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ABSTRACT 

Diabetic Retinopathy (DR) is a leading cause of blindness worldwide, affecting individuals of all ages. 
Each year, a significant number of people suffer vision loss due to DR. The diagnosis of DR requires 
precision, as even minor errors can lead to severe consequences. Misdiagnosis is common and can 
significantly increase patient morbidity. To address these challenges, this paper presents a 
comprehensive study on the classification of Diabetic Retinopathy (DR) images using three deep 
learning models: ResNet101V2, InceptionResNetV2, and a custom CNN model. The goal is to 
evaluate the performance of these models and improve generalization through a stacking ensemble 
approach with a logistic regression meta-learner. Each model was fine-tuned to enhance feature 
extraction and classification performance. ResNet101V2 achieved a peak training accuracy of 
95.95% but exhibited overfitting, with a test accuracy of 79.81%. InceptionResNetV2 achieved an 
exceptional training accuracy of 99.91%, though its test accuracy was slightly better at 81.31%. The 
custom CNN, a simpler architecture, demonstrated a balanced performance with 87.24% training 
accuracy and 86.63% test accuracy, highlighting its strong generalization capabilities. A stacking 
ensemble was implemented to improve prediction accuracy, combining the outputs of the three 
models using pseudo-labeling techniques. The meta-learner enhanced the overall classification 
accuracy, leveraging the strengths of the individual models. This ensemble approach proved effective in 
improving model generalization to unseen data. Future work will focus on mitigating overfitting in 
more complex models, exploring transformer-based architectures, and applying these models to real-
world clinical datasets for DR detection. 

Keywords: Diabetic Ratinopathy, ResNet101V2, InceptionResNetV2, Custom CNN, Stacking Ensemble, 
Logistic Regression, Random Forest, Gradient Boosting, Decision Tree 

 
1.  INTRODUCTION  

       
  Diabetic Retinopathy (DR) is one of the most 
severe complications of diabetes, affecting the 
eyes and potentially leading to vision loss and 
blindness if not detected and treated early. It 
results from damage to the small blood vessels in 
the retina, the light-sensitive tissue at the back of 
the eye, caused by prolonged periods of  high 
blood sugar [1]. The global prevalence of 
diabetes has sharply increased over the last few 
decades, making DR a significant public health 
concern. By 2040, it is estimated that over 642 

million people will be affected by diabetes, with a 
substantial portion of these individuals at risk of 
developing DR [2]. 

  The classification and severity of DR are 
determined by the extent of retinal damage, which 
can be divided into different stages. The four 
primary stages of DR include: 

 Mild Non-Proliferative DR: This is the 
earliest stage of DR, characterized by 
microaneurysms, which are small areas of balloon-
like swelling in the blood vessels of the retina.  
Patients at this stage may not experience noticeable 
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vision changes, but early detection is essential to 
prevent disease progression [3]. 

 Moderate Non-Proliferative DR: At this 
stage, the disease progresses with the blockage of 
some retinal blood vessels, leading to poor blood 
circulation in the retina. While asymptomatic for 
many patients, further retinal damage can cause 
vision disturbances, making intervention more 
crucial [4]. 

 Severe Non-Proliferative DR: As more 
blood vessels become blocked, the retina is 
deprived of blood flow. This stage is marked by 
significant damage to the retina, with an increased 
risk of the disease progressing to the proliferative 
stage. Patients may experience more severe vision 
problems as blood vessels continue to deteriorate 
[5]. 

 Proliferative DR: This is the most 
advanced stage, where new abnormal blood vessels 
grow in response to the lack of oxygen in the 
retina. These new vessels are fragile and can bleed 
into the vitreous, causing severe vision impairment 
or blindness. Proliferative DR can also lead to 
retinal detachment and other severe eye conditions, 
making it the most dangerous stage of the disease 
[6]. 

     Given the asymptomatic nature of early 
DR, regular screening and early detection are 
crucial to preventing irreversible vision damage. 
Traditionally, ophthalmologists examine retinal 
images through fundus photography to diagnose 
DR, but this process is labor-intensive and prone 
to subjective errors.  The need for automated 
detection and classification systems has driven the 
development of machine learning and deep 
learning techniques. By leveraging large datasets 
of retinal images, these techniques have shown 
promise in accurately identifying different stages 
of DR, reducing diagnostic time, and improving 
early intervention [7]. 

1.1 Problem Statement & Key Challenges 

Contextual Overview Diabetic Retinopathy 
(DR) is a leading cause of blindness globally, 
requiring timely and accurate detection for 
effective treatment. Existing manual diagnosis 
processes are time-consuming, error-prone, and 
reliant on expert knowledge, while current 
automated approaches face challenges in 
generalization and accuracy. 

Despite advancements in deep learning, 
individual models like ResNet and 

InceptionResNet often exhibit overfitting or 
inconsistent performance, particularly on unseen 
clinical datasets. This necessitates robust 
techniques that can generalize across varying data 
distributions. 

In this study, we focus on enhancing the 
performance of deep learning models for DR 
classification by employing a stacking ensemble 
method. The individual models include 
ResNet101V2, InceptionResNetV2, and a custom 
CNN architecture, each with feature extraction and 
classification strengths. By combining their outputs 
through a logistic regression meta-learner, we aim 
to improve the overall accuracy and robustness of 
the classification system. Additionally, we use 
pseudo-labeling to refine the training process, 
leveraging the models’ highest confidence 
predictions to guide further improvements. 

