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ABSTRACT 

Within the most recent version of security monitoring solutions crafted for interconnected device networks 
faces limitations due to data scarcity, diverse device types, and limited computational resources. Unlike 
traditional solutions, these networks require a different approach. To address these limitations, the paper 
introduces LF-ACANet-GTOA, a novel approach leveraging a unique architecture called Lightweight 
Fortified Attentional Convolutional Network. This model is optimized with the Giant Trevally Optimization 
Algorithm (GTOA) for efficient and accurate intrusion detection within resource constrained IoT networks. 
The system focuses on critical information within network traffic data using an attention mechanism. It 
analyses two public datasets such as CIC-IDS-2017 and Bot-IoT to assess the effectiveness of LF-ACANet-
GTOA. A meticulous pre-processing stage ensures clean and consistent data for the model. It provides a 
detailed description of the LF-ACANet-GTOA design, encompassing its components: Convolutional 
Encoder, Feature Enrichment Block, Attention Mechanism Integration, and Classification Layer. 
Additionally, it utilizes the Giant Trevally Optimization Algorithm (GTOA) for efficient training and 
optimization. The simulation results for the proposed LF-ACANet-GTOA method on the CIC-IDS-2017 
dataset are promising, achieving high accuracy (99.57%), precision (99.26%), recall (99.16%), and F-score 
(99.21%), with low false alarm (0.73%) and miss rates (0.83%). These results suggest that LF-ACANet-
GTOA has the potential to be a robust and secure solution for intrusion detection in resource-constrained 
interconnected device networks. 

Keywords: Security monitoring solutions, Interconnected device networks, Lightweight Fortified Attentional 
Convolutional Network (LF-ACANet-GTOA), Giant Trevally Optimization Algorithm (GTOA), 
CIC-IDS-2017 and Bot-IoT. 

1. INTRODUCTION 

 LF-ACANet-GTOA tackles the challenge of 
intrusion detection in IoT networks by leveraging 
a unique architecture specifically designed for this 
purpose. This architecture prioritizes lightweight 
design principles to ensure efficient operation on 
devices with limited processing power, ensuring 
smooth integration within the IoT ecosystem. 

Furthermore, it incorporates an attention 
mechanism that focuses on crucial information 
within network traffic data, enhancing the efficacy 
of the proposed LF-ACANet-GTOA model in 
discerning benign from malicious behaviors. 
Finally, the model is optimized using Giant 
Trevally Optimization (GTOA), an influential 
algorithm modeled after the predatory strategies 
observed in giant trevally fish. GTOA facilitates 
efficient training by guiding the optimization 
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process towards configurations that minimize loss 
and maximize intrusion detection accuracy. 

This innovative combination offers a 
lightweight, accurate, and efficient approach to 
intrusion detection, significantly bolstering 
security in the ever-evolving realm of IoT. 

The remaining sections of this 
manuscript explore the details of proposed LF-
ACANet-GTOA method: Section 2 delves into 
prior studies on interconnected devices intrusion 
detection. Section 3 elaborates on proposed LF-
ACANet-GTOA methodology, including its 
architecture, attention mechanism, and 
optimization algorithm. Section 4 evaluates LF-
ACANet-GTOA performance through 
experiments and presents the results and Section 
5 wraps up research by summarizing findings, 
acknowledging limitations, and proposing 
pathways for future exploration. 

 
2. RELATED WORKS 

Numerous recent studies have 
investigated for detecting Intrusion detection in 
IoT. Below are some of the recent studies closely 
related to this topic, 

In 2023, Thakkar, A. and Lohiya, R., 
[21], suggested the Imbalanced Security 
monitoring solutions in Interconnected device 
networks utilizing ensemble learning with deep 
neural networks (ELBC-DNN). The article aimed 
to tackle the challenge of class imbalance using an 
ensemble learning method called the bagging 
ensemble harnesses the power of a deep neural 
network for robust classification. Their approach 
modified the DNN training process by integrating 
class weights to ensure balanced training subsets. 
This approach offered a dual benefit by striving 
for generalization while addressing class 
imbalance in intrusion detection datasets. 
However, it achieved a low error rate with a low 
F-Score value. 

In 2023, Nguyen, D.T. and Le, K.H., 
[22] suggested the Decision Tree based resilient 
approach to detecting intrusions in Internet of 
Things networks (DT). In this, the objective was 
to evaluate the effectiveness of the resilient 
decision tree in challenging IoT environments. 
Initial tests indicated sensitivity to the offset 
parameter, prompting the implementation of a 
statistical method for automatic offset value 
selection to enhance model stability across 
different attack offsets. Subsequently, a robust 
IDS framework for IoT settings was introduced, 

combining the enhanced resilient decision tree 
with a tabular deep learning model for detecting 
and classifying various cyber-attacks. However, it 
attained a low false alarm rate with a low F-Score 
value. 

In 2023, Nguyen, X.H. and Le, K.H., 
[23] presented Detecting Unknown Denial-of-
Service Attacks in Interconnected device 
networks with a SOCNN-LOF-iNNE Learning 
Model (SOCNN-LOF-iNNE). In this scenario, the 
system combines a supervised SOCNN for feature 
extraction with unsupervised LOF and iNNE for 
anomaly detection, capitalizing on both learning 
paradigms. Furthermore, it showcased resilience 
against adversarial attacks, indicating its potential 
to bolster Interconnected device networks security 
designed to safeguard against DoS/DDoS attacks 
in evolving threat environments. However, it 
achieved a low accuracy value with a high F-
Score value. 

In 2023, Bakhsh, S.A. et.al., [24] 
presented Augmenting security in Interconnected 
device networks via deep learning-driven 
Intrusion Detection System. Here, it investigated 
the application of artificial neural networks, 
including Feedforward, Long Short-Term 
Memory, and Random architectures, for 
enhancing the cybersecurity of interconnected 
device networks. Each DL model offers distinct 
advantages: FFNN handles intricate IoT network 
traffic patterns, LSTM captures extended 
dependencies in network traffic, and RandNN 
adapts and learns from data through harnessing 
randomness and dynamism. These algorithms 
revolutionize cybersecurity by providing 
adaptable shields against escalating cyber threats, 
ensuring data integrity in the burgeoning IoT 
space. However, it achieved a high accuracy value 
with a high computation complexity. 

