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ABSTRACT 

SQL and JSON injection attacks are still a significant security vulnerability in contemporary web 
applications, particularly in API-based systems. This paper introduces a new collaborative machine learning 
system designed to detect and mitigate SQL and JSON injection attacks in real time. The system adopts a 
stratified defensive approach, integrating database query analysis, behavioural scrutiny of API requests, and 
instantaneous anomaly detection to establish a resilient protective framework. Utilizing advanced machine 
learning techniques—including Support Vector Machines (SVM), Naive Bayes (NB), Decision Trees (DT), 
and Random Forest (RF)—it achieves high-fidelity discrimination between benign and malicious queries. 
Also, the system maintains dynamic response to new attack methods through real-time threat monitoring, 
input sanitization mechanisms, and adaptive learning strategies. The model is trained on a mixed dataset of 
labelled SQL and JSON injection attempts along with actual queries, which enhances its accuracy in 
detection. Empirical evaluations demonstrate 94% accuracy with zero false positives compared to 
conventional syntax-based detection mechanisms. Future improvements may involve the application of 
transformer-based architectures (e.g., BERT, GPT-activated detection), graph neural networks (GNNs), and 
reinforcement learning to enhance accuracy and responsiveness. This research highlights the need for multi-
pronged security that is AI-driven to safeguard modern database systems and API infrastructures against 
advanced SQL-JSON injection attacks. 
Keywords: SQL Injection, JSON Injection, Machine Learning-based Detection, API Security, Real-time 

Anomaly Detection,  

1. INTRODUCTION  

Over the past few years, web application 
development has become unavoidable. This 
evolution and complete dependency on technology 
advancements pushed attackers to increase the power 
of their tools and identify vulnerabilities in websites 
and obtain specific information from databases. 
Amongst the most complex security flaws is the 
injection that enables attackers to access databases 
and get useful information from them or enables 
them to know what they contain inside them. 
Injections are divided into various types like SQL 
and JSON. SQL and JSON injection attacks, two of 
the most dangerous vulnerabilities in web 
applications, are commonly utilized by attackers to 
hijack unauthorized access, manipulate data, and 
disrupt normal business logic. Placing malicious 
SQL queries within input parameters, for instance, 
login pages or search inputs, SQL injection (SQLi) 
particularly targets relational databases in order to 
tamper with the underlying database. An attacker can 
bypass the authentication controls, steal sensitive 

data, including financial information and user 
credentials, and even modify or delete important 
data. SQL injection, in worst-case scenarios, enables 
hackers to execute administrative commands on the 
database server, leading to a complete system 
compromise. The ease of SQL injection and the 
frequently poor input validation and query 
sanitization provided by web applications contribute 
to its ongoing threat. OWASP writes that the SQL 
Injection (SQLi) web security vulnerability arises 
when an attacker injects an SQL statement into a web 
application by altering the client's input data. If 
carried out perfectly, an SQLi attack can 
compromise sensitive information like passwords, 
credit card numbers, and personal data[1]. It also 
offers attackers the chance to tamper with database 
information through actions like inserting, updating, 
or deleting information. Additionally, they are able 
to perform administrative tasks in the database like 
stopping the database management system and 
executing commands on the operating system 
level[1]. Even if the attacker does not know the 
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username or password, SQLIA is a database attack 
that alters SQL queries to make them return true. 

But how is this accomplished? To accomplish this, 
utilize a logic gate called an OR logic gate. Let us 
first talk about the OR logic. The following are the 
OR logic operations B. A and b, which have two 
inputs and one output: The output will be false when 
both inputs are false. The output is true if the inputs 
are true. The output is true if all the inputs are true. 
Regardless of the rest of the inputs, the output will 
always be true if the inputs are true[1]. The main use 
of the single quote is closing a string parameter in 
most scenarios. 

For example, if a user enters data in the input area 
of a web application, the same is viewed as a string. 
In most instances, more so when inputting usernames 
and passwords, a single quote is used to delimit this 
parameter string. The most significant section of this 
process is the OR function and the statement "1 = 1." 
This line contains two sides: the left and the right. 
The attention, in this case, is on the right, "1 = 1," 
and this will always hold because one is always equal 
to one. If either of the conditions in the OR function 
is true, then the overall statement is true. Therefore, 
since "1 = 1" is always true, the SQL query produces 
a true result [1]. 

Furthermore, the single quotation mark (‘’) can 
serve as a delimiter to truncate subsequent portions 
of an SQL query. This effectively nullifies any 
conditional checks within the statement, causing the 
OR operator to evaluate as true and thereby 
permitting unauthorized authentication—a 
fundamental mechanism of SQL injection (SQLI) 
vulnerabilities. Conversely, JSON injection attacks 
take advantage of weaknesses in applications that 
utilize JSON (JavaScript Object Notation) for inter-
server and inter-client data communication. Poor 
handling of untrusted JSON data can lead to JSON 
injection, allowing an attacker to inject bad objects 
or code in the payload. This could lead to data leaks, 
arbitrary code execution, or even illicit changes in 
the application behaviour. 

A JSON Web Token (JWT) is a standardized 
format for the secure exchange of cryptographically 
signed JSON-encoded information between 
distributed systems. While most commonly applied 
to transferring user authentication claims in session 
management and access control models, JWTs 
theoretically have the ability to encapsulate arbitrary 
data payloads. Unlike session tokens, JWTs contain 
the entire client-state data in the token itself. This 
attribute makes them particularly valuable in 
horizontally scaled web designs, where 

interoperability among multiple backend servers 
must be seamless [2]. 

JSON injection is especially risky in the context of 
NoSQL databases like MongoDB because the 
attacker can use operators like $gt, $ne, and $regex 
to create evil queries that can evade security 
measures, read sensitive information, or update 
database records. These exploits leverage the 
inherent flexibility of JSON's dynamic structure and 
the schema-less design of the common NoSQL 
systems, where no strict data structuring 
requirements exist as in relational databases. The 
prevalence of these vulnerabilities, along with the 
possibility of very high-level disruption of operation, 
renders both SQL and JSON injection attacks 
significant security threats to contemporary data 
systems. 

 Web applications today are database-dependent, 
and weaknesses in the way that they take in input 
open companies to data breach, monetary loss, 
government penalty, and reputation damage. Cyber 
attackers prefer to exploit such vulnerabilities also 
because of the relative ease of attacking them with 
automated tools or even manually creating payloads. 
Efficient security controls under the cover of input 
validation, query sanitization, and dynamic detection 
controls must be implemented to neutralize such 
attacks. The machines can learn from changing 
patterns of attacks through machine learning and 
blended detection approaches to offer real-time 
protection against these extremely critical 
vulnerabilities. 