 
2.     RELATED WORK 

Recent advancements in deep learning have 
significantly enhanced the accuracy of diabetic 
retinopathy (DR) detection and classification. 
Romero-Aroca  et al.[8] validated a deep 
learning algorithm specifically designed for 
diabetic retinopathy, demonstrating its 
effectiveness in clinical settings.   
Esteva et al.[9] extended the application of 
deep neural networks beyond ophthalmology 
by achieving dermatologist-level classification 
of skin cancer, indicating the potential of 
deep learning techniques in medical image 
analysis. 

In a comprehensive survey, Abushawish et 
al.[10] explored  various automatic diabetic 
retinopathy detection and grading systems, 
highlighting the evolution and comparative 
performance of deep learning methodologies. 
The use of ensemble approaches has also gained 
traction,  as illustrated by Bodapati and Balaji 
[11], who proposed a self-adaptive stacking 
ensemble method with attention-based deep 
neural networks to predict DR severity 
effectively. 

Furthermore, Enkvetchakul et al. [12] focused 
on data resampling and meta-learning techniques  
to  improve  the  recognition  of diabetic 
retinopathy, addressing challenges related to 
data imbalance. 
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The integration of gated-attention mechanisms 
in deep neural networks for  DR severity 
classification was investigated by Bodapati et al. 
[13], showcasing improved classification 
performance. Reddy et al. [14] presented an 
ensemble-based machine learning model for DR 
classification, emphasizing the benefits of 
combining multiple learning algorithms. Ribeiro 
et al. [15] provided insights into explainable AI, 
crucial for gaining trust in deep learning models 
used in medical applications. 

The exploration of deep learning architectures 
continued with Tymchenko et al. [16], who 
proposed a new approach for diabetic 
retinopathy detection. Samanta et al. [18] 
demonstrated the feasibility of automated DR 
detection using convolutional neural networks on 
a limited dataset, underscoring the importance of 
robust models in clinical practice. El Houby [19] 
applied transfer learning techniques to enhance 
DR stage classification, while Zang et al. [20] 
introduced a classification framework utilizing 
OCT angiography and deep learning analysis. 

Moreover, Arrieta et al. [21] emphasized the  
potential  of  semi-supervised  and self-
supervised learning techniques in DR detection, 
which could address the scarcity of labeled 
data. Lastly, Ma et al. [22] combined 
transformers and convolutional neural networks 
to establish a joint ordinal regression and 
multiclass classification model for DR grading, 
indicating a promising direction for future 
research in this field. 

Overall, these studies illustrate the rapid 
progress in applying deep learning techniques to 
diabetic retinopathy detection and classification, 
highlighting various innovative approaches and 
methodologies. 

3. MATERIALS & METHODOLOGY 
 
This section describes the classification approach 
for diabetic retinopathy (DR) using the APTOS 
dataset, illustrated in Fig. 1. The process starts 
with preprocessing the retinal images, followed 
by data augmentation to expand the dataset and 
support effective training of deep convolutional 
neural networks (CNNs). The method employs 
transfer learning with pre-trained DenseNet and 
ResNet models, which are fine-tuned for 
feature extraction  

Figure 1: Diabetic Retinopathy Class Distribution 

and classification. DenseNet and ResNet are  
chosen for their strong performance and 
efficiency, ensuring accurate DR classification 
with minimal computational load.  
3.1 Dataset Overview 
 
The APTOS 2019 Blindness Detection Dataset is 
employed to train and evaluate machine learning 
models for detecting Diabetic Retinopathy (DR) 
from retinal fundus images. Provided by the 
Asia Pacific Tele-Ophthalmology Society 
(APTOS) as part of a Kaggle competition, this 
dataset contains high-resolution retinal images 
categorized into five classes based on DR 
severity as shown in table 1 and figure 1. For this 
research, the” Diabetic Retinopathy 224x224 
Gaussian Filtered” dataset was used, where 
images were resized to 224x224 pixels and 
processed with a Gaussian filter to enhance 
significant features and reduce noise. This 
preprocessing is particularly beneficial for deep 
learning models like CNNs, enabling them to 
focus on critical patterns for accurate DR 
detection, which is vital for early diagnosis and 
treatment. 
 
Initially, the dataset is divided into five classes: 
 
• No DR (0): No diabetic retinopathy. 
• Mild (1): Mild non-proliferative diabetic 
retinopathy. 
• Moderate (2): Moderate non-proliferative 

diabetic retinopathy. 
• ProliferateDR (3): Proliferative diabetic 
retinopathy 
• Severe (4): Non-proliferative diabetic 
retinopathy 
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Table 1 summarizes the distribution of images in 
each class. 

For binary classification, these five classes were 
consolidated into two groups. The first group, 
labeled No DR, merges the “No DR”, “Mild”, and 
“Moderate” classes, representing less severe 
cases as shown in table 2. The second group, 
labeled Severe, combines the “Proliferative 
DR” and “Severe” classes, representing more 
advanced stages of the disease. This grouping 
helps in distinguishing between cases that 
require immediate medical intervention and 
those that do not. 

3.2 Data Preprocessing 
 
The objective of preprocessing the APTOS DR 
dataset is to enhance the quality and consistency 
of the image data, ensuring it is suitable for 
accurate and reliable model training and 
evaluation. This involves cleaning the dataset by 
removing corrupt images, augmenting data to 
increase variability and prevent overfitting, 
normalizing and resizing images for uniformity, 
and addressing class imbalances to avoid 
biased predictions. Additionally, feature 
extraction and image enhancement techniques are 
applied to improve the visibility and 
representation of key features, ultimately aiming 
to optimize the performance of classification 
models in diagnosing the severity of diabetic 
retinopathy. Data preprocessing is critical in 
preparing the APTOS Diabetic Retinopathy 
(DR) dataset for practical analysis and 
modeling. 
 