In 2024, Li, S. et.al [25] suggested HDA-
IDS: A Hybrid Approach for IoT DoS Attack 
Detection Leveraging Semi-Supervised CL-GAN 
Technique. By merging Known threat detection 
and behavioural anomaly identification, this 
approach broadens its scope to encompass both 
established and zero-day DoS/botnet attacks. 
Furthermore, it familiarized a Behavioural 
deviation detection system named CL-GAN, a 
generative model combining CNN-LSTM with 
GAN architecture, establishes a baseline for 
normal traffic patterns and detects anomalies 
suggestive of malicious activity. However, it 
achieved a high miss rate. 
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In 2023, Vishwakarma, M. and 
Kesswani, N., et.al [26] suggested dual-stage 
Security monitoring solutions leverages Naive 
Bayes for categorization alongside the elliptic 
envelope technique for anomaly identification. 
Initially, data was categorized into four types 
(nominal, integer, binary, float) and classified 
using various Naive Bayes classifiers. Leveraging 
a majority vote for final class labels, the system 
then analyses benign traffic from stage one using 
an unsupervised elliptic envelope for anomaly 
detection. However, it achieved a low accuracy 
value with a high Recall value. 

In 2022, Saheed, Y.K. et.al [27] utilized 
machine learning within a Security monitoring 
solutions to identify Digital assaults on the 
Interconnected device networks. The study sought 
to harness ML-supervised algorithms for IoT 
intrusion detection. Initially, the data underwent 
feature scaling via min-max normalization to 
avoid information leakage during testing. This 
dataset included various types of network traffic, 
incorporating contemporary attacks and normal 
activities, classified into nine attack categories. 
Following this, PCA was leveraged to extract the 
most significant features from the data. Finally, 
six machine learning models were applied for 
analysis. However, it achieved a low F-Score 
value with a high Precision value. 

3. LF-ACANet-GTOA MODEL 
CONSTRUCTION PROCESS 

Here, the construction process behind 
the Lightweight Fortified Attentional 
Convolutional Network with Giant Trevally 
Optimization for Adversary-Aware Intrusion 
Detection in IoT Networks (LF-ACANet-GTOA) 
is discussed. It is designed specifically for 
efficient and accurate intrusion detection within 
resource-constrained Internet of Things (IoT) 
networks. This model leverages two publicly 
available datasets for training and evaluation. The 
block diagram of the proposed LF-ACANet-
GTOA methodology is given in Figure 1. The 
detail description about each stage is given below, 

 

Figure 1: Diagram illustrating the proposed LF-
ACANet-GTOA methodology. 

3.1 Data acquisition 

To assess the competence of Security monitoring 
solutions in the context of the Interconnected 
device networks, this study examines two notable 
datasets: CIC-IDS-2017 and Bot-IoT. The detail 
description about the dataset is given below, 

3.1.1 CIC-IDS-2017 Dataset 

The CIC-IDS-2017 dataset is provided by the 
Canadian Institute for Cybersecurity (CIC), which 
contain real-world IoT network activity. Logs 
from a controlled Interconnected device networks 
ecosystem populated with various IoT devices. It 
offers a emulated network behaviour mirroring 
real-world scenarios patterns encountered in 
deployed IoT networks. The dataset includes 
benign, and various Denial-of-Service (DoS) 
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attacks aimed at disrupting network operations 
[28]. The dataset likely also contains Infiltration 
attack, Brute-Force attacks and Web application 
attacks exploiting vulnerabilities in IoT devices. 
Additionally, the dataset encompasses other IoT-
specific attacks such as PortScan or botnet 
communication used by attackers to control 
compromised devices. The Overview of Statistics 
for the CIC-IDS-2017 data utilized for this 
analysis is presented in Table 1. 

Table 1: Overview of Statistics for the CIC-IDS-
2017 dataset 

Name of the 
attack 

 Total 

Benign  2,273,097 

Denial of 
Service attacks 

Distributed 
denial-of-
service (DDoS) 
attacks 
alongside 
exploit 
techniques like 
Heartbleed and 
various DoS 
tools 
(slowloris, 
Slowhttptest, 
Hulk, 
GoldenEye) 

3,80,699 

PortScan 
attacks 

PortScan 158,930 

Botnet 
communication 
attacks 

Bot 1966 

Brute-Force 
attacks 

FTP and SSH 
protocols 

13,835 

Web 
application 
attacks 

SQL Injection, 
Cross-Site 
Scripting 
(XSS) and 
Brute Force 

2,180 

Infiltration 
attacks 

Infiltration 36 

Total  2,830,743 

 

3.1.2 Bot-IoT 

The Bot-IoT dataset Offered by 
Northeastern University, which offers a 
comprehensive look into real-world network 
behaviour, focusing specifically on security 
threats targeting Internet of Things (IoT) devices. 
It meticulously captures both normal network 
activity and various cyberattacks launched against 
diverse devices, including Ubuntu servers, mobile 
phones, and smart home appliances [29]. It 
encompasses information gathering techniques 
like port scanning and operating system 
fingerprinting, allowing attackers to identify 
vulnerabilities in targeted systems. Denial-of-
service attempts are also simulated, showcasing 
methods like flooding networks with traffic to 
overwhelm and disable them. Additionally, the 
dataset includes information theft attacks, where 
attackers exploit vulnerabilities to steal sensitive 
data. The breakdown of attack categories within 
the Bot-IoT dataset reveals a focus on probing 
attacks, denial-of-service attacks, and information 
theft attacks. The Overview of Statistics for the 
Bot-IoT data utilized for this analysis is presented 
in Table 2. 

