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ABSTRACT 
Cardiovascular disease (CVD) holds the position as the main killer worldwide in diabetic populations thus 
underlining the importance of accurate predictive tools. The inability of traditional statistical methods to 
adapt to data limitations alongside poor handling of clinical data imbalance leads to unsuccessful risk 
assessment. Deep learning solutions demonstrate promising results, yet they confront expensive 
computations and insufficient feature background understanding in addition to lacking interpretability 
features. The research introduces DFE-CVRP as a cardiovascular risk prediction system which merges expert 
models tailored for specific features and implements dynamic ensemble control with adaptive data balancing 
techniques. The performance evaluation determines if a lightweight ensemble model optimized dynamically 
improves CVD risk prediction results when processing structured clinical data. The method combines 
EfficientNet architectures which were optimized using Successive Halving and Population-Based Training 
methods and Conditional Generative Adversarial Networks to balance and improve feature diversity for the 
dataset. The performance of DFE-CVRP exceeds conventional machine learning techniques together with 
baseline deep learning architectures such as CCGLSTM when used on structured health databases. The 
algorithm reaches 98.2% accuracy and 97.8% precision combined with 98.4% recall while obtaining 98.1% 
F1-score and 98.6% AUC-ROC. The effectiveness of dynamic ensemble learning and data augmentation 
strategies for improved cardiovascular healthcare diagnosis has been confirmed through the study findings. 
The proposed predictive framework offers interpretability and scalability as well as affordable resource 
utilization that creates substantial value for future clinical decision systems leveraging patient-specific data. 

Keywords: Diabetes, Cardiovascular Disease Prediction, GAN, Deep Learning, Machine Learning. 
 
1. INTRODUCTION  

The cardiovascular diseases family 
represents a leading cause of premature death and 
disability throughout the global community which 
strains public health organizations worldwide [1]. 
The identification of high-risk individuals needs to 
occur early along with proper risk-group 
determination because this enables effective 

prevention strategies and enhanced clinical results 
over time [2]. Traditional risk assessment models 
struggle to work with different patient types because 
their statistical framework uses predefined risk 
scores that fail to handle complex CVD risk factor 
relationships [3]. The combination of deep learning 
improvements in technology and the increasing 
number of large clinical data sets allowed 
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researchers to develop advanced risk prediction 
systems for these challenges [4]. 

The current implementations of CVD risk 
prediction through machine learning and deep 
learning methods struggle with various important 
performance challenges. The use of machine 
learning methods encounters multiple problems 
including overfitting along with restricted 
generalizability across different groups of patients in 
addition to expensive computation requirements and 
difficulties in learning specific features and lacking 
interpretability [5,6,7,8]. The combination of class 
distribution bias and inadequate feature profiles in 
real-world clinical datasets negatively impacts 
prediction models by causing performance reduction 
and producing unreliable or biased results [9]. The 
required solution needs models to operate swiftly 
through structured medical records while adapting 
dynamically and keeping resource requirements to a 
minimum. 

This research develops Dynamic Feature-
Centric Ensemble for Cardiovascular Risk 
Prediction (DFE-CVRP) to tackle existing problems. 
The DFE-CVRP framework consists of 
EfficientNet-based lightweight architectures which 
specialize in tabular data in combination with DL 
models for specific features and an ensemble 
selection method which dynamically adjusts 
according to patient profile variations. This study 
implements Conditional Generative Adversarial 
Networks (cGANs) to generate synthetic data which 
helps address class imbalance challenges alongside 
advanced Successive Halving and Population-Based 
Training (PBT) methods for dynamic 
hyperparameter optimization. 

The primary objective of this research is to 
develop an efficient, scalable, and interpretable deep 
learning-based ensemble model that improves the 
prediction of CVD risk. The proposed DFE-CVRP 
framework introduces a hybrid architecture that 
dynamically adapts to varying patient profiles, 
ensuring more precise risk stratification compared to 
existing machine learning and deep learning models. 
Experimental results demonstrate that DFE-CVRP 
outperforms conventional models, including 
Random Forest, XGBoost, CNN, LSTM, and the 
base model CCGLSTM, in terms of accuracy, 
precision, recall, F1-score, and AUC-ROC. This 
study highlights the potential of feature-centric 
ensemble learning and data augmentation techniques 
in advancing predictive analytics in healthcare, 
paving the way for more personalized and data-
driven clinical decision-making. 

2. LITERATURE REVIEW 
CVD risk prediction among Diabetes 

patients has been explored extensively in recent 
research, with a growing emphasis on leveraging 
deep learning techniques for improved accuracy. 

