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ABSTRACT 
 

High amplitude depending on the wind's top speed and the categorization of intensity are both used in 
cyclone classification and prediction models. The whole spectrum of ideal features needed for classification 
are depreciated by the computational limits combined with the production of those intensities, cyclone 
categorization, and forecast, making accurate representation less likely. There is a bias that varies 
depending on the Tropical Cyclone (TC) center and shape because there is no standardized way for 
calculating TC intensity and the most popular method uses a manual computation employing satellite-based 
weather imagery. The Lucas-Kanade optimal flow based Recurrent All-Pairs Field Transformer (LK 
RAFT) is thus the main focus of this work for feature extraction. It collects properties at the pixel level, 
creates 4D comparative quantities at multiple scales for all possible pixel resolutions, and retrieves these 
values through iteratively notifying a flow field via a recurrent unit. Furthermore, three-dimensional 
convolutional neural networks (3D-CNN) were used to investigate the correlation between TC intensity and 
multi-spectral geostationary satellite images. Additionally, we used CNN visualization tool, to examine the 
properties of multi-spectral satellite-based TC pictures according to intensity. Using images from cyclone 
samples like OCKHI DEC2017 and VARDAH DEC2016, empirical assessment of the proposed LK RAFT 
3DCNN method is carried out with the consideration of variables like accuracy, precision, recall, mean 
square error and F1-score. 
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1. INTRODUCTION  
 

Among the most dangerous weather 
patterns to form beyond a tropical ocean is a 
tropical cyclone (TC), that has been receiving a 
significant amount of attention due to its destructive 
effects on people [1-5]. According to research, the 
original TC intensity, the meteorological condition 
of the environment, and the heat exchange in 
between ocean and TCs all have a significant 
impact on the density of TC [6-9]. Because of the 
limited knowledge of TC dynamics and the scarcity 
of observations over the ocean, it is currently 
challenging to estimate TC intensity (TCI) with 
accuracy [10-14].7 More significantly, since the 
late 1970s, TC has demonstrated a 16–15% 
worsening tendency over the previous 37 years [15-
18], and the present crisis isn't really hopeful. 

Violent storms, excessive rainfall, storms, 
earthquakes, as well as other severe catastrophes 
linked to TCI are endangering human life and 
property, hence it is crucial to create improved 
models to better explain and forecast TCI [19-21].   
The two main categories of predictive models are 
arithmetic models and regression techniques. To 
predict TCI and its course, mathematical results 
significantly rely on complicated processes. 
Although cyclone landfall studies aim for good 
predictive reliability, understanding the 
environmental factors that affect the cyclone's 
strength and direction is equally crucial to address 
this, we will be incorporating a feature extraction 
method with mutual information (MI) into the 
forecasting model. This will improve accuracy and 
provide insight into how the variables governing 
the changing cyclone system parameters may 
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interact with one another. Innumerable feature 
extraction methods, such as pouch and screen 
methodologies, have been used in multivariate time 
series analysis to reduce errors while lowering 
computation cost of predictive modeling. However, 
the former has a higher computational burden, 
whereas the latter makes use of statistical 
techniques that are more effective. It has been 
demonstrated that MI improves regressive 
assignment performance when suitable assumptions 
are made. Given this, the following are the 
accomplishments of this work: 
 As a filter approach for identifying a 

condensed collection of attributes helpful to 
our forecasting assignment, we have used 
Lucas-Kanade optimal flow. It combines 
with Recurrent All-Pairs Field Transformer, 
that has demonstrated the power to describe 
nonlinear timing relationships of a storm. By 
incorporating intrinsically connected 
variables particular to the job, their accuracy 
of the model could be greatly increased. 

  Additionally, adopting a three-dimensional 
convolution neural network (3D-CNN) 
offers significantly improved performance 
over traditional recurrent models thanks to 
its ability to use any recurrent unit as a core 
component and infinitely larger dilatation 
and dilated recurring skipping connections. 

