
 Journal of Theoretical and Applied Information Technology
15th June 2025. Vol.103. No.11

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4674

COLLABORATIVE SQL AND JSON INJECTION DETECTION
SYSTEM USING MACHINE LEARNING

ALAA S. ALNEMARI1 , SAMAH H. ALAJMANI 2

Taif University, College of Computers and Information Technology, Department of Information
Technology, Taif, Saudi Arabia1 2

E-mail: alaa_salem_alnemari@outlook.com1, s.ajmani@tu.edu.sa 2

ABSTRACT

SQL and JSON injection attacks are still a significant security vulnerability in contemporary web
applications, particularly in API-based systems. This paper introduces a new collaborative machine learning
system designed to detect and mitigate SQL and JSON injection attacks in real time. The system adopts a
stratified defensive approach, integrating database query analysis, behavioural scrutiny of API requests, and
instantaneous anomaly detection to establish a resilient protective framework. Utilizing advanced machine
learning techniques—including Support Vector Machines (SVM), Naive Bayes (NB), Decision Trees (DT),
and Random Forest (RF)—it achieves high-fidelity discrimination between benign and malicious queries.
Also, the system maintains dynamic response to new attack methods through real-time threat monitoring,
input sanitization mechanisms, and adaptive learning strategies. The model is trained on a mixed dataset of
labelled SQL and JSON injection attempts along with actual queries, which enhances its accuracy in
detection. Empirical evaluations demonstrate 94% accuracy with zero false positives compared to
conventional syntax-based detection mechanisms. Future improvements may involve the application of
transformer-based architectures (e.g., BERT, GPT-activated detection), graph neural networks (GNNs), and
reinforcement learning to enhance accuracy and responsiveness. This research highlights the need for multi-
pronged security that is AI-driven to safeguard modern database systems and API infrastructures against
advanced SQL-JSON injection attacks.
Keywords: SQL Injection, JSON Injection, Machine Learning-based Detection, API Security, Real-time

Anomaly Detection,

1. INTRODUCTION

Over the past few years, web application
development has become unavoidable. This
evolution and complete dependency on technology
advancements pushed attackers to increase the power
of their tools and identify vulnerabilities in websites
and obtain specific information from databases.
Amongst the most complex security flaws is the
injection that enables attackers to access databases
and get useful information from them or enables
them to know what they contain inside them.
Injections are divided into various types like SQL
and JSON. SQL and JSON injection attacks, two of
the most dangerous vulnerabilities in web
applications, are commonly utilized by attackers to
hijack unauthorized access, manipulate data, and
disrupt normal business logic. Placing malicious
SQL queries within input parameters, for instance,
login pages or search inputs, SQL injection (SQLi)
particularly targets relational databases in order to
tamper with the underlying database. An attacker can
bypass the authentication controls, steal sensitive

data, including financial information and user
credentials, and even modify or delete important
data. SQL injection, in worst-case scenarios, enables
hackers to execute administrative commands on the
database server, leading to a complete system
compromise. The ease of SQL injection and the
frequently poor input validation and query
sanitization provided by web applications contribute
to its ongoing threat. OWASP writes that the SQL
Injection (SQLi) web security vulnerability arises
when an attacker injects an SQL statement into a web
application by altering the client's input data. If
carried out perfectly, an SQLi attack can
compromise sensitive information like passwords,
credit card numbers, and personal data[1]. It also
offers attackers the chance to tamper with database
information through actions like inserting, updating,
or deleting information. Additionally, they are able
to perform administrative tasks in the database like
stopping the database management system and
executing commands on the operating system
level[1]. Even if the attacker does not know the

 Journal of Theoretical and Applied Information Technology
15th June 2025. Vol.103. No.11

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4675

username or password, SQLIA is a database attack
that alters SQL queries to make them return true.

But how is this accomplished? To accomplish this,
utilize a logic gate called an OR logic gate. Let us
first talk about the OR logic. The following are the
OR logic operations B. A and b, which have two
inputs and one output: The output will be false when
both inputs are false. The output is true if the inputs
are true. The output is true if all the inputs are true.
Regardless of the rest of the inputs, the output will
always be true if the inputs are true[1]. The main use
of the single quote is closing a string parameter in
most scenarios.

For example, if a user enters data in the input area
of a web application, the same is viewed as a string.
In most instances, more so when inputting usernames
and passwords, a single quote is used to delimit this
parameter string. The most significant section of this
process is the OR function and the statement "1 = 1."
This line contains two sides: the left and the right.
The attention, in this case, is on the right, "1 = 1,"
and this will always hold because one is always equal
to one. If either of the conditions in the OR function
is true, then the overall statement is true. Therefore,
since "1 = 1" is always true, the SQL query produces
a true result [1].

Furthermore, the single quotation mark (‘’) can
serve as a delimiter to truncate subsequent portions
of an SQL query. This effectively nullifies any
conditional checks within the statement, causing the
OR operator to evaluate as true and thereby
permitting unauthorized authentication—a
fundamental mechanism of SQL injection (SQLI)
vulnerabilities. Conversely, JSON injection attacks
take advantage of weaknesses in applications that
utilize JSON (JavaScript Object Notation) for inter-
server and inter-client data communication. Poor
handling of untrusted JSON data can lead to JSON
injection, allowing an attacker to inject bad objects
or code in the payload. This could lead to data leaks,
arbitrary code execution, or even illicit changes in
the application behaviour.

A JSON Web Token (JWT) is a standardized
format for the secure exchange of cryptographically
signed JSON-encoded information between
distributed systems. While most commonly applied
to transferring user authentication claims in session
management and access control models, JWTs
theoretically have the ability to encapsulate arbitrary
data payloads. Unlike session tokens, JWTs contain
the entire client-state data in the token itself. This
attribute makes them particularly valuable in
horizontally scaled web designs, where

interoperability among multiple backend servers
must be seamless [2].

JSON injection is especially risky in the context of
NoSQL databases like MongoDB because the
attacker can use operators like $gt, $ne, and $regex
to create evil queries that can evade security
measures, read sensitive information, or update
database records. These exploits leverage the
inherent flexibility of JSON's dynamic structure and
the schema-less design of the common NoSQL
systems, where no strict data structuring
requirements exist as in relational databases. The
prevalence of these vulnerabilities, along with the
possibility of very high-level disruption of operation,
renders both SQL and JSON injection attacks
significant security threats to contemporary data
systems.