The shortcomings of current SQL and JSON 
injection detection systems render them ineffective 
to counter the growing sophistication of cyber-
attacks. Conventional detection techniques, i.e., rule-
based or signature-based systems, identify threats by 
utilizing known attack signatures or predetermined 
patterns. Such techniques have high false-negative 
rates as they fail to detect unknown or obfuscated 
injection techniques effectively, despite their good 
performance with familiar attack vectors. Moreover, 
because anomaly-based systems cannot distinguish 
between benign anomalies  and real attacks, they tend 
to have high false-positive rates. The systems rely on 
deviations from normal behaviour. Moreover, most 
of  the systems available in the market today are those 
that are meant to counter SQL or JSON injection 
attacks  separately, which leaves applications using 
relational and non-relational databases vulnerable. 
The absence of  hybrid technologies that can protect 
against SQL attacks as well as JSON injection is 
another significant  disadvantage. A detection 
approach using compartmentalization cannot offer 
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absolute protection against the  ubiquity of 
contemporary web applications that combine JSON-
based NoSQL databases and SQL-based  relational 
databases. 

Existing solutions are patchwork, securing just a 
single database type or single injection method, 
which leaves the organization vulnerable to 
sophisticated attack methods that take advantage of 
SQL and JSON weaknesses in combination. Now, 
systems are able to learn and adapt dynamically to 
new attack behaviour in real-time thanks to machine 
learning, an appealing solution compared to older 
methods. Machine learning models, in contrast to 
static rule-based systems, have the ability to parse 
through large amounts of data and recognize subtle 
patterns and correlations that could represent 
malicious activity. While unsupervised techniques 
possess the potential to detect anomalies without 
having any prior knowledge of the attack signatures, 
supervised learning models enjoy the benefit of 
being trained with labelled malicious and benign 
query data.  

There are, however, challenges associated with 
the deployment of machine learning-based detection 
systems. Web applications produce enormous 
volumes of data in real-time, and this necessitates the 
need for efficacious processing and model inference, 
thereby rendering scalability a very significant 
concern. Also, regular retraining of models and 
access to varied and current datasets are necessary 
for responsiveness to new attack methods. The 
foregoing application of machine learning-based 
solutions is compounded by the requirement of 
sacrificing detection effectiveness for system 
usability. Finally, machine learning offers a more 
complete and responsive solution than traditional 
detection systems, limited by their  
compartmentalized nature and dependence on rigid 
rules. In order to realize the full potential of machine 
learning to detect SQL and JSON injection attacks, 
however, scalability, responsiveness, and low false 
positives must be tackled. The threat of injection 
attacks, such as SQL injection and JSON injection, 
is a significant cyber security challenge since our 
dependency on relational and non-relational 
databases for mission-critical applications continues 
to grow. JSON injection targets the document-
oriented data structures commonly used in non-
relational databases, while SQL injection targets 
vulnerabilities of structured query languages, 
primarily against relational databases. 

     Current detection systems fail to possess the 
ability to ward off a number of injection attacks since 
they are designed specifically to address a certain 

category of databases or lines of attack. In addition, 
the need is there for a faster mechanism capable of 
combating unknown and new threats because 
patterns of attacks constantly change. Old school 
rule-based or signature-based detection approaches 
tend to fail, opening systems up to more modern and 
clever attack methodologies. It is therefore vitally 
necessary that an improved hybrid detection system 
that is capable of thoroughly detecting injection 
attacks across a vast array of database environments 
is created. Relational and non-relational databases 
need to be extensively protected by such a system, 
which needs to utilize machine learning models to 
provide dynamic and adaptive threat analysis. 

     In light of these challenges, this research strongly 
concentrates on detection methods of hybrid SQL 
and JSON injection attacks on API-based web 
applications, particularly through supervised 
machine learning approaches. This paper presents a 
holistic detection framework to detect both SQL and 
JSON injection attacks in API-based environments. 
Compared to previous studies that generally deal 
with each injection type separately, the system here 
integrates several supervised machine learning 
algorithms: Support Vector Machine (SVM), Naïve 
Bayes (NB), Decision Tree (DT), and Random 
Forest (RF) into one detection pipeline. With training 
on a mixed dataset with both real and synthetically 
generated injection queries, the system can better 
identify a broader variety of attack patterns. This 
hybrid technique provides better detection precision, 
lowers false positives, and supports real-time 
analysis of multi-format threats typical of today's 
web applications. 

    In the course of this research, various limitations 
were encountered that would influence the 
practicability and applicability of the research. To 
begin with, the research work utilized data sets that 
were synthetic and included injection scenarios both 
real and synthetic in nature. Prevalent as they were, 
these data sets may not always reflect the realism and 
variability of injection attacks in real-world 
operational environments. Furthermore, due to 
limited computational resources, such as limited 
processing power and storage capacity, extensive 
scalability testing of the machine learning models 
was restricted. Finally, whereas existing studies have 
extensively researched SQL and JSON injection 
attacks individually, no studies have previously 
examined both injection attacks simultaneously 
within a single machine learning detection model, 
especially given the dataset restrictions experienced 
in this study. 

2. LITERATURE REVIEW 
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Injection attacks have been known for 
decades as among the longest-lived and most 
perilous web application security threats. With the 
rising usage of relational (SQL-based) and non-
relational (JSON-based) databases in today's 
applications, both new hybrid attack patterns 
emerged combining structured and semi-structured 
injection approaches. This paradigm change has 
resulted in researchers investigating numerous 
machine learning-based detection techniques, each 
with strengths and weaknesses of their own. 
However, most recent works are centered on only 
one type of attack—either SQL or JSON—and 
single-model-based architecture. This section 
presents a critical review of the most pertinent 
studies and points out the existing research gap that 
this paper is seeking to fill. 

      Alkhathami et al. (2022) also used a selection of 
machine learning classifiers, including K-Nearest 
Neighbours (KNN), Multinomial Naïve Bayes 
(MNB), Decision Trees (DT), and Support Vector 
Machines (SVM), to identify SQL injection flaws in 
cloud computing systems. The results indicated that 
SVM demonstrated higher performance in 
classifying accuracy compared to the other 
classifiers used. However, their area of work was 
limited to identifying SQL injection alone 
irrespective of JSON-based attacks or the potential 
benefit of employing multiple classifiers as part of a 
system overall [3].  

      Kim et al. (2021) created an Intrusion Detection 
System (IDS) based on AI capable of detecting SQL 
payloads in JSON API requests. Although their 
system effectively tackled hybrid attack frameworks, 
it was designed to tackle a single type of payload and 
did not consider a combined detection strategy with 
several ML models. Their work prioritized accuracy 
but did not consider the scalability or adaptability of 
detection [4]. Zhang et al. (2020) developed a model 
that utilized Convolutional Neural Networks (CNN) 
and TF-IDF vectorization for detecting structured 
injection attacks. Even though the model provided 
89. 8% detection accuracy, it only detected SQL 
injection and demanded heavy computation, so it 
was not the best choice for light, real-time 
deployment environments [5]. 

