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ABSTRACT 

 
This paper proposes a framework for deploying energy-efficient AI models on devices in real-time time 
applications. This approach minimizes latency, power consumption, and dependence on cloud-based systems 
by utilizing edge computing's proximity to the IoT devices. The paper evaluates the accuracy, latency, and 
energy consumption of the MobileNet model, a lightweight convolutional neural network (CNN), for use in 
IoT environments. We can see models get 92% training and 90% test accuracy. Based on latency 
comparison, an edge device processes an image in 20ms while compared to 10ms processing on a cloud 
server. The edge and cloud energy consumption per image was measured to be 0.5mJ and 1.2mJ, 
respectively. These results illustrate the potential of deploying scalable, energy-efficient AI models on 
resource-constrained edge devices to achieve real-time IoT applications. 

Keywords: Edge Computing, Artificial Intelligence, Internet of Things (IoT), MobileNet, Energy Efficiency, 
Real-Time Processing, Scalability, Latency, Cloud Computing, Lightweight Neural Networks 

 
1. INTRODUCTION  
 
1.1 Background 
The Internet of Things (IoT) is one of the most 
dynamically flourishing sectors today, potentially 
transforming all domains through real-time 
gathering, data processing, and decision-making. 
IoT networks involve countless connected devices 
that produce massive volumes of data that need 
effective processing and analysis. On the other 
hand, in IoT networks, the heavy dependence on 
centralized cloud infrastructure can lead to serious 
issues in the cloud, such as very low computation 
traffic, battery limitation, and high latency [1][2]. 
With AI-based decision-making fabric becoming 
necessary in many IoT applications, efficiently 
managing these constraints needs attention [3][4]. 

Edge computing is a powerful solution to these 
issues. Because data analysis is closer to the source, 
edge computing avoids latency and bandwidth 
requirements, allowing for near real-time data 
analytics [5][6]. Moreover, it helps to reduce 
dependence on cloud resources, addressing issues 
like bandwidth saturation, energy utilization, and 
scalability in large-scale IoT networks [7][8]. This 
has led to a significant research focus on leveraging 
AI models on edge devices to facilitate intelligent 
decision-making at the edge device level. 
Figure 1 depicts how we can utilize edge computing to 
make IoT networks more efficient. This addresses the 
problems of high latency and energy consumption 
associated with cloud-based systems using lightweight 
MobileNet models deployed over edge devices. 
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Figure 1: Transitioning to Edge Computing for IoT 

Efficiency 

 
This method minimizes reliance on centralized servers by 
processing data locally at edge devices, enhancing 
efficiency and reducing latency within IoT networks. 
Bridge visual conveys the benefits of edge computing. It 
can solve these problems with AI-powered IoT devices to 
be faster, energy-efficient, and computed in real-time. 
1.2 Problem Statement 
Edge computing, which is the sub-component of the 
IoT components, comes with many benefits, but 
achieving this requires deploying the AI models on 
resource-constrained edge devices, which is 
complex. The conventional AI models and intense 
learning methods are computationally costly and 
power-hungry, making them impractical to 
continuously operate in energy-constrained IoT 
devices [9][10]. Another challenge of IoT-based 
applications is that different applications have 
different requirements for deploying on-edge 
devices that consume lower resources and scalable 
AI models. Additionally, the trade-off between 
performance (accuracy of the model) and energy 
efficiency is still challenging [11][12]. 
1.3 Contribution 
Overall, with this paper, we propose a framework of 
stationary edge computing and lightweight AI 
models, such as the MobileNet ones, which enable 
IoT networks to process when needed by avoiding 
the heavy weight of the network for real-time but 
energy-saving processing. The key contributions of 
this work are as follows: 

 The architecture is a deep-learning 
architecture for hosting scalable, energy-
efficient AI models on the edge. 

 Experimental Evaluation of MobileNet 
Framework in IoT Edge Computing 
Environment. 

 An extensive literature review of latency 
vs. scaling vs. energy consumption in IoT 
networks with AI models. 