 Web applications today are database-dependent,
and weaknesses in the way that they take in input
open companies to data breach, monetary loss,
government penalty, and reputation damage. Cyber
attackers prefer to exploit such vulnerabilities also
because of the relative ease of attacking them with
automated tools or even manually creating payloads.
Efficient security controls under the cover of input
validation, query sanitization, and dynamic detection
controls must be implemented to neutralize such
attacks. The machines can learn from changing
patterns of attacks through machine learning and
blended detection approaches to offer real-time
protection against these extremely critical
vulnerabilities.

The shortcomings of current SQL and JSON
injection detection systems render them ineffective
to counter the growing sophistication of cyber-
attacks. Conventional detection techniques, i.e., rule-
based or signature-based systems, identify threats by
utilizing known attack signatures or predetermined
patterns. Such techniques have high false-negative
rates as they fail to detect unknown or obfuscated
injection techniques effectively, despite their good
performance with familiar attack vectors. Moreover,
because anomaly-based systems cannot distinguish
between benign anomalies and real attacks, they tend
to have high false-positive rates. The systems rely on
deviations from normal behaviour. Moreover, most
of the systems available in the market today are those
that are meant to counter SQL or JSON injection
attacks separately, which leaves applications using
relational and non-relational databases vulnerable.
The absence of hybrid technologies that can protect
against SQL attacks as well as JSON injection is
another significant disadvantage. A detection
approach using compartmentalization cannot offer

 Journal of Theoretical and Applied Information Technology
15th June 2025. Vol.103. No.11

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4676

absolute protection against the ubiquity of
contemporary web applications that combine JSON-
based NoSQL databases and SQL-based relational
databases.

Existing solutions are patchwork, securing just a
single database type or single injection method,
which leaves the organization vulnerable to
sophisticated attack methods that take advantage of
SQL and JSON weaknesses in combination. Now,
systems are able to learn and adapt dynamically to
new attack behaviour in real-time thanks to machine
learning, an appealing solution compared to older
methods. Machine learning models, in contrast to
static rule-based systems, have the ability to parse
through large amounts of data and recognize subtle
patterns and correlations that could represent
malicious activity. While unsupervised techniques
possess the potential to detect anomalies without
having any prior knowledge of the attack signatures,
supervised learning models enjoy the benefit of
being trained with labelled malicious and benign
query data.

There are, however, challenges associated with
the deployment of machine learning-based detection
systems. Web applications produce enormous
volumes of data in real-time, and this necessitates the
need for efficacious processing and model inference,
thereby rendering scalability a very significant
concern. Also, regular retraining of models and
access to varied and current datasets are necessary
for responsiveness to new attack methods. The
foregoing application of machine learning-based
solutions is compounded by the requirement of
sacrificing detection effectiveness for system
usability. Finally, machine learning offers a more
complete and responsive solution than traditional
detection systems, limited by their
compartmentalized nature and dependence on rigid
rules. In order to realize the full potential of machine
learning to detect SQL and JSON injection attacks,
however, scalability, responsiveness, and low false
positives must be tackled. The threat of injection
attacks, such as SQL injection and JSON injection,
is a significant cyber security challenge since our
dependency on relational and non-relational
databases for mission-critical applications continues
to grow. JSON injection targets the document-
oriented data structures commonly used in non-
relational databases, while SQL injection targets
vulnerabilities of structured query languages,
primarily against relational databases.

 Current detection systems fail to possess the
ability to ward off a number of injection attacks since
they are designed specifically to address a certain

category of databases or lines of attack. In addition,
the need is there for a faster mechanism capable of
combating unknown and new threats because
patterns of attacks constantly change. Old school
rule-based or signature-based detection approaches
tend to fail, opening systems up to more modern and
clever attack methodologies. It is therefore vitally
necessary that an improved hybrid detection system
that is capable of thoroughly detecting injection
attacks across a vast array of database environments
is created. Relational and non-relational databases
need to be extensively protected by such a system,
which needs to utilize machine learning models to
provide dynamic and adaptive threat analysis.

 In light of these challenges, this research strongly
concentrates on detection methods of hybrid SQL
and JSON injection attacks on API-based web
applications, particularly through supervised
machine learning approaches. This paper presents a
holistic detection framework to detect both SQL and
JSON injection attacks in API-based environments.
Compared to previous studies that generally deal
with each injection type separately, the system here
integrates several supervised machine learning
algorithms: Support Vector Machine (SVM), Naïve
Bayes (NB), Decision Tree (DT), and Random
Forest (RF) into one detection pipeline. With training
on a mixed dataset with both real and synthetically
generated injection queries, the system can better
identify a broader variety of attack patterns. This
hybrid technique provides better detection precision,
lowers false positives, and supports real-time
analysis of multi-format threats typical of today's
web applications.

 In the course of this research, various limitations
were encountered that would influence the
practicability and applicability of the research. To
begin with, the research work utilized data sets that
were synthetic and included injection scenarios both
real and synthetic in nature. Prevalent as they were,
these data sets may not always reflect the realism and
variability of injection attacks in real-world
operational environments. Furthermore, due to
limited computational resources, such as limited
processing power and storage capacity, extensive
scalability testing of the machine learning models
was restricted. Finally, whereas existing studies have
extensively researched SQL and JSON injection
attacks individually, no studies have previously
examined both injection attacks simultaneously
within a single machine learning detection model,
especially given the dataset restrictions experienced
in this study.

2. LITERATURE REVIEW

 Journal of Theoretical and Applied Information Technology
15th June 2025. Vol.103. No.11

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4677

Injection attacks have been known for
decades as among the longest-lived and most
perilous web application security threats. With the
rising usage of relational (SQL-based) and non-
relational (JSON-based) databases in today's
applications, both new hybrid attack patterns
emerged combining structured and semi-structured
injection approaches. This paradigm change has
resulted in researchers investigating numerous
machine learning-based detection techniques, each
with strengths and weaknesses of their own.
However, most recent works are centered on only
one type of attack—either SQL or JSON—and
single-model-based architecture. This section
presents a critical review of the most pertinent
studies and points out the existing research gap that
this paper is seeking to fill.

 Alkhathami et al. (2022) also used a selection of
machine learning classifiers, including K-Nearest
Neighbours (KNN), Multinomial Naïve Bayes
(MNB), Decision Trees (DT), and Support Vector
Machines (SVM), to identify SQL injection flaws in
cloud computing systems. The results indicated that
SVM demonstrated higher performance in
classifying accuracy compared to the other
classifiers used. However, their area of work was
limited to identifying SQL injection alone
irrespective of JSON-based attacks or the potential
benefit of employing multiple classifiers as part of a
system overall [3].