 

3.2.1 CLAHE-Gamma- Unsharp Hybrid 

Enhancement (CGUHE)  
 
We have proposed a three-step image 
enhancement approach called as CCUHE using 
various techniques: CLAHE (Contrast Limited 
Adaptive Histogram Equalization), Gamma 
Correction, and Unsharp Masking. Below is a 
theoretical and mathematical description of each 
function:  

 CLAHE Enhancement 

CLAHE is designed to improve the contrast of 
images, particularly in low-contrast areas, by 
applying histogram equalization to small tiles of 
the image and then combining them. This 
prevents over-amplification of noise in 
homogeneous regions and improves local 
contrast. 

CLAHE operates as follows: 

a) Histogram Equalization: It redistributes the 
intensity values of the pixels to enhance 
contrast. 

b) Clip Limit: The histogram’s cumulative 
distribution function is clipped at a 
specified clip limit to avoid excessive 
contrast enhancement. 

c) Tile Grid Size: The image is divided into 
small tiles (e.g., 8x8), and equalization is 
applied to each tile. 

For each tile: 

 Compute the histogram of pixel 
intensities. 
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 A
pply the clipping limit to the histogram 
to avoid over-enhancement. 

 Use linear interpolation to map the pixel 
values to the new 
histograms se defined in the equation 1: 
 

𝑵𝒆𝒘𝑰𝒏𝒕𝒆𝒏𝒔𝒊𝒕𝒚 (𝒙, 𝒚) = 𝑪𝑫𝑭 (Intensity(𝒙, 𝒚)) 

×(maxIntensity-minIntensity)+minIntensity (1) 
 

where CDF is the cumulative distribution function 
of the pixel intensity. 

 Gamma Correction 
Gamma Correction adjusts the brightness of 
an image by applying a non-linear 
transformation to pixel values. It is used to 
correct the brightness and contrast based on the 
gamma parameter. 
The equation 2 defines gamma correction: 

𝐼corrected = 255 × ቀ
ூoriginal 

ଶହହ
ቁ

భ

ം    (2) 

where: 

 𝐼original  is the original pixel intensity value. 

 𝐼corrected  is the gamma-corrected pixel intensity 
value. 

 𝛾 is the gamma value. For 𝛾 > 1, the image 
appears darker; for 𝛾 < 1, it appears lighter. 
 
 Unsharp Masking 

Unsharp Masking is a technique used to enhance 
image sharpness by emphasizing edges. It 
involves subtracting a blurred version of the 
image from the original image to enhance the 
high-frequency details. 

 
Unsharp Masking defines in equation 3 involves 
the following steps: 

a) Gaussian Blurring: Apply a Gaussian filter 
to the image to create a blurred version. 
The Gaussian kernel’s size and standard 
deviation control the amount of blurring. 

b) Subtracting the Blurred Image: Calculate the 
difference between the original and 
blurred images to obtain the mask. 

c) Adding the Mask: Add a weighted mask 
version to the original image to enhance 
the edges. 
 

     𝐼unsharp = 𝐼original + 𝛼 × ൫𝐼original − 𝐼blurred ൯   (3) 
 
where: 
 𝐼original  is the original image. 

 𝐼blured  is the image after Gaussian blurring. 

 𝛼 is a weight factor that controls the strength of 
enhancement. 

Summary of the CCUHE 
• CLAHE: Improves local contrast. 
• Gamma Correction: Adjusts overall 

brightness. 

Figure 2 DR Images after CGUHE 
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• Unsharp Masking: Enhances edges and 
sharpness. Together, these methods enhance 
the visibility of features in the image, 
making them more suitable for further analysis 
or processing. This hybrid proposed CLAHE is 
used to improve local contrast, Gamma 
Correction to adjust brightness levels 
adaptively, and Unsharp Masking to enhance 
edge details. By combining these techniques, 
CGUHE improves image quality, ensuring 
better feature visibility and sharper details. 
Sample images after applying this hybrid 
approach are displayed in Figure 2 for visual 
reference. 
 

3.3 A Unique Data Augmentation Method 
 
The augmentation process aims to enhance the 
diversity and variability of the training dataset 
for diabetic retinopathy classification by applying 
a series of geometric and photometric 
transformations. These transformations, 
including rotations, flips, brightness and contrast 
adjustments, blurring, color modifications, and 
elastic distortions, help simulate real-world 
variations in retinal 
Images, such as changes in camera angle, 
lighting conditions, and image quality.  By 
augmenting the data in this way, the process aims 
to improve the model’s ability to generalize 
across different imaging scenarios, reducing 
overfitting and increasing the model’s robustness 
and accuracy when classifying the different 
stages of diabetic retinopathy. This approach 
ensures that the model is exposed to a wide range 

of visual patterns, enhancing its capacity to 
effectively recognize relevant features across 
varied images. The given augmentation pipeline 
uses the Albumentations library to perform a 
series of image transformations to increase the 
diversity of the  training dataset, thereby helping 
to improve the robustness and generalization 
ability of machine learning models for tasks such 
as diabetic retinopathy classification. 

 
The steps are as follows: 
 

a) Randomrotate90(p=0.5)  
Description: Randomly rotates the image by 90 
degrees, either 0, 90, 180, or 270 degrees. 
A transformation matrix R for 90-rotation can be 
expressed as degree: 

ቂ
0 −1
1 0

ቃ 

This operation is applied to the image pixels 
with a probability p = 0.5, meaning it occurs for 
50% of the images. 

b) Horizontal Flip(p=0.5)  
Description: Flips the image horizontally with a 
probability of 0.5. 
If I(x, y) represents the intensity of the image at 
position (x, y), the horizontally flipped image I′(x, 
y) is defined in equation 4 as: 

I′(x, y) = I(width − x − 1, y)            (4) 
This mirrors the image along the vertical axis. 

c) Verticalflip (p=0.5) 
Description: Flips the image vertically with a 
probability of 0.5. 
  