 
 
 

Significance of the Contribution: 
 
As IoT, big data, and edge computing evolve, there 
is a growing need for energy-efficient, low-latency 
solutions for IoT networks, addressed by this work 
by proposing a framework based on lightweight AI 
models, namely, MobileNet, hosted on resource-
constrained edge devices. By performing analytics 
locally, Edge Computing also lessens our 
dependence on cloud-based systems and helps 
enable faster, real-time decision-making in IoT 
applications. Introduction: With the rise of edge 
computing frameworks, developers are increasingly 
challenged to fulfil the demands of IoT devices, 
including energy consumption, latency, and 
scalability, thus making this research crucial for the 
enhancement of practical IoT implementations and 
academic research alike. 
1.4 Paper Organization 
 
The paper is organized as follows: Section 2 
discusses the relevant works of edge computing 
using AI in IoT and energy-efficient models. This is 
followed by Section 3, which presents our edge 
computing framework with lightweight AI models. 
The experimental method is explained in section 4. 
Experimental results are presented in Section 5, and 
Section 6 concludes the paper. 
 
2. RELATED WORK 

2.1 Edge Computing for IoT 
In the context of Internet of Things (IoT) networks, 
edge computing has emerged as a viable alternative 
to address the computation and latency challenges 
that accompany cloud computing. In edge 
computing, this proximity to end devices 
dramatically shortens the distance needed to be 
traveled from an end user's data to centralized cloud 
servers, significantly reducing latency and enabling 
quicker decision-making. Such a shift in paradigm 
allows IoT devices to perform autonomously in real 
time without requiring continuous cloud intervention 
[13]. 
Multiple studies have explored edge computing's 
provision in IoT networks and its impact on overall 
system performance, such as those by Bonomi et al. 
Proposing fog computing, a relative concept also 
referred to as edge computing for decentralized 
computing resources close to the end devices [1]. 
Additionally, large-scale IoT networks with a vast 
bandwidth necessaryransferring massive amounts of 
data may make such networnetworksicient and 
economically unsuitable [13][14]. 
Edge Computing Architecture for IoT Edge 
computing architecture is promising for IoT systems 
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due to its scalability and flexibility. This 
architecture is extensively used for applications in 
industrial subsectors, such as smart cities and 
industrial IoT (IIoT). Researchers have explored 
various approaches to improve resource allocation, 
distributed networks, energy usage, and retaining 
high performance as edge computing develops [15]. 
2.2 AI in IoT Networks 
Machine learning and deep learning-based AI 
techniques are crucial in the current IoT 
applications. Such algorithms have become 
ubiquitous in realtime applications such as 
predictive maintenance, anomaly detection, and wise 
decision-making. The challenge is the deployment 
of AI models on IoT devices due to the constraints 
on computational resources. Conventional AI 
models are typically too big, requiring considerable 
computation and memory, rendering them 
unsuitable for edge devices [16]. 
Models like MobileNet, Tiny YOLO, and 
SqueezeNet, which can be trained in smaller sizes 
and run with fewer computational resources 
[17][18], have appeared as potential options to be 
used in IoT environments. An absence such as this 
balances accuracy with efficient inference, which is 
suitable for IoT that needs low-latency decision-
making but steno energy. In addition, model 
compression techniques, such as pruning and 
quantization, have demonstrated substantial 
potential to decrease the complexity of deep learning 
model architectures with minimal impact on 
accuracy [19]. 
Due to its efficient architecture, the MobileNet 
model has become one of the most popular, 
especially in edge computing applications. This 
architecture separates convolutions with depth-wise 
convolutions to significantly reduce the cost of 
computation. MobileNet has been used extensively 
in IoT applications, where realtime processing and 
low power consumption are vital [20]. 
2.3 Edge AI Models with Energy Efficiency 
 
