different learning rates, the model achieves robust 
performance with consistently high validation 
accuracy, reflecting the effectiveness of the 
learning rate adjustment schedule employed during 
training. The dynamic adjustment approach likely 
played a significant role in enhancing feature 
extraction and stabilizing the training process 
across different trials. 

 

 
 

Figure 8: ROC Curve Based On Proposed Model In Dataset 2 
 

Table 7: Performance Metrics Based On Proposed Model In Dataset 2 
 

Class Accuracy Precision Recall F1-
Score 

AUC Specificity Dice 
Coefficient 

Glioma 
Tumor 

0.9972 0.9988 0.9915 0.9951 1.00 0.9995 0.9951 

Meningioma 
Tumor 

0.9962 0.9915 0.9951 0.9933 1.00 0.9966 0.9933 

No Tumor 0.9997 1.0000 0.9975 0.9987 1.00 1.0000 0.9987 

Pituitary 
Tumor 

0.9990 0.9976 0.9988 0.9982 1.00 0.9990 0.9982 

Average 0.9980 0.9970 0.9957 0.9963 1.00 0.9988 0.9963 

 
The table 7 presents the performance metrics of 

a classification model across four classes: Glioma 
Tumor, Meningioma Tumor, No Tumor, and 
Pituitary Tumor. The metrics evaluated include 
Accuracy, Precision, Recall, F1-Score, AUC (Area 
Under the Curve), Specificity, and Dice 

Coefficient. These metrics are critical in 
understanding the performance of the model in 
terms of correctly classifying each type of tumor 
and distinguishing between tumor and non-tumor 
classes. Across all classes, the accuracy remains 
very high, ranging from 0.9962 for Meningioma 
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Tumor to 0.9997 for No Tumor. This indicates that 
the model correctly classified the majority of 
samples, regardless of class. Precision scores are 
also remarkably high, ranging from 0.9915 
(Meningioma Tumor) to a perfect score of 1.0000 
(No Tumor). High precision means that when the 
model predicts a certain class, it is almost always 
correct.  Recall measures the model’s ability to 
identify true positive cases. The scores vary from 
0.9915 (Glioma Tumor) to 0.9988 (Pituitary 
Tumor). The high recall values indicate that the 
model is effective in capturing the positive cases 
across all classes. The F1-Score, which is the 
harmonic mean of precision and recall, is high 
across the board, with the lowest score being 0.9933 
(Meningioma Tumor) and the highest being 0.9987 
(No Tumor). This reflects the model's balanced 
performance between precision and recall. The 
AUC is perfect (1.00) for all classes, meaning the 
model excels at distinguishing between the positive 
class and the negative class in all instances as shown 
in figure 8. A perfect AUC score suggests that the 
model is very well-calibrated and able to 
differentiate between tumor types and the absence 
of a tumor. Specificity measures how well the 
model identifies true negatives. The values range 
from 0.9966 (Meningioma Tumor) to a perfect 
score of 1.0000 (No Tumor). This implies that the 
model is highly effective in avoiding false positives. 
The Dice Coefficient, which is a similarity measure, 
has high values across all classes, indicating strong 
overlap between the predicted and true 
classifications. The lowest value is 0.9933 
(Meningioma Tumor), and the highest is 0.9987 
(No Tumor), showing that the model predictions are 
highly accurate. The average metrics for the model 
across all classes are very strong, with an average 
accuracy of 0.9980, precision of 0.9970, recall of 
0.9957, F1-Score of 0.9963, AUC of 1.00, 
specificity of 0.9988, and Dice Coefficient of 
0.9963. This indicates the model performs 
exceptionally well in classifying tumor types and 
distinguishing between tumor and non-tumor cases. 
No Tumor class achieves the highest performance 
with perfect precision, AUC, and specificity, 
reflecting the model's strong ability to distinguish 
between healthy (non-tumor) and tumor cases. 
Meningioma Tumor shows slightly lower metrics 
compared to other classes, with the lowest recall 

and Dice Coefficient values. This suggests that the 
model might struggle slightly more with this 
particular tumor class, though performance is still 
excellent. Glioma Tumor and Pituitary Tumor both 
exhibit high performance across all metrics, 
suggesting that the model is highly reliable in 
identifying these tumor types. 