       Yan et al. (2023) conducted an experiment using 
a deep learning system that employed AST-based n-
grams to detect injections and achieved a very high 
accuracy of 98.2%. Although the system was 
computationally intensive, it was not a hybrid DB-
friendly system. Moreover, the model's complexity 

restricted the system's applicability to real-time 
systems [6]. 

   Bravenboer et al. was interested in the 
minimization of false positives through syntax 
embedding and pattern matching. Their paper 
showed an enhancement in alert quality without real-
time testing and scalability testing. It did not include 
JSON payloads and neither did it provide unified 
detection structures [7].  

    Halfond et al. made a contribution in the form of 
a proposed taxonomy framework for SQL injection 
attacks. While this work gave general insights into 
classifications of attacks, it was still very theoretical 
in scope and never developed into an actionable or 
adaptable detection tool [8]. 

     All these above studies have made remarkable 
enhancements in the detection of injection attacks. 
Nevertheless, a shared limitation of all of them is that 
they have not had much emphasis on particular types 
of injections or individual modelling methods. 
Importantly, to date, there is no study that unifies 
both SQL and JSON injection detection within a 
single machine learning framework that incorporates 
various algorithms like SVM, Naïve Bayes, 
Decision Trees, Random Forest, and AutoML. In 
addition, neither of these reports use AI-created 
hybrid test and training sets, which would more 
effectively mimic actual API interactions. Aside 
from the main sources mentioned above, there have 
also been numerous other research studies 
investigating machine learning methodology for 
injection detection, each offering various techniques 
and results. Though these studies are not 
comprehensively dealt with here, they have served 
to confirm the wider context within which to view 
contemporary trends and limitations in the field. 
Their conclusions also support the necessity of an 
integrated detection mechanism that can cater to 
various types of injections in real-time flexibility.          

    Dawadi et al. developed a Web Application 
Firewall (WAF) on the basis of LSTM-based models 
to function effectively against SQL injection, JSON 
injection, and XSS attacks. The system exhibits a 
high accuracy rate of 97. 57% and a low false 
positive rate of merely 2. 4 % [9]. 

      Santa Barletta et al. A hybrid quantum security 
model has been introduced that integrates JSON-
based threat detection with machine learning 
anomaly detection, specifically designed for smart 
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city applications. This innovative approach 
effectively identifies JSON injection payloads 
hidden within IoT device logs, successfully 
preventing unauthorized access to critical 
infrastructure throughout the city[10].  

      Padmanaban et al. A hybrid quantum security 
model has been introduced that integrates JSON-
based threat detection with machine learning 
anomaly detection, specifically designed for smart 
city applications. This innovative approach 
effectively identifies JSON injection payloads 
hidden within IoT device logs, successfully 
preventing unauthorized access to critical 
infrastructure throughout the city[11].  

     Chandran et al. conducted a thorough security 
analysis of JWT-based authentication systems and 
found that improper JSON parsing could allow the 
execution of SQLi payload within JWT tokens. 
According to their research, 42% of the web 
applications they tested were vulnerable to SQL-
JSON hybrid attacks due to inadequate signature 
verification [12]. 

     Zulkarneev et al. Provided a comprehensive 
security analysis of JWT-based authentication 
vulnerabilities and found that vulnerable JSON 
parsing allows SQL injection payloads to be 
concealed within JWT tokens. During their study, 
they found that 42% of tested web applications were 
vulnerable to SQL-JSON hybrid attacks due to the 
existence of weak signature verification 
mechanisms. By modifying the JWT signature 
validation process and enforcing stricter JSON 
parsing rules, their approach reduced SQLi-related 
JWT injection risks by 57%[13].  

     Mohammed et al. investigated IoT security 
vulnerabilities, demonstrating that JSON-based API 
attacks could compromise SQL database logging 
mechanisms. Their hybrid IoT security framework 
prevented JSON-SQL exploits with an accuracy of 
96.2%[7]. 

     Prinakaa et al. proposed a comprehensive 
taxonomy model for JWT lifecycle threats, 
delineating prevalent attack vectors, including token 
manipulation, whereby malicious actors alter JWT 
payloads to embed harmful JSON-encoded SQL 
queries, and JSON schema tampering, involving the 
falsification of JSON fields to exploit SQL 
vulnerabilities within authentication frameworks.. 
Embedded SQL queries in JWT claims (allowing 

attackers to bypass authentication logic). Their 
solution secured JWT by preventing SQL injection 
vulnerabilities by 74%. This improvement highlights 
the necessity to strengthen schema validation in 
JWT-based authentication mechanisms as a means 
to successfully avert hybrid SQL-JSON injection 
attacks [14]. 

     According to Singh et al, The study centered on 
the security vulnerabilities of IoT devices towards 
JWT authentication methods, demonstrating the 
potential threat of JSON-based API attacks to SQL 
database log systems. The authors discovered that 
IoT devices employing JWT authentication were 
extremely vulnerable to JSON-SQL injection 
attacks, making it possible for attackers to bypass 
access control and inject SQL statements into back-
end databases. But their hybrid IoT security 
framework did manage to fend off such JSON-SQL 
attacks with an impressive 96. 2% accuracy rate. The 
finding indicates the high need for more 
sophisticated JWT validation mechanisms in IoT 
security frameworks [15]. 

      Azman et al. suggested an SQL injection 
vulnerability detection approach using machine 
learning via Convolutional Neural Networks 
(CNNs) and TF-IDF (Term Frequency-Inverse 
Document Frequency) for feature extraction and 
SQL injection attempt classification identified in 
JSON-based API requests [16].    

     Apart from the previously discussed primary 
studies, there has been some new research that has 
created significant knowledge surrounding injection 
detection in different machine learning and security 
frameworks. Dawadi, Singh, Prinakaa, Zulkarneev, 
and Mohammed conducted research that was 
focused on specific situations like IoT infrastructure, 
JWT abuse, and cross attacks in smart systems. 
Though these works solved similar issues and 
designed creative partial solutions, they were still 
lacking a complete integrated detection system that 
could detect both SQL and JSON injection attacks at 
once using a single set of classifiers. Their findings 
validate the increasing awareness of the necessity for 
a collaborative, multi-model approach further 
emphasizing the need for this work. To the best of 
the authors' knowledge, the current research is the 
first to propose an integrated detection scheme 
covering both SQL and JSON injection attacks on 
the basis of this specific combination of machine 
learning approaches. In doing so, the research fills 
the current gap in the literature and offers a high-
scale, scalable solution to current web-based 
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applications that take advantage of hybrid data 
structures and API-level communications. 

The research employed a SQL-JSON dataset with 
benign and malicious queries in the form of real 
attack logs and synthetically created payloads. The 
approach involved representing SQL queries as 
vectors and constructing a CNN model for detecting 
patterns of structured injection, thereby maximizing 
detection efficiency. 