 Kim et al. (2021) created an Intrusion Detection
System (IDS) based on AI capable of detecting SQL
payloads in JSON API requests. Although their
system effectively tackled hybrid attack frameworks,
it was designed to tackle a single type of payload and
did not consider a combined detection strategy with
several ML models. Their work prioritized accuracy
but did not consider the scalability or adaptability of
detection [4]. Zhang et al. (2020) developed a model
that utilized Convolutional Neural Networks (CNN)
and TF-IDF vectorization for detecting structured
injection attacks. Even though the model provided
89. 8% detection accuracy, it only detected SQL
injection and demanded heavy computation, so it
was not the best choice for light, real-time
deployment environments [5].

 Yan et al. (2023) conducted an experiment using
a deep learning system that employed AST-based n-
grams to detect injections and achieved a very high
accuracy of 98.2%. Although the system was
computationally intensive, it was not a hybrid DB-
friendly system. Moreover, the model's complexity

restricted the system's applicability to real-time
systems [6].

 Bravenboer et al. was interested in the
minimization of false positives through syntax
embedding and pattern matching. Their paper
showed an enhancement in alert quality without real-
time testing and scalability testing. It did not include
JSON payloads and neither did it provide unified
detection structures [7].

 Halfond et al. made a contribution in the form of
a proposed taxonomy framework for SQL injection
attacks. While this work gave general insights into
classifications of attacks, it was still very theoretical
in scope and never developed into an actionable or
adaptable detection tool [8].

 All these above studies have made remarkable
enhancements in the detection of injection attacks.
Nevertheless, a shared limitation of all of them is that
they have not had much emphasis on particular types
of injections or individual modelling methods.
Importantly, to date, there is no study that unifies
both SQL and JSON injection detection within a
single machine learning framework that incorporates
various algorithms like SVM, Naïve Bayes,
Decision Trees, Random Forest, and AutoML. In
addition, neither of these reports use AI-created
hybrid test and training sets, which would more
effectively mimic actual API interactions. Aside
from the main sources mentioned above, there have
also been numerous other research studies
investigating machine learning methodology for
injection detection, each offering various techniques
and results. Though these studies are not
comprehensively dealt with here, they have served
to confirm the wider context within which to view
contemporary trends and limitations in the field.
Their conclusions also support the necessity of an
integrated detection mechanism that can cater to
various types of injections in real-time flexibility.

 Dawadi et al. developed a Web Application
Firewall (WAF) on the basis of LSTM-based models
to function effectively against SQL injection, JSON
injection, and XSS attacks. The system exhibits a
high accuracy rate of 97. 57% and a low false
positive rate of merely 2. 4 % [9].

 Santa Barletta et al. A hybrid quantum security
model has been introduced that integrates JSON-
based threat detection with machine learning
anomaly detection, specifically designed for smart

 Journal of Theoretical and Applied Information Technology
15th June 2025. Vol.103. No.11

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4678

city applications. This innovative approach
effectively identifies JSON injection payloads
hidden within IoT device logs, successfully
preventing unauthorized access to critical
infrastructure throughout the city[10].

 Padmanaban et al. A hybrid quantum security
model has been introduced that integrates JSON-
based threat detection with machine learning
anomaly detection, specifically designed for smart
city applications. This innovative approach
effectively identifies JSON injection payloads
hidden within IoT device logs, successfully
preventing unauthorized access to critical
infrastructure throughout the city[11].

 Chandran et al. conducted a thorough security
analysis of JWT-based authentication systems and
found that improper JSON parsing could allow the
execution of SQLi payload within JWT tokens.
According to their research, 42% of the web
applications they tested were vulnerable to SQL-
JSON hybrid attacks due to inadequate signature
verification [12].

 Zulkarneev et al. Provided a comprehensive
security analysis of JWT-based authentication
vulnerabilities and found that vulnerable JSON
parsing allows SQL injection payloads to be
concealed within JWT tokens. During their study,
they found that 42% of tested web applications were
vulnerable to SQL-JSON hybrid attacks due to the
existence of weak signature verification
mechanisms. By modifying the JWT signature
validation process and enforcing stricter JSON
parsing rules, their approach reduced SQLi-related
JWT injection risks by 57%[13].

 Mohammed et al. investigated IoT security
vulnerabilities, demonstrating that JSON-based API
attacks could compromise SQL database logging
mechanisms. Their hybrid IoT security framework
prevented JSON-SQL exploits with an accuracy of
96.2%[7].

 Prinakaa et al. proposed a comprehensive
taxonomy model for JWT lifecycle threats,
delineating prevalent attack vectors, including token
manipulation, whereby malicious actors alter JWT
payloads to embed harmful JSON-encoded SQL
queries, and JSON schema tampering, involving the
falsification of JSON fields to exploit SQL
vulnerabilities within authentication frameworks..
Embedded SQL queries in JWT claims (allowing

attackers to bypass authentication logic). Their
solution secured JWT by preventing SQL injection
vulnerabilities by 74%. This improvement highlights
the necessity to strengthen schema validation in
JWT-based authentication mechanisms as a means
to successfully avert hybrid SQL-JSON injection
attacks [14].

 According to Singh et al, The study centered on
the security vulnerabilities of IoT devices towards
JWT authentication methods, demonstrating the
potential threat of JSON-based API attacks to SQL
database log systems. The authors discovered that
IoT devices employing JWT authentication were
extremely vulnerable to JSON-SQL injection
attacks, making it possible for attackers to bypass
access control and inject SQL statements into back-
end databases. But their hybrid IoT security
framework did manage to fend off such JSON-SQL
attacks with an impressive 96. 2% accuracy rate. The
finding indicates the high need for more
sophisticated JWT validation mechanisms in IoT
security frameworks [15].

 Azman et al. suggested an SQL injection
vulnerability detection approach using machine
learning via Convolutional Neural Networks
(CNNs) and TF-IDF (Term Frequency-Inverse
Document Frequency) for feature extraction and
SQL injection attempt classification identified in
JSON-based API requests [16].

 Apart from the previously discussed primary
studies, there has been some new research that has
created significant knowledge surrounding injection
detection in different machine learning and security
frameworks. Dawadi, Singh, Prinakaa, Zulkarneev,
and Mohammed conducted research that was
focused on specific situations like IoT infrastructure,
JWT abuse, and cross attacks in smart systems.
Though these works solved similar issues and
designed creative partial solutions, they were still
lacking a complete integrated detection system that
could detect both SQL and JSON injection attacks at
once using a single set of classifiers. Their findings
validate the increasing awareness of the necessity for
a collaborative, multi-model approach further
emphasizing the need for this work. To the best of
the authors' knowledge, the current research is the
first to propose an integrated detection scheme
covering both SQL and JSON injection attacks on
the basis of this specific combination of machine
learning approaches. In doing so, the research fills
the current gap in the literature and offers a high-
scale, scalable solution to current web-based

 Journal of Theoretical and Applied Information Technology
15th June 2025. Vol.103. No.11

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4679

applications that take advantage of hybrid data
structures and API-level communications.

