
 Journal of Theoretical and Applied Information Technology
15th June 2025. Vol.103. No.11

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5002

TRITAG RECOMMENDER:
A HYBRID APPROACH TO STACK OVERFLOW TAG

PREDICTION USING TRANSFORMERS AND KEYWORD

EXTRACTION

MORARJEE KOLLA1, SRINIVASA RAO BURAGA2, SUBHASH BHAGAVAN KOMMINA3, J
KAVITHA4, NITYA RAMIREDDY5, SREEMUKHI SAVALGE6

1Associate Professor, Department of Computer Science and Engineering, Chaitanya Bharathi Institute of
Technology, Hyderabad-500075, Telangana, India

2Professor, Department of Information Technology, Lakireddy Bali Reddy College of Engineering
(Autonomous), Mylavaram, NTR District, Andhra Pradesh-521230, India

3 Professor, Department of Information Technology, Sasi Institute of Technology & Engineering,
Tadepalligudem, Andhra Pradesh-534101, India

4Associate Professor, Department of Computer Science and Engineering, Koneru Lakshmaiah Education
Foundation, Bowrampet, Hyderabad-500043, Telangana, India

5,6 B.E Student, Department of Computer Science and Engineering, Chaitanya Bharathi Institute of
Technology, Hyderabad-500075, Telangana, India

E-mail: 1morarjeek_cse@cbit.ac.in, 2buragasrinivasarao@gmail.com, 3subhash@sasi.ac.in ,4
j.kavitha5555@gmail.com, 5 ramireddynitya@gmail.com, 6savalgesreemukhi@gmail.com

ABSTRACT

Community question-answering (CQA) platforms offer new opportunities for users to share knowledge
online. Tags are added to data on these platforms to define, classify, and discover the information. Accurate
tags help find users to answer the question. However, tags may be inaccurate or improper since users tag
questions based on their understanding of the question's content and other tags that are on the site. Existing
methods often fail to fully capture the semantic context of questions, especially those containing code
snippets, leading to suboptimal tag suggestions. This highlights a gap in the literature for models that can
effectively handle both natural language and programming content. To address this issue, we propose a novel
deep learning approach combining advanced transformer-based architectures with keyword extraction
techniques to understand the context in text and code snippets and produce relevant tags. Our proposed
method will be able to suggest relevant and appropriate tags and demonstrate superior performance compared
to state-of-the-art techniques, thus contributing new insights into context-aware tag recommendations for
CQA systems.

Keywords: Tag Recommendation, Community Question-Answering, Transformer, Keyword Extraction,
Tritag Recommender

1. INTRODUCTION

Community Question Answering (CQA)
sites, such as Stack Overflow and AskUbuntu have
emerged as popular venues for users to ask questions
and exchange knowledge on a broad range of
subjects\cite{b1}. To cope with the enormous and
ever-increasing amount of user-provided content,
these sites heavily depend on tags—user-defined
keywords or phrases that classify questions and
enable content organization, searchability, and topic-
based browsing. A sample question posted on Stack
Overflow is shown in Figure 1.

Appropriate tagging is important for improving user
interaction, making content more discoverable, and
optimizing future processes such as expert
suggestions. Tagging manually, however, is
typically irregular, incomplete, or inaccurate due to
the user's varied levels of expertise and the inherent
subjectivity in assigning tags. Automated tag
recommendation systems have thus become critical
components of contemporary CQA sites to address
these issues.

Thus, by using proper and precise tags reflecting the
content of the question, many aspects of site
engagement such as connecting experts across

 Journal of Theoretical and Applied Information Technology
15th June 2025. Vol.103. No.11

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5003

different communities and directing the question to
the appropriate people with appropriate knowledge
can be enhanced. Stack Overflow does not limit
user's freedom to tag creation and posting; they can
create and select whatever tags they wish. However,
the quality of tags is substantially influenced by the
writing habits of the users, their English proficiency,
and their experience level; thus, the tags used by
different users tend to become inconsistent, which is
a problem that contributes to tags. These issues
highlight how desirable it is to have a tag
recommendation system to automatically forecast
tags for future questions posted on the site.

Figure 1:A Sample Question on Stackoverflow

This study focuses specifically on building an
automated tag recommendation model using deep
learning techniques for Stack Overflow questions. It
does not cover non-technical CQA platforms or
manual tagging behavior analysis. It assumes the
availability of clean and labeled textual data and
does not account for user intent or external metadata.