 
Explainability Analysis: Figure 9 shows that an 
Ependymoma T1 was misclassified as a 
Schwannoma T1 by the model. Figure 9a shows the 
T1-weighted scan showing the cross-section of the 
brain, which contains an Ependymoma tumor. T1-
weighted images provide clear anatomical details, 
especially for soft tissues. The tumor is present, but 
the model incorrectly identified it as a 
Schwannoma, another type of brain tumor with 
different characteristics. The distinction between 
these tumors is subtle and challenging because their 
appearances in certain imaging modalities may 
overlap. The occlusion sensitivity map, figure 9b, 
shows which parts of the image were most 
influential in the model's decision. In this case, the 
red and yellow regions indicate the areas the model 
focused on while making the misclassification. In 
the frontal brain region, the model has found 
patterns or features it considered important for its 
classification decision. However, these highlighted 
areas likely resemble characteristics of a 
Schwannoma rather than an Ependymoma, causing 
the misclassification. This suggests that the model 
incorrectly over-prioritized features in these areas, 
likely because certain characteristics, such as tissue 
density or signal intensity, were incorrectly 
interpreted as indicative of a Schwannoma. The 
gradient attribution map shown in figure 9c 
highlights which specific pixels influenced the 
model's classification the most. The bright red and 
yellow regions, particularly in the upper frontal 
areas of the brain, were heavily weighted in the 
model’s decision. These highlighted areas represent 
features the model used to conclude that the image 
was of a Schwannoma, when in fact, it is an 
Ependymoma. This map shows that the model 
placed significant weight on features from regions 
where the two tumor types may have similar visual 
characteristics, leading to a confusion between the 
two. 
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(a)                                            (b)         (c) 

 
Figure 9: Ependimoma T1 Classified As Schwannoma T1 Of Dataset 1 (A) Original Image   (B) Occlusion Sensitivity 

(C) The Gradient Attribution 
 

 
 

Figure 10: T-SNE Plot With Colors Denoting True Class For Dataset 1 
 

The t-SNE plot, figure 10, illustrates the 
distribution of various tumor classes in a reduced 
two-dimensional space, aiming to visually discern 

the separability and clustering of these classes 
based on their intrinsic features. Each point on the 
plot corresponds to an individual tumor sample, 
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with colors denoting the specific tumor type, as per 
the legend: Ependimoma (red), Ganglioglioma 
(yellow), Glioblastoma (green), Meduloblastoma 
(cyan), Oligodendroglioma (blue), and 
Schwannoma (magenta). The t-SNE algorithm is 
particularly effective at preserving local structures 
in the data, meaning that points that are close in the 
original high-dimensional space are likely to be 
close in the two-dimensional projection. This 
property is evident in the plot, where distinct 
clusters of similarly colored points suggest that the 
t-SNE has captured the underlying feature 
similarities within each tumor class. For instance, 
the Oligodendroglioma (blue) and Schwannoma 
(magenta) classes exhibit relatively tight clustering, 
indicating that the features defining these tumor 
types are more homogeneous and distinct from 
others. Conversely, the spread and overlap among 

some classes, such as the slight intermingling 
between Ependimoma (red) and other classes, 
suggest that there might be shared features or 
potential ambiguity in classification based on the 
chosen features. This overlap could imply either a 
biological similarity between these tumor types or 
limitations in the feature set used, which may not 
fully capture the distinctions necessary for clear 
separation. Moreover, the vertical dispersion of the 
Schwannoma (magenta) points is notable, 
potentially indicating a broader variability within 
this class or the presence of subtypes with distinct 
characteristics that t-SNE is highlighting. The plot’s 
structure, with most data points concentrated near 
the center and a few outliers, might reflect the 
complexity of the data, where most samples are 
similar, but certain instances possess unique 
features that distinguish them from the rest. 