Here is the outline of the present article: 
The presentation's second segment, which includes 
a table, provides a pertinent compilation of studies 
on cyclone prediction using neural networks. 
Models for feature extraction and prediction are 
proposed in Section 3. In section 4, we compare the 
proposed model's performance to that of a 
benchmark. In the fifth section, we offer the 
method's overall conclusion. 
2. RELATED WORKS 

Additionally, it is undeniable that upper 
ocean feedback has a substantial impact on TCs; 
nevertheless, the effectiveness of operational 
numerical forecast models is severely hindered 
because so few of these models account for this. 
Significant improvements in forecast accuracy are 
necessary because alternative methods, such 
statistical models, also fail to account for the 
complex and nonlinear relationship between TC-
related parameters. To fix these problems using 
conventional methods, scientists have been 
considering using machine learning (ML) to 
analyze satellite, radar, in-situ data, etc., to make 
TCs better forecasters in the last year. 

Deep convolutional neural network (CNN) 
models of stimulated tropical cyclone intensity 

(TCI) were utilized by Xu et al. (2022), as they 
performed better than the two other previous model 
(LeNet-5 and AlexNet). The susceptibility studies' 
findings show strong agreement with the theory and 
observations, which validates the model's accuracy 
and dependability. The outcomes also imply that 
the significance of predictors varies depending on 
the aim. For accurate, long-lead-time storm surge 
prediction, Chao et al. (2022) propose a model that 
combines parametric cyclones with neural 
networks. The Longdong station region in northern 
Taiwan was the target of the model's application. 
Overall, the suggested solution preserved the 
crucial typhoon indicators while reducing the 
complexity of the network topology. Specifically, 
typhoon potential future influence can be inferred 
utilizing locally-based pressure and wind 
estimations from storm parameters using 
physically-based parametric cyclone models, as 
compared to earlier works' simple collection and 
direct use of observation data from local stations. 
Using deep convolutional neural network 
architecture, Kolukula et al. (2022) adopted a 
blending method that produces increased wind 
fields; after the architecture learns the mapping, it 
can be quickly deployed. Based on two classes of 
Recurrent Neural Networks (RNNs), which use 
storm passthrough probabilities calculated from 
historical data, Bose et al. (2022) proposed their 
theory. Due to compounded mistake accumulation, 
a rigorous investigation of model forecasting 
inaccuracy reveals that Many-To-One prediction 
models are less accurate than Many-To-Many 
models. Zhou et al. (2021) set out to develop a new 
model for a back propagation (BP) neural network 
that can predict when and how much rain will fall 
during a typhoon. To identify the model's 
predictors, we look at how a large number of 
possible variables interact with the two target 
variables we listed before. The two modules of the 
multitask machine learning architecture presented 
by Wu et al. (2021)—the prediction module and the 
estimate module—are used to predict the path and 
strength of tropical cyclones. In their 2019 study, 
Rüttgers et al. used generative adversarial networks 
(GAN) with inputs from satellite pictures. Satellite 
images of historical typhoons that have made 
landfall on the Korean Peninsula are used to train 
the neural network. Using the trained GAN, a 6-
hour-ahead typhoon track is generated, even though 
the GAN was not trained for that specific storm. A 
recurrent neural network is built by Pan et al. in 
(2019). Its 24-hour prediction error of 5.1 ms is 
similar to subjective prediction and better than 
some popular dynamical models. 
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Experts in meteorology have long voiced 
their disapproval of machine learning—and deep 
learning in particular—for what they see as its 
irrational reliance on data discovery rather than on 
physical principles to reliably forecast TCs. It's a 
new challenge to figure out how to make computer 
attempting to learn forecasting analytics more 
reliable and the regression technique more credible. 
3. SYSTEM MODEL 

There are two types of cyclone dataset 
such as OCKHI_DEC2017 and 
VARDAH_DEC2016 is chosen, which starts by 
studying the input satellite image containing the 
tropical cyclone information. This data is processed 
using Lucas–Kanade optical flow method for 
filtering and paring. The paired data is given to 
Recurrent all pair transformer for optimal frame 
extraction, which hence find the cyclone patterns. 
Finally, the extracted feature are given to 3D-CNN. 
Figure-1 shows the block diagram of cyclone 
prediction. 