The model achieved 89. 8% detection rate, 
expressing its capability in detecting SQL-JSON 
hybrid attacks. But the study acknowledged 
challenges in responding to highly obfuscated 

attacks, calling for additional advancements in 
adversarial resilience. The research adds to the 
development of AI-based cybersecurity methods, 
especially the protection of contemporary web 
applications against emerging injection attacks. 
From our prior research in the detection of injection 
attacks, we learn that they generally employ deeb to 
fly high and other methods and they do not generally 
collect machine language in detection and 
efficiency, therefore this paper contributes to the 
efficiency of merging four ML algorithms in 
detection of SQL and JSON injection attacks. We 
compared and summarized a few considerations of 
SQL and JSON attack discovery with machine 
language from a methodological perspective in 
Table 1. 

Table 1: Summarizes The Related Works In Our Field 

Author Objective 

 

Approach 

 

Tools 

 

Results 

Jamilah M. 
Alkhathami[3] 

The study focuses 
on developing a 
machine learning 
tool to detect SQL 
Injection Attacks 
(SQLIA) in cloud 
computing. It looks 
to overcome the 
weaknesses of 
traditional 
detection methods 
to enhance their 
accuracy and 
effectiveness. This 
research explores 
various machine 
learning techniques 
to classify SQL 
queries as either 
harmful or safe, 
aiming to identify 
the best method. 

The study aims to 
create a machine 
learning system to 
detect SQL Injection 
Attacks (SQLIA) in 
cloud computing 
platforms. It starts by 
gathering a dataset of 
normal and harmful 
SQL queries, then 
cleans and prepares 
this data for analysis. 
It uses 
CountVectorizer to 
convert text into 
numerical data for 
machine learning. The 
dataset is divided into 
training and testing 
sets, and four 
models—K-Nearest 
Neighbors (KNN), 
Multinomial Naive 
Bayes (MNB), 
Decision Tree (DT), 
and Support Vector 
Machine (SVM)—are 
trained and tested. 
Each model's 
performance is 
measured by accuracy, 
confusion matrix, and 

K-Nearest 
Neighbor 

algorithm, 
Multinomial 
Naive Bayes 
algorithm, 

Decision tree 
algorithm and 
Support Vector 

Machine 
algorithm, 

 

K-Nearest 
Neighbors (KNN): 
92.45%. 

Multinomial Naive 
Bayes (MNB): 
97.09%. 

Decision Tree 
(DT): 99.4%. 

Support Vector 
Machine (SVM): 
99.42%. 
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ROC-AUC curve, with 
SVM showing the best 
results.  

Prinakaa[14]  The document 
intends to present 
an API abuse 
detection 
framework within 
a Log Storage 
Application. The 
framework is 
intended to 
recognize and 
address harmful 
activities related to 
API traffic, 
highlighting the 
unique 
characteristics and 
actions that are 
typical of this type 
of traffic. 

The method consists of 
establishing a real-time 
detection system that 
tracks API interactions 
to recognize unusual 
or harmful patterns. 
This is accomplished 
by evaluating 
behavioral patterns in 
the API traffic to 
identify deviations that 
signal abuse. 

The system is 
created 
utilizing Spring 
Boot along 
with OAuth2. 0 
and JSON Web 
Token (JWT) 
based 
authentication 
methods. These 
technologies 
offer a strong 
framework for 
safe API 
interactions and 
assist in 
tracking API 
usage for 
possible 
abuses. 

Specific 
quantitative results 
or performance 
metrics are not 
specified in the 
provided excerpts. 
Nevertheless, the 
execution of the 
outlined system is 
aimed at improving 
the security of API 
interactions by 
efficiently 
identifying and 
preventing misuse 
in real time. 

Mohammed[7] To investigate 
security 
vulnerabilities in 
IoT 
communication 
protocols 
specifically 
MQTT, CoAP, and 
XMPP and to 
develop a hybrid 
IoT security model 
aimed at 
preventing JSON-
SQL exploits. 

The research 
performed a thorough 
security evaluation of 
the MQTT, CoAP, and 
XMPP protocols, 
revealing that incorrect 
JSON parsing might 
permit SQL injection 
payloads to be 
included in API 
requests. To tackle this 
issue, the investigators 
created a combined 
IoT security 
framework that 
incorporates improved 
JSON parsing 
techniques along with 
strong SQL database 
logging methods to 
identify and avert such 
attacks. 

The 
implementation 
utilized 
advanced 
JSON parsers 
and secure 
SQL database 
management 
systems. 
Specific tools 
or software 
names were not 
detailed in the 
available 
information. 

The proposed 
hybrid IoT security 
model effectively 
prevented JSON-
SQL injection 
exploits with an 
accuracy rate of 
96.2%, 
significantly 
enhancing the 
security of IoT 
communication 
protocols against 
such attacks. 
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Singh [15] To enhance the 
security of JSON 
Web Tokens 
(JWTs) by 
reducing 
vulnerabilities (e. 
g. , session 
hijacking and man-
in-the-middle 
attacks) present 
even with shorter-
lived JWTs. 

The document 
suggests merging the 
Signal Protocol and its 
double ratchet 
mechanism with 
conventional JWT 
management. This 
introduces an end-to-
end encryption level 
for JWT payloads to 
safeguard against both 
internal and external 
threats. 

Implementation 
utilizes 
cryptographic 
components 
present in the 
Signal Protocol 
and double 
ratchet 
mechanism.The 
document 
outlines 
algorithmic 
incorporation 
with JWT 
encryption 
methods. ) 

The suggested 
algorithm shows 
increased security 
through the 
encryption of the 
main JSON 
payload. This 
method is 
recommended to 
alleviate typical 
JWT 
vulnerabilities and 
provide better end-
to-end security. 

3 .  RES EA RC H  M E THO DO LO GY  

This research method systematically 
detects and mitigates API abuses through machine 
learning models. Features like input validation, 
feature extraction, and hybrid machine learning 
classification enhance system security against SQL-
JSON hybrid attacks, delivering accurate and 
effective real-time responses. The process comprises 
four stages: 

      Dataset Creation: A hybrid dataset with over 
150,000 entries is constructed. Synthetic SQL and 
JSON injection attack queries are obtained from 
custom Python scripts combined with real attack 
payloads collected from open sources such as 
GitHub and Kaggle to bring diversity and realism. 

     Data Pre-processing and Feature Extraction: It 
comprises input sanitization and tokenization, 
followed by vectorization using the Term 
Frequency-Inverse Document Frequency (TF-IDF) 
method, and 3,000 features are yielded. Class 

imbalance is addressed using the Synthetic Minority 
Oversampling Technique (SMOTE) at a 1:1 ratio. 

      Model Training: Five supervised algorithms—
Support Vector Machine (SVM), Naïve Bayes (NB), 
Decision Tree (DT), Random Forest (RF), and 
AutoML—are trained. The dataset is split into 80% 
for training and 20% for testing. 