Table 2: Overview of Statistics for the Bot-IoT 
Database 

Name of the 
attack 

 Total 

Benign  9543 

Reconnaissance Network 
reconnaissanc
e 

1463364 

Operating 
system 
Signature 
extraction 

358275 

Denial of 
Service 

Multi-vector 
DDoS attacks 
exploiting 
transport 
(TCP, UDP) 
and 
application 
layer (HTTP) 
protocols 

3,85,32,48
0 

DoS (TCP, 
UDP, HTTP) 

3,30,05,19
4 
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Information 
misappropriatio
n 

Unauthorized 
keystroke 
capture 

1469 

Data 
exfiltration 

118 

Total  7,33,70,44
3 

 

3.2 The starting step of Data preparation 

In this section, the starting step of Data 
preparation including data loading, cleaning 
(missing values, outliers, inconsistencies), 
normalization, and labelling is discussed, that 
prepare the dataset for the proposed LF-ACANet-
GTOA intrusion detection model. This 
meticulous process ensures clean, consistent data 
suitable for the model's learning. It begins by 
leveraging pandas from python to load the dataset. 
This creates a structured DataFrame for easier 
manipulation. Next comes data cleaning. Missing 
values are identified and addressed by removal or 
imputation using techniques like 
mean/median/mode.  

Data points that deviate significantly 
from the norm, often referred to as outliers, can 
potentially mislead the model. SciPy's 
Interquartile Range (IQR) method helps identify 
these outliers. IQR represents the variability 
within the central half of the statistics. Values 
outside a specific range, typically data points 
falling outside the range of 1.5 times the IQR from 
the middle 50%, are indicated [30]. With the help 
of this, outliner is removed. Inconsistencies in 
format or typos are rectified using pandas' string 
manipulation capabilities. After a thorough 
cleaning, normalization ensures all features 
contribute equally during the training of the LF-
ACANet-GTOA model. Here, Scikit-learn's 
StandardScaler standardizes numerical features to 
a common range, typically centered around an 
average value of zero and exhibiting a standard 
variation of one, this normalization prevents 
features with larger scales from overshadowing 
the learning process, enabling the model to treat 
all features equally. It is represented in equation 
(1) 

 Original value  Mean
New value    

Standard deviation


      

                                                                             
(1) 

Where Original value is the value of a 

data point before normalization; Mean  reflects 
the average value of all data points within the 
feature (column).Standard deviation  
represents the standard deviation of all data points 
in the feature. Normalization through 
StandardScaler ensures that all numerical features 
are on a level playing field, facilitating faster 
convergence and more efficient learning for the 
LF-ACANet-GTOA model. 

Finally, data labelling process is done. If 
the dataset lacks pre-existing labels, Security 
Analysts assign labels based on attack types. 
These labels can be "normal" for typical network 
traffic or specific attack names like "denial-of-
service (DoS)". Their expertise in network traffic 
patterns and intrusion detection is crucial for 
accurate labelling. LabelEncoder from scikit-
learn then transforms these categorical labels into 
numerical values suitable for the proposed LF-
ACANet-GTOA model. The proposed LF-
ACANet-GTOA model require numerical data for 
processing, and LabelEncoder performs a simple 
mapping for this purpose. For example, "normal" 
might be converted to 0, and "DoS attack" to 1.  

By following these meticulous pre-
processing steps, the data becomes clean, 
consistent, and ready to be fed into the proposed 
LF-ACANet-GTOA model. This well-prepared 
data lays the foundation for the model to learn 
effectively and ultimately achieve robust 
performance in intrusion detection. 

3.3 LF-ACANet-GTOA Design for Adversary-
Aware IoT Intrusion Detection 

In this section, Lightweight Fortified Attentional 
Convolutional Network for Adversary-Aware IoT 
Intrusion Detection (LF-ACANet) model 
optimized with Giant Trevally Optimization 
Algorithm (GTOA) (LF-ACANet-GTOA) is 
discussed. This model tackles IoT network 
intrusion detection by leveraging its unique 
architecture. The LF-ACANet-GTOA model 
consists of an input layer, a convolutional 
encoder, Feature Enrichment Block, Attention 
Mechanism Integration, and Classification Layer. 
The detail description about each layer is given 
below, 
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Input layer: 

The input layer receives pre-processed network 
traffic data samples from the IoT network. These 
samples are labelled as either benign or a specific 
attack type.  

Convolutional encoder module: 

Then the pre-processed data will be fed through 
the convolutional encoder module. This module 
consists of stacked convolutional layers to extract 
low-level features from pre-processed network 
traffic data like Packet sizes (bytes), Connection 
details including IP addresses, ports, and 
protocols (TCP, UDP, etc.), timestamps. Each 
convolutional layer performs a convolution 
operation, and it is mathematically represented in 
equation (2) 

' '

'

1
1 ,

la

la la
Ch ChCh Ch Ch

Ch F

Data Data K Bias 



 
    

 
      

                                                                          (2) 

Where, 
la
ChData represents the activation at 

channel Ch  in the current data representation (

la); 1 represents the activation function;  laF  

specifies the number of channels extracted by 

layer la, '

1la

Ch
Data 

 represents the Input value at 

channel Ch  of the previous feature map ( 1la
). ' ,Ch Ch

K represents the Value at position Ch  of 

the filter kernel in layer la. Bias term ChBias for 

channel Ch in the current feature map. This 
equation (2) essentially calculates the weighted 

sum of previous feature map '

1la

Ch
Data 

  

convolutional with filter kernel ' ,Ch Ch
K  followed 

by adding the bias ChBias , capturing local 

traffic patterns within the encoder. After the 
convolution, a non-linear activation step (like 
ReLU) is employed to introduce non-linearities. 
[31]. This function is mathematically represented 
in equation (3) 

   , ,  max 0,  la la
i Ch i ChData Data                                                                                                  

(3) 

This equation (3) ensures non-linearity. Here, 

 ,
la
i ChData  shows the result for channel i  

after passing through the activation function in the 
present data representation. By setting negative 
values to zero, ReLU empowers the model to 
identify sophisticated dependencies within the 
features compared to linear activation. By this, 
convolutional encoder progressively extracts 
traffic features via convolution and activation, 
feeding them for attack classification. 