 
Figure1: Block diagram for cyclone prediction 

3.1 Optical flow method 
To provide an optical flow approach to 

address the overall roughness, the Lucas-Kanade 
optical flow methodology comprises localized 
limitations [18]. The preceding fractional 
differential equation is solved using the procedure 
to provide the optical flow: 

డ௃

డ௨
𝐴 +

డ௃

డ௩
𝐵 +

డ௃

డ௧
= 0  (1) 

𝐼(𝑢, 𝑣, 𝑡)  is the lighting of the center 

pixel on (𝑢, 𝑣)  at time t., where 𝐴 and 𝐵 stand 

for the flow velocity in the 𝑢and 𝑣 directions, 
correspondingly. Equation (1) (also referred as the 
optical flow restriction solution, or OFC), 
incorporates 2 uncontrollable factors that are 
impossible to solve without an extra condition. The 
Lucas-Kanade optical flow makes use of the local 
differentiation approach to determine the pixel's 
mobility on the presumption that the optical flow is 
constant in close proximity. As a result, it optimizes 
the continuity formula for each particular region: 

 
∑ 𝐺ଶ (𝑢)[∇𝐼(𝑢, 𝑡). 𝑥 + 𝐼(𝑢, 𝑡)ଶ = 0 (2) 

where (𝐴, 𝐵)் and 𝐺(𝑢) is an effective 
filter that has a stronger impact on the 

neighborhood center than the peripheral. The 
continuity equation (3) can be used to resolve issue 
(2): 

𝑀்𝐺ଶ𝑀𝐵 = 𝑀்𝐺ଶ 𝑣  (3) 

Specifically, 𝑀 =
[∇𝐼(𝑢ଵ), … ∇𝐼(𝑢௡)]்; 𝑣 =

−൫𝐼௧(𝑢ଵ), … 𝐼௧(𝑢௡)൯
்

  could be answered by 
the continuity formula (4) 

𝑩 = [𝑀்𝐺ଶ𝑀]ିଵ𝑀்𝐺ଶ𝑣 (4) 
Calculations (5) and (6) demonstrate that 

Calculation (4) is derived in linear system 
using𝑀்𝐺ଶ𝑀is  is a nonsingular matrix (6) 

𝑀்𝐺ଶ𝑀 =

൬
∑ ீమ(௨)ூೣ

మ(௫)

∑ ீమ(௨)ூೣ(௫)௬(௫)

∑ ீమ(௨)ூೣ(௫)௬(௫)

∑ ீమ(௨) ∑ ீమ(௨)ூ೤
మ(௫)

൰                                                                             

(5) 

𝑀்𝐺ଶ𝑣 = ቀ
ீమூೣ(௫)ூ೟(௫)

ீమூ೤(௫)ூ೟(௫)
ቁ                 (6) 

Pyramid images at each level are used by 
the pyramid optical flow to calculate the flow field. 
The most important step is to build a pyramid with 
an image sequence, where an elevated shot is 
converted into a low-resolution view. All 
calculations should be performed at the subpixel 
level in order to obtain subpixel accuracy. Table 1 
displays the class of Enhanced Fujita scale 
hurriances. 