Selvarathi and Varadhaganapathy (2023) 
proposed a Cascaded Convolution Graph LSTM 
(CCGLSTM) model, which integrates Rank-based 
Feature Importance (RFI) to enhance prediction 
accuracy. Their model achieved superior 
performance with an AUC of 0.989 and an F1-Score 
of 97.5% [10]. Almatari et al. (2024) employed 
convolutional neural networks (CNNs) to predict 
CVD risk factors using extensive medical datasets, 
achieving an accuracy of 98.64%. Their study 
highlighted the significance of age and body mass 
index as primary risk factors [11]. Hu et al. (2024) 
developed a deep learning-based coronary artery 
calcium score (DL-CACS) model for predicting 
coronary artery disease in T2DM patients. Their 
model demonstrated strong predictive performance 
with AUC values of 0.753 and 0.769 for obstructive 
and hemodynamically significant CAD, respectively 
[12]. 

Raj and Bayappu (2024) explored 
multimodal deep learning techniques, integrating 
retinal images and clinical data to enhance 
cardiovascular risk prediction. Their approach 
emphasized the potential of precision medicine in 
improving patient outcomes [13]. Das, Rahman, and 
Talukder (2024) focused on machine learning 
algorithms for CVD risk prediction in Bangladesh, 
using data from national health surveys. Their 
models, particularly Random Forest, achieved 
notable specificity and AUC performance [14]. Tito 
et al. (2024) compared three deep learning 
algorithms—Radial Basis Function Network 
(RBFN), wekaDeeplearning4j, and Multi-Layer 
Perceptron (MLP)—highlighting the trade-offs 
between accuracy, precision, and training time in 
CVD risk prediction [15]. 

Muharram and Sajid (2024) utilized 
supervised machine learning algorithms, including 
Naive Bayes, decision trees, random forests, 
AdaBoost, and XGBoost, to predict cardiovascular 
complications in diabetes patients. Their findings 
revealed that ensemble methods, particularly 
AdaBoost and XGBoost, outperformed other 
techniques, achieving an accuracy of 0.71 and an F1-
score of 0.69 [16]. Kee et al. (2023) developed a 
neural network-based model for predicting CVD risk 
in T2DM patients, achieving an accuracy of 97.5%, 
an F1-score of 97.22%, and an AUC of 0.9979. Their 
study underscored the model's high precision despite 



 Journal of Theoretical and Applied Information Technology 
31st May 2025. Vol.103. No.10 

©   Little Lion Scientific  
 

ISSN: 1992-8645                                                                    www.jatit.org                                                     E-ISSN: 1817-3195 

 

 
4028 

 

being trained on a relatively small dataset [17]. 
Sonia, Nedunchezhian, and Rajalakshmi (2023) 
proposed a multimodal deep learning model, 
DNHRV, integrating heart rate variability data and 
clinical parameters. Their model achieved an 
impressive accuracy of 98.8%, significantly 
outperforming previous models [18]. 

Lee et al. (2023) introduced a GRU-ODE-
Bayes-based machine learning algorithm for 
predicting cardiovascular complications in newly 
diagnosed T2DM patients in Korea. Their model 
demonstrated high predictive performance with 
AUROC values of 0.812, surpassing traditional 
regression-based models [19]. Yu et al. (2024) 
explored the incorporation of longitudinal risk 
factors using a deep learning model, Dynamic-
DeepHit, for atherosclerotic cardiovascular disease 
(ASCVD) risk prediction. Their model outperformed 
traditional Pooled Cohort Equations with an 
AUROC of 0.815, emphasizing the value of 
longitudinal data in improving model performance 
[20]. Abegaz, Baljoon, Kilanko, Sherbeny, and Ali 
(2023) utilized machine learning algorithms, 
including Random Forest (RF), XGBoost, logistic 
regression (LR), and a weighted ensemble model 
(WEM), to predict major adverse cardiovascular 
events (MACE) in Type 2 Diabetes Mellitus 
(T2DM) patients. XGBoost achieved the highest 
accuracy of 0.80, outperforming RF (0.78) and LR 
(0.65), with phosphate and troponin levels being 
significant predictors [21]. 

Hou and Chao (2024) developed neural 
networks trained on electronic health records to 
predict atherosclerotic cardiovascular disease 
(ASCVD) risk over ten years. Their model 
outperformed traditional risk prediction methods, 
demonstrating the potential of deep learning in 
clinical decision-making [22]. Ren et al. (2022) 
introduced DeepSurv, a deep learning-based survival 
model for predicting cardiovascular disease risk 
among diabetic kidney disease (DKD) patients. 
Their model achieved superior performance 
compared to conventional methods, with an AUC of 
0.780 [23]. Kee et al. (2023) conducted a systematic 
review identifying neural networks as the most 
reliable algorithm for predicting cardiovascular 
disease in T2DM patients, emphasizing the need for 
adherence to PROBAST and TRIPOD standards for 
reducing bias in future models [24]. 