The research employed a SQL-JSON dataset with
benign and malicious queries in the form of real
attack logs and synthetically created payloads. The
approach involved representing SQL queries as
vectors and constructing a CNN model for detecting
patterns of structured injection, thereby maximizing
detection efficiency.

The model achieved 89. 8% detection rate,
expressing its capability in detecting SQL-JSON
hybrid attacks. But the study acknowledged
challenges in responding to highly obfuscated

attacks, calling for additional advancements in
adversarial resilience. The research adds to the
development of AI-based cybersecurity methods,
especially the protection of contemporary web
applications against emerging injection attacks.
From our prior research in the detection of injection
attacks, we learn that they generally employ deeb to
fly high and other methods and they do not generally
collect machine language in detection and
efficiency, therefore this paper contributes to the
efficiency of merging four ML algorithms in
detection of SQL and JSON injection attacks. We
compared and summarized a few considerations of
SQL and JSON attack discovery with machine
language from a methodological perspective in
Table 1.

Table 1: Summarizes The Related Works In Our Field

Author Objective

Approach

Tools

Results

Jamilah M.
Alkhathami[3]

The study focuses
on developing a
machine learning
tool to detect SQL
Injection Attacks
(SQLIA) in cloud
computing. It looks
to overcome the
weaknesses of
traditional
detection methods
to enhance their
accuracy and
effectiveness. This
research explores
various machine
learning techniques
to classify SQL
queries as either
harmful or safe,
aiming to identify
the best method.

The study aims to
create a machine
learning system to
detect SQL Injection
Attacks (SQLIA) in
cloud computing
platforms. It starts by
gathering a dataset of
normal and harmful
SQL queries, then
cleans and prepares
this data for analysis.
It uses
CountVectorizer to
convert text into
numerical data for
machine learning. The
dataset is divided into
training and testing
sets, and four
models—K-Nearest
Neighbors (KNN),
Multinomial Naive
Bayes (MNB),
Decision Tree (DT),
and Support Vector
Machine (SVM)—are
trained and tested.
Each model's
performance is
measured by accuracy,
confusion matrix, and

K-Nearest
Neighbor

algorithm,
Multinomial
Naive Bayes
algorithm,

Decision tree
algorithm and
Support Vector

Machine
algorithm,

K-Nearest
Neighbors (KNN):
92.45%.

Multinomial Naive
Bayes (MNB):
97.09%.

Decision Tree
(DT): 99.4%.

Support Vector
Machine (SVM):
99.42%.

 Journal of Theoretical and Applied Information Technology
15th June 2025. Vol.103. No.11

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4680

ROC-AUC curve, with
SVM showing the best
results.

Prinakaa[14] The document
intends to present
an API abuse
detection
framework within
a Log Storage
Application. The
framework is
intended to
recognize and
address harmful
activities related to
API traffic,
highlighting the
unique
characteristics and
actions that are
typical of this type
of traffic.

The method consists of
establishing a real-time
detection system that
tracks API interactions
to recognize unusual
or harmful patterns.
This is accomplished
by evaluating
behavioral patterns in
the API traffic to
identify deviations that
signal abuse.

The system is
created
utilizing Spring
Boot along
with OAuth2. 0
and JSON Web
Token (JWT)
based
authentication
methods. These
technologies
offer a strong
framework for
safe API
interactions and
assist in
tracking API
usage for
possible
abuses.

Specific
quantitative results
or performance
metrics are not
specified in the
provided excerpts.
Nevertheless, the
execution of the
outlined system is
aimed at improving
the security of API
interactions by
efficiently
identifying and
preventing misuse
in real time.

Mohammed[7] To investigate
security
vulnerabilities in
IoT
communication
protocols
specifically
MQTT, CoAP, and
XMPP and to
develop a hybrid
IoT security model
aimed at
preventing JSON-
SQL exploits.

The research
performed a thorough
security evaluation of
the MQTT, CoAP, and
XMPP protocols,
revealing that incorrect
JSON parsing might
permit SQL injection
payloads to be
included in API
requests. To tackle this
issue, the investigators
created a combined
IoT security
framework that
incorporates improved
JSON parsing
techniques along with
strong SQL database
logging methods to
identify and avert such
attacks.

The
implementation
utilized
advanced
JSON parsers
and secure
SQL database
management
systems.
Specific tools
or software
names were not
detailed in the
available
information.

The proposed
hybrid IoT security
model effectively
prevented JSON-
SQL injection
exploits with an
accuracy rate of
96.2%,
significantly
enhancing the
security of IoT
communication
protocols against
such attacks.

 Journal of Theoretical and Applied Information Technology
15th June 2025. Vol.103. No.11

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4681

Singh [15] To enhance the
security of JSON
Web Tokens
(JWTs) by
reducing
vulnerabilities (e.
g. , session
hijacking and man-
in-the-middle
attacks) present
even with shorter-
lived JWTs.

The document
suggests merging the
Signal Protocol and its
double ratchet
mechanism with
conventional JWT
management. This
introduces an end-to-
end encryption level
for JWT payloads to
safeguard against both
internal and external
threats.

Implementation
utilizes
cryptographic
components
present in the
Signal Protocol
and double
ratchet
mechanism.The
document
outlines
algorithmic
incorporation
with JWT
encryption
methods.)

The suggested
algorithm shows
increased security
through the
encryption of the
main JSON
payload. This
method is
recommended to
alleviate typical
JWT
vulnerabilities and
provide better end-
to-end security.

3 . RES EA RC H M E THO DO LO GY

This research method systematically
detects and mitigates API abuses through machine
learning models. Features like input validation,
feature extraction, and hybrid machine learning
classification enhance system security against SQL-
JSON hybrid attacks, delivering accurate and
effective real-time responses. The process comprises
four stages:

 Dataset Creation: A hybrid dataset with over
150,000 entries is constructed. Synthetic SQL and
JSON injection attack queries are obtained from
custom Python scripts combined with real attack
payloads collected from open sources such as
GitHub and Kaggle to bring diversity and realism.