Feature Enrichment Block (FEB) 

This block plays a crucial role in capturing 
intricate features essential for identifying diverse 
attack patterns. It achieves this capability through 
a technique called atrous convolution. Generally, 
Standard convolution in CNNs reduces the detail 
of data feature (granularity) as layers progress. So, 
Atrous convolution were employed to counteracts 
this by capturing features across a larger span 
while preserving local details, enabling more 
comprehensive analysis of network traffic. This 
FEB architecture empowers the proposed LF-
ACANet-GTOA model to extract a wider range of 
features across the entire traffic data 
representation. These features capture valuable 
spatial relationships within the data, providing a 
richer context for differentiating between benign 
and malicious traffic patterns. The mathematical 
representation for atrous convolution is given in 
equation (4), 

    
1

  * * [ ]
N

K

y i Data i RP K w K


                                                                                           

(4) 

Where  y i depicts the Outcome at channel i  in 

the transformed data captures the model's 

interpretation;  Data i  corresponds to the 

initial value for element i  in the unprocessed data 
representation; [ ]w K  corresponds to the 

coefficient at position K  of the convolution 
kernel; R P depicts the Dilation rate parameter 
which controls the spacing between filter 
elements;  K  represents the Index iterating over 
the filter kernel elements. This equation (4) 
utilizes a dilated filter to capture features across a 
wider range of the data. This approach preserves 
the original granularity within the data. By 
incorporating the FEB with atrous convolution, 
the proposed LF-ACANet-GTOA model 
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enhances its ability to detect various attack 
patterns within the network traffic data by 
extracting informative features at different scales 
and preserving crucial spatial information. 

Attention Mechanism Integration: 

The output of the FEB will be used in the 
Attention Mechanism Integration (attention-
guided decoder module). This decoder focuses on 
the most critical information for identifying 
intrusion patterns within the IoT network traffic 
data. It employs Up-Block layers to progressively 
increase the size of the feature maps. This 
expansion allows for more precise localization of 
attack patterns within the traffic data. Also, it 
integrates a attention mechanism. This 
mechanism leverages an additional input denoted 
by Z  from the network's lower layers. This Z  
input serves as a guide, assisting the attention 
module in prioritizing specific regions within the 
feature map. These regions hold the most valuable 
information for classifying traffic as benign or 
malicious. It combines the up sampled feature 
maps with the original, high-level features 
extracted by the encoder through skip 
connections. This ensures that the decoder retains 
both the broader context captured by the high-
level features and the intricate details from the 
lower levels. This combination of high-level and 
low-level information is crucial for accurate 
intrusion detection in the complex and 
multifaceted world of IoT network traffic. The 
general representation for the attention 
mechanism is mathematically given in equation 
(5) 


, ,
la la la
i Ch i Ch iData Data                                                                                                                    

(5) 

Where 


,
la
i ChData signifies the Output of the 

attention module for channel ch  at Traffic 

element i ; ,
la
i ChData  signifies the input feature 

map value for channel ch  at Traffic element i ; 
la
i  signifies the Attention coefficient for Traffic 

element i  ranging from 0 to 1. 

Classification layer: 

Following the Attention Mechanism Integration, 
the LF-ACANet-GTOA model utilizes a fully 

connected layer for final intrusion detection. The 
fully connected layer assigns a probability score 
to each data point in the traffic data. These scores 
indicate the likelihood of the traffic being benign 
or belonging to a specific attack category. During 
the training phase, the proposed LF-ACANet-
GTOA model leverages a cross-entropy loss 
function to evaluate its performance. This 
function calculates the difference between the 
predicted probabilities from the fully connected 
layer and the actual labels as benign or specific 
attack type in the training data. The general 
representation for the cross-entropy loss is 
mathematically represented in the following 
equation (6) 

   , ,
1 1

1
Loss      ln   

A B

class j class j
j class

y y
A  

         

                                                                        (6) 

Where Lossdepicts the calculated loss value for 
the model's prediction; A is Volume of training 
data; B  depicts the Target variable cardinality 

(benign and different attack types). ,class jy  

depicts the Ground truth label (1 for class class
, 0 otherwise) for data point j ;  ,class jy  depicts 

the predicted probability of data point j  

belonging to class class . 

Optimizing for Accurate Intrusion Detection 
using GTOA 

While the cross-entropy loss function 
evaluates the model's performance (Equation 5), 
minimizing this loss to achieve optimal intrusion 
detection requires a powerful optimization 
algorithm. For achieving this, Giant Trevally 
Optimization Algorithm (GTOA) was utilized. It 
mimics the hunting behaviour of giant trevally 
fish to iteratively search for the optimal 
configuration of weights and biases within the LF-
ACANet model. This configuration minimizes the 
cross-entropy loss function, leading to improved 
Security monitoring solutions accuracy in 
Interconnected device networks. The flowchart of 
GTOA for minimizing the loss function of LF-
ACANet model is given in the Figure 2. Below 
outlines the sequential procedure of GTOA, 
Step 1: Initialization 

Initially, GTOA starts by creating a random 
population of candidate solutions, represented as 
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"trevallies." Each trevally corresponds to a 
possible configuration of weights and biases 
within the LF-ACANet model. These initial 
trevallies are scattered throughout the search 
space, ensuring exploration of various potential 
solutions. Each member of the population is 
mathematically represented by a vector, and it is 
given in equation (7) 

1

:

:
p

Total Total Dim

S

S S

S


 
 
 
 
 
 
  

                                                                                                                          

(7) 

Where, S  is the candidate solution (trevally); 

Total is the number of trevallies (population 
size=25). D im is the total number of weights and 

biases in the model. ,p qS represents the value of 

the 
thq variable in the 

thp  trevally. 

Step 2: Random Position Assignment 

Then, the initial positions of the trevallies are 
randomly established within the feasible search 
space, defined by the minimum and maximum 
values for each variable (weights and biases). It is 
given in equation (8) 

 ,p q q q qS Minimum Maximum Minimum Random         

                                                         (8) 

Where 1, 2.........,p Total and 

1, 2,.........,q Dim ; Random is the 

probability distribution of the random variable is 

confined to the interval  0,1 . 