 

  

 
(a)                                            (b)         (c) 

 
Figure 11: Glioma Tumor Classified As Meningioma Tumor Of Dataset 2 (A) Original Image   (B) Occlusion 

Sensitivity (C) The Gradient Attribution 
 

In Figures 11, 12, and 13, a deep learning model 
is applied to classify different types of brain tumors 
based on MRI scans. The figures visualize the 
misclassification of glioma, meningioma, and 
pituitary tumors, using two interpretability 
techniques: occlusion sensitivity and gradient 

attribution. These visualization techniques provide 
insights into why the model made specific 
classification errors by highlighting the regions in 
the MRI scans that influenced the model’s 
predictions. 
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(a)                                                              (b)         (c) 

 
Figure 12: Meningioma Tumor Classified As Glioma Tumor Of Dataset 2 (A) Original Image   (B) Occlusion 

Sensitivity (C) The Gradient Attribution 
 

  

 
(a)                                                    (b)         (c) 

 
Figure 13: Pituitary Tumor Classified As Meningioma Tumor Of Dataset 2 (A) Original Image   (B) Occlusion 

Sensitivity (C) The Gradient Attribution 
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In Figure 11, the original MRI image shows a 

glioma tumor, but the model incorrectly classified 
it as a meningioma. The occlusion sensitivity map 
in panel Figure 11b shows how different regions of 
the brain contributed to this misclassification, with 
red areas indicating strong influence on the decision 
to classify the tumor as a meningioma. The gradient 
attribution map in panel Figure 11c highlights the 
pixel-wise contributions to the decision, showing 
that several parts of the brain image influenced the 
model, but not necessarily in a biologically relevant 
way. This suggests that the model may have 
focused on irrelevant areas, leading to the incorrect 
classification. 

Figure 12 depicts a case where a meningioma 
tumor was misclassified as a glioma. The occlusion 
sensitivity, shown in Figure 12b, map demonstrates 
that the model assigned significant weight to 
regions near the tumor but misinterpreted their 
importance, likely confusing features of the 
meningioma with those of glioma. In the gradient 
attribution map, shown in Figure 12c, the influence 
of individual pixels is dispersed, which might 

indicate that the model did not capture the salient 
features of the meningioma that would have led to 
a correct classification. This reflects a possible issue 
with the model’s ability to differentiate between 
these two tumor types based on spatial or textural 
differences in the scan. 

Finally, Figure 13 illustrates the 
misclassification of a pituitary tumor as a 
meningioma. The occlusion sensitivity map, shown 
in Figure 13b, reveals that regions distant from the 
tumor were emphasized, suggesting the model 
might have used non-discriminative areas of the 
brain scan to make its prediction. The gradient 
attribution, shown in Figure 13c, map further 
confirms this, as the pixel influences are scattered 
across the scan, without clearly focusing on the 
tumor region. This misclassification could indicate 
that the model is not sufficiently specialized to 
distinguish between pituitary and meningioma 
tumors, perhaps due to overlapping features or 
insufficient training data for certain tumor types. 
 

 
 

Figure 14: T-SNE Plot With Colors Denoting True Class For Dataset 2 
 

The figure 14 shows a t SNE plot used to display 
datasets in a simpler two-dimensional form. In this 
plot of t SNE analysis, for brain tumors and non-
tumor samples are color coded to represent glioma 
tumors (red) meningioma tumors (green) no tumors 
(cyan) and pituitary tumors (purple).The t SNE 

algorithm groups together data points with 
similarities to each other which helps in analyzing 
how distinct the different classes are, in the feature 
space learned by a model. The visualization shows 
groupings representing various types of tumors. 
The red cluster representing glioma tumors stands 
out in the area suggesting that these samples have 
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unique characteristics that can be easily 
differentiated from other classes. The pituitary 
tumors (shown in purple on the plot) display a 
segregation, in the bottom left area of the graph 
which implies that this specific tumor category 
possesses unique traits that distinguish it from other 
types of tumors recognized by the model. However, 
the meningioma tumors (depicted in green) seem to 
overlap with both glioma tumors and samples 
without any tumor (depicted in cyan). This suggests 
a situation where the model might get confused as 
characteristics could resemble those of both glioma 
and normal brain tissues – potentially leading to 
misclassification errors. The classes overlap implies 
that the models learned feature representations for 
meningiomas are not completely distinct and could 
lead to classification errors as shown in figures 11 
to 13. The cyan samples without tumors are 
scattered throughout the plot with some closeness, 
to the meningiomas samples which suggests that 
normal brain scans may show similarities to 
features seen in meningiomas cases. This might be 
the reason why the system sometimes finds it 
challenging to differentiate between brain tissues 
and noncancerous tumors such, as meningothelial 
ones. 