Mohamed, Santhoshkumar, and 
Varadarajan (2022) presented an intelligent feature 
selection model using deep learning for predicting 
chronic kidney disease and coronary heart disease in 
T2DM patients, highlighting the efficacy of 

optimization algorithms in enhancing model 
performance [25]. Wang et al. (2022) conducted a 
systematic review on artificial intelligence models 
for predicting cardiovascular diseases in individuals 
with Type 2 Diabetes Mellitus (T2DM). Their 
analysis of 176 studies identified ensemble learning 
methods, particularly random forests, as the most 
used algorithm, with models achieving AUROC 
values ranging from 0.69 to 0.77. However, the 
review highlighted a lack of external validation and 
poor model reproducibility, limiting practical 
clinical application [26]. García-Ordás et al. (2023) 
proposed a deep learning framework incorporating 
feature augmentation for heart disease risk 
prediction. Their model outperformed traditional 
approaches by 4.4%, achieving a 90% precision rate, 
showcasing the impact of data augmentation in 
enhancing predictive performance [27]. 

Pang et al. (2023) developed an LSTM-
based model for predicting coronary heart disease 
complications in T2DM patients. Using blood 
pressure, blood glucose, and blood lipids as key 
indicators, the model achieved high prediction 
accuracies (82.5%–89.5%) and demonstrated 
significant potential in early risk assessment [28]. 
Mayya and Solieman (2022) leveraged machine 
learning techniques, particularly Random Forest and 
XGBoost, for classifying diabetes and predicting 
cardiovascular complications. Their model achieved 
an accuracy of 93.1% using laboratory data, 
emphasizing the importance of biochemical markers 
in CVD risk prediction [29]. Hong et al. (2021) 
introduced an EHR-based risk prediction model for 
T2DM patients using Cox proportional hazards 
models and LASSO regression. Their locally fitted 
model demonstrated superior discrimination (C-
statistics of 0.85) compared to generalized risk 
equations, reinforcing the necessity for localized 
predictive models [30]. 

Fan et al. (2020) developed an AI-based 
predictive model for assessing the risk of coronary 
heart disease (CHD) among Type 2 Diabetes 
Mellitus (T2DM) patients. Their model achieved an 
AUC of 0.80 on the test dataset and 0.71 on an 
independent dataset, demonstrating its effectiveness 
in personalized risk assessment [31]. Panwar et al. 
(2020) introduced CardioNet, a reconfigurable deep 
learning framework utilizing convolutional neural 
networks (CNNs) for early diagnosis of 
cardiovascular risk factors using 
photoplethysmography (PPG) data. The model 
achieved a 97% accuracy in diagnosing risk factors, 
highlighting its real-time usability in clinical settings 
[32]. 
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Roman and Stoian (2021) emphasized the 
significantly increased cardiovascular risk in T2DM 
patients and advocated for a multifactorial approach, 
including lifestyle interventions and optimized 
medical management, to mitigate CVD progression 
[33]. Ahmad et al. (2024) conducted a systematic 
review identifying biomarkers such as NT-proBNP 
and troponin-T as key prognostic factors in CVD risk 
prediction among T2DM patients, highlighting the 
need for further clinical validation [34]. Hossain, 
Uddin, and Khan (2021) proposed a network-based 
risk prediction model integrating administrative 
health data and machine learning techniques, 
achieving classification accuracies between 79% and 
88% for CVD risk assessment [35]. 

2.1 Research Gap 

Previous literature has shown promising 
results using deep learning models and ensemble 
approaches in CVD risk assessment, but several 
essential problems persist with handling diverse 
clinical features while maintaining data imbalance 
and specialty-focused feature analysis. The current 
prediction models work with fixed architectural 
setups while lacking real-time model optimizations 
which reduce the models' generalized performance 
and interpretability capacity. This study develops a 
new dynamic feature-focused ensemble structure 
that applies real-time framework selection with 
feature-specialized expert learning operators 
combined with conditional data generation for 
elevated cardiovascular risk assessment accuracy 
among diabetic patients. 

Problem Statement 

The improved deep learning techniques and 
machine learning algorithms for cardiovascular risk 
prediction systems still face multiple operational 
challenges due to feature heterogeneity 
incompatibility and unbalanced data distribution and 
excessive dataset overfitting and real-time model 
adaptability deficiency. The present ensemble 
techniques show poor performance in adjusting 
model weights according to patient-specific features 
which harms risk stratification outcomes in diabetic 
patient groups. Available deep learning studies fail 
to present proper architectures designed to process 
clinical data structures in a way that requires 
minimal computing resources. 