Step 3: Fitness Function Evaluation 

In this step, it evaluates the fitness function of 
each trevally using the Information divergence for 
classification (Equation 6). Estimates the cost of 
model inaccuracy between the LF-ACANet 
model's predictions (based on the current weights 
and biases of the trevally) and the actual labels 
(benign or attack type) in the training data. A 
lower loss value indicates better performance. It is 
given in equation (9) 

( ) [ ]Fitness Function S Minimize Loss                                                                                       

(9) 

t==Max Iteration

 

Figure 2: Flowchart of GTOA for optimizing the LF-
ACANet model 

Step 4: Exploration phase 

Mimicking the long-distance foraging movements 
of trevallies, GTOA utilizes the Levy flight 
technique. This technique introduces random 
jumps into the search process, allowing trevallies 
to explore the entire solution space effectively 
[32]. By incorporating these jumps, GTOA avoids 
getting trapped in local minima. The Levy flight 
is described by equation (10), 

𝑆(𝑡 +  1) = 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛஻௘௦௧ × 𝑅𝑎𝑛𝑑𝑜𝑚 +

൫(𝑀𝑎𝑥𝑖𝑚𝑢𝑚 −  𝑀𝑖𝑛𝑖𝑚𝑢𝑚) ∗ 𝑅 +

𝑀𝑖𝑛𝑖𝑚𝑢𝑚൯ ∗  𝐿𝑒𝑣𝑦(𝐷𝑖𝑚) (10) 
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Here,    1S t   denotes the Spatial 

representation of the trevally in the subsequent 

iteration.; BestPosition  represents the current 

best position identified during the search; 

Random is a random value within the range of 0 

to 1;  Levy Dim  demonstrates a search 

strategy inspired by Lévy flights. 

Step 5: Selecting Promising Areas 

As trevallies hunt for prey, they are drawn 
towards areas with abundant food sources. 
Similarly, GTOA leverages information from 
previous search iterations to guide the trevallies 
towards regions with potentially lower loss 
values. It considers both the best-performing 

solution found so far ( BestPosition ) and the 

average information ( InfoMean ) across the 

trevallies in the population. This helps them focus 
their search on areas with potentially better 
solutions. This behaviour is mathematically 
represented by Equation (11) 

   1 ( )Best InfoS t Position A Random Mean Si t Random            

                                       (11) 

Where, A  is a Movement amplitude parameter 
(usually within 0.3-0.4); ( )Si t  is the giant 

trevally location i at current iteration t . InfoMean
represents the average information from previous 
positions, calculated using Equation (12) 

1

1
( )

Total

Info
i

Mean Si t
Total 

                                                                                                              

(12) 

Step 6: Exploitation phase 

Once the trevallies have identified a promising 
area, they enter the exploitation phase. Here, they 
refine their positions around the best solution to 
converge towards an optimal configuration. This 
step simulates the attacking behaviour of giant 
trevallies, where they adjust their trajectory based 
on visual distortions caused by light refraction. 
GTOA incorporates this concept to guide the 
trevallies towards the solution with minimal loss 
i.e., potentially the most accurate intrusion 

detection configuration. The jumping function 
used in this stage is represented by Equation (13)  

   1  LS +VD +JSS t                                                                                                               

(13) 

Where VD represents the visual distortion, 
calculated using Equation (14) 

 1VD=sin ( )BestPosition Si t                                                                                                 

(14) 

Where  1sin   is calculated with the help of 

Snell's law and it is given by equation (15) 

   2
1 2

1

sin sin
 


  
                                                                                                                 

(15) 

Where Light propagation characteristics of air 

1 1.00029  and the Light propagation 

characteristics of water 2 1.33  ; angle of 

incidence is represented as 1


 and angle of 

refraction is represented as 2


 and the values lies 

in the interval of  0,360 . LS represents the 

launch speed, calculated using Equation (16) 

   2LS=Si(t) sin Si(t)Fitness Function       

                                                                        (16) 

JS  represents the jumping slope function 
(decreasing trend from 2 to 0), calculated using 
Equation (17), 

2
JS=Random 2 t

Max Iteration

 
   
 

                                                                                         

(17) 

Step 7: Termination 

The entire process such as fitness 
evaluation, exploration, selection, and 
exploitation are repeated for a predefined number 

of iterations  t Max Iteration . With each 

iteration, the trevallies (candidate solutions) 
iteratively adjust their positions considering 
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individual merit and group dynamics of other 
trevallies. This iterative process allows GTOA to 
gradually converge towards the optimal weights 
and biases that minimize the loss function, 
ultimately leading to the best possible intrusion 
detection performance for the LF-ACANet 
model. 

The GTOA offers several advantages for 
optimizing the LF-ACANet loss function in 
intrusion detection. Firstly, it excels at effective 
search. By combining Levy flights for broad 
exploration and Selecting Promising Areas 
strategies to concentrate on promising regions 
with lower loss values, GTOA efficiently 
navigates the complex search space. Secondly, 
GTOA boasts improved convergence. The 
Exploitation phase refines a knowledge 
distillation approach, where past high-performing 
solutions guide the search process towards the 
optimal weight and bias configuration for the LF-
ACANet model. Finally, Levy flights' inherent 
ability to take large jumps empowers GTOA to 
escape from local minima in the loss function. 
This translates to a more robust optimization 
process, ensuring the algorithm doesn't get stuck 
in suboptimal solutions and can effectively find 
the configuration that minimizes the loss function, 
leading to the most accurate intrusion detection 
performance. 

By iteratively applying these steps, the 
GTOA algorithm helps the LF-ACANet model 
learn the appropriate weights and biases for 
effectively distinguishing between benign and 
malicious network traffic, achieving robust IoT 
intrusion detection. 