Table 1: category of Enhanced Fujita scale hurriances 
scale 

EFuj-
scale 

Class Speed 
km/h 

Wind 
mph 

description 

EFuj-0 Weedy 105-137 65-85 Blow 
EFuj-1 Weedy 138-177 86-110 adequate 
EFuj-2 Solid 178-217 111-135 substantial 
EFuj-3 Solid 218-266 136-165 unembellished 
EFuj-4 Intense 267-322 166-200 shattering 
EuhF-5 Intense >322 >200 inconceivable 

The steps involved in the subpixel-based 
LKOF technique are as follows: 

 Build a pyramid using two aerial imageries 
in a cyclical fashion, with level L set to 
four. 

 To acquire motion information in subpixel 
precision, calculate the subpixel val ue 
using the bilinear estimation technique 
among integer values at every level.         
Activate the top-level optical flow 

estimate: 𝑥ௗ௠ = (𝐴ௗ௠, 𝐵ௗ௠) = (0,0)்  

Let 𝑑 = 𝑑𝑚 
 using the conventional Lucas-Kanade 

procedure Equations (3)–(6) Calculate the 
residual optical flow  𝑟𝑒𝑠௅ =
[𝑟𝑒𝑠௨

௅, 𝑟𝑒𝑠௩
௅] i at level 
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 The optical flow  𝑦௅ିଵ =
(𝐴௅ିଵ, 𝐵௅ିଵ)் at level 𝐿ିଵ may be 
calculated using the Equation  

𝑦௅ିଵ = (𝐴௅ିଵ, 𝐵௅ିଵ)்

= (2(𝐴௅ + 𝑑௫
௅), 2൫𝐵௅

+ 𝑑௬
௅൯))𝑇  

 The L-1 layer's image size will be double 
that of the L layer if the x-or y-axis 
coefficient equals 2. 

 Let L = L – 1, then proceed to step (e) and 
loop through steps (e) to (f) until L equals 
zero. 

 The optical flow y at level L = 0 (original 
picture) is finally determined using the 
formula below. 

𝑦 = (𝐴, 𝐵) = (𝐴଴ + 𝑑௫
଴, 𝐵଴𝑑௒

଴ 
Smoothness constraint: The velocity field 

must be smoothed since the (A,B) computed in step 
(h) is noise-sensitive. The Bowler smooth strategy 
is used to smooth the velocity field (A,B) produced 
above using the average of the eight closest 
3.2 Recurrent All-Pairs Field Transformer 
based feature extraction 

Given two sequential RGB pictures, 
𝑘ଵ, 𝑘ଶ we compute a dense displacement field 

𝑑𝑖𝑠ଵ, 𝑑𝑖𝑠ଶ that translates each pixel (𝑝, 𝑞)  in 𝐼ଶ  

to its corresponding coordinates (𝑝ᇱ, 𝑞ᇱ) = (𝑝 +
𝑑𝑖𝑠ଵ(𝑝), 𝑞 + 𝑑𝑖𝑠ଶ(𝑞) in 𝐼ଶ.  

 
Figure 2: Architecture of Recurrent All-Pairs Field 

Transformer 
 

      Both I1 and I2 use the feature encoder network 
to convert the input images to lower-resolution 
dense feature maps. When D is set to 256, our 
encoder, 𝑔𝜃 outputs feature at a resolution of 1/8, 

as follows: 𝑔𝜃: 𝑅ு×௪×ଷ → 𝑅ு/଼×௪/଼×஽. 
Figure 2 depicts the Recurrent All-Pairs Field 
Transformer's architectural layout. 

Correlation Pyramid: We build a 4-layer 
pyramid {𝑐𝑜𝑟ଵ, 𝑐𝑜𝑟ଶ, 𝑐𝑜𝑟ଷ, 𝑐𝑜𝑟ସ}  by 
combining the final two main dimensions of the 
correlation volume with kernel sizes of 1, 2, 4, and 
8 with comparable stride. Consequently, the 