Energy efficiency is still one of the concerns when 
deploying AI models on IoT. As most IoT devices 
are battery-operated, there is a high demand for 
energy-efficient AI models capable of performing 
over an extended duration without frequently 
recharging frequent recharge. Energy-efficient AI 
models are designed to reduce the energy consumed 
during computation and the energy used for data 
transmission [21]. 
More recently, there has been renewed interest in 
parameterizing AI models for edge devices, 
emphasizing reducing the number of parameters to 
lower computation and power requirements. Other 

approaches to power efficiency-motivated 
optimization are well-studied, such as the previously 
mentioned pruning, which reduces redundant 
weights in neural network architectures, and the 
equally studied quantization, which reduces the 
precision of model parameters while maintaining 
performance [22][23]. Moreover, knowledge 
condensation, which involves transferring 
knowledge from a large model to a smaller one, is 
another method through which small, accurate, and 
energy-efficient models are constructed. [24]. 
Another area of focus involves the hardware design 
for resources that explicitly supports energy 
efficiency computations for intelligent IoT devices. 
New technologies, such as neuromorphic computing 
and hardware accelerators (FPGAs, ASICs), are 
combined with edge devices to reduce energy 
consumption even more [25]. 
 
Critical Evaluation and Comparison with 
Literature: 
In this paper, we review the performance of the 
MobileNet model with respect to edge computing 
and IoT. In contrast to recent studies, like those 
performed on Tiny YOLO and other lightweight 
models, we show that MobileNet provides a 
beneficial tradeoff in terms of accuracy and energy 
efficiency. On the other hand, there are still concerns 
regarding its scalability and the model's 
performance/power consumption tradeoff. Whereas 
most previous studies consider performance the 
most critical factor, our framework operates in real-
time with low energy consumption, making the 
approach a viable alternative to existing research. 
 
2.4 Challenges and Opportunities 
 
Although much progress has been made towards 
edge AI for IoT, there are still challenges when it 
comes to effectively deploying and managing AI 
models on a scale. These challenges include 
ensuring the accuracy of lightweight models in 
various network conditions, the security and 
privacy of data, and handling the heterogeneity of 
IoT devices with different computational capabilities 
[26]. 
However, there are many opportunities to enhance 
these systems. New generations of motivating 
networks, e.g., 5G, promise to enhance the nature of 
edge computing with low-latency and high-
throughput connections to optimize AI-driven IoT 
applications [27]. Furthermore, with federated 
learning, you can also train a model based on local 
data without transferring any sensitive data [28]. 
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Combining AI with cloud infrastructure significantly 
benefits energy-efficient AI chip design for IoT 
applications. Sustained efforts for research on model 
optimization, resource management, and hardware 
acceleration will enable unlocking the complete 
potential of edge AI in IoT-based systems. 
 

 
Figure 2: Deploying Lightweight MobileNet Models on 

Edge Devices 
 
The key factors of deployment of a lightweight 
MobileNet model on edge devices in the context of IoT 
networks are depicted in Figure 2. Compliance with four 
significant phenomena: Directly Efficient AI Models 
(low-power consumption and processing), Resource 
Constraints (computational power at the edge), Enhanced 
Connectivity (5G and federated learning), and 
Deployment Challenges (accuracy/security concerns). 
They are key for deploying AI models on edge devices, 
power efficiency, and dealing with limited resources, 
connectivity, and the complexities of deploying AI models 
in realtime applications. 
 
3. PROPOSED FRAMEWORK 

3.1 Architecture Overview 
 
The proposed framework combines edge computing 
and AI by deploying lightweight models (e.g., 
MobileNet) on the edge. It also locally performs 
data processing, using a vast array of sensors and 
intelligent devices that require little constant 
communication with the cloud and realtime decision 
processing. 
Figure 1 consists of the following components: 

 IoT Sensors: Gather data about the 
environment (for example, 
temperature, humidity, or video feeds). 

 Edge Devices: Process locally using 
AI models like MobileNet for realtime 
predictions. 

 Cloud Servers offer more processing 
capacity and storage space if necessary 

but are rarely used, resulting in lower 
latency and bandwidth consumption. 

 AI Models: Lightweight neural 
networks are deployed on edge devices 
to maintain low latency and energy 
consumption. 