 
4. OUTCOMES AND ANALYSIS 

In this portion investigates the 
effectiveness of the LF-ACANet-GTOA 
Approach in bolstering IoT cybersecurity. The 
experiments took place on a on a setup featuring 
an Intel Core i7 processor (2.50 GHz), 8GB RAM, 
and running Windows 10. Python was the primary 
programming language for implementing the 
proposed LF-ACANet-GTOA model. The CIC-
IDS-2017 and Bot-IoT datasets, established 
within the realm of IoT intrusion detection, were 
utilized for assessment. These datasets were 
segmented into three groups: training, validation, 
and assessment. The training set constitutes the 
largest portion of the data (60%). It's used to train 
the proposed LF-ACANet-GTOA model by 
exposing it to patterns and features for intrusion 
identification. The validation set comprises a 

smaller proportion compared to the training set 
(20%) and serves a crucial role in hyperparameter 
tuning. By adjusting hyperparameters based on 
validation set performance, the GTOA algorithm 
refines the LF-ACANet model's effectiveness. 
Finally, the testing set (20%) enabled the final 
evaluation of the LF-ACANet-GTOA model's 
performance. To comprehensively assess the 
proposed methodology, various evaluation 
metrics were considered. The analysis of these 
metrics yielded insights into the efficacy of the 
LF-ACANet-GTOA model. Furthermore, the 
results were compared with those achieved by 
existing methods in the proposed LF-ACANet-
GTOA model compared with the existing 
methods like Imbalanced Security monitoring 
solutions in Interconnected device networks 
utilizing ensemble learning with deep neural 
networks (ELBC-DNN) [21], Decision Tree 
based resilient approach to detecting intrusions in 
Internet of Things networks (DT) [22] and 
Detecting Unknown Denial-of-Service 
Occurrences in Interconnected device networks 
with a SOCNN-LOF-iNNE Learning Model 
(SOCNN-LOF-iNNE) [23] respectively. This 
comparative analysis aimed to highlight the 
strengths and potential advantages of the 
proposed LF-ACANet-GTOA model.  
Accuracy 

Accuracy denotes the overall percentage of 
instances correctly classified. This is computed 
via following equation (18) 

 
 

TP+TN
Accuracy =

TP+FP+TN+FN
                                                                                 

(18) 

Where True Positive (TP): This pertains to the 
frequency of occasions when the model correctly 
identifies an attack, and the actual real-world 
activity was indeed an attack; True Negative 
(TN): This pertains to the frequency of occasions 
when the model correctly predicts normal activity, 
matching the actual real-world activity;  False 
Positive (FP): This pertains to the frequency of 
occasions when the model correctly predicts 
normal activity, matching the actual real-world 
activity; False Negative (FN): This pertains to the 
frequency of occasions when the model correctly 
erroneously envisages normal activity, while the 
actual real-world activity was an attack. 
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Precision 

It is the accuracy of the model's positive 
predictions (attacks). This is computed via 
following equation (19) 

 
TP

Precision=
TP+FP

                                                                                                                   

(19) 

Recall 

It measures the ratio of genuine attacks accurately 
identified as such by the model. This is scaled via 
equation (20) 

 
TP

Recall=
TP+FN

                                                                                                                        

(20) 

F1 Score 

A measure that strikes a balance the relationship 
of precision to recall. This is determined by 
equation (21) 

 
TP

F1Score=
1

TP+ FP+FN
2

 
 
 

                                                                                                      

(21) 

False alarm rate 

It calculates the fraction of negative predictions 
(normal activity) that the model erroneously 
classified as positive (attacks). This is computed 
with equation (22) 

False alarm rate = 100 - Precision                                                                                               
(22)      

Miss Rate 

The Miss Rate represents the proportion of actual 
attacks that the model fails to identify. This is 
computed with equation (23) 

Miss rate = 100 - Recall                                                                                                              
(23) 

 

4.1 Performance Analysis for CIC-IDS-2017 
database 

Figure 3-8 illustrate the working of a 
new intrusion detection system (IDS) called 
proposed LF-ACANet-GTOA method, evaluated 
using the CIC-IDS-2017 database. Figures 3-8 
compare proposed LF-ACANet-GTOA against 
existing methods like ELBC-DNN [21], DT [22] 
and SOCNN-LOF-iNNE [23] across various 
cyberattacks. 

 

Figure 3: Accuracy representing CIC-IDS-2017  
Figure 3 describes an analysis that 

compares accuracy achieved by assorted Security 
monitoring solutions (IDS) for a diverse range of 
cyberattacks within the CIC-IDS-2017 database. 
LF-ACANet-GTOA method attains 
7.69%,13.41% and 4.18 high accuracy for 
Benign; 9.05%,15.24% and 7.36% high accuracy 
for Denial of Service attacks; 8.25%, 17.14% and 
4.95% high accuracy for PortScan attacks; 6.34%, 
16.45% and 5.86% high accuracy for Botnet 
communication attacks; 8.207%, 17.71% and 
4.93% high accuracy for Brute-Force attacks; 
10.801%,19.04% and 4.11% high accuracy for 
Web application attacks; 8.66%, 12.34% and 
6.26% high accuracy for Infiltration attacks 
compared with the existing methods like ELBC-
DNN, DT and SOCNN-LOF-iNNE respectively. 
The proposed LF-ACANet-GTOA method shows 
improvement in accuracy for various attack types 
compared to existing systems. 
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Figure 4: Precision representing CIC-IDS-2017  
Figure 4 dives into the precision analysis 

of LF-ACANet-GTOA, showcasing its ability to 
identify true positives (correct malicious traffic) 
across various attack types in the CIC-IDS-2017. 
LF-ACANet-GTOA method attains 
9.18%,18.34% and 6.216% high Precision for 
Benign; 8.15%,20.56% and 5.08% high Precision 
for Denial of Service attacks; 10.208%, 21.58% 
and 6.108% high Precision for PortScan attacks; 
9.55%,20.59% and 7.38% high Precision for 
Botnet communication attacks; 9.58%,19.87% 
and 6.007% high Precision for Brute-Force 
attacks; 8.33%,19.61% and 5.002% high 
Precision for Web application attacks; 
9.06%,20.56% and 6.55% high Precision for 
Infiltration attacks compared with the existing 
methods like ELBC-DNN, DT and SOCNN-
LOF-iNNE respectively. Compared to existing 
me thods, the proposed LF-ACANet-GTOA 
method achieves significantly higher precision. 