 Data Pre-processing and Feature Extraction: It
comprises input sanitization and tokenization,
followed by vectorization using the Term
Frequency-Inverse Document Frequency (TF-IDF)
method, and 3,000 features are yielded. Class

imbalance is addressed using the Synthetic Minority
Oversampling Technique (SMOTE) at a 1:1 ratio.

 Model Training: Five supervised algorithms—
Support Vector Machine (SVM), Naïve Bayes (NB),
Decision Tree (DT), Random Forest (RF), and
AutoML—are trained. The dataset is split into 80%
for training and 20% for testing.

 Model Evaluation: Model performance is
confirmed by employing five-fold cross-validation
with the common metrics including accuracy,
precision, recall, F1-score, confusion matrix, and
ROC-AUC to ascertain the performance accurately.

 The system has been implemented using Python
3.10 as the programming language, and it was coded
using the Google Colab and Visual Studio Code
environment. The attentive, multi-level coding

 Journal of Theoretical and Applied Information Technology
15th June 2025. Vol.103. No.11

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4682

significantly increases detection accuracy,
suppresses false positives, and enhances API-based
systems' robustness against sophisticated injection
attacks.

3.1 Objectives and Hypothesis

This research tries to develop an integrated
machine learning detection system to identify both
SQL and JSON injection attacks in web applications
based on APIs. The research aims at comparing the
performance of various machine learning algorithms
Support Vector Machines (SVM), Naïve Bayes,
Decision Trees, Random Forest, and Auto ML using
a mix of real-world and artificially created datasets
for training and testing. The primary objective is to
enhance detection quality with fewer false positives.
The primary hypothesis behind this research is that
ensembling a group of classifiers within a hybrid
detection system will perform better than
conventional single-model or rule-based systems in
detecting sophisticated injection attacks in structured
and semi-structured query languages.

3.2 System Model

The emerging web applications leverage SQL
databases for storing structured information and
JSON-based APIs for transmitting data seamlessly.
But this brings with it novel attack surfaces in which
attackers embed SQL queries within JSON payloads
in order to beat authentication, data tampering, or
Apis. Our system aims to bridge the gap between
API-layer security and database security by
introducing a multi-layered detection architecture
that can analyse, detect, and block hybrid SQL-
JSON injection threats in real-time. Figure 1 shows
our system model from the dataset stage to the
evaluation stage

3.1 .2 Dataset

Assembling a useful dataset that includes both
common and SQL infusion attacks and JSON
payload. The datasets, which cover both kind and
noxious cases for multi-format risk discovery, are
made up of haphazardly produced and collected
SQL, JSON, and JWT infusion questions. To ensure
differences in preparing tests, the information
comprises a combination of misleadingly produced
inquiries and real assault designs. To make strides
the Vigor of machine learning models, an expansive
dataset comprising more than 150,000 irregular tests
was made. To recognize SQL and JSON-based
infusion dangers in genuine time, a prepared

Irregular Timberland Classifier is additionally
consolidated. The demonstration and these datasets
are valuable for moving forward web security,
defending APIs, and recognizing infusion assaults in
genuine time in cybersecurity applications.

3.1.3 Data Pre-processing

Data preprocessing is crucial for improving the
model's ability to memorize and accurately detect
threats. It starts with input sanitization to remove
harmful elements like special characters, which
helps minimize false positives. Noise injection
further strengthens the model against hidden attacks
by adding random SQL comments or spaces. The
sanitized SQL queries are then transformed into
numerical forms using methods like TF-IDF,
allowing machine learning algorithms to process
them. Techniques like Random Over Sampling or
SMOTE address the issue of class imbalance,
ensuring the model fairly represents both safe and
malicious queries. Finally, the data is split into
training and testing sets to evaluate the model's
performance, leading to an effective detection
system for real SQL injection attempts.

3.1.4 Feature extraction

This system will convert raw SQL queries into
numerical forms that are organized for efficient
processing in machine learning operations. It starts
from tokenization that divides SQL queries into
elements like keywords, operators, and symbols. The
tokens are then converted into numerical features
with methods like TF-IDF, which indicates their
importance in the dataset. These features also
include query length, numbers of special characters,

Figure 1 Hybrid Machine Learning Model

 Journal of Theoretical and Applied Information Technology
15th June 2025. Vol.103. No.11

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4683

and occurrence of SQL keywords. These also further
enhance the analysis. It provides machine learning
algorithms with pattern-recognizable data, boosting
the ability of their models to identify attempts to
perform SQL injections.

3.1.5 Training algorithms

The hybrid machine learning model uses several
algorithms to improve threat detection. Support
Vector Machines (SVM) are effective for creating
decision boundaries between safe and harmful
inputs. Naïve Bayes offers quick predictions based
on probabilities. Decision Trees make the model
easy to understand, while Random Forests reduce
overfitting. AutoML automates feature engineering
and selects the best models. Together, these methods
help accurately classify API requests and identify
threats in real-time.

3.1.5.1 Support vector machine algorithm

Support Vector Machine (SVM) is a classification
method. Utilizing this combination, the advantages
of both methods can be utilized to classify the SQL
queries more accurately. Lastly, in order to help the
expert in decision-making regarding the suspicious
queries identified, a visualization method is
suggested that integrates clustering methods and
unsupervised neural models to minimize the
dimensions of the data [17].

3.1.5.2 Multinomial naïve bayes algorithm

MNB is a variant of Naive Bayes designed for
classifying text documents; it utilizes a multinomial
distribution as a feature for classification, focusing
on the frequency of words or their weights. MNB
tallies the occurrences of each word within the
document [18].

3.1.5.3 Decision trees algorithm

A DT is a simple and clear way to make decisions or
predictions based on a set of rules. It works like a
flowchart, where each question or condition leads to
a different path, helping you reach a final answer or
decision. Imagine it like a series of "yes" or "no"
questions each answer takes you down a different
branch until you reach a conclusion. In machine
learning, decision trees help computers decide how
to classify data or make predictions by following this
step-by-step process. They are popular because they
are easy to understand and explain[19].

3.1.5.4 Random forests algorithm

Random Forest is an ensemble learning technique
that functions by building numerous decision trees
during the training process. Each tree assesses the
input data independently, and the ultimate outcome
is decided by combining the predictions of all trees,
usually through a majority vote for classification
purposes. This method improves the accuracy and
robustness of the model, as the collection of various
trees reduces the chance of overfitting linked to
single decision trees. The randomness involved in
choosing features and data subsets for each tree
guarantees that the model identifies a broad
spectrum of patterns within the data, resulting in
better generalization on new instances[20].