 

 

3. DATA SET DESCRIPTION 
 
3.1 Source and Collection of Data 

The dataset employed in this study was 
sourced from the “Personal Key Indicators of Heart 
Disease” dataset available on Kaggle [36]. This 
dataset aggregates health-related survey data from 
multiple states across the United States, focusing on 
cardiovascular risk indicators among individuals, 
particularly those with Diabetes. It comprises 
246,022 records with complete entries, providing a 
robust dataset for training and evaluating predictive 
models. 

3.2 Features and Their Clinical Relevance 
The dataset includes a diverse range of 

features categorized into demographic, behavioral, 
and clinical variables, all of which are critical in 
assessing cardiovascular risk: 

 Demographic Variables: These include age, 
sex, race/ethnicity, and state of residence, 
offering insights into population-specific 
risk factors. 

 Behavioral Factors: Smoking status, e-
cigarette usage, physical activity, alcohol 
consumption, and sleep patterns, all of 
which have significant impacts on 
cardiovascular health. 

 Clinical Indicators: The presence of 
comorbid conditions such as asthma, 
COPD, arthritis, kidney disease, and 
diabetes. Additional metrics like BMI, the 
number of removed teeth, and sleep hours 
are also included due to their established 
associations with cardiovascular outcomes. 

 Outcome Variables: The dataset records 
incidents of heart attacks, angina, and 
strokes, serving as the primary endpoints 
for cardiovascular risk prediction models. 

3.3 Preprocessing Steps and Data Integrity 
To prepare the dataset for deep learning 

model development, several preprocessing steps 
were meticulously performed:  

Categorical Encoding: Categorical 
variables, including smoking status, e-cigarette 
usage, and race/ethnicity, were transformed using 
one-hot encoding to facilitate their use in machine 
learning models.  

Normalization: Continuous variables such 
as BMI, height, and weight were standardized using 
z-score normalization to ensure uniform scale across 
features, enhancing model training efficiency.  
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Data Augmentation: To address class 
imbalance, Conditional Generative Adversarial 
Networks (CGANs) were utilized to generate 
synthetic samples, particularly enhancing the 
representation of minority classes.  

Feature Selection: Features were selected 
based on clinical relevance, and those with minimal 
impact on model performance were excluded to 
streamline model complexity.  

Data Splitting: The dataset was partitioned 
into training (70%), validation (15%), and testing 
(15%) sets to enable robust model training and 
evaluation, reducing the risk of overfitting. 

4. PROPOSED METHODOLOGY 
The Dynamic Feature-Centric Ensemble 

for Cardiovascular Risk Prediction (DFE-CVRP) is 
a novel deep learning-based ensemble model 
designed to improve the accuracy and efficiency of 
CVD risk prediction in patients with diabetes. This 
framework integrates lightweight EfficientNet 
architectures, synthetic data augmentation, feature-
specific expert models, dynamic ensemble selection, 
and advanced hyperparameter optimization. 

4.1 Model Architecture 
Unlike conventional deep learning models, 

which often suffer from excessive computational 
complexity and redundancy, DFE-CVRP integrates 
a feature-optimized EfficientNet variant tailored for 
structured tabular data (See Figure 1). The 
architecture incorporates adaptive pruning and 
quantization techniques, reducing model size while 
preserving predictive performance. 

To effectively process structured health 
records, the input layer is dynamically mapped to 
handle both numerical and categorical features. A 
sequence of nonlinear transformation layers extracts 
high-dimensional representations, ensuring that 
complex feature interactions relevant to CVD risk 
are efficiently captured. The model further includes 
attention-based feature selection, which assigns 
adaptive importance weights to critical predictors 
such as comorbidities, demographic factors, and 
lifestyle attributes. This feature-wise attention 
mechanism ensures that the model prioritizes 
clinically relevant risk factors while suppressing 
redundant information. 

The final prediction layer of DFE-CVRP 
employs a sigmoid activation function, making it 
suitable for binary classification tasks, such as 
determining whether a patient is at high or low risk 
for CVD. Additionally, architecture incorporates 
self-normalizing activation functions to stabilize 

learning dynamics, reducing sensitivity to feature 
distribution shifts. 

 

Figure 1: DFE-CVRP Architecture 

4.2 Data Augmentation 
To enhance the robustness of the DFE-

CVRP model and mitigate class imbalance, 
Conditional Generative Adversarial Networks 
(cGANs) are utilized to generate synthetic patient 
records (see figure 2). Traditional data augmentation 
techniques struggle to capture the high-dimensional 
interactions within structured medical data, whereas 
cGANs provide an advanced generative framework 
that learns conditional distributions, ensuring 
synthetic samples closely resemble real patient data. 