 
Potential benefits of explainability in high-stakes 
medical contexts. 
In high-stakes medical contexts, such as brain 
tumor detection and classification, explainability is 
vital for clinicians to understand model decisions, 
confirm or challenge predictions, and ultimately 
trust the technology in clinical settings. Here are 
some specific benefits and aspects highlighted by 
the model's explainability features in the context of 
brain tumor detection: 
 
1. Enhanced Transparency and Trust in AI 
Predictions 
 Sensitivity maps, such as occlusion sensitivity 

and gradient attribution, reveal which areas of 
an MRI image contributed most to a model’s 
classification decision. 

 This transparency helps clinicians see why the 
model arrived at a certain classification, 
potentially highlighting the regions it deems 
similar to known tumor patterns. If a 
misclassification occurs, clinicians can assess 
whether the model may have focused on 
irrelevant regions or misinterpreted certain 
features, as seen when the model misclassified 
glioma as meningioma in Figure 11. 
 

2. Insight into Model Limitations and Areas for 
Improvement 
 Explainability maps can help identify the 

model’s weaknesses, especially where certain 
tumor types may share visual characteristics 
that lead to confusion. For example, in Figure 
9, the model mistook an Ependymoma for a 
Schwannoma due to overlapping visual 
features in the T1-weighted scan. 

 By pinpointing these confusions, sensitivity 
maps enable refinement of feature selection or 
model retraining in specific areas, such as 
including more nuanced training data for look-
alike tumor types. 
 

3. Supporting Clinical Decision-Making and 
Reducing Diagnostic Uncertainty 
 Explainability maps provide additional visual 

confirmation, helping radiologists to either 
validate the AI’s prediction or investigate 
further if the highlighted regions do not match 
expected patterns. 

 This capability reduces uncertainty, 
particularly in complex cases where tumor 
boundaries are not clearly defined or where 
multiple tumor types may appear visually 
similar. For example, in Figure 12, the model’s 
focus on regions near the meningioma tumor 
led to its misclassification as a glioma, 
prompting clinicians to consider additional 
diagnostic imaging or clinical evaluation to 
verify. 
 

4. Understanding Tumor-Specific Characteristics 
for Improved Feature Selection 
 Sensitivity maps highlight which image 

features, such as tissue density, signal intensity, 
or texture, were critical to the model's decision, 
especially in complex tumors. 

 This information is beneficial in refining the 
model’s focus on the most diagnostic features 
and training it to prioritize clinically relevant 
tumor characteristics. In Figure 13, where a 
pituitary tumor was misclassified as 
meningioma, the sensitivity map suggested that 
certain non-discriminative regions were 
erroneously prioritized, signaling a need to 
adjust feature weighting or model tuning. 
 

5. Minimizing Misdiagnosis and Enhancing Patient 
Safety 
 Explainable AI models help reduce the risk of 

misdiagnosis, as they allow radiologists to 
interpret why a model may have leaned 
towards a certain classification. If a model's 
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prediction does not align with clinical intuition, 
explainability maps encourage clinicians to 
seek additional tests or consider alternate 
diagnoses. 

 In Figure 10, the t-SNE plot shows close 
clustering between Ependymoma and other 
classes, suggesting ambiguity in the model’s 
learned features for these tumor types. 
Awareness of this limitation can prompt 
clinicians to exercise caution in diagnosis, 
reducing potential misclassification risks. 
 

6. Adaptability and Continuous Model 
Improvement 
 Explainability tools allow researchers and 

clinicians to identify systematic biases in 
model behavior, such as over-prioritizing non-
relevant regions or lacking focus on key tumor 
characteristics. 

 These insights facilitate continuous model 
refinement and adaptation, especially critical 
as new imaging techniques or tumor types are 
introduced into clinical practice. 

 
Comparison with state of art models 

 
Table 8 Comparison With State Of Art Models With The Proposed Model 

Reference  Model Accuracy 
[39] region augmentation and partition 91.28 
[40] CNN 91.43 
[41] Capsule networks 90.89 
[42] CNN + genetic algorithms 94.2 
[43] CNN+ fine-tuning 94.82 
[44] CNN 95.23 ± 0.6 
 Proposed Method 