     Model Evaluation: Model performance is 
confirmed by employing five-fold cross-validation 
with the common metrics including accuracy, 
precision, recall, F1-score, confusion matrix, and 
ROC-AUC to ascertain the performance accurately. 

      The system has been implemented using Python 
3.10 as the programming language, and it was coded 
using the Google Colab and Visual Studio Code 
environment. The attentive, multi-level coding 



 Journal of Theoretical and Applied Information Technology 
15th June 2025. Vol.103. No.11 

©   Little Lion Scientific  
 

ISSN: 1992-8645                                                                    www.jatit.org                                                     E-ISSN: 1817-3195 

 
4682 

 

significantly increases detection accuracy, 
suppresses false positives, and enhances API-based 
systems' robustness against sophisticated injection 
attacks. 

3.1 Objectives and Hypothesis 

This research tries to develop an integrated 
machine learning detection system to identify both 
SQL and JSON injection attacks in web applications 
based on APIs. The research aims at comparing the 
performance of various machine learning algorithms 
Support Vector Machines (SVM), Naïve Bayes, 
Decision Trees, Random Forest, and Auto ML using 
a mix of real-world and artificially created datasets 
for training and testing. The primary objective is to 
enhance detection quality with fewer false positives. 
The primary hypothesis behind this research is that 
ensembling a group of classifiers within a hybrid 
detection system will perform better than 
conventional single-model or rule-based systems in 
detecting sophisticated injection attacks in structured 
and semi-structured query languages. 

3.2 System Model 

The emerging web applications leverage SQL 
databases for storing structured information and 
JSON-based APIs for transmitting data seamlessly. 
But this brings with it novel attack surfaces in which 
attackers embed SQL queries within JSON payloads 
in order to beat authentication, data tampering, or 
Apis. Our system aims to bridge the gap between 
API-layer security and database security by 
introducing a multi-layered detection architecture 
that can analyse, detect, and block hybrid SQL-
JSON injection threats in real-time. Figure 1 shows 
our system model from the dataset stage to the 
evaluation stage 

3.1 .2  Dataset  

Assembling a useful dataset that includes both 
common and SQL infusion attacks and JSON 
payload. The datasets, which cover both kind and 
noxious cases for multi-format risk discovery, are 
made up of haphazardly produced and collected 
SQL, JSON, and JWT infusion questions. To ensure 
differences in preparing tests, the information 
comprises a combination of misleadingly produced 
inquiries and real assault designs. To make strides 
the Vigor of machine learning models, an expansive 
dataset comprising more than 150,000 irregular tests 
was made. To recognize SQL and JSON-based 
infusion dangers in genuine time, a prepared 

Irregular Timberland Classifier is additionally 
consolidated. The demonstration and these datasets 
are valuable for moving forward web security, 
defending APIs, and recognizing infusion assaults in 
genuine time in cybersecurity applications. 

3.1.3 Data Pre-processing 

Data preprocessing is crucial for improving the 
model's ability to memorize and accurately detect 
threats. It starts with input sanitization to remove 
harmful elements like special characters, which 
helps minimize false positives. Noise injection 
further strengthens the model against hidden attacks 
by adding random SQL comments or spaces. The 
sanitized SQL queries are then transformed into 
numerical forms using methods like TF-IDF, 
allowing machine learning algorithms to process 
them. Techniques like Random Over Sampling or 
SMOTE address the issue of class imbalance, 
ensuring the model fairly represents both safe and 
malicious queries. Finally, the data is split into 
training and testing sets to evaluate the model's 
performance, leading to an effective detection 
system for real SQL injection attempts.  

3.1.4 Feature extraction 

This system will convert raw SQL queries into 
numerical forms that are organized for efficient 
processing in machine learning operations. It starts 
from tokenization that divides SQL queries into 
elements like keywords, operators, and symbols. The 
tokens are then converted into numerical features 
with methods like TF-IDF, which indicates their 
importance in the dataset. These features also 
include query length, numbers of special characters, 

Figure 1 Hybrid Machine Learning Model 
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and occurrence of SQL keywords. These also further 
enhance the analysis. It provides machine learning 
algorithms with pattern-recognizable data, boosting 
the ability of their models to identify attempts to 
perform SQL injections.  

3.1.5 Training algorithms 

The hybrid machine learning model uses several 
algorithms to improve threat detection. Support 
Vector Machines (SVM) are effective for creating 
decision boundaries between safe and harmful 
inputs. Naïve Bayes offers quick predictions based 
on probabilities. Decision Trees make the model 
easy to understand, while Random Forests reduce 
overfitting. AutoML automates feature engineering 
and selects the best models. Together, these methods 
help accurately classify API requests and identify 
threats in real-time.  

3.1.5.1 Support vector machine algorithm 

Support Vector Machine (SVM) is a classification 
method. Utilizing this combination, the advantages 
of both methods can be utilized to classify the SQL 
queries more accurately. Lastly, in order to help the 
expert in decision-making regarding the suspicious 
queries identified, a visualization method is 
suggested that integrates clustering methods and 
unsupervised neural models to minimize the 
dimensions of the data [17]. 

3.1.5.2 Multinomial naïve bayes algorithm 

MNB is a variant of Naive Bayes designed for 
classifying text documents; it utilizes a multinomial 
distribution as a feature for classification, focusing 
on the frequency of words or their weights. MNB 
tallies the occurrences of each word within the 
document [18].  

3.1.5.3 Decision trees algorithm 

A DT is a simple and clear way to make decisions or 
predictions based on a set of rules. It works like a 
flowchart, where each question or condition leads to 
a different path, helping you reach a final answer or 
decision. Imagine it like a series of "yes" or "no" 
questions each answer takes you down a different 
branch until you reach a conclusion. In machine 
learning, decision trees help computers decide how 
to classify data or make predictions by following this 
step-by-step process. They are popular because they 
are easy to understand and explain[19]. 

3.1.5.4 Random forests algorithm 

Random Forest is an ensemble learning technique 
that functions by building numerous decision trees 
during the training process. Each tree assesses the 
input data independently, and the ultimate outcome 
is decided by combining the predictions of all trees, 
usually through a majority vote for classification 
purposes. This method improves the accuracy and 
robustness of the model, as the collection of various 
trees reduces the chance of overfitting linked to 
single decision trees. The randomness involved in 
choosing features and data subsets for each tree 
guarantees that the model identifies a broad 
spectrum of patterns within the data, resulting in 
better generalization on new instances[20]. 

3.1.5.5 Automated machine learning 

Automated Machine Learning (AutoML) refers to 
the extensive automation of different machine 
learning processes. This includes activities like 
hyperparameter optimization, meta-learning, and the 
integrated selection of algorithms and 
hyperparameters (CASH). The primary objective of 
AutoML is to automate every element of the 
machine learning pipeline from start to finish, 
though there is currently no all-encompassing 
framework available. Recent initiatives have mainly 
concentrated on hyperparameter optimization and 
the selection of algorithms[21]. 