 
Figure 1: Data Processing Funnel in Edge AI 

 
3.2 Energy-Efficiency Considerations 
 
The system's energy efficiency is the primary focus. 
MobileNet is selected because it has a low 
computational cost and energy consumption with a 
depthwise separable convolutions architecture. We 
use pruning and quantization to further shrink the 
model size and resource usage. 
3.3 Scalability 
 
The framework we propose is naturally extensible. 
This also allows  thousands of devices to use an 
independent instance of the AI model on each edge 
device. The solution is flexible, with real-time 
models that can be twisted according to available 
resources. Thus, it consumes energy proportionate to 
the requirement, with less consumption and a higher 
number of devices. 
 
4. METHODOLOGY 

This section details the framework proposed to 
deploy the light MobileNet model on edge devices 
for real-time and energy-efficient AI processing in 
IoT networks. They describe dataset preprocessing, 
the model design, training details, evaluation 
metrics, and the experiment setup. 
4.1 Dataset and Preprocessing 
This work performs image classification tasks using 
the CIFAR-10 dataset. It is a computerized set of 
60,000 32×32 color images in 10 classes. This data 
is divided into 50,000 training images and 10,000 
test images. Ensure the images are normalized to (0, 
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1) scale with the below formula before passing these 
images into the mobile net model.: 
 

𝑥ᇱ =
௫ି୫୧୬(௫)

୫ୟ୶(௫)ି୫୧୬(௫)
                              (1) 

Where: 
 𝑥 is the original pixel value, 

 𝑥ᇱ is the normalized pixel value. 

This normalization ensures that the model can learn 
more effectively by keeping all input values within a 
standard range, improving training efficiency. 
4.2 Model Design 
The model used in this study is MobileNetV1, which 
uses depth-wise separable convolutions to reduce 
computational costs compared to traditional 
convolutional layers. The following mathematical 
equation gives the depth-wise separable 
convolution: 
 

𝑦 = 𝑊 ⋅ (𝑥) + 𝑏                                  (2) 
Where: 

 𝑦 is the output of the convolution, 

 𝑊 is the kernel (filter), 

 𝑥 is the input to the convolution, 

 𝑏 is the bias term. 

In MobileNet, the convolution operation is split into 
two steps: 

1. Depthwise convolution: A single filter is 
applied to each input channel. 

2. Pointwise convolution: A 1x1 convolution 
that combines the output of depthwise 
convolutions. 

The key advantage of MobileNet is that it 
significantly reduces the number of parameters by 
using separable convolutions instead of regular 
convolutions.. 
4.3 Training Procedure 
The Adam optimizer (a function that adapts the 
learning rate for training deep learning models) 
establishes training for 50 epochs by default as a 
MobileNet model. We know that the Adam 
optimizer has the following update rule: 

𝜃௧ = 𝜃௧ିଵ −
ఎ

ඥ௩ାఢ
⋅ 𝑚௧                       (3) 

Where: 
 𝜃௧ is the parameter at time step 𝑡, 

 𝑚௧ is the first moment estimate (mean of 
the gradients), 

 𝑣௧is the second moment estimate (variance 
of the gradients), 

 𝜂 is the learning rate, 

 𝜖 is a small constant to avoid division by 
zero. 

The learning rate is initially set to 0.001, and early 
stopping is applied during training to prevent 
overfitting. The training process monitors the loss 
and accuracy of the model on both the training and 
validation datasets. 
4.4 Evaluation Metrics 
We use the following evaluation metrics to 
determine our models performance: 

1. Accuracy: The percentage of correct 
predictions made by the model, calculated 
as: 

Accuracy =
Number of Correct Predictions

Total Number of Predictions
× 100          

(4) 
2. Latency: The time taken for the model to 

make a prediction, measured in 
milliseconds. It is computed by recording 
the time for a single forward pass through 
the model on both edge and cloud 
environments. 