dimensions of the volume 𝑐𝑜𝑟௞ are 𝐻 × 𝑊 ×
ு

ଶೖ
,

ௐ

ଶೖ
. Retaining high resolution information in the 

first two dimensions (the I_1 dimensions) allows us 
to recover the movements of small, fast-moving 
objects, even if the set of volumes exposes both 
massive and minute displacements. In the first stage 
of picture cropping, two separate regions and a 
union region are created utilizing the bounding box 
information from the labels. The visual indications 
of a single person, such as their face, attire, and 
stance, are included in the individual areas, whereas 
the interaction information between two people is 
implied by the union region. All of the input data 
for specialized feature extraction networks is 
reduced to a consistent 224 × 224 pixels, including 
the cropped portions and the full pictures used for 
scene feature extraction.     The feature extraction 
module additionally receives data on the 
coordinates and areas of two separate bounding 
boxes, which indicate their relative positions. 

Transformer layer: We initially design a 
feature fusion module called Intra-TRM that is built 
on transformers. This will allow us to build more 
realistic social relation representations for each 
relationship in a picture. As inputs for Intra-TRM, 
we have both the intra-relation characteristics and 
the scene attributes from the previous phases. The 
concept of a transformer design served as the 
driving force. To facilitate the global fusion of all 
the retrieved features for each relationship in a 
single image, we augment the input with an 
additional global with the same dimension as those 
features. To globally fuse all the retrieved features 
for each relationship in a single picture, we append 
an 𝑒𝑥𝑡𝑟𝑎௚௟௢௕௔௟ to the input with the same 
dimension as those extracted features. The whole 
input of Intra-TRM (𝑞௜௡௣௨௧_௜௡௧௥௔) ) can be 
expressed as: 

 
 



 Journal of Theoretical and Applied Information Technology 
15th January 2025. Vol.103. No.1 

©   Little Lion Scientific  
 

ISSN: 1992-8645                                                                    www.jatit.org                                                     E-ISSN: 1817-3195 

 

 
357 

 

𝑞௜௡௣௨௧_௜௡௧௥௔) =

ൣ𝑒𝑥𝑡𝑟𝑎௚௟௢௕௔௟; 𝑒𝑥𝑡𝑟𝑎1; 𝑒𝑥𝑡𝑟𝑎2; 𝑒𝑥𝑡𝑟𝑎3; 𝑒𝑥𝑡𝑟𝑎4; 𝑒𝑥𝑡𝑟𝑎 𝑠𝑐𝑒𝑛𝑒൧, 𝑒𝑥𝑡𝑟𝑎௚௟௢௕௔௟ , 𝑒𝑥𝑡𝑟𝑎1; 𝑒𝑥𝑡𝑟𝑎2; 𝑒𝑥𝑡𝑟𝑎3;  
𝑒𝑥𝑡𝑟𝑎4; 𝑒𝑥𝑡𝑟𝑎 𝑠𝑐𝑒𝑛𝑒 ∈ 𝑅ெ×ଶ଴ସ଼ 

where 
𝑒𝑥𝑡𝑟𝑎1; 𝑒𝑥𝑡𝑟𝑎2; 𝑒𝑥𝑡𝑟𝑎3; 𝑒𝑥𝑡𝑟𝑎4; 𝑒𝑥𝑡𝑟𝑎 𝑠𝑐𝑒𝑛𝑒 
are the features extracted from two individual 
regions, one union region, relative position and the 
whole image, correspondingly. When there are N 
people in a picture, M represents the total number 
of relationships between them. Then, for more 
reasonable social relationship representations, we 
employ a stacking transformer to globally fuse the 
intra-features and scene characteristics. 
Additionally, residual connections are created prior 
to and following each block. The following formula 
describes the entire process: 

ℎ௧
ᇱ = 𝑀𝑆𝐴൫𝐿𝑁(𝑧௟ିଵ)൯| + 𝑧௟ିଵ, 𝑙 = 1,2 … 𝐿 
ℎ௧ = 𝑀𝐿𝑃൫𝐿𝑁(𝑧௟

ᇱ)൯ + 𝑧௟
ᇱ, 𝑙 = 1,2 … 𝐿 

L is set to 12 and represents the number of 
stacked blocks.  