The scope is limited to English-language questions
and predefined tag sets within the dataset.
Limitations include reliance on textual input quality,
and exclusion of multimodal content such as images
or code snippets not represented as text.

Automated tagging systems offer many benefits
aside from simply improving tagging accuracy and
efficiency[3]. They are also crucial to maintaining
tag consistency by collecting similar questions in
standardized topics, greatly improving content
organization and search capabilities. These systems
are particularly beneficial for new or novice users by
reducing the effort required to choose suitable tags
through intelligent recommendations. Additionally,
by reducing tagging mistakes and redundancy,
automated tagging decreases the burden on
moderators, allowing them to attend to higher-level
activities such as community interaction and
platform creation. Because of this, there has been a

need to build automated tagging systems that can
suggest appropriate and relevant tags[4].

2. RELATED WORKS

In Community Question Answering (CQA)
systems, the Tag Recommendation involves aiding
users by suggesting relevant tags that can categorize
their questions effectively. It presents a set of
potential tags based on the question's content, from
which users can select multiple tags—typically
between one and five—to accurately label their
questions. The tags improve the organization and
discoverability of questions, enabling more efficient
retrieval and better alignment with the user's search
intentions. To achieve this, various models have
been developed and refined to make tag
recommendations more accurate, relevant, and
contextually appropriate.

He et al.[5] proposed a complex system called
PTM4Tag+ for automatic tag recommendation in
Stack Overflow. The approach, which is based on
pre-trained language models (PTMs), models the
Title, Description, and Code of a post using a triplet
architecture. PTMs are utilized to independently
encode each component to generate feature
representations. These are used to predict relevant
tags in a multi-label classification task after
concatenation. PTM4Tag+ was developed using a
variety of encoder-only and encoder-decoder PTMs,
including BERT, RoBERTa, CodeBERT, and
CodeT5. In measures like F1-score@k,
Precision@k, and Recall@k, CodeT5 under the
PTM4Tag+ framework outperformed all the other
variations, significantly outperforming previous
state-of-the-art techniques like Post2Vec (CNN-
based). The authors also investigated smaller
models, such as DistilBERT and CodeT5-small,
which improved inference time by more than 47.2%
while maintaining over 93.96% of the performance,
to solve latency and deployment issues. PTM4Tag+
used rich semantic representations from pre-trained
models to provide strong tag recommendations.

Amsa-nguan et al. [6] have a practical AI-based
approach for automatically topic tagging web
content in Thai and English-translated formats. Their
strategy involved gathering a sizable dataset of news
articles from prominent Thai sources arranged into
six categories: technology, politics, economics,
entertainment, sport, and crime. To classify content,
the study investigated several machine learning
models, including Random Forest (RF), K-Nearest
Neighbors (KNN) with TF-IDF representations, and
an LSTM model with word embeddings. Depending

 Journal of Theoretical and Applied Information Technology
15th June 2025. Vol.103. No.11

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5004

on the model, TF-IDF, and sequence vectorization
were used for feature representation. The outcomes
demonstrate that while all models perform well,
Random Forest continuously beats the others on both
Thai and English datasets. This model was selected
to be implemented in an online topic tagging
program. The final system architecture incorporates
asynchronous processing for efficiency and supports
user interaction via the web and API.

An automated question-tagging system was
proposed by Raja Ram et al. [7] to increase the
precision and effectiveness of tagging in Community
Question Answering (CQA) platforms. The method
used preprocessed question data to predict tags using
machine learning algorithms, namely Random
Forest (RF) and k-Nearest Neighbors (KNN). To
prevent model bias, feature extraction was then
carried out using the top 100 tags, selecting a
balanced set of positive and negative examples. The
preprocessed text is transformed into numerical
feature vectors appropriate for classification using
TF-IDF vectorization. Using Euclidean distance,
KNN finds the closest neighbors in the feature space
and then tags them according to the majority class.
RF aggregates the predictions of several decision
trees using tuned parameters (max_depth = 5,
n_estimators = 150). According to experimental
results, KNN outperforms Random Forest (72%) by
achieving a slightly higher accuracy of 75% across
the top five tags. It utilized only the text content of
posts thereby reducing its efficiency by not
considering the code.