3.1.5.5 Automated machine learning

Automated Machine Learning (AutoML) refers to
the extensive automation of different machine
learning processes. This includes activities like
hyperparameter optimization, meta-learning, and the
integrated selection of algorithms and
hyperparameters (CASH). The primary objective of
AutoML is to automate every element of the
machine learning pipeline from start to finish,
though there is currently no all-encompassing
framework available. Recent initiatives have mainly
concentrated on hyperparameter optimization and
the selection of algorithms[21].

3.1.6 Evaluation

We assessed the effectiveness of all classification
models utilizing a dataset, which constitutes 20% of
the overall dataset. After we analysed the four
models that resulted from the machine learning
algorithms for training, we compare the outcomes of
each model.

3.1.6.1 Confusion Matrix

A confusion matrix is an instrument utilized to
assess the effectiveness of a classification model. It
is a chart that aligns the real classifications with the
model's predictions, offering an in-depth analysis of
correct and incorrect classifications for every class.
This facilitates a thorough evaluation of the model's
accuracy and the kinds of mistakes it commits[22].

3.1.6.2 ROC-AUC curve

A Receiver Operating Characteristic (ROC) curve is
a visual tool utilized to assess the effectiveness of a
binary classification model. It charts the True
Positive Rate (TPR) against the False Positive Rate

 Journal of Theoretical and Applied Information Technology
15th June 2025. Vol.103. No.11

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4684

(FPR) at different threshold levels. The Area Under
the Curve (AUC) measures the overall capacity of
the model to differentiate between positive and
negative classes, with a score of 1 representing ideal
discrimination and 0. 5 indicating performance no
better than random selection. ROC curves and AUC
are critical instruments for evaluating and
contrasting the diagnostic precision of predictive
models.

3.2 Tools

3 .2 .1 Python

Python is a versatile and user-friendly programming
language known for its simple syntax and extensive
libraries. It is suitable for beginners and offers
powerful tools for experienced developers. Python
supports various programming styles and is widely
used in applications like data analysis with libraries
such as NumPy and Pandas, and in machine learning
with frameworks like TensorFlow and PyTorch. It is
also popular in web development, automation,
scientific research, and cybersecurity. Python's
strong community support ensures its continuous
improvement and wealth of resources for users. and
we used the Google Colab platform and Visual
Studio Code to do so and ensured about model
results.

3.2 .2 Google Colab

Google Colab, short for Google Colab oratory, is a
free, cloud-based platform for writing and running
Python code in a Jupyter Notebook. It is created by
Google and is popular among data scientists,
machine learning experts, and researchers due to its
ease of access, built-in libraries, and strong hardware
options. A key feature is the ability to use free GPUs
and TPUs, which help speed up deep learning and
large data tasks. Users can easily use popular Python
libraries like TensorFlow, PyTorch, Scikit-learn, and
Pandas, making it suitable for data analysis, machine
learning, and AI projects. Google Colab also allows
real-time collaboration, enabling multiple users to
work on the same notebook at once, similar to
Google Docs.

3.2.3 Visual Studio Code

VS is a free, open-source code editor from Microsoft
that offers a lightweight and powerful development
environment. It supports numerous programming

languages, such as Python, JavaScript, C, Java, and
HTML/CSS, making it suitable for various
developers. A key feature is its extensive ecosystem
of extensions in the VS Code Marketplace, which
improve functionality by providing language
support, debuggers, linters, code formatters, and
tools such as Git integration and Docker. The Python
extension, for example, includes features like
IntelliSense, debugging support, virtual environment
management, and Jupiter notebook integration.

4. EXPERIMENTATION AND

EVALUATION

The experimental results analyze the
performance, accuracy, and robustness of the hybrid
machine-learning model for SQL-JSON injection
detection. The system was tested on various datasets
containing both benign and malicious queries. The
dataset preparation process was one of the most
time-consuming and challenging phases of the study.
Generating realistic SQL and JSON injection queries
required custom Python scripting to simulate a wide
range of attack vectors. Additionally, collecting
authentic injection samples from open-source
platforms such as GitHub and Kaggle involved
extensive filtering and validation to ensure the data
was relevant, labeled, and representative of current
attack trends. Finding high-quality real-world
injection examples proved especially difficult, as
many sources lacked structure or were outdated,
which extended the data collection process
significantly. The Python environment was
configured to support the full model pipeline, both
locally on a macOS system and via Google Colab for
cloud-based execution. Essential libraries such as
scikit-learn, pandas, numpy, matplotlib, nltk, and
imbalanced-learn were installed using pip to support
data processing, machine learning, and visualization
tasks. This dual setup ensured that experiments
could be repeated consistently across environments.
The following sections discuss the finalized dataset,
performance metrics, evaluation results, and key
observations.

4.1 Our Model Effect iveness

Our hybrid model achieved an accuracy of 94%
in Google Colab, outperforming the VS Code
version (88%) due to hardware acceleration and
optimized execution. The precision for detecting
malicious queries is 1.00, meaning the model never
incorrectly classified a benign query as malicious
(no false positives). Recall for malicious queries is

 Journal of Theoretical and Applied Information Technology
15th June 2025. Vol.103. No.11

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4685

92%, indicating some attack queries were missed,
though the performance is still strong.

4.2 Discuss ion of Results

The experimental findings illustrated in Table 2
indicate that the suggested hybrid machine-learning
model achieves a high level of accuracy in
identifying both SQL and JSON injection attacks.
Among the algorithms tested, Support Vector
Machine (SVM) and Random Forest produced the
highest detection rates, whereas Naïve Bayes
performed adequately but added to the overall
ensemble diversity. The combination of AutoML
further improved model selection and
hyperparameter tuning, allowing for better
generalization across both synthetic and real-world
payloads. The elevated precision and recall scores
across numerous models, as displayed in Table 2,
show that the system is proficient not only in threat
detection but also in reducing false alarms. This
equilibrium is vital for real-time implementation in
API-driven applications, where elevated false-
positive rates can lead to operational interruptions or
hinder legitimate traffic. Although various studies
have investigated SQL or JSON injection detection
independently, a comprehensive literature review
indicated that none have introduced a consolidated
machine learning framework that efficiently detects
both kinds of attacks utilizing the specific
combination of algorithms employed in this
research. This emphasizes the uniqueness of the
present work, as it addresses a crucial void in current
research. The implementation of AI-generated
hybrid datasets additionally strengthens the system's
robustness and aids its adaptability to changing
threat dynamics. These results endorse the research
hypothesis that a hybrid framework surpasses
traditional single-model systems. By identifying
both SQL and JSON injection threats within a
unified architecture, the proposed system addresses
an essential research gap. Furthermore, its practical
efficiency under simulated conditions indicates a
high degree of suitability for real-world
implementation in environments where hybrid data
flows and API interactions are prevalent. In
summary, the outcomes affirm the efficacy and
significance of the proposed system and underscore
its potential as a scalable and adaptive solution for
safeguarding web applications against contemporary
injection-based cyber threats.