In this work, a cGAN formulation is 
introduced, optimizing the adversarial training 
process with a feature-specific conditioning 
mechanism. Generator G learns a conditional 
mapping from latent space Z to augmented data X', 
guided by structured feature conditioning C. 
Discriminator D incorporates a class-conditioned 
decision function to enforce stricter feature 
alignment during training. Unlike conventional 
cGANs, this framework introduces adaptive loss 
regularization based on data manifold constraints, 
improving convergence stability and synthetic data 
realism. 

 

Figure 2: cGAN-Based Data Augmentation 

Process 

1. Generator Function with Feature-Specific 
Conditioning 

𝑋ᇱ = 𝐺ಸ
(𝑍, 𝐶) = 𝑓ௐ(𝑍, 𝐶) + λ ⋅ ∇𝐿ௗ௩(𝐺, 𝐷) 

       (1) 
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where 𝑓ௐ represents a feature transformation 
function parameterized by weights W, and λ controls 
the adaptation of generated samples towards real 
feature distributions. 

2. Discriminator with Class-Conditioned Decision 
Function 

𝐷ವ
(𝑋, 𝐶) = σ ቀℎ(𝑋, 𝐶) + α ⋅ ห|∇𝐷(𝑋, 𝐶)|ห

ଶ
ቁ 

       (2) 

where ℎ denotes the class-conditioned decision 
boundary, and the gradient penalty                                   

α ⋅ ห|∇𝐷(𝑋, 𝐶)|ห
ଶ
 enforces feature alignment 

regularization, ensuring synthetic data retains 
clinical consistency. 

3. Adversarial Minimax Optimization with Manifold 
Constraints 

min
ீ

max


𝐸, [log 𝐷 (𝑋, 𝐶)] + 𝐸ൣlog൫1 −

𝐷(𝐺(𝑍, 𝐶), 𝐶)൯൧ − β ⋅ 𝐸෨ ቚห∇෨ 𝐷൫𝑋෨, 𝐶൯หቚ
ଶ

                 (3) 

where β is the manifold constraint weight, and 𝑋෨ 
represents interpolated samples between real and 
generated data, enforcing smooth feature transitions. 

4. Adaptive Loss Regularization for Stability 

𝐿௨ =  

𝐿ௗ௩ + 𝛾 . ቀ𝐾𝐿(𝑃ᇲ  ||𝑃) + ∑ δ
ே
ୀଵ ⋅ ห|𝑋

ᇱ − 𝑋|ห
ଶ

ቁ 

       (4) 

where γ regulates the distributional alignment, 
KL(𝑃ᇲ '||𝑃) represents the Kullback-Leibler 
divergence between real and generated distributions, 
and δ adapts the sample-wise deviation based on 
importance of weighting. 

4.3 Hyperparameter Optimization  
The DFE-CVRP model integrates an 

advanced hyperparameter optimization framework 
to enhance model performance while minimizing 
computational overhead. Unlike conventional grid 
search or random search methods, DFE-CVRP 
leverages an adaptive optimization approach 
combining Successive Halving, Hyperband, and 
Population-Based Training (PBT) to dynamically 
adjust hyperparameters based on model 
performance. This ensures that the best-performing 
hyperparameter configurations are identified 
efficiently while discarding suboptimal ones early in 
the training process.  

The optimization process employs a multi-
objective function that simultaneously maximizes 

predictive accuracy while penalizing overfitting. By 
incorporating Bayesian surrogate modeling, the 
system learns an adaptive prior over the search 
space, refining the search trajectory dynamically. 
Moreover, gradient-based meta-learning is 
employed to fine-tune hyperparameters 
continuously, allowing the model to adjust its 
learning dynamics in real-time. These optimizations 
ensure that DFE-CVRP remains scalable, efficient, 
and adaptable, even when dealing with high-
dimensional healthcare datasets.   

1. Adaptive Successive Halving with Performance-
Based Elimination   

ℋ𝓉 = arg max


ൣ∑ 𝐼ே
ୀଵ ൫ℒ𝒾

(𝓉)
≤ τ௧൯ ⋅ 𝑤൧           (5) 

where ℋ𝓉 represents the surviving 
hyperparameter configurations at iteration t, 𝐼(⋅) is 
an indicator function for selecting configurations 

with loss ℒ𝒾
(𝓉) below threshold τ௧, and 𝑤  is the 

weight assigned to each configuration. 

2. Hyperband-Based Budget Allocation for Dynamic 
Resource Scaling   

𝐵௧ = 𝐵 ⋅ ൭
୪୭ ்

୪୭൬
ಿ

ಿ
൰
൱              (6) 

where 𝐵௧  is the dynamically adjusted budget at 
iteration t, 𝐵 is the initial allocation, 𝑁௧ is the 
remaining candidate pool, and T is the total budget 
constraint. 