3.1.6 Evaluation 

We assessed the effectiveness of all classification 
models utilizing a dataset, which constitutes 20% of 
the overall dataset. After we analysed the four 
models that resulted from the machine learning 
algorithms for training, we compare the outcomes of 
each model. 

3.1.6.1 Confusion Matrix 

A confusion matrix is an instrument utilized to 
assess the effectiveness of a classification model. It 
is a chart that aligns the real classifications with the 
model's predictions, offering an in-depth analysis of 
correct and incorrect classifications for every class. 
This facilitates a thorough evaluation of the model's 
accuracy and the kinds of mistakes it commits[22]. 

 

3.1.6.2 ROC-AUC curve 

A Receiver Operating Characteristic (ROC) curve is 
a visual tool utilized to assess the effectiveness of a 
binary classification model. It charts the True 
Positive Rate (TPR) against the False Positive Rate 
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(FPR) at different threshold levels. The Area Under 
the Curve (AUC) measures the overall capacity of 
the model to differentiate between positive and 
negative classes, with a score of 1 representing ideal 
discrimination and 0. 5 indicating performance no 
better than random selection. ROC curves and AUC 
are critical instruments for evaluating and 
contrasting the diagnostic precision of predictive 
models. 

3.2 Tools  

3 .2 .1  Python 

Python is a versatile and user-friendly programming 
language known for its simple syntax and extensive 
libraries. It is suitable for beginners and offers 
powerful tools for experienced developers. Python 
supports various programming styles and is widely 
used in applications like data analysis with libraries 
such as NumPy and Pandas, and in machine learning 
with frameworks like TensorFlow and PyTorch. It is 
also popular in web development, automation, 
scientific research, and cybersecurity. Python's 
strong community support ensures its continuous 
improvement and wealth of resources for users.  and 
we used the Google Colab platform and Visual 
Studio Code to do so and ensured about model 
results. 

3.2 .2  Google Colab 

Google Colab, short for Google Colab oratory, is a 
free, cloud-based platform for writing and running 
Python code in a Jupyter Notebook. It is created by 
Google and is popular among data scientists, 
machine learning experts, and researchers due to its 
ease of access, built-in libraries, and strong hardware 
options. A key feature is the ability to use free GPUs 
and TPUs, which help speed up deep learning and 
large data tasks. Users can easily use popular Python 
libraries like TensorFlow, PyTorch, Scikit-learn, and 
Pandas, making it suitable for data analysis, machine 
learning, and AI projects. Google Colab also allows 
real-time collaboration, enabling multiple users to 
work on the same notebook at once, similar to 
Google Docs. 

 

3.2.3 Visual Studio Code 

VS is a free, open-source code editor from Microsoft 
that offers a lightweight and powerful development 
environment. It supports numerous programming 

languages, such as Python, JavaScript, C, Java, and 
HTML/CSS, making it suitable for various 
developers. A key feature is its extensive ecosystem 
of extensions in the VS Code Marketplace, which 
improve functionality by providing language 
support, debuggers, linters, code formatters, and 
tools such as Git integration and Docker. The Python 
extension, for example, includes features like 
IntelliSense, debugging support, virtual environment 
management, and Jupiter notebook integration.  

4. EXPERIMENTATION AND 

EVALUATION 

The experimental results analyze the 
performance, accuracy, and robustness of the hybrid 
machine-learning model for SQL-JSON injection 
detection. The system was tested on various datasets 
containing both benign and malicious queries. The 
dataset preparation process was one of the most 
time-consuming and challenging phases of the study. 
Generating realistic SQL and JSON injection queries 
required custom Python scripting to simulate a wide 
range of attack vectors. Additionally, collecting 
authentic injection samples from open-source 
platforms such as GitHub and Kaggle involved 
extensive filtering and validation to ensure the data 
was relevant, labeled, and representative of current 
attack trends. Finding high-quality real-world 
injection examples proved especially difficult, as 
many sources lacked structure or were outdated, 
which extended the data collection process 
significantly. The Python environment was 
configured to support the full model pipeline, both 
locally on a macOS system and via Google Colab for 
cloud-based execution. Essential libraries such as 
scikit-learn, pandas, numpy, matplotlib, nltk, and 
imbalanced-learn were installed using pip to support 
data processing, machine learning, and visualization 
tasks. This dual setup ensured that experiments 
could be repeated consistently across environments. 
The following sections discuss the finalized dataset, 
performance metrics, evaluation results, and key 
observations.  

4.1   Our  Model Effect iveness  

Our hybrid model achieved an accuracy of 94% 
in Google Colab, outperforming the VS Code 
version (88%) due to hardware acceleration and 
optimized execution. The precision for detecting 
malicious queries is 1.00, meaning the model never 
incorrectly classified a benign query as malicious 
(no false positives). Recall for malicious queries is 



 Journal of Theoretical and Applied Information Technology 
15th June 2025. Vol.103. No.11 

©   Little Lion Scientific  
 

ISSN: 1992-8645                                                                    www.jatit.org                                                     E-ISSN: 1817-3195 

 
4685 

 

92%, indicating some attack queries were missed, 
though the performance is still strong. 

4.2  Discuss ion  of  Results  

The experimental findings illustrated in Table 2 
indicate that the suggested hybrid machine-learning 
model achieves a high level of accuracy in 
identifying both SQL and JSON injection attacks. 
Among the algorithms tested, Support Vector 
Machine (SVM) and Random Forest produced the 
highest detection rates, whereas Naïve Bayes 
performed adequately but added to the overall 
ensemble diversity. The combination of AutoML 
further improved model selection and 
hyperparameter tuning, allowing for better 
generalization across both synthetic and real-world 
payloads. The elevated precision and recall scores 
across numerous models, as displayed in Table 2, 
show that the system is proficient not only in threat 
detection but also in reducing false alarms. This 
equilibrium is vital for real-time implementation in 
API-driven applications, where elevated false-
positive rates can lead to operational interruptions or 
hinder legitimate traffic. Although various studies 
have investigated SQL or JSON injection detection 
independently, a comprehensive literature review 
indicated that none have introduced a consolidated 
machine learning framework that efficiently detects 
both kinds of attacks utilizing the specific 
combination of algorithms employed in this 
research. This emphasizes the uniqueness of the 
present work, as it addresses a crucial void in current 
research. The implementation of AI-generated 
hybrid datasets additionally strengthens the system's 
robustness and aids its adaptability to changing 
threat dynamics. These results endorse the research 
hypothesis that a hybrid framework surpasses 
traditional single-model systems. By identifying 
both SQL and JSON injection threats within a 
unified architecture, the proposed system addresses 
an essential research gap. Furthermore, its practical 
efficiency under simulated conditions indicates a 
high degree of suitability for real-world 
implementation in environments where hybrid data 
flows and API interactions are prevalent. In 
summary, the outcomes affirm the efficacy and 
significance of the proposed system and underscore 
its potential as a scalable and adaptive solution for 
safeguarding web applications against contemporary 
injection-based cyber threats. 