CNN+ Quantum Inspired concepts 
99.80 

 
The table 8 compares the performance of various 
models in terms of accuracy for a particular task. 
The proposed Quantum-Inspired Convolutional 
Neural Network (QCNN) achieves significantly 
higher accuracy (99.80%) than competing state-of-
the-art models. This remarkable performance 
improvement can be attributed to several unique 
aspects of the quantum-inspired approach that 
enhance both feature extraction and optimization. 
Traditional CNN models, like the ones in [40] 
(91.43%) and [44] (95.23%), rely heavily on 
classical convolution operations to identify features 
in images. While these methods have proven 
effective, they may miss subtle patterns or complex 
feature relationships in highly dimensional data. 
The QCNN leverages principles of quantum 
mechanics, such as superposition and 
entanglement, allowing it to analyze multiple 
feature combinations simultaneously. This holistic 
approach improves the network’s ability to extract 
and represent complex features, which is 
particularly advantageous for nuanced tasks like 
distinguishing between brain tumor types. This 
capability enhances precision, distinguishing the 
QCNN from models with limited feature extraction 
strategies. Capsule networks [41] (90.89%) and 
CNN models enhanced with genetic algorithms [42] 
(94.2%) incorporate advanced optimization 
techniques to improve convergence. However, 

these approaches may still struggle with local 
minima in the high-dimensional search space, 
limiting their optimization effectiveness. The 
QCNN employs quantum-inspired optimization 
techniques that mimic quantum tunneling, which 
can help it avoid local minima by effectively 
"jumping" over suboptimal solutions. This 
quantum-inspired characteristic aids in achieving a 
global optimum and refining accuracy to an 
unprecedented level, unlike models using classical 
optimization techniques, which may converge to 
less optimal solutions. Fine-tuning methods, as in 
[43] (94.82%), improve a model’s adaptability 
across datasets but may still lead to overfitting, 
particularly in large CNN architectures. Region 
augmentation [39] (91.28%) tries to mitigate 
overfitting by exposing the model to diverse image 
sections, yet it doesn't fully address overfitting in 
feature-dense tasks. The QCNN's quantum-inspired 
components increase the model’s ability to 
generalize by effectively balancing the exploration 
and exploitation phases during learning. This 
balance enables the QCNN to capture a more robust 
set of features across varying data distributions, 
reducing the risk of overfitting and improving 
reliability on diverse MRI data. Standard CNN 
architectures require extensive computational 
resources for large, complex datasets, as they 
process each convolution layer sequentially, often 
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leading to higher costs and time constraints. 
Although some models use genetic algorithms or 
capsule networks to improve efficiency, they still 
require significant resources for optimal 
performance. The quantum-inspired framework in 
the QCNN enables parallelism, which decreases 
computational requirements while maintaining high 
performance. This efficiency allows the QCNN to 
outperform other models without proportionally 
increasing resource demands, making it a more 
viable option for clinical applications where real-
time processing is essential. Hence, the quantum-
inspired aspects of the QCNN, such as advanced 
feature extraction, optimized convergence, 
improved generalization, and computational 
efficiency, contribute significantly to its superior 
performance. These unique characteristics set the 
QCNN apart from traditional CNN and advanced 
models, providing a substantial accuracy advantage 
while reducing operational complexity, making it 
an optimal solution for high-stakes, nuanced tasks 
like brain tumor classification. 
 
5. CONCLUSION 
 
This study presents a Quantum-Inspired 
Convolutional Neural Network (QCNN) represents 
a breakthrough in brain tumor detection by 
integrating quantum computing principles with the 
traditional CNN framework. This combined 
approach has demonstrated high precision and 
recall across various tumor types, enhances feature 
extraction and classification accuracy, positioning it 
as a promising tool for clinical application in tumor 
diagnosis.  By achieving a high degree of accuracy 
and adaptability, the model offers a promising tool 
for clinical applications where timely and accurate 
diagnoses are critical. QCNN's effective 
differentiation between healthy and abnormal brain 
tissues makes it valuable for identifying different 
tumor types, potentially aiding in treatment 
planning and patient care. Furthermore, the model’s 
application of a cosine annealing learning rate 
schedule contributed significantly to its optimized 
performance, helping it navigate parameter spaces 
efficiently and avoid overfitting. This enhancement 
underscores QCNN's advancement over traditional 
CNNs in feature extraction, classification accuracy, 
and operational efficiency. Future studies could 
explore QCNN’s applicability across broader 
medical imaging domains, evaluating its 
performance on other challenging datasets and 
investigating the potential to incorporate additional 
quantum-inspired features. By refining the model 

further, there is potential for even broader 
application across critical diagnostic contexts. 
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