Figure 3: DR Images after Augmentation 
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The vertically flipped image I′(x, y) is defined by 
the  equation 5 as : 

 
I′(x, y) = I(x, height − y − 1)             (5) 

This mirrors the image along the horizontal axis. 
 

d) Randombrightnesscontrast (p=0.5) 

Adjusts the brightness and contrast of the image. 
 Brightness: Modifies each pixel value I(x, 

y) by adding a random value ∆B 
(brightness shift) defined by the 
equation 6 as: 

 
I′(x, y) = I(x, y) + ∆B    (6)  

 
 Contrast: Scales the pixel value relative 

to the mean intensity of the image: 
 
I′(x, y) = α × (I(x, y) − µ) + µ   (7) 

 
where α is a random contrast factor and 
µ is the mean intensity. 
 

e) GaussianBlur(blurlimit=3, p=0.2) 
Applies a Gaussian blur to the image, with a 
small kernel size limit of 3.  

 The Gaussian blur is achieved by 
convolving the image with a  

 
Gaussian kernel G(x, y): 
 

I′(x, y) = I(x, y) ∗ G(x, y) 
 

where: 

𝐺(𝑥, 𝑦) =
1

2𝜋𝜎ଶ
𝑒

ି ି
௫మାఘమ

ଶఙమ  

This reduces noise and smoothens the image. 

f) HueSaturationvaliue(hue_shift_limit=10
,sat_shift_limit=15,val_shift limit=10, 
p=0.3) 

 Adjusts the image's hue, saturation, and value 
(HSV). 
 
• Hue shift: adds a random shift ∆h to the hue 

component. 
• Saturation shift: scales the saturation 

component by s + ∆s. 

• Value shift: adjusts the brightness value by 
adding ∆v. 
g) Resize (height=256, width=256, p=1.0) 

Resize the image to a fixed size of 256x256 pixels 
to ensure a uniform input size for the model. 
Interpolation techniques such as bilinear or 
bicubic interpolation are typically used to resize 
the image. 

h) ElasticTransform(alpha=1.0, 
sigma=50.0, alpha affine=50.0, p=0.3) 

Applies elastic deformation to the image, 
simulating random movements or warping 
effects. 
 Elastic transformation is defined by applying a 
displacement field generated by random 
Gaussian distributions, which is determined by 
equation 8 as: 

 
Displacement(x, y) = (∆x, ∆y)  (8) 

                                                                                       
 Where ∆x and ∆y are smoothed with Gaussian 
filters of standard deviation σ. 
 

i) GridDistortion(num steps=5, distort 
limit=0.3, p=0.2)  

Warps the image by shifting pixel locations along 
a grid.  
The grid is distorted by moving its points 
randomly within a specified distortion limit. 
This generates a new mapping function that 
displaces the pixels. 
 

j) OpticalDistortion(distor_limit=0.3, 
shift_limit=0.2, p=0.2) 

Simulates lens or camera optical distortions, such 
as barrel or pincushion effects. 

Adjusts pixel positions using a distortion 
function defined by parameters k1 and k2 that 
control the intensity of the effect. 
 

k) Solarize (threshold=128, p=0.1) 
Description: Inverts the pixels’ intensity above a 
certain threshold, creating a solarized effect 
defined by equation 9. 
 

I′(x, y) =          
I(x, y), if I(x, y) < threshold,  (9)

 
                          255 − I(x, y), otherwise. 
 
 
This effect is often used to highlight certain 
features in the image. Using this unique  
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augmentation pipeline, the first function applies 
predefined transformations to an input image.  
The second function traverses a source folder 
containing images, processes each image using 
the augmentation above function, and saves the 
processed images to a destination folder while 
maintaining the original directory structure. 
 
3.4  Data Loading and Splitting Summary 
 
The augmented images with two classes are divided 
into training and validation subsets by reserving 
20% of the images from the training directory for 
validation. The training dataset contains most 
images, while the validation dataset is a smaller 
subset used to tune the model.  The images are 
resized to 75x75 pixels and grouped into batches 
of 32. The model is configured to use binary cross-
entropy as the loss function, indicating a binary 
classification task. The test dataset is loaded 
separately from the testing directory and is used 
to evaluate the model’s performance after training. 
The code reports the number of images found in 
each class and the number used for training, 
validation, and testing. The code loads images from 
specified directories and divides them into 
training, validation, and test datasets. The training 
dataset contains 2,928 images from two classes, 
with 2,343 images used for training and 585 
reserved for validation. The test dataset is loaded 
separately, containing 733 images. All images are 
resized to 75x75 pixels and grouped into batches of 
32. The binary cross-entropy loss function is used, 
indicating this is a binary classification task. The 
output confirms the number of images found in 
each class and the number used for training 

(2,343 images), validation (585 images), and testing 
(733 images). 
 

4. MODEL IMPLEMENTATION 
 
Implementing different models like ResNet, 
InceptionNet, and others aims to conduct a 
comparative analysis to identify the most 
influential architecture for a specific image 
classification task. This involves evaluating 
each model’s accuracy, training efficiency, 
generalization capability, and robustness to 
overfitting. By experimenting with various 
architectures, the goal is to optimize the model 
for the given dataset and task, ultimately 
selecting the model that best balances these 
factors for improved predictive performance. 