Table 2 Comparison of SQL injection detection papers
with proposed model

Research Name of
Algorithm

Datas
et

Used

Accura
cy (%)

A Machine
Learning Based
Approach to
Identify SQL
Injection
Vulnerabilities[
16]

Convolutio
nal Neural
Network
(CNN) +
TF-IDF

SQL-
JSON
dataset

89.8

Detection of
SQL Injection
Attacks Using
Machine
Learning in
Cloud
Computing
Platform [3]

KNN

SQL
dataset

92.45

MNB 97.09
DT 99.4

SVM 99.42

Deep Learning
Technique-
Enabled Web
Application
Firewall for the
Detection of
Web Attacks[9]

Long Short-
Term
Memory
(LSTM)

SQL
dataset

96.57

Enhancing IoT
Communicatio
n Security:
Analysis and
Mitigation of
Vulnerabilities
in MQTT,
CoAP, and
XMPP
Protocols[23]

Hybrid IoT
Security
Model

IoT-
based
SQL
dataset

96.2

Proposed
System

Hybrid
Model
(SVM + NB
+ DT + RF)

SQL-
JSON
hybrid
dataset

94

4.3 Google Colab Performance

 Google Colab carried out the task of machine
learning successfully with 0s runtime, adequate
RAM, and proper functioning of models like SVM,
Naive Bayes, Decision Tree, Random Forest, and a
voting classifier, as it is observed from Figure 2. The
model achieved 82% accuracy and an ROC-AUC of
93%, showing good classification performance on a
minuscule test set of 17 samples. But there was a
single error because there was a missing file,

 Journal of Theoretical and Applied Information Technology
15th June 2025. Vol.103. No.11

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4686

Figure 4 ROC-AUC Curve Analysis in VS Code

new_queries.csv, and that could have some impact
in the future tests. Smaller data sets will be just fine
on the free versions of Colab, but more learned
behaviour and large data sets can lead to slow
execution time, RAM issues, or terminated sessions
and so high-performance functionality is best
reserved for Colab Pro.

Figure 2 Result of Hybrid-ML-model in Google Colab

4.4 VS Code’s Performance

The performance of VS Code is stable and
efficient when running Python scripts within a
virtual environment, with smooth integration
demonstrated after activating the environment using
venv/bin/activate. The script executed successfully,
achieving strong model performance with 95%
precision, recall, F1 score, and ROC-AUC score, as
illustrated in Figure 3, indicating effective operation.
Overall, resource usage remained minimal with no
performance slowdowns, confirming VS Code as a
reliable tool for machine learning experiments when
dependencies are correctly managed within the
virtual environment.

4.5 Confusion Matrix

 The confusion matrix in Google Colab and VS
Code, the confusion matrix is that has 5 true
negatives (TN), 10 true positives (TP), 0 false
positives (FP), and 2 false negatives (FN). This
indicates high model performance with no benign
queries being labeled as malicious (FP = 0), but two
malicious queries labeled as benign (FN = 2), which
can be a security risk. In Google Colab, the
confusion matrix appears along with precision,
recall, F1 score, and an ROC curve, showing
seamless execution without dependency issues.
Because Colab provides a preconfigured Python
environment, it eliminates the need for manual setup,
making it a preferred choice for rapid ML
prototyping. However, for long-term development,
VS Code offers better local control and integration
with larger datasets. In VS Code, the execution of

the confusion matrix suggests that the model runs
efficiently in a local Python environment, but the
terminal initially showed dependency issues
(Module Not Found Error for pandas), requiring
activation of the environment before execution. This
means that dependency management is critical when
running ML models in VS Code.

4.6 ROC-AUC Curve Analysis

The ROC-AUC score of 0.95 illustrates that the
show is profoundly compelling in recognizing
between generous and pernicious inquiries. Figure 4
shows the ROC-AUC bend created from the
demonstrate when run in VS Code, reflecting solid
classification execution beneath a nearby
environment with well-managed conditions. In
differentiate, Figure 5 appears the ROC-AUC bend
from the Google Colab execution, where the
demonstrate moreover accomplished tall separation
control. The Colab form performed marginally
superior, likely due to upgraded equipment
capabilities and more effective dataset
preprocessing. Both bends highlight the model's
strength and appropriateness for real-time discovery
in API-driven applications.

Figure 3 Result of Hybrid-ML-model in VS code

 Journal of Theoretical and Applied Information Technology
15th June 2025. Vol.103. No.11

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4687

5. CONCLUSION

The proposed hybrid machine learning
model achieves considerable accuracy in detecting
SQL and JSON injection attacks, offering robust
protection against evolving threats. Leveraging
Google Colab's GPU acceleration improved training
efficacy and model results, surpassing traditional
environments like VS Code. The system is effortless
to integrate with API security layers, enabling real-
time detection and blocking of malicious requests,
thus enhancing application lifespan and mitigating
injection-related vulnerabilities. The work here
suggests a novel hybrid detection system that targets
both SQL as well as JSON injection attacks based on
cooperative techniques, which leverage SVM, Naïve
Bayes, Decision Trees, Random Forest, and Auto
ML as an algorithmic ensemble never used in earlier
comparable research. Tested and trained using an
AI-generated dataset comprised of synthetic and real
injection queries, the model hit 94% accuracy, 1. 00
precision, and ROC-AUC score of 0. 95, reflecting
high classification power and minimal false
positives. Its scalability and flexibility render it
highly appropriate for critical domains such as
finance, healthcare, and e-commerce, where hybrid
database models are prevalent. Through its
contribution towards addressing a crucial shortfall in
the realm of cybersecurity, this research work lays a
foundation for on-going studies in adaptive,
intelligent, and multi-layered intrusion detection
systems for contemporary web applications.

REFERENCES

[1] A. Ketema, ‘DEVELOPING SQL INJECTION

PREVENTION MODEL USING DEEP
LEARNING TECHNIQUE’, 2022.

[2] ‘JWT attacks | Web Security Academy’.
Accessed: Jan. 27, 2025. [Online]. Available:
https://portswigger.net/web-security/jwt

[3] J. M. Alkhathami and S. M. Alzahrani,
‘DETECTION OF SQL INJECTION
ATTACKS USING MACHINE LEARNING
IN CLOUD COMPUTING PLATFORM’, .
Vol., no. 15, 2022.