𝑧௟
ᇱ represents the outputs of the l-th block, 

whereas 𝑧௟ିଵ has the same meaning. Standard self-
attention extends MSA by executing several self-
attention operations (called 'heads') in distinct 
vector spaces in parallel and concatenating their 
output for future processing. Layer normalization is 
denoted by the acronym LN. 
3.3 3D-CNN for prediction 

Layers three through five of our network's 
architecture cycle between 3D max pooling and 3D 
convolutional layers; layers two and three integrate 
data from the pooled response across the entire 
input box; and layer five, a Softmax classifier, 
calculates the class scores and probabilities for each 
of the twenty cyclone classes. 

3D Convolutional Layer: It consists of a 
set of trainable three-dimensional filters, each of 
which has a very small input-channel-spanning 
local receptive field. Over the course of a forward 
pass, which takes a fixed length of time for each 
filter, it convolves with its local receptive field at 
each site to generate filter responses. Similar to the 
rectified linear (ReLU) activation function, the 
activation values are determined by sequentially 
applying a nonlinear change to the filter responses.  

When the 𝐿௧௛ filter is convolved with the 

input X in, its activation value 𝑎𝑐௜,௝,௞
௅  at output 

position (𝑖, 𝑗, 𝑘) may be found using Eqs. (1) and 
(2).  

𝑎𝑐௜,௝,௞
௅ = 𝑅𝑒𝐿𝑈[ ෍ ෍ ෍ 𝑛]

௞ା(ி௜௟ିଵ)

ௗୀ௞

௝ା(ி௜௟ିଵ)

௡ୀ௝

௜ା(ி௜௟ିଵ)

௠ୀ௜

 

𝑅𝑒𝐿𝑈 = ൜
𝑥, 𝑖𝑓 𝑥 ≥ 0
0, 𝑖𝑓 𝑥 < 0

 

Given the following parameters: X, C, W, 
Fil, i, j, k, m, n, and d, where C is the number of 
input channels, W is a weight matrix with 
dimensions (C, F, F, F), and the filter size is 
assumed to be equal in width, height, and depth. 
Three convolutional neural network architectures 
are proposed for the use of wind and pressure 
fields. Since the two types of data need distinct 
learning rates, we split the networks apart. Since 
the inputs to the CNNs are several 2D (long, lat) 
frames or channels, we layered the data across 
height (pressure level) and time. The Pressure CNN 
contains six input channels with a size of 25 X 25, 
but the Wind CNN input has twelve input channels 
(u and v are layered). Convolutional layers (Conv 
layer) and max-pooling layers alternated with fully 
linked layers at the conclusion of a standard CNN 
design. 
4. PERFORMANCE ANALYSIS 

The proposed algorithm used satellite 
images to detect cyclone. The performance of our 
proposed LK_RAFT_3DCNN  is carried out by 
compared with three state-of-art methods such as 
VGG-16  [10], Hybrid Neural Network (HNN) 
[11], deep convolutional neural 
network architecture (DCNN) [12], Recurrent 
Neural Networks (RNNs) [13] , back propagation 
(BP) neural network model [14], multitask machine 
learning framework (MMLF) [15], generative 
adversarial network (GAN) [16]  . 

Dataset description- OCKHI_DEC2017- 
With OCKHI's evolution, the precipitation fields 
over the middle Arabian Sea, which experienced 
extremely heavy rainfall, were affected by 
dynamical downscaling. The model domain is thus 
a geographical area measuring approximately 1780 
km × 1780 km, bounded by the coastline Arabian 
Sea between the longitudinal bands of 66°E and 
82°E and spanning latitudes 6°N to 22°N. There are 
50 vertical levels in all, with the model ceiling set 
at 10 hPa, the pressure altitude. Each separate 
simulation was started with the analysis fields 
corresponding to 00 and 12 UTC of the ICON 
global model for three days starting from 1 
December 2017 to 3 December 2017, and forecast 
fields for + 48 hours were produced from each of 
the different simulations. 