4.1 Resnet101v2 Model 
The MirroredStrategy enables synchronized 
training, defining the image dimensions as 
75x75 pixels for binary classification. Within 
this strategy, the ResNet101V2 model is loaded 
with ImageNet weights, excluding the top layer. 
Initially, all layers are frozen except for the 
last 20, unfrozen for fine-tuning. The model 
architecture includes ResNet101V2 as the base, 
followed by a GlobalAveragePooling2D layer, a 
dense layer with 2048 units and ReLU 
activation, L2 regularization, batch 
normalization, and dropout. An additional dense 
layer with 1024 units is included, along with L2 
regularization, followed by batch normalization 
and dropout. The final output layer consists 
of two units with a softmax activation function. 
Callbacks such as ModelCheckpoint, 
EarlyStopping, ReduceLROnPlateau,  and 
LearningRateScheduler are configured to 
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improve training efficiency and model 
performance.  The AdamW optimizer is used 
with a learning rate of 0.0001 and weight decay 
of 0.01, and the model is compiled with 
sparse categorical cross-entropy loss appropriate 
for the classification task. The model summary 
is displayed to verify the architecture before 
training [23][24]. 

4.2 Inceptionresnetv2 Model 
The MirroredStrategy enables synchronized 
training, defining the image dimensions as 75x75 
pixels for binary classification. The 
MirroredStrategy enables synchronized training 
within this strategy, defining the image 
dimensions as 75x75 pixels for binary 
classification. The inceptionresnetv2 model is 
loaded with ImageNet weights within this 
strategy, excluding the top layer. Initially, all 
layers are frozen except for the last 20, unfrozen 
for fine-tuning. The model architecture includes 
InceptionResNetV2 as the base, followed by a 
GlobalAveragePooling2d layer, a dense layer 
with 2048 units and ReLU activation, L2 
regularization, batch normalization, and dropout. 
An additional dense layer with 1024 units is 
included, along with L2 regularization, followed 
by batch normalization and dropout. The final 
output layer consists of two units with a 
softmax activation function. Callbacks such as 
ModelCheckpoint EarlyStopping,  
ReduceLROnPlateau,  and 
LearningRateScheduler  are  configured to 
improve training efficiency and model 
performance. The Adam optimizer is used with a 
learning rate of 0.0001 and weight decay of 0.01, 
and the model is compiled with sparse categorical 
cross-entropy loss appropriate for the 
classification task. The model summary is 
displayed to verify the architecture before 
training. Is loaded with ImageNet weights, 
excluding the top layer. Initially, all layers are 
frozen except for the last 20, unfrozen for fine-
tuning. The model architecture includes 
InceptionResNetV2 as the base, followed by a 
GlobalAveragePooling2d layer, a dense layer 
with 2048 units and ReLU activation, L2 
regularization, batch normalization, and 
dropout[25, 26]. 
An additional dense layer with 1024 units is 
included, along with L2 regularization, followed 
by batch normalization and dropout.  The 
final output layer consists of two units with a 
softmax activation function. Callbacks such as 
ModelCheckpoint, EarlyStopping, 
ReduceLROnPlateau, and 

LearningRateScheduler  are  configured to 
improve training efficiency and model 
performance. The Adam optimizer is used with a 
learning rate of 0.0001 and weight decay of 0.01, 
and the model is compiled with sparse categorical 
cross-entropy loss appropriate for the 
classification task. The model summary is 
displayed to verify the architecture before 
training. 

4.3 Custom CNN model  
The new, simpler CNN model for binary 
classification is designed with an input image 
dimension of 75x75 pixels and consists of 
multiple convolutional layers with increasing 
filter sizes to capture different levels of features. 
The architecture begins with a rescaling layer 
that normalizes the pixel values, followed by a 
series of convolutional layers: 32, 64, 128, 256, 
and 512 filters, each with a kernel size of 3x3, 
ReLU activation, and padding set to “same” to 
preserve the spatial dimensions. Maxpooling2d 
layers are included after each convolutional block 
to downsample the feature maps, and dropout 
layers are added to prevent overfitting by 
randomly dropping connections. The model is 
flattened and followed by a fully connected dense 
layer with 1024 units and ReLU activation, 
concluding with an output layer of two units 
using softmax activation to produce the class 
probabilities. Callbacks such as 
ModelCheckpoint (to save the best model 
weights), EarlyStopping (to halt training when 
validation loss stops improving), 
ReduceLROnPlateau (to reduce the learning rate 
when validation loss plateaus), and 
LearningRateScheduler (to schedule the learning 
rate decay per epoch) are used to optimize and 
improve training performance. The model is 
compiled using the Adam optimizer with a 
learning rate 0.0001, using sparse categorical 
cross-entropy as the loss function for the 
classification task and accuracy as the evaluation 
metric. 
 
5. EVALUATION MATRIX 
To evaluate the performance of models or 
methods, several key metrics are commonly used: 

a) Accuracy 
Accuracy measures the proportion of correctly 
classified instances out of the total number of 
instances. It is calculated as: 

Accuracy =
 True Positives (TP) ା True Negatives (TN) 

 Total Instances 
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b) Precision 

Precision quantifies the number of true positive 
predictions divided by the total number of 
positive predictions made by the model.  It 
indicates the quality of positive predictions. It is 
given by: 

Precision =
 True Positives (TP) 

 True Positives (TP) ା False Positives (FP) 
  

 
c) Recall 

Recall measures the number of true positives 
divided by the total number of actual positives. It 
reflects the model’s ability to identify all 
relevant instances. The formula for recall is: 

 Recall =
 True Positives (TP) 

 True Positives (TP) ା False Negatives (FN) 
  

 

d) F1 Score 
The F1 Score is the harmonic mean of precision 
and recall. It provides a single metric that 
balances precision and recall, which is especially 
useful for imbalanced datasets. It is calculated 
as: 

F1 Score = 2 ×
 Precision ×  Recall 

 Precision +  Recall 
 

 
e) AUC-ROC 

The AUC-ROC is a performance measurement 
for classification problems at various threshold 
settings. It represents the area under the ROC 
curve, which plots the True Positive Rate 
(Recall) against the False Positive Rate across 
different thresholds. The AUC value ranges 
from 0 to 1, where a higher value indicates better 
model performance. 