Table 2 Comparison of SQL injection detection papers 
with proposed model 

Research Name of 
Algorithm 

 

Datas
et 

Used 

 

Accura
cy (%) 

A Machine 
Learning Based 
Approach to 
Identify SQL 
Injection 
Vulnerabilities[
16] 

Convolutio
nal Neural 
Network 
(CNN) + 
TF-IDF 

 

SQL-
JSON 
dataset 

89.8 

Detection of 
SQL Injection 
Attacks Using 
Machine 
Learning in 
Cloud 
Computing 
Platform [3] 

KNN  
 
 

SQL 
dataset 

 

92.45 

MNB 97.09 
DT  99.4 

SVM 99.42 

Deep Learning 
Technique-
Enabled Web 
Application 
Firewall for the 
Detection of 
Web Attacks[9] 

Long Short-
Term 
Memory 
(LSTM) 

SQL 
dataset 
 

96.57
 

Enhancing IoT 
Communicatio
n Security: 
Analysis and 
Mitigation of 
Vulnerabilities 
in MQTT, 
CoAP, and 
XMPP 
Protocols[23] 

Hybrid IoT 
Security 
Model  
 

IoT-
based 
SQL 
dataset 

 

96.2 

Proposed 
System  

Hybrid 
Model 
(SVM + NB 
+ DT + RF) 

 

SQL-
JSON 
hybrid 
dataset 
 

94 

  

4.3  Google Colab Performance  

         Google Colab carried out the task of machine 
learning successfully with 0s runtime, adequate 
RAM, and proper functioning of models like SVM, 
Naive Bayes, Decision Tree, Random Forest, and a 
voting classifier, as it is observed from Figure 2. The 
model achieved 82% accuracy and an ROC-AUC of 
93%, showing good classification performance on a 
minuscule test set of 17 samples. But there was a 
single error because there was a missing file, 
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Figure 4 ROC-AUC Curve Analysis in VS Code 

new_queries.csv, and that could have some impact 
in the future tests. Smaller data sets will be just fine 
on the free versions of Colab, but more learned 
behaviour and large data sets can lead to slow 
execution time, RAM issues, or terminated sessions 
and so high-performance functionality is best 
reserved for Colab Pro. 

 

 

 

 

 

Figure 2 Result of Hybrid-ML-model in Google Colab 

4.4  VS Code’s  Performance 

The performance of VS Code is stable and 
efficient when running Python scripts within a 
virtual environment, with smooth integration 
demonstrated after activating the environment using 
venv/bin/activate. The script executed successfully, 
achieving strong model performance with 95% 
precision, recall, F1 score, and ROC-AUC score, as 
illustrated in Figure 3, indicating effective operation. 
Overall, resource usage remained minimal with no 
performance slowdowns, confirming VS Code as a 
reliable tool for machine learning experiments when 
dependencies are correctly managed within the 
virtual environment. 

  

4.5 Confusion Matrix 

         The confusion matrix in Google Colab and VS 
Code, the confusion matrix is that has 5 true 
negatives (TN), 10 true positives (TP), 0 false 
positives (FP), and 2 false negatives (FN). This 
indicates high model performance with no benign 
queries being labeled as malicious (FP = 0), but two 
malicious queries labeled as benign (FN = 2), which 
can be a security risk. In Google Colab, the 
confusion matrix appears along with precision, 
recall, F1 score, and an ROC curve, showing 
seamless execution without dependency issues. 
Because Colab provides a preconfigured Python 
environment, it eliminates the need for manual setup, 
making it a preferred choice for rapid ML 
prototyping. However, for long-term development, 
VS Code offers better local control and integration 
with larger datasets. In VS Code, the execution of 

the confusion matrix suggests that the model runs 
efficiently in a local Python environment, but the 
terminal initially showed dependency issues 
(Module Not Found Error for pandas), requiring 
activation of the environment before execution. This 
means that dependency management is critical when 
running ML models in VS Code. 

4.6 ROC-AUC Curve Analysis 

The ROC-AUC score of 0.95 illustrates that the 
show is profoundly compelling in recognizing 
between generous and pernicious inquiries. Figure 4 
shows the ROC-AUC bend created from the 
demonstrate when run in VS Code, reflecting solid 
classification execution beneath a nearby 
environment with well-managed conditions. In 
differentiate, Figure 5 appears the ROC-AUC bend 
from the Google Colab execution, where the 
demonstrate moreover accomplished tall separation 
control. The Colab form performed marginally 
superior, likely due to upgraded equipment 
capabilities and more effective dataset 
preprocessing. Both bends highlight the model's 
strength and appropriateness for real-time discovery 
in API-driven applications. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3 Result of Hybrid-ML-model in VS code  
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5. CONCLUSION 

The proposed hybrid machine learning 
model achieves considerable accuracy in detecting 
SQL and JSON injection attacks, offering robust 
protection against evolving threats. Leveraging 
Google Colab's GPU acceleration improved training 
efficacy and model results, surpassing traditional 
environments like VS Code. The system is effortless 
to integrate with API security layers, enabling real-
time detection and blocking of malicious requests, 
thus enhancing application lifespan and mitigating 
injection-related vulnerabilities. The work here 
suggests a novel hybrid detection system that targets 
both SQL as well as JSON injection attacks based on 
cooperative techniques, which leverage SVM, Naïve 
Bayes, Decision Trees, Random Forest, and Auto 
ML as an algorithmic ensemble never used in earlier 
comparable research. Tested and trained using an 
AI-generated dataset comprised of synthetic and real 
injection queries, the model hit 94% accuracy, 1. 00 
precision, and ROC-AUC score of 0. 95, reflecting 
high classification power and minimal false 
positives. Its scalability and flexibility render it 
highly appropriate for critical domains such as 
finance, healthcare, and e-commerce, where hybrid 
database models are prevalent. Through its 
contribution towards addressing a crucial shortfall in 
the realm of cybersecurity, this research work lays a 
foundation for on-going studies in adaptive, 
intelligent, and multi-layered intrusion detection 
systems for contemporary web applications. 

 

 

REFERENCES  
 
[1] A. Ketema, ‘DEVELOPING SQL INJECTION 

PREVENTION MODEL USING DEEP 
LEARNING TECHNIQUE’, 2022. 

[2] ‘JWT attacks | Web Security Academy’. 
Accessed: Jan. 27, 2025. [Online]. Available: 
https://portswigger.net/web-security/jwt 

[3] J. M. Alkhathami and S. M. Alzahrani, 
‘DETECTION OF SQL INJECTION 
ATTACKS USING MACHINE LEARNING 
IN CLOUD COMPUTING PLATFORM’, . 
Vol., no. 15, 2022. 