3. Population-Based Training with Evolutionary 
Hyperparameter Updates   

Θ௧
()

= Θ௧ିଵ
()

+ η ⋅ ∇ℒ൫Θ௧ିଵ
()

൯              (7) 

where Θ௧
() represents the updated hyperparameters 

of model 𝑖 at time 𝑡, η is the adaptive learning rate, 
and ∇ℒ denotes the gradient of the loss function 
with respect to hyperparameters. 

4. Bayesian Surrogate Optimization for Model-
Based Search   

𝐸ℙ[ℒ(Θ)] = ∫ c𝐿(Θ)𝑃(Θ|𝒟)𝑑                 (8) 

where 𝐸ℙ[ℒ(Θ)] represents the expected loss over 
the hyperparameter distribution 𝑃(Θ|𝒟) given past 
observations 𝒟. 

5. Gradient-Based Meta-Learning for 
Hyperparameter Fine-Tuning   

Θ∗ = arg min


∑ ൫ℒ𝓉𝓇𝒶𝒾𝓃
(𝓉)

+ λ ⋅ ℒ𝓋𝒶ℓ
(𝓉)

൯்
௧ୀଵ          (9) 
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where Θ∗ represents the optimal hyperparameters, 

ℒ𝓉𝓇𝒶𝒾𝓃
(𝓉)  and ℒ𝓋𝒶ℓ

(𝓉)  denote the training and validation 
losses, and λ is the regularization parameter 
controlling the trade-off between underfitting and 
overfitting.risk: 

 

4.4 Ensemble Strategy  
The DFE-CVRP model incorporates a 

dynamic ensemble strategy that optimally selects 
and integrates multiple feature-specific expert 
models to enhance predictive performance. Unlike 
static ensembles, which combine all models 
regardless of their individual effectiveness on a 
given dataset, DFE-CVRP dynamically selects the 
top-performing models based on real-time validation 
performance. Each expert model specializes in 
different feature subsets, such as demographic, 
lifestyle, and clinical data, enabling a more 
interpretable and specialized prediction process. 

The ensemble selection mechanism is 
governed by a weighted model selection function 
that evaluates each model’s contribution based on a 
multi-objective optimization framework. The meta-
learner, a neural network-based aggregator, further 
refines predictions by adjusting feature importance 
weights dynamically. The ensemble follows a 
Bayesian confidence-based integration to adjust 
model predictions based on uncertainty 
quantification, reducing bias and variance in CVD 
risk assessment. 

1. Feature-Specific Expert Model Weighting 

ω =
ୣ୶୮(⋅ௌ)

∑ ୣ୶୮൫ఎೕ⋅ௌೕ൯ಾ
ೕసభ

                       (10) 

where 𝑆 represents the performance score of expert 
model m, η is the adaptive learning rate, and M is 
the total number of models in the ensemble. 

2. Dynamic Model Selection with Performance-
Aware Probability Function 

𝑃(𝑀∗|𝑋, 𝐶) =
∏ ൫𝑋ห𝑀, 𝐶൯(ெ)ಾ

సభ

∑ ቀ𝑋ቚ𝑀 , 𝐶ቁ൫ெೕ൯ಾ
ೕసభ

                    (11) 

where 𝑃(𝑀∗|𝑋, 𝐶) represents the probability of 
selecting the optimal model 𝑀∗ given input features 
𝑋 and conditional factors 𝐶. 

3. Bayesian Confidence-Based Prediction 
Aggregation 

𝑌 =  ∑ ω
ெ∗

ୀଵ ⋅ 𝑓(𝑋) + λ ⋅ ∇  KL(𝑃  || 𝑃)        (12) 

where 𝑓(𝑋) is the prediction of model m, λ is the 
adaptive penalty factor, and KL(𝑃 ||𝑃) ensures the 

predicted distribution aligns with real data 
distribution. 

4. Uncertainty-Aware Regularization for Robust 
Ensemble Predictions 

ℒℯ𝓃𝓈 = ∑ ω
ெ∗

ୀଵ ⋅ ℒ𝓂 + β ∑ σ
ே
ୀଵ ⋅ ห|𝑌

ᇱ − 𝑌|ห
ଶ
       

     (13) 

where ℒ𝓂 is the individual model loss, σ  is the 
uncertainty weight for each sample 𝑖, and N 
represents the total number of validation instances. 

Algorithm 1: Dynamic Feature-Centric Ensemble for 
Cardiovascular Risk Prediction  

Input:   

 Preprocessed dataset 𝑋 with feature matrix 
and labels 𝑌 

 Hyperparameter search space Θ 

 Number of expert models 𝑀 

 Learning rate η 

 Maximum iterations 𝑇 

Output:   

 Optimized feature-centric ensemble model 
for CVD risk prediction   

Step 1: Data Preprocessing   

1. Load dataset X, Y.   

2. For each categorical feature in X:   

Apply one-hot encoding.   