5.1 Experiments and Performance 

Evaluation 
This section details the experiments conducted 
with the ResNet101V2 model, including the 
fine-tuning process and its performance 
evaluation. The ResNet101V2 model, initially 

trained with all layers frozen, had the last 20 
layers unfrozen for fine-tuning. This approach 
aimed to enhance the model’s ability to adapt to 
specific dataset features. During the final 
training epochs, the model achieved a peak 
training accuracy of 95.95% at epoch 96, with a 
corresponding validation accuracy of 80.82%. 
The learning rate was systematically reduced 
throughout the training process to improve 
model convergence, with the final learning rate 
dropping to approximately 6.23e-07 by epoch 
100. 

Despite these adjustments and high training 
performance, the model’s test accuracy was 
slightly lower at 79.81%, suggesting that the 
model may be experiencing some overfitting or 
that further refinement is needed to achieve 
better generalization.  The test loss of 7.302 
corroborates this observation, indicating that 
while the model performs well on training and 
validation sets, further fine-tuning or additional 
strategies might be required to optimize 
performance and reduce the generalization gap. 

The InceptionResNetV2 model was fine-
tuned with a specific configuration for the 
last 20 layers, while the first two layers were 
explicitly frozen to maintain pre-trained feature 
extraction capabilities. The training process 
extended to 100 epochs, during which the model 
demonstrated an impressive training accuracy of 
up to 99.91% and a validation accuracy of 
78.77%. Throughout the final epochs, the 
learning rate was progressively reduced, aiding in 
the convergence of the model. Despite these high 
training accuracies, the model’s test accuracy 
was 81.31%, with   

a test loss of 3.383. This suggests that while 
the model achieved excellent performance on 
the training and validation sets, there is a 
slight gap in its generalization to unseen data, 
indicating potential areas for further 
improvement or fine-tuning to enhance its overall 
performance. The custom CNN model, 
comprising several convolutional layers and 

Table 3: Sample Predictions from Different Models 
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dropout for regularization, was trained over 50 
epochs. During training, the model showed an 
accuracy of up to 87.24% and achieved a peak 
validation accuracy of 89.73%. Despite these 
high-performance metrics, the model’s validation 
loss did not improve beyond a certain point, 
reducing the learning rate as part of the 
learning rate scheduler’s strategy. The model’s 
test performance, with a final accuracy of 
86.63% and a test loss of 0.348, indicates strong 
generalization to unseen data. However, the 
model exhibited some fluctuations in validation 
performance, suggesting that further tuning or 
adjustments might be needed to optimize stability 
and accuracy across different data splits. In 
comparing the three models, the simpler CNN 
model stands out for its balance between training 
and generalization, evidenced by its robust test 
accuracy and lower test loss. The ResNet101V2 
and InceptionResNetV2 models, while showing 
exceptional training performance, struggled with 
generalization, as indicated by their lower 
validation and test accuracies. This highlights 
the importance of model complexity and tuning 
in achieving optimal performance, where simpler 
models may sometimes provide better 
generalization despite having fewer parameters 
and less complexity compared to more advanced 
architectures. The pseudo-labels for training and 
testing datasets were generated using the 
prediction scores from ResNet101V2, 
InceptionResNetV2, and a custom model. The 
prediction scores from these models are stored in 
A data structures, which are likely pandas 
DataFrames for each data point as shown in table 
3. The function argmax() is applied along each 
row (axis=1) of these DataFrames to find the 
index of the highest prediction score. This index 
represents the model with the highest 
confidence for that specific data point and is 
used to assign a pseudo-label. For instance, if 
the highest score is in the first column 
(ResNet101V2), the pseudo-label will be 0; if it 
is in the second column (InceptionResNetV2), 

the pseudo-label will be 1, and if it is in the third 
column (Custom Model), the pseudo-label will 
be 2. The purpose of generating these pseudo-
labels is to create a consensus-based or ensemble 
learning approach where the strengths of multiple 
models can be leveraged for better overall 
performance. Using the model with the highest 
prediction confidence for each data point helps 
generate a robust training dataset  
that can be used for further meta-classification 
tasks or ensemble learning. This technique 
ensures that the pseudo-labels 
 