Figure 5 explores into the recall analysis 
of LF-ACANet-GTOA, focusing on its ability to 
detect all actual malicious traffic in the CIC-IDS-
2017. LF-ACANet-GTOA method attains 7.22%, 
13.91% and 4.29% high Recall for Benign; 
8.53%, 16.84% and 6.15% high Recall for Denial 
of Service attacks; 8.74%, 18.56% and 8.098% 
high Recall for PortScan attacks; 8.51%, 19.76% 
and 6.706% high Recall for Botnet 
communication attacks; 9.93%, 21.79% and 
9.05% high Recall for Brute-Force attacks; 
8.68%, 20.99% and 7.81% high Recall for Web 
application attacks; 7.99%, 22.27% and 8.67% 
high Recall for Infiltration attacks compared with 
the existing methods like ELBC-DNN, DT and 
SOCNN-LOF-iNNE respectively. Compared to 

existing methods, proposed LF-ACANet-GTOA 
method demonstrates significant improvement in 
recall. This suggests it's more effective at catching 
these critical threats. 

 

Figure 5: Recall representing CIC-IDS-2017  
Figure 6 analyses the F-Score 

performance of the LF-ACANet-GTOA method 
on the CIC-IDS-2017. LF-ACANet-GTOA 
method attains 8.2%, 16.11% and 5.24% high F-
Score for Benign; 8.34%, 18.701% and 5.623% 
high F-Score for Denial of Service attacks; 9.47%, 
20.07% and 7.104% high F-Score for PortScan 
attacks; 9.03%, 20.18% and 7.04% high F-Score 
for Botnet communication attacks; 9.75%,20.83% 
and 7.52% high F-Score for Brute-Force attacks; 
8.51%, 20.29% and 6.4% high F-Score for Web 
application attacks; 8.53%, 21.41% and 7.61% 
high F-Score for Infiltration attacks compared 
with the existing methods like ELBC-DNN, DT 
and SOCNN-LOF-iNNE respectively. Compared 
to existing methods, the proposed LF-ACANet-
GTOA method achieves a significant overall 
improvement in F-Score across various attack 
types. This indicates a good balance between 
identifying true positives (malicious traffic) and 
minimizing false negatives (missed attacks) for 
these critical threats.  
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Figure 6: F-Score representing CIC-IDS-2017  

 

Figure 7: False alarm rate representing CIC-
IDS-2017  

 
Figure 7 showcases the strength of the 

proposed LF-ACANet-GTOA method in 
minimizing false alarms on the CIC-IDS-2017. 
False alarms occur when benign traffic is 
mistakenly identified as malicious. The proposed 
LF-ACANet-GTOA method attains 87.01%, 
92.507% and 82.33% low False alarm rate for 
Benign; 89.46%, 95.05% and 84.507% low False 
alarm rate for Denial of Service attacks; 95.24%, 
97.46% and 92.56% low False alarm rate for 
PortScan attacks; 93.83%, 96.75% and 92.307% 
low False alarm rate for Botnet communication 
attacks; 92.94%, 96.14% and 89.507% low False 
alarm rate for Brute-Force attacks; 91.49%, 
95.82% and 86.94% low False alarm rate for Web 
application attacks; 93.01%, 96.47% and 90.78% 
low False alarm rate for Infiltration attacks 
compared with the existing methods like ELBC-
DNN, DT and SOCNN-LOF-iNNE respectively. 
Compared to existing methods, the proposed LF-
ACANet-GTOA method achieves significantly 
lower false alarm rates across all attack types. 
This translates to fewer unnecessary alerts and 
improved system efficiency.  

 
Figure 8: Miss rate Analysis for CIC-IDS-2017 

dataset 
 

Figure 8 depicts the Miss rate Analysis 
focusing on proposed LF-ACANet-GTOA's 
ability to catch actual malicious traffic and 
minimize missed attacks. This figure 8 showcases 
the method's strength, with consistently lower 
miss rates across all attack categories compared to 
existing methods. The proposed LF-ACANet-
GTOA method attains 73.84%, 83.66% and 
63.307% low Miss rate for Benign; 85.18%, 
91.32% and 80.905% low Miss rate for Denial of 
Service attacks; 92.05%, 95.75% and 91.51% low 
Miss rate for PortScan attacks; 89.83%, 94.89% 
and 87.62% low Miss rate for Botnet 
communication attacks; 98.36%, 99.16% and 
98.22% low Miss rate for Brute-Force attacks; 
96.606%, 98.407% and 96.27% low Miss rate for 
Web application attacks; 97.88%, 99.12% and 
98.03% low Miss rate for Infiltration attacks 
compared with the existing methods like ELBC-
DNN, DT and SOCNN-LOF-iNNE respectively. 
However, the consistently low miss rates across 
various attack categories in Figure 8 strongly 
suggest proposed LF-ACANet-GTOA methods 
potential as a reliable intrusion detection system 
with a high success rate in catching malicious 
activity. 

 
4.2 Analysing the performance on the Bot-IoT 
database: 

Figure 9-14 illustrate the working of LF-
ACANet-GTOA method for Bot-IoT dataset and 
Existing Methods like ELBC-DNN [21], DT [22] 
and SOCNN-LOF-iNNE [23] respectively. 
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Figure 9: Accuracy representing Bot-IoT  
 

Figure 9 illustrates the analysis of 
accuracy on the Bot-IoT. LF-ACANet-GTOA 
method attains 9.45%, 6.04% and 2.86% high 
accuracy for Benign; 8.12%, 4.708% and 2.69% 
high accuracy for Information gathering attacks; 
8.45%, 5.87% and 3.65% high accuracy for 
Denial-of-Service attacks; 7.14%, 5.86% and 
4.23% high accuracy for Information theft attacks 
compared with the existing methods like ELBC-
DNN, DT and SOCNN-LOF-iNNE respectively. 