[4] M. F. Rozi et al., ‘Detecting Malicious
JavaScript Using Structure-Based Analysis of
Graph Representation’, IEEE Access, vol. 11,
pp. 102727–102745, 2023, doi:
10.1109/ACCESS.2023.3317266.

[5] K. Zhang, ‘A Machine Learning Based
Approach to Identify SQL Injection
Vulnerabilities’, in 2019 34th IEEE/ACM
International Conference on Automated
Software Engineering (ASE), San Diego, CA,
USA: IEEE, Nov. 2019, pp. 1286–1288. doi:
10.1109/ASE.2019.00164.

[6] R. Yan, X. Xiao, G. Hu, S. Peng, and Y. Jiang,
‘New deep learning method to detect code
injection attacks on hybrid applications’, J.
Syst. Softw., vol. 137, pp. 67–77, Mar. 2018,
doi: 10.1016/j.jss.2017.11.001.

[7] Z. Mohammed, A. Shahwan, A. Alazawi, and
W. Elmedany, ‘Enhancing IoT
Communication Security: Analysis and
Mitigation of Vulnerabilities in MQTT,
CoAP, and XMPP Protocols’, Jan. 09, 2025,
Preprints. doi:
10.22541/au.173639437.79051461/v1.

[8] W. G. J. Halfond, J. Viegas, and A. Orso, ‘A
Classification of SQL Injection Attacks and
Countermeasures’.

[9] B. Dawadi, B. Adhikari, and D. Srivastava,
‘Deep Learning Technique-Enabled Web
Application Firewall for the Detection of Web
Attacks’, Sensors, vol. 23, no. 4, p. 2073, Feb.
2023, doi: 10.3390/s23042073.

[10] V. Barletta, D. Caivano, M. De Vincentiis, A.
Pal, and M. Scalera, ‘Hybrid quantum
architecture for smart city security’, J. Syst.
Softw., vol. 217, Jul. 2024, doi:
10.1016/j.jss.2024.112161.

[11] R. Padmanaban, ‘COMPUTER SCIENCE
AND ENGINEERING’.

[12] A. R. Emanuela, G. Mihaela, and T. Daniela,
‘Enhancing Security in Data Exchange:
Mitigating Risks Solutions in Base64

Figure 5 ROC-AUC Curve Analysis in Google

Colab

 Journal of Theoretical and Applied Information Technology
15th June 2025. Vol.103. No.11

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4688

Encoding and JSON Web Tokens’, 2024 Int.
Symp. Electron. Telecommun. ISETC, pp. 1–
4, Nov. 2024, doi:
10.1109/ISETC63109.2024.10797302.

[13] I. Zulkarneev and K. A. Basalay, ‘JSON Web
Tokens Lifecycle-Based Threat
Classification’, in 2024 IEEE 25th
International Conference of Young
Professionals in Electron Devices and
Materials (EDM), Jun. 2024, pp. 1920–1924.
doi: 10.1109/EDM61683.2024.10615042.

[14] S. Prinakaa, B. V, S. S, S. Srinivasan, and S. V,
‘A Real-Time Approach to Detecting API
Abuses Based on Behavioral Patterns’, in
2024 8th International Conference on
Cryptography, Security and Privacy (CSP),
Apr. 2024, pp. 24–28. doi:
10.1109/CSP62567.2024.00012.

[15] P. Singh, G. Choudhary, S. K. Shandilya, and
V. Sihag, ‘Enhancing the Security of JSON
Web Token Using Signal Protocol
and Ratchet System’, in Proceedings of
Emerging Trends and Technologies on
Intelligent Systems, A. Noor, K. Saroha, E.
Pricop, A. Sen, and G. Trivedi, Eds.,
Singapore: Springer Nature, 2023, pp. 387–
400. doi: 10.1007/978-981-19-4182-5_31.

[16] M. A. Azman, M. F. Marhusin, and R.
Sulaiman, ‘Machine Learning-Based
Technique to Detect SQL Injection Attack’, J.
Comput. Sci., vol. 17, no. 3, pp. 296–303, Mar.
2021, doi: 10.3844/jcssp.2021.296.303.

[17] C. Pinzon, J. F. De Paz, J. Bajo, A. Herrero, and
E. Corchado, ‘AIIDA-SQL: An Adaptive
Intelligent Intrusion Detector Agent for
detecting SQL Injection attacks’, in 2010 10th
International Conference on Hybrid
Intelligent Systems, Atlanta, GA, USA: IEEE,
Aug. 2010, pp. 73–78. doi:
10.1109/HIS.2010.5600026.

[18] N. Cahyadi, S. Yutia, and P. Dorand,
‘Enhancing SQL Injection Attack Prevention:
A Framework for Detection, Secure
Development, and Intelligent Techniques’, J.
Inform. Commun. Technol. JICT, vol. 5, pp.
138–148, Dec. 2023, doi:
10.52661/j_ict.v5i2.233.

[19] H. Blockeel, L. Devos, B. Frénay, G. Nanfack,
and S. Nijssen, ‘Decision trees: from efficient
prediction to responsible AI’, Front. Artif.
Intell., vol. 6, p. 1124553, Jul. 2023, doi:
10.3389/frai.2023.1124553.

[20] T.-T.-H. Le, Y. Hwang, C. Choi, R. W.
Wardhani, D. S. C. Putranto, and H. Kim,
‘Enhancing Structured Query Language

Injection Detection with Trustworthy
Ensemble Learning and Boosting Models
Using Local Explanation Techniques’,
Electronics, vol. 13, no. 22, p. 4350, Nov.
2024, doi: 10.3390/electronics13224350.

[21] S. D. Oliveira, O. Topsakal, and O. Toker,
‘Benchmarking Automated Machine Learning
(AutoML) Frameworks for Object Detection’,
Information, vol. 15, no. 1, p. 63, Jan. 2024,
doi: 10.3390/info15010063.

[22] ‘Zohreh Karimi’, ResearchGate. Accessed:
Apr. 10, 2025. [Online]. Available:
https://www.researchgate.net/profile/Zohreh-
Karimi-8

[23] Z. Mohammed, A. Shahwan, A. Alazawi, and
W. Elmedany, ‘Enhancing IoT
Communication Security: Analysis and
Mitigation of Vulnerabilities in MQTT,
CoAP, and XMPP Protocols’, Jan. 09, 2025,
Preprints. doi:
10.22541/au.173639437.79051461/v1.