6. STACKING ENSEMBLE WITH META-

LEARNER FOR ENHANCED MODEL 
PREDICTIONS 

Our first objective is to consolidate the 
predictions from three different models—
ResNet101V2, InceptionResNetV2, and a custom 
CNN model—into a single data frame and save it 
to a CSV file as shown in table 5. Then, the 
minimum length among the flattened prediction 
arrays of the three models is calculated using the 
min() function and ravel() method. This step is 
necessary to ensure that all arrays are the same 
size, preventing mismatches or misalignments 
when combining them into a single data frame. 
Each model’s prediction array is then sliced to 
this minimum length, ensuring that all arrays are 
truncated to an equal size for uniformity. After 
slicing, a pandas data frame named is created 
with three columns corresponding to each 
model’s predictions. This data frame is then 
saved as a CSV file without an index column, 
allowing easy comparison, sharing, and further 
analysis. Finally, the length of the custom 
model’s prediction array is used to verify  
that the array’s length matches the determined 
minimum, confirming that the truncation was 
correctly performed. This process ensures a 
standardized format for evaluating the models’ 
predictions side-by-side. 
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In the stacking ensemble approach described, the 
model integrates predictions from multiple 
base models to generate final predictions 

through a meta-learner. Initially, the ensemble 
comprises three models: ResNet101V2,  
InceptionResNetV2, and a custom model.   
These models produce individual predictions, 
which are then processed to ensure uniformity 
in length. The projections are then 
consolidated into a data frame, each column 
representing the predictions from one of the base 
models. This data frame is saved to a CSV file 
for further use. To enhance predictive 
performance, pseudo-labels are generated based 
on the base models’ prediction scores. These 
pseudo-labels are derived by selecting the class 
with the highest score for each sample. This 
process helps in creating a robust 
representation of the underlying data 
distribution. A logistic regression model is then 
employed as the meta-learner. The meta-learner 

is trained using the pseudo-labels obtained from 
the training set predictions and is evaluated on 
the test set predictions. The performance of 

the stacking ensemble is assessed by the 
accuracy of the logistic regression model on the 
test data. This evaluation provides insight into 
how well the meta-learner can combine the 
predictions from the base models to make 
accurate final predictions. The accuracy score 
reflects the effectiveness of the ensemble 
approach in leveraging the strengths of each 
base model, ultimately enhancing the overall 
predictive capability of the ensemble. 
 
6.1 Results & Discussion 

 
The performance of the Random Forest model 
can be analyzed using the confusion matrix, 
ROC (Receiver Operating Characteristic) curves, 
and the classification report. The confusion 

Table 4: Classification Report 

Figure 7: AUC-ROC Curves for all the Models 
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matrix summarizes the model’s predictions for 
each class. For Class 0, the model correctly 
predicted 407 instances while misclassifying 22 
as Class 1 and 14 as Class 
2. For Class 1, there were 574 correct 

predictions, 15 were misclassified as Class 0, and 
13 as Class 2. For Class 2, the model correctly 
predicted 393 instances but misclassified 22 as 
Class 0 and 6 as Class 1. The confusion matrix 
reveals that while the model performs well, 
there are misclassifications between the classes. 
The ROC curves provide a more in-depth look 
into the model’s ability to distinguish between 
different classes. Each curve represents one of the 
classes, showing the trade-off between the 
actual positive rate (sensitivity) and the false 
positive rate (1-specificity). As shown in fig. 7, the 
Area Under the Curve (AUC) values for all three 
classes are 0.99, indicating the model's excellent 
discriminatory power. An AUC close to 1 suggests 
that the model is very good at distinguishing 
between each class’s positive and negative 
instances, reinforcing the model’s strong 
classification capabilities. The classification 
report presents each class’s precision, recall, and 
F1-score metrics, offering a comprehensive view of 
the model’s performance. For Class 0, the 
precision, recall, and F1-score are all 0.92, 
indicating balanced performance. For Class 1, the 
model achieves a higher accuracy, recall, and F1-
score of 0.95, showing the best performance among 
the three classes. For Class 2, the precision is 
0.94, recall is 0.93, and F1-score is 0.93, 
suggesting strong performance but slightly lower 

than Class 1. The model's overall accuracy is 
94%, with macro and weighted averages for 
precision, recall, and F1-score all at 0.94. This 
consistent performance across all classes 
demonstrates that the Random Forest model, 

trained with 100 decision trees, is highly 
effective in classifying the given dataset, as further 
supported by the ROC curves and confusion 
matrix. 

The training and evaluation of a decision tree 
classifier model are done using the scikit-learn 
library. The model is initialized with a specified 
random state for reproducibility. It is then trained 
on a dataset with features and corresponding 
pseudo labels for a multi-class classification 
problem. After training, the model’s 
performance is evaluated on a test set by 
predicting the labels of the test data. The 
model’s accuracy on the test data is computed by 
comparing the predicted and actual labels. The 
output shows a test accuracy of approximately 
89.29%, indicating that the Decision Tree model 
performs reasonably on the test set. 
The confusion matrix and ROC (Receiver 
Operating Characteristic) curves provide deeper 
insights into the model’s performance across 
different classes. The confusion matrix shown in 
fig.8 reveals that for Class 0, the model 
correctly predicted 387 instances, but there were 
30 misclassifications as Class 1 and 26 as 
Class 2. For Class 1, the model correctly 
predicted 546 cases, while 45 were misclassified 
as Class 0 and 11 as Class 2. For Class 2, instances 
were correctly predicted, but 36 were 