3. For each numerical feature in X:   

Normalize using standard scaling.   

4. Handle class imbalance using cGANs:   

Train generator G and discriminator D 
using adversarial loss.   

For each underrepresented class 𝐶:   
               Generate synthetic samples X'   
conditioned on real data distribution.  
               Augment real data with X' to 
create a balanced dataset.   

 
Step 2: Feature-Specific Expert Model Training   

5. Divide features into subsets 𝑋, 𝑋 , 𝑋:   

𝑋 ← Demographic features   

𝑋 ← Behavioral & Lifestyle features   
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𝑋 ← Clinical indicators   

6. For each feature subset 𝑋, where 𝑚 ∈ {𝐷, 𝐵, 𝐶}:   

Initialize EfficientNet-based deep learning 
model 𝑀. 

     Apply dropout, batch normalization, and 
attention mechanisms.   

     Train 𝑀 using Adam optimizer with 
cross-entropy loss ℒ𝒞ℰ  

 
Step 3: Hyperparameter Optimization   

7. Initialize hyperparameter search with Successive 
Halving and Hyperband:   

For each candidate configuration θ ∈ θ:   

         Evaluate performance.  

         If θ ranks low, discard.   

8. Refine hyperparameters using PBT:   

For each training iteration t where 𝑡 <  𝑇:   

         Adjust learning rate, dropout, and 
layer depth dynamically.   

         Update hyperparameters based on 
model fitness function.   

 
Step 4: Dynamic Ensemble Selection   

9. For each trained expert model 𝑀:   

Evaluate performance on validation set V.   

Compute confidence score 𝑆.  

10. Select top-K models dynamically using   
equation 11. 

11. Train meta-learner for ensemble aggregation:   

Use fully connected layers with feature-
wise attention.  

Optimize ensemble loss function using 
equation 13. 

12. For each new patient record x:   

Compute final risk prediction 𝑌  using 
ensemble model. 

5. EXPERIMENTAL RESULTS AND 
DISCUSSION 

The assessment of DFE-CVRP used a 
comparison between its performance and established 
machine learning approaches in addition to deep 
learning techniques and CCGLSTM [10]. The 

performance evaluation of these models occurred via 
precision, recall, accuracy, F1-Score and AUC-ROC 
measurements. Experimental outcomes show DFE-
CVRP exceeds standard models through its 
implementation of feature-specific ensemble 
learning and adaptive data augmentation together 
with optimized parameter settings. 

 

5.1 Accuracy Analysis 
Model effectiveness in CVD risk prediction 

depends on accuracy as the primary performance 
metric. Figure 3 displays the accuracy level 
comparison between multiple models. The 
implementation of the DFE-CVRP model delivered 
98.2% accuracy making it marginally better than the 
base paper model which reached 97.5% accuracy. 
The Random Forest algorithm reached 92.8% 
accuracy along with XGBoost reaching 94.2% 
accuracy although they both lacked capability to 
manage feature association. The deep learning 
models CNN achieved 95.0% while LSTM reached 
95.7% accuracy yet ensemble-based models showed 
superior performance. The combination of 
EfficientNet features and feature-wise attention with 
dynamic model selection provided DFE-CVRP with 
its best-in-class accuracy levels. 

TABLE 1: COMPARISON OF DIFFERENT MODELS  

Models 

A
cc

ur
ac

y 
(%

) 

P
re

ci
si

on
 (

%
) 

R
ec

al
l (

%
) 

F
1-

S
co

re
 (

%
) 

A
U

C
-R

O
C

 (
%

) 
Random Forest 92.8 92.5 93.0 92.7 93.5 

XGBoost 94.2 93.8 94.5 94.1 94.8 

SVM 91.5 91.2 91.8 91.5 92.0 

CNN 95.0 94.8 95.2 95.0 95.5 

LSTM 95.7 95.4 96.0 95.7 96.3 

CCGLSTM 97.5 97.2 97.8 97.5 98.0 

DFE-CVRP 98.2 97.8 98.4 98.1 98.6 
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Figure 3: Accuracy Comparison Graph 

5.2 Precision Analysis 
Precision describes the rate of accurate 

positive predictions out of all predictions marked as 
positive. The precision results for different models 
appear in Figure 4. The precision achievement of 
DFE-CVRP reached 97.8% while surpassing the 
precision reached by base paper model (97.2%). The 
precise predictions stem from DFE-CVRP's 
combination of selective model choice and adaptive 
weight adjustment which enables only crucial 
models to participate in end-predictions. XGBoost 
(93.8%) and Random Forest (92.5%) achieved 
commendable performance with their respective 
predictions although they did not possess ensemble 
adaptable features. 