3. Energy Consumption: The energy 
consumed during model inference is 
estimated based on the computational 
complexity of the model and the power 
consumption characteristics of the 
hardware. It is given by: 

𝐸 =  𝑃 ⋅ 𝑡                                 (5) 
Where: 

 𝐸 is the energy consumed (in Joules), 

 𝑃 is power consumption (in Watts), 

 𝑡 is the time taken for inference (in 
seconds). 

For this experiment, we assume that energy 
consumption per operation is directly proportional to 
the number of operations in the model, which varies 
with model complexity. 
 
Criteria for Critique and Threats to Validity: 
The selected critique criteria were justified based on 
their correlation to IoT applications in the real world, 
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such as model accuracy, latency, and energy 
consumption. Nevertheless, there are some threats 
to the validity of the study. In this study, for 
example, the experimental setting was built upon 
simulated edge devices, which may not fully reflect 
the interdependent trajectory of real-life scenarios. 
Furthermore, these evaluations are derived from 
usual performance measures; however, the actual 
deployment of the model in large-scale, 
heterogeneous IoT networks may result in 
significantly different outcomes. This work must be 
validated in more realistic settings with greater 
diversity for it to be of any further use. 
4.5 Experiment Setup 
Two environments are simulated to assess the 
results of the MobileNet model: 

1. Edge Device Simulation: 
 
A low-power ARM-based processor is 
employed for simulating edge devices, 
assuming the device has restricted 
computational resources, as is often the 
case with IoT edge devices. To demonstrate 
this, we utilize its edge device to run and 
measure the model's latency and energy 
consumption on this simulated edge device 
for the experiment. 

2. Cloud-Based Simulation: 
For comparison, we use a high-
performance server with sufficient 
computation resources. The same 
MobileNet model is run on the server, and 
the latency and energy consumption are 
measured. 

A comparison of the inference time and energy of 
the model on the edge device and cloud server 
allows for showing tradeoffs between real-time 
performance and energy-efficient design. 

 
4.6 Scalability Considerations 
For the scale-out of the calculated system, we have 
used the simulation of several edge equipment 
operating independently of the MobileNet model. 
We slowly increase the number of devices and 
monitor the system's performance. The metrics 
include overall system latency, energy consumption 
per device, and network load, which are measured as 
the system scales. 
For scalability analysis, the total latency for 𝑁 
devices is computed as: 

Total Latency = 𝑁 ⋅ Latency per Device                         
(6) 

Where: 
 𝑁 is the number of edge devices, 

 Latency per Device is the average time for 
inference on each device. 

As the number of devices increases, we anticipate 
the system's scalability will depend on the edge 
devices' network bandwidth and computational 
limits. Nevertheless, the relatively lightweight 
MobileNet model should ensure the system 
maintains low latency and energy efficiency. 

5. EXPERIMENTAL RESULTS 

In this section, we show the MobileNet model's 
performance results on edge devices and cloud 
servers in terms of latency, energy consumption, 
and model accuracy. 
5.1 Model Accuracy 
MobileNet trained on CIFAR-10 achieved 92% 
accuracy on the train set and 90% on the test set. In 
conclusion, this performance indicates that the 
reduced model would work for efficient IoT image 
classification. 
5.2 Latency Comparison 
We contrast the end-to-end inference latency for 
both edge-devices and cloud-servers. Inference of 
Single Image Inference of a single image was 
optimized on both the edge device and on the cloud 
server, where the edge device produced an average 
inference time of 20 ms/image compared to the 
cloud server, which achieved a final inference time 
of 10 ms/image. The difference is shown in Figure 
2. 

 
Figure 2: Latency Comparison (Edge vs Cloud) 

 
5.3 Energy Consumption 
Energy consumption of the edge device and cloud 
server during inference The MARS architecture ran 
0.5mJ/image on the edge device and 1.2mJ/image on 
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the cloud server. This difference in energy is shown 
in Figure 3. 

 
Figure 3: Energy Consumption Comparison 

 
5.4 Scalability 
Scalability was achieved, with stable performance 
as the number of edge devices increased. A 
standalone instance of the AI model ran on each of 
the edge devices, so energy and low latency were 
maintained even with scaling. 
5.5 Model Accuracy and Inference Time 
We report the metrics for model accuracy and 
inference time in Table 1. The above table 
highlights the training accuracy, test accuracy, and 
inference time for both edge and cloud platforms, 
making the comparison clear. 