VARDAH_DEC2016- The cyclone's 
cloud structure formed in the pre-storm stage, in a 
region of low pressure, on December 4, 2016, and 
intensified from December 5 to December 6, 2016, 
with the duration of the convective clouds 
increasing the rate of intensification. The increase 
in intensity from T2.5 to T3 has been detected 24 
hours prior to the current observation, as shown by 



 Journal of Theoretical and Applied Information Technology 
15th January 2025. Vol.103. No.1 

©   Little Lion Scientific  
 

ISSN: 1992-8645                                                                    www.jatit.org                                                     E-ISSN: 1817-3195 

 

 
358 

 

a tightly curving cloud band that rose by at least 
1.50 latitude diameter between 8 and 9 December 
2016. After making landfall in the southern coastal 
areas of Andhra Pradesh and the northern coastal 
areas of Tamil Nadu, the cyclone's intensity began 
to weaken after reaching T4 on December 11, 2016. 
Experimental results 

Table 2: Parametric analysis on OCKHI_DEC2017 
dataset 

Trainin
g data 

Accurac
y 

Precisio
n 

Recal
l 

F1-
scor

e 

MS
E 

50:60 98.7 87.9 82.4 73.6 12.3 
60:70 97.5 88.6 82.1 79.7 11.4 
7:80 95.6 86.4 81.6 78.5 15.3 

80:90 97.4 87.4 84.5 76.3 11.4 
90:100 96.2 83.5 87.3 77.3 16.4 

100:110 93.6 86.4 86.3 76.4 14.5 

Figure 3 (a) 

Figure 3 (b) 

Figure 3 (c) Figure-3 (d) 

0

20

40

60

80

100

120

10 20 30 40 50 60

ac
cu

ra
cy

 (%
)

number of images

VGG-16

HNN

DCNN

RNN

BPNN

MMLF

0

20

40

60

80

100

120

10 30 50
pr

ec
is

io
n 

(%
)

number of images

VGG-16

HNN

DCNN

0

20

40

60

80

100

120

10 20 30 40 50 60

re
ca

ll(
%

)

number of images

VGG-16

HNN

DCNN

RNN

BPNN

MMLF 0

20

40

60

80

100

120

10 30 50

F1
-s

co
re

(%
)

number of images

VGG-16

HNN

DCNN

RNN

BPNN

MMLF



 Journal of Theoretical and Applied Information Technology 
15th January 2025. Vol.103. No.1 

©   Little Lion Scientific  
 

ISSN: 1992-8645                                                                    www.jatit.org                                                     E-ISSN: 1817-3195 

 

 
359 

 

Figure 3 (e) 

Figure3: Analysis of various parameters using OCKHI_DEC2017 dataset 

Figure 3(a),(b),(c),(d) and (e)(e) indicates 
the comparison between existing and proposed 
methods with number of images in x-axis and 
respective parameters in y-axis for 
OCKHI_DEC2017 dataset. It is shown that the 
proposed LK-_RAFT_3DCNN achieves 98.6% of 
accuracy which is 45.6% better than Vgg-16, 
61.4% better than HNN, 45.6% better than DCNN, 
32.5% better than RNN, 61.4% better than BPNN, 
45.3%better than MMLF, 56.7% better than GAN. 
In terms of precision the proposed method achieves 
89.6% of precision, which is  54.6% better than 
Vgg-16, 75.4% better than HNN, 23.4% better than 
DCNN, 32.5% better than RNN, 42.6% better than 
BPNN, 52.7%better than MMLF, 34.5% better than 
GAN. In terms of recall the proposed method 
achieves 84.6% of recall, which is  34.6% better 
than Vgg-16, 45.3% better than HNN, 62.7% better 
than DCNN, 45.7% better than RNN, 53.5% better 
than BPNN, 34.5%better than MMLF, 23.4% better 
than GAN. In terms of F1-score the proposed 