 

Figure 10: Precision representing Bot-IoT 
 

Figure 10 illustrates the analysis of 
Precision on the Bot-IoT. LF-ACANet-GTOA 
method attains 13.43%, 9.92% and 6.39% high 
Precision for Benign; 14.25%, 7.77% and 5.63% 
high Precision for Information gathering attacks; 
12.79%, 7.28% and 7.26% high Precision for 
Denial-of-Service attacks; 10.95%, 7.55% and 
7.97% high Precision for Information theft attacks 

compared with the existing methods like ELBC-
DNN, DT and SOCNN-LOF-iNNE respectively. 

Figure 11 illustrates the analysis of 
Recall on the Bot-IoT. LF-ACANet-GTOA 
method attains 15.11%, 10.27% and 6.35% high 
Recall for Benign; 13.69%, 8.92% and 6.81% 
high Recall for Information gathering attacks; 
13.06%, 8.54% and 5.74% high Recall for Denial-
of-Service attacks; 12.31%, 7.54% and 7.29% 
high Recall for Information theft attacks 
compared with the existing methods like ELBC-
DNN, DT and SOCNN-LOF-iNNE respectively. 

 

Figure 11: Recall representing Bot-IoT 

 
Figure 12: F-Score representing Bot-IoT 
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Figure 12 illustrates the analysis of F-
Score on the Bot-IoT. LF-ACANet-GTOA 
method attains 14.27%, 10.1% and 6.37% high F-
Score for Benign; 13.97%, 8.34% and 6.22% high 
F-Score for Information gathering attacks; 
12.92%, 7.91% and 6.508% high F-Score for 
Denial-of-Service attacks; 11.63%, 7.55% and 
7.63% high F-Score for Information theft attacks 
compared with the existing methods like ELBC-
DNN, DT and SOCNN-LOF-iNNE respectively. 

 
Figure 13: False alarm rate representing Bot-IoT 

 
Figure 13 illustrates the analysis of False alarm 
rate on the Bot-IoT. LF-ACANet-GTOA method 
attains 95.38%, 94.03% and 91.29% low False 
alarm rate for Benign; 95.23%, 92.04% and 
89.52% low False alarm rate for Information 
gathering attacks; 95.92%, 93.37% and 93.35% 
low False alarm rate for Denial-of-Service 
attacks; 94.87%, 92.95% and 93.27% low False 
alarm rate for Information theft attacks compared 
with the existing methods like ELBC-DNN, DT 
and SOCNN-LOF-iNNE respectively. 

Figure 14 illustrates the analysis of Miss rate on 
the Bot-IoT. LF-ACANet-GTOA method attains 
97.17%, 96.06% and 93.99% low Miss rate for 
Benign; 97.801%, 96.8% and 95.92% low Miss 
rate for Information gathering attacks; 98.97%, 
98.49% and 97.83% low Miss rate for Denial-of-
Service attacks; 97.85%, 96.68% and 96.58% low 
Miss rate for Information theft attacks compared 
with the existing methods like ELBC-DNN, DT 
and SOCNN-LOF-iNNE respectively. 

 
Figure 14: Miss rate representing Bot-IoT 

 
4.3 Discussion 

In this part, it analyses the effectiveness 
of the LF-ACANet-GTOA Security monitoring 
solutions (IDS) on two datasets: CIC-IDS-2017 
and Bot-IoT. The comparison estimates the 
effectiveness of the LF-ACANet-GTOA method's 
measures against existing methods like ELBC-
DNN, DT, and SOCNN-LOF-iNNE for various 
cyberattacks.  

The proposed LF-ACANet-GTOA 
method consistently achieved higher accuracy in 
identifying various cyberattacks compared to 
existing methods. This indicates its effectiveness 
in correctly classifying both benign and malicious 
traffic. It also demonstrated a good balance 
between identifying malicious traffic and 
minimizing benign traffic flagged as malicious. 
This translates to fewer unnecessary alerts and 
improved system efficiency. Compared to 
existing methods, proposed LF-ACANet-GTOA 
method achieved substantially lower miss rates 
for both benign and malicious traffic. This 
signifies its improved ability to catch a wider 
range of threats while minimizing missed 
detections. 

While proposed LF-ACANet-GTOA 
method demonstrates promising results, there are 
areas for improvement. Evaluating it on more 
datasets and investigating scalability for larger 
networks are crucial next steps. Additionally, 
incorporating explainability techniques can 
improve understanding of its decision-making 
process. Future work can explore integrating 
blockchain technology with LF-ACANet-GTOA 
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to bolster IDS security in IoT. Blockchain offers a 
secure and tamper-proof platform to store 
statistics employed for guidance and assessment 
the model, enhancing statistics integrity and 
trustworthiness. Furthermore, leveraging 
blockchain's immutability and distributed ledger 
technology can significantly strengthen the 
overall security of the IDS in IoT networks. 
 
5. CONCLUSION 

 
In this section, the proposed Lightweight 

Fortified Attentional Convolutional Network with 
Giant Trevally Optimization Algorithm (LF-
ACANet-GTOA) demonstrates significant 
potential for securing resource-constrained 
Internet of Things (IoT) networks. This 
meticulously designed system tackles intrusion 
detection challenges effectively. The pre-
processing phase ensures clean data for the model, 
while the unique architecture with convolutional 
encoders, Feature Enrichment Block, Attention 
Mechanism Integration, and classification layers 
efficiently extracts features and classifies the 
intrusion. Additionally, the Giant Trevally 
Optimization Algorithm (GTOA) optimizes the 
model's performance. Analysis on benchmark 
datasets reveals superior accuracy, balanced 
detection with minimized false alarms, and 
reduced miss rates compared to existing methods. 
While promising, further evaluation on diverse 
datasets and scalability investigations are 
necessary. Additionally, incorporating 
explainability techniques can improve 
comprehension of the process of decision-
making. Future work can explore integrating 
blockchain technology to enhance data integrity, 
immutability, and overall security of the Security 
monitoring solutions in Interconnected device 
networks. By continuously refining LF-ACANet-
GTOA and exploring promising avenues like 
blockchain integration, a robust and secure future 
for Security monitoring solutions in 
Interconnected device networks can be created. 
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