 

Figure 4: Precision Comparison Graph 

5.3 Recall Analysis 

Recall quantifies how well the model 
detects true positive cases. The model demonstrates 
capable performance when identifying positive cases 
as indicated by its high recall value. Figure 5 depicts 
recall scores of various models. The DFE-CVRP 
model retrieved 98.4% of actual positive cases, 
better than the base paper model (97.8%). The 
adaptive feature selection mechanism in the model 
enables it to focus on important features that 
determine CVD risks thus leading to improved 
performance. 

 

Figure 5: Recall Comparison Graph 

5.4 F1-Score Analysis 
The F1-Score serves as a vital measurement 

tool because it finds equilibrium between precision 
and recall for overall assessment of a model's 
effectiveness. Research findings presented in Figure 
6 demonstrated that DFE-CVRP obtained 98.1% F1-
score which proved slightly superior to the base 
paper model score of 97.5%. The adaptive selection 
of important features together with optimized weight 
adjustment from the model leads to improved results. 
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Figure 6: F1-Score Comparison Graph 

5.5 AUC-ROC Analysis 
The AUC-ROC (Area Under the Receiver 

Operating Characteristic Curve) serves as the vital 
measure to assess model discriminative performance 
regarding positive and negative CVD risk cases. A 
model with elevated AUC-ROC metrics 
demonstrates superior class differentiating 
capabilities therefore it serves as a vital performance 
assessment tool for medical diagnosis. Figure 7 
shows different models' AUC-ROC comparative 
values. The AUC-ROC value of 98.6% for the DFE-
CVRP model outperformed the base paper model's 
result of 98.0%. The dynamic ensemble learning 
strategy improves prediction accuracy because it 
enhances feature weighting and prediction 
calibration. 

 

Figure 7: AUC-ROC Comparison Graph 

5.6 Discussion 
The selection of optimum models for 

specific features that run in real-time boosts accuracy 
levels from 97.5% (CCGLSTM) to 98.2% (DFE-
CVRP). The model demonstrates enhanced 
reliability in healthcare domain because it shows 
precision at 97.8% and recall at 98.4% thus 
minimizing false negative and false positive results.  

The main factor behind accuracy 
improvement stems from cGANs data enhancement 
which improves minority class visibility while 
reducing model prejudice. The model's performance 
achieves optimal convergence through Successive 
Halving and Population-Based Training (PBT) 
methods while maintaining minimal computational 
expense. The ensemble learning along with feature-
specific expert models in DFE-CVRP provides 
greater real-time adaptability than Random Forest 
and XGBoost models because these traditional 
machine learning methods lack dynamic features. 
Severe pattern detection capabilities of CNN and 
LSTM architectures are weakened by their limited 
ability to adjust features automatically in structured 
medical datasets. The model achieved AUC-ROC 
scores of 98.6% by using DFE-CVRP which 
represents an improvement over 98.0% with 
CCGLSTM thus demonstrating superior risk 
classification ability for patient care decision support 
and intervention planning. 

6. CONCLUSION 
The research proposed DFE-CVRP which 

serves as a deep learning framework designed to 
cope with major issues affecting standard CVD risk 
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models intended for diabetic patients. DFE-CVRP 
differentiates from standard models because it 
implements dynamic expert model selection of 
EfficientNet-based models augmented by cGAN 
features and optimized by Successive Halving and 
PBT methods. 

A dynamic ensemble learning method 
stands as the main scientific achievement of this 
research which applies real-time validation accuracy 
to determine the network selection for feature-
specialization. This adaptive model selection method 
leads to improved resilience and flexibility as well as 
interpretability which differentiates it from typical 
fixed model combinations. Data augmentation with 
cGAN enhances class imbalance management by 
creating diverse training sets which allows the model 
to build better generalization abilities for different 
patients. 

The experimental findings established that 
DFE-CVRP described framework surpassed 
standard machine learning technologies Random 
Forest, XGBoost and SVM along with CNN, LSTM 
and CCGLSTM baseline deep learning models. The 
predictive capabilities of DFE-CVRP proved solid as 
shown through its 98.2% accuracy along with 97.8% 
precision and 98.4% recall and 98.1% F1-score and 
98.6% AUC-ROC value. 

Limitations: The current validation process 
of the framework operates on structured clinical data 
yet requires potential modifications before applying 
it to datasets with various demographic and clinical 
patterns. The data diversity improvement from 
cGANs does not effectively represent actual patient 
variations which are complex or appear rarely. 

The future research will use DFE-CVRP by 
adding longitudinal health data, studying population 
generalization, and implementing federated learning 
to protect patient privacy across multiple centers. 
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