Table 1: Model Accuracy and Inference Time 
 

Metric Value 

Training Accuracy 92% 

Test Accuracy 90% 

Inference Time (Edge Device) 20 ms 

Inference Time (Cloud Server) 10 ms 
 
Comparison with Prior Work 
We conducted parallel comparisons for our study 
and prior works on edge computing and AI models 
for IoT. The experimental results indicate that 
although our proposed MobileNet model achieves a 
competitive performance concerning energy 
efficiency and scalability, the trade-off between 
model accuracy and energy consumption is still a 
significant challenge. Moreover, regarding real-
world applications, our framework's scalability, 
especially in large-scale IoT networks, requires 
further optimization. Future work will need to 
address these aspects, such as seeking performance 
vs. power consumption trade-off optimization 
solutions or techniques that can be easily and readily 
extended to a high number of edge devices. 
 
6. CONCLUSION 

This work introduces a framework for deploying a 
scalable, energy-efficient AI model - MobileNet - 
on-edge devices for IoT real-time applications. The 
MobileNet model provided an excellent 
performance of 92% training accuracy and 90% test 
accuracy but with low latency, as the edge device 
could process 20ms and 10ms in a cloud server. 
Edge devices consume 0.5mJ , while clouds 
consume 1.2mJ per image, implying significantly 
lower energy consumption. These findings 
emphasize the capabilities of edge computing in 
diminishing the dependency on cloud-based systems 
for maintaining the low-latency, energy-efficient 
functioning of IoT networks. The system was also 
shown to be scalable as more edge devices were 
added. We will further optimize the model 
architecture, explore low-power hardware solutions, 
and extend the system to a more extensive variety of 
IoT applications like smart cities and autonomous 
vehicles. 

Reflections on the Work from a Personal 
Perspective: 

Energy-efficient IoT Networks: I believe deploying 
energy-efficient models such as MobileNet on edge 
devices could provide many real-time application 
cases for IoT networks, where latency and energy 
efficiency are your priorities. Although this study 
shows good performance, it is essential to keep in 
mind the limitations, such as how there still needs to 
be further optimization of model accuracy without 
energy efficiency in future work. Furthermore, they 
need to look for alternative low-power hardware 
solutions on the go which work as a better 
foundation for IoT applications. This study will lay 
the groundwork for more sophisticated studies in this 
area. 

Strengths and Weaknesses of the Study 

The proposed framework is energy efficient and has 
good scalability, making it suitable for (not only this 
use case but) IoT environments that have a critical 
need for power and latency constraints. Using 
lightweight MobileNet models on edge devices 
provides plenty of potential for real-time 
applications. On the other hand, they also point out 
the limitations, such as the precision trade-offs 
when using these models in resource-constrained 
devices. These improvements should include 
optimising said models that promote low energy 
footprints while ensuring a widely accurate model. 

Personal Opinion on the Work: 

As I view it, the prospect of edge computing in IoT 
networks is enormous if they are deployed using 
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lightweight AI models like MobileNet. These 
findings demonstrate that such models can provide 
fast, energetic solutions for IoT applications. 
However, I think it could be done with more work 
on these models' accuracy without sacrificing energy 
efficiency. This will be critical as IoT networks are 
only getting larger and need more intelligent 
decision-making at the edge now than ever. 

Future Research Directions: 

MobileNet model should be used in future research, 
working on optimization methods to enhance model 
accuracy while still being an energy-efficient 
algorithm. Adopting hardware accelerators, such as 
FPGAs or ASICs, can improve the performance of 
edge devices. Extending the framework to support a 
more diverse range of IoT applications, including 
smart cities and self-driving cars, would also be 
helpful. Lastly, exploring federated learning and 
other privacy-preserving methods would also benefit 
IoT networks dealing with sensitive information. 
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