method achieves 79.6%, which is  34.6% better 
than Vgg-16, 65.4% better than HNN, 56.7% better 
than DCNN, 43.2% better than RNN, 32.6% better 
than BPNN, 31.4%better than MMLF, 34.6% better 
than GAN. In terms of MSE the proposed method 
achieves 15.6%, which is  78.9% lesser than Vgg-
16, 89.5% lesser than HNN, 87.5% lesser than 
DCNN, 78.3% lesser than RNN, 86.5% lesser than 
BPNN, 84.9%lesser than MMLF, 67.9% lesser than 
GAN 

Table3: Parametric analysis on VARDAH_DEC2016 
dataset 

Trainin
g data 

Accurac
y 

Precisio
n 

Recal
l 

F1-
scor

e 

MS
E 

50:60 98.6 89.4 81.2 78.9 13.4 
60:70 96.5 87.5 81.4 79.5 15.6 
7:80 97.6 88.6 84.3 77.8 14.5 

80:90 97.5 88.4 83.4 78.9 13.6 
90:100 97.5 89.2 83.4 79.7 13.9 

100:110 98.5 88.7 85.5 79.4 15.6 
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Figure-4 (e) 

Figure 4: Analysis of various parameters using VARDAH_DEC2016 dataset 
 
Figure 4(a),(b),(c),(d) and (e) indicates the 

comparison between existing and proposed 
methods with number of images in x-axis and 
respective parameters in y-axis for 
VARDAH_DEC2016 dataset. It is shown that the 
proposed LK-_RAFT_3DCNN achieves 98.6% of 
accuracy which is 34.6% better than Vgg-16, 
56.7% better than HNN, 78.9% better than DCNN, 
45.8% better than RNN, 78.9% better than BPNN, 
56.7%better than MMLF, 46.8% better than GAN. 
In terms of precision the proposed method achieves 
89.6% of precision, which is  54.6% better than 
Vgg-16, 75.4% better than HNN, 23.4% better than 
DCNN, 32.5% better than RNN, 42.6% better than 
BPNN, 52.7%better than MMLF, 34.5% better than 
GAN. In terms of recall the proposed method 
achieves 84.6% of recall, which is  56.7% better 
than Vgg-16, 67.9% better than HNN, 78.5% better 
than DCNN, 72.6% better than RNN, 45.8% better 
than BPNN, 34.5%better than MMLF, 23.4% better 
than GAN. In terms of F1-score the proposed 
method achieves 79.6%, which is  34.6% better 
than Vgg-16, 65.4% better than HNN, 56.7% better 
than DCNN, 43.2% better than RNN, 32.6% better 
than BPNN, 31.4%better than MMLF, 34.6% better 
than GAN. In terms of MSE the proposed method 
achieves 15.6%, which is  78.9% lesser than Vgg-
16, 89.5% lesser than HNN, 87.5% lesser than 
DCNN, 78.3% lesser than RNN, 86.5% lesser than 
BPNN, 84.9%lesser than MMLF, 67.9% lesser than 
GAN 

 
 
 

5. CONCLUSION 
 
Automated cyclone prediction is 

continually in demand since they are among the 
most destructive natural disasters. With the aid of 
satellite photos and Deep Learning concepts, we 
have proposed a solution to this significant 
problem. We have created a two-step feature 
extraction and classification process to effectively 
detect cyclones and their core cloud pattern. 
Although locating a benchmark dataset was a 
challenge for our completed work, our used 
technique produced noteworthy results. To expand 
the scope of our future work, we would like to use 
more data (such as wind speed, surface 
temperature, air pressure, etc.) to forecast and track 
cyclones and to anticipate a more precise center 
position. 
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