Figure 8: Confusion Matrices for different models 
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misclassified as Class 0 and 9 as Class 1. The 
ROC curves for each class display an Area 
Under the Curve (AUC) of 0.90 for Class 0 and 
0.93 for both Class 1 and Class 2, suggesting 
good but not perfect discrimination between the 
classes. The classification report further breaks 
down the model’s performance using precision, 
recall, and F1-score metrics.  For Class 0, 
the precision is 0.83, recall is 0.87, and the 
F1-score is 0.85, indicating a moderate level of 
classification accuracy. For Class 1, the model 
achieves a higher precision of 0.93,  recall of 
0.91, and F1-score of 0.92, demonstrating strong 
performance. For Class 2, the precision, recall, 
and F1-score are 0.91, 0.89, and 0.90, 
respectively, showing balanced performance but 
slightly lower than Class 1. The model's overall 
accuracy is 89%, with macro and weighted 
averages for precision, recall, and F1-score all at 
0.89.  These metrics suggest that the Decision 
Tree Classifier is generally effective but could 
benefit from further tuning or using more 
complex models to enhance performance. In 
this experiment, a Gradient Boosting Classifier 
(GBM) is implemented using the scikit-learn 
library to classify a dataset into three classes. 
The GBM model is initialized with a fixed 
random state for reproducibility. The model is 
trained on a dataset containing training features 
and pseudo labels. After training, the model’s  
performance is evaluated on a test set, where the 
predicted labels are compared against the actual 
labels to compute the model’s accuracy. The 
reported test accuracy for this classifier is 
approximately 92.22%, indicating a high level of 
correctness in the model’s predictions. The 
classification performance of the Gradient 
Boosting Classifier is further analyzed through 
various metrics such as precision, recall, and F1-
score, which provide a deeper understanding of 
how well the model distinguishes between the 
three classes. For Class 0, the precision is 0.91, 
the recall is 0.89, and the F1 score is 0.90. For 
Class 1, the precision is 0.95, the recall is 0.94, 
and the F1 score is 0.94. For Class 2, the 
precision is 0.90, the recall is 0.94, and the F1 
score is 0.92. The model’s overall accuracy is 
92%, with macro and weighted averages for 
precision, recall, and F1-score hovering around  
0.92. This demonstrates that the model performs 
consistently well across all classes, with a slight 
variance in recall and precision for each class. 
A confusion matrix and Receiver Operating 
Characteristic (ROC) curves are plotted to 
further visualize the model’s performance. The 

confusion matrix reveals that the classifier has 
relatively few misclassifications across all three 
classes, as evidenced by the high values along the 
diagonal and lower off-diagonal values. For 
instance, Class 0 has 395 correct predictions and 
23 and 25 incorrect predictions as Classes 1 and 2, 
respectively. The ROC curves for each class show 
an Area Under the Curve (AUC) of 0.99, indicating 
the classifier’s excellent discrimination ability. A 
nearly perfect AUC value signifies that the model 
effectively distinguishes between the classes with 
minimal error. 
Table 4 presents the averaged performance 
metrics—precision, recall, f1-score, and 
accuracy—of three classifiers: Random Forest, 
Decision Tree, and Gradient Boosting. Among 
them, the Random Forest classifier achieves the 
highest performance with an average precision 
of 0.937, recall of 0.933, f1-score of 0.933, and an 
accuracy of 0.94. The Gradient Boosting classifier 
also shows strong results with an average 
precision of 0.920, recall of 0.923, f1-score of 
0.922, and accuracy of 0.92, making it a 
competitive alternative. In contrast, the 
Decision Tree classifier has the lowest 
performance across all metrics, with averages 
of 0.890 for precision, recall, f1-score and an 
accuracy of 0.89. These findings suggest that 
ensemble methods like Random Forest and 
Gradient Boosting are more effective for 
classification tasks than single-tree models. 
For instance, Bodapati et al. [11] proposed a self-
adaptive stacking ensemble with attention-based 
mechanisms, while Ma et al. [22] introduced a 
hybrid model combining transformers and CNNs. 
Unlike these approaches, our work focuses on 
integrating ResNet101V2, InceptionResNetV2, and 
a custom CNN into a stacking ensemble, 
employing pseudo-labeling to further refine model 
predictions. This technique demonstrated improved 
accuracy and robustness across unseen data, 
addressing overfitting issues commonly observed 
in individual models. By comparing our results to 
previously published methodologies, we highlight 
the significant performance improvements 
achieved by our ensemble model, particularly in 
terms of generalization to diverse datasets. 
 
7. CONCLUSION AND FUTURE WORK 
 
In this study, we explored the performance of three 
deep learning architectures—ResNet101V2, 
InceptionResNetV2, and a custom CNN model—
for Diabetic Retinopathy (DR) classification. 
While individual models achieved high training 
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accuracies, they struggled with generalization on 
unseen data due to overfitting. The custom CNN 
demonstrated more balanced performance between 
training and testing, suggesting its potential for 
practical applications. To address these limitations, 
we proposed a stacking ensemble approach with a 
logistic regression meta-learner, which leveraged 
the complementary strengths of the base models. 
The addition of a pseudo-labeling strategy further 
improved the ensemble’s robustness, resulting in 
higher classification accuracy and better handling 
of unseen data. The novelty of this work lies in 
integrating pseudo-labeling with an ensemble 
learning framework, effectively reducing 
overfitting and enhancing model generalization. 
This innovation has significant implications for 
clinical applications, as it improves the reliability 
and accuracy of automated DR diagnosis. The 
proposed approach addresses a critical barrier to 
deploying deep learning systems in real-world 
medical scenarios by enabling robust performance 
across varying datasets. 
The impact of this study extends beyond DR 
classification, showcasing the potential of 
ensemble learning techniques for complex medical 
image classification tasks. Future research could 
incorporate advanced regularization methods, such 
as MixUp and CutMix, and employ differential 
learning rates to fine-tune models further. 
Additionally, exploring transformer-based 
architectures and attention mechanisms could 
provide superior feature extraction and contextual 
understanding compared to traditional CNNs. 
Expanding datasets to include diverse clinical and 
geographic scenarios will also enhance model 
robustness and applicability. Overall, this research 
highlights the promise of ensemble methods in 
achieving reliable, generalizable, and accurate 
solutions for medical image classification, paving 
the way for more effective diagnostic tools in 
healthcare. 
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