[4] M. F. Rozi et al., ‘Detecting Malicious 
JavaScript Using Structure-Based Analysis of 
Graph Representation’, IEEE Access, vol. 11, 
pp. 102727–102745, 2023, doi: 
10.1109/ACCESS.2023.3317266. 

[5] K. Zhang, ‘A Machine Learning Based 
Approach to Identify SQL Injection 
Vulnerabilities’, in 2019 34th IEEE/ACM 
International Conference on Automated 
Software Engineering (ASE), San Diego, CA, 
USA: IEEE, Nov. 2019, pp. 1286–1288. doi: 
10.1109/ASE.2019.00164. 

[6] R. Yan, X. Xiao, G. Hu, S. Peng, and Y. Jiang, 
‘New deep learning method to detect code 
injection attacks on hybrid applications’, J. 
Syst. Softw., vol. 137, pp. 67–77, Mar. 2018, 
doi: 10.1016/j.jss.2017.11.001. 

[7] Z. Mohammed, A. Shahwan, A. Alazawi, and 
W. Elmedany, ‘Enhancing IoT 
Communication Security: Analysis and 
Mitigation of Vulnerabilities in MQTT, 
CoAP, and XMPP Protocols’, Jan. 09, 2025, 
Preprints. doi: 
10.22541/au.173639437.79051461/v1. 

[8] W. G. J. Halfond, J. Viegas, and A. Orso, ‘A 
Classification of SQL Injection Attacks and 
Countermeasures’. 

[9] B. Dawadi, B. Adhikari, and D. Srivastava, 
‘Deep Learning Technique-Enabled Web 
Application Firewall for the Detection of Web 
Attacks’, Sensors, vol. 23, no. 4, p. 2073, Feb. 
2023, doi: 10.3390/s23042073. 

[10] V. Barletta, D. Caivano, M. De Vincentiis, A. 
Pal, and M. Scalera, ‘Hybrid quantum 
architecture for smart city security’, J. Syst. 
Softw., vol. 217, Jul. 2024, doi: 
10.1016/j.jss.2024.112161. 

[11] R. Padmanaban, ‘COMPUTER SCIENCE 
AND ENGINEERING’. 

[12] A. R. Emanuela, G. Mihaela, and T. Daniela, 
‘Enhancing Security in Data Exchange: 
Mitigating Risks Solutions in Base64 

Figure 5 ROC-AUC Curve Analysis in Google 

Colab 



 Journal of Theoretical and Applied Information Technology 
15th June 2025. Vol.103. No.11 

©   Little Lion Scientific  
 

ISSN: 1992-8645                                                                    www.jatit.org                                                     E-ISSN: 1817-3195 

 
4688 

 

Encoding and JSON Web Tokens’, 2024 Int. 
Symp. Electron. Telecommun. ISETC, pp. 1–
4, Nov. 2024, doi: 
10.1109/ISETC63109.2024.10797302. 

[13] I. Zulkarneev and K. A. Basalay, ‘JSON Web 
Tokens Lifecycle-Based Threat 
Classification’, in 2024 IEEE 25th 
International Conference of Young 
Professionals in Electron Devices and 
Materials (EDM), Jun. 2024, pp. 1920–1924. 
doi: 10.1109/EDM61683.2024.10615042. 

[14] S. Prinakaa, B. V, S. S, S. Srinivasan, and S. V, 
‘A Real-Time Approach to Detecting API 
Abuses Based on Behavioral Patterns’, in 
2024 8th International Conference on 
Cryptography, Security and Privacy (CSP), 
Apr. 2024, pp. 24–28. doi: 
10.1109/CSP62567.2024.00012. 

[15] P. Singh, G. Choudhary, S. K. Shandilya, and 
V. Sihag, ‘Enhancing the Security of JSON 
Web Token Using Signal Protocol 
and Ratchet System’, in Proceedings of 
Emerging Trends and Technologies on 
Intelligent Systems, A. Noor, K. Saroha, E. 
Pricop, A. Sen, and G. Trivedi, Eds., 
Singapore: Springer Nature, 2023, pp. 387–
400. doi: 10.1007/978-981-19-4182-5_31. 

[16] M. A. Azman, M. F. Marhusin, and R. 
Sulaiman, ‘Machine Learning-Based 
Technique to Detect SQL Injection Attack’, J. 
Comput. Sci., vol. 17, no. 3, pp. 296–303, Mar. 
2021, doi: 10.3844/jcssp.2021.296.303. 

[17] C. Pinzon, J. F. De Paz, J. Bajo, A. Herrero, and 
E. Corchado, ‘AIIDA-SQL: An Adaptive 
Intelligent Intrusion Detector Agent for 
detecting SQL Injection attacks’, in 2010 10th 
International Conference on Hybrid 
Intelligent Systems, Atlanta, GA, USA: IEEE, 
Aug. 2010, pp. 73–78. doi: 
10.1109/HIS.2010.5600026. 

[18] N. Cahyadi, S. Yutia, and P. Dorand, 
‘Enhancing SQL Injection Attack Prevention: 
A Framework for Detection, Secure 
Development, and Intelligent Techniques’, J. 
Inform. Commun. Technol. JICT, vol. 5, pp. 
138–148, Dec. 2023, doi: 
10.52661/j_ict.v5i2.233. 

[19] H. Blockeel, L. Devos, B. Frénay, G. Nanfack, 
and S. Nijssen, ‘Decision trees: from efficient 
prediction to responsible AI’, Front. Artif. 
Intell., vol. 6, p. 1124553, Jul. 2023, doi: 
10.3389/frai.2023.1124553. 

[20] T.-T.-H. Le, Y. Hwang, C. Choi, R. W. 
Wardhani, D. S. C. Putranto, and H. Kim, 
‘Enhancing Structured Query Language 

Injection Detection with Trustworthy 
Ensemble Learning and Boosting Models 
Using Local Explanation Techniques’, 
Electronics, vol. 13, no. 22, p. 4350, Nov. 
2024, doi: 10.3390/electronics13224350. 

[21] S. D. Oliveira, O. Topsakal, and O. Toker, 
‘Benchmarking Automated Machine Learning 
(AutoML) Frameworks for Object Detection’, 
Information, vol. 15, no. 1, p. 63, Jan. 2024, 
doi: 10.3390/info15010063. 

[22] ‘Zohreh Karimi’, ResearchGate. Accessed: 
Apr. 10, 2025. [Online]. Available: 
https://www.researchgate.net/profile/Zohreh-
Karimi-8 

[23] Z. Mohammed, A. Shahwan, A. Alazawi, and 
W. Elmedany, ‘Enhancing IoT 
Communication Security: Analysis and 
Mitigation of Vulnerabilities in MQTT, 
CoAP, and XMPP Protocols’, Jan. 09, 2025, 
Preprints. doi: 
10.22541/au.173639437.79051461/v1. 

 
 