To overcome the limitation of not utilizing code and
to improve semantic understanding through code-
mixed deep representation learning, Li et al. [8]
presented CDR4Tag, a novel method for tag
recommendation in software information sites. The
approach addressed two major challenges:
leveraging the semantic richness of tags and
integrating both text descriptions and code snippets
of software objects. It does this by treating tag
recommendation in a unique way as a sentence-pair
matching task. A dual-interactive fusion approach
comprising the Connective Semantic Interaction
(CSI) and Separative Semantic Interaction (SSI)
modules was proposed to accomplish this. CSI uses
heuristic matching to calculate semantic similarity
and BERT to encode software object descriptions
and tags. In contrast, SSI encodes code snippets
using GraphCodeBERT and uses hierarchy-aware
multi-layer attention to capture deep semantic
correlations between text and code. By combining
representations from both modules and applying a
fully connected layer and a softmax function, the

system forecasts the likelihood of relevance for
every tag. In terms of top-k recall, precision, and F1-
score, tests performed on four Stack Exchange
datasets (StackOverflow, CodeReview, DBA, and
WordPress) show that CDR4Tag performs better
than cutting-edge baselines.

However, while the method [8] relies on supervised
learning and annotated data, Devine et al. [9] address
this limitation by introducing an unsupervised tag
recommendation approach. This approach uses pre-
trained text embedding models to recommend tags
rather than supervised training data. Models like
MPNet and MiniLM, which are trained on natural
language text pairs, are used to embed every Stack
Overflow post and every tag that could be used. The
cosine similarity between post embeddings and tag
embeddings is then used to recommend tags. With
an emphasis on “unpopular” tags, which are
infrequent, the method is assessed on a 0.1% sample
of Stack Overflow posts. Models that were trained
on domain-specific data, such as title-body pairs
from Stack Exchange posts, performed noticeably
better than others. Interestingly, the MPNet (QA)
model performed the best, with an R@1 of 0.161,
showing that about 16% of its top-1 tag
recommendations matched the actual post tags.

A deep learning-based method for automatically
recommending tags on Stack Overflow posts is
presented by Subramani et al. [10]. The suggested
approach predicts multiple tags for a given post
based on its textual description by using Long Short-
Term Memory (LSTM) networks, a type of
Recurrent Neural Network (RNN). The tag
prediction system uses a pipeline that includes
feature extraction, data cleansing, and multi-label
classification with deep learning models. Cleaning
the StackSample dataset, limiting it to the top 50
most frequent tags, and eliminating extraneous
components like HTML tags, stop words, and
punctuation are the first steps in the process. Bag-of-
Words and GloVe word embeddings are used for
feature extraction, and multi-label binarization is
used for tag encoding. A comparison is made
between the Gated Recurrent Unit (GRU), LSTM,
and Multi-Layer Perceptron (MLP) models. The
highest F1 score (54.3%) and Jaccard score (49.6%)
are attained by GRU, while LSTM provides a good
balance between accuracy and training efficiency.

A specific BERT-based model called LegalBERT-th
was created by Saengwaree et al. [11] for automatic
question tagging in Thai legal Q&A forums. In this
method, a Thai legal domain-specific dataset is
created, and pre-trained language models are used

 Journal of Theoretical and Applied Information Technology
15th June 2025. Vol.103. No.11

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5005

for tag prediction. The dataset comprises 10,000
legal Q&A pairs that were manually tagged with
legal topics like labor law, civil law, and criminal
law after being gathered from online Thai legal
discussion forums. Pre-processing, LegalBERT
fine-tuning, and classification are all part of the
process. While the tagging task is modeled as a
multi-class classification problem, the pre-
processing phase includes tokenization and language
cleaning specific to Thai. The researchers train and
assess the tagging system using BERT-based
models, such as Multilingual BERT (mBERT) and
LegalBERT-th. The findings highlight the
significance of domain-specific pre-training by
showing that LegalBERT-th performs noticeably
better than mBERT, with a test accuracy of 90.2% as
opposed to 76.4% by mBERT.

The existing recommendation systems show
significant improvements by utilizing deep learning
models, but they also have a few limitations. These
include ignoring the semantic details provided by
code snippets of the questions by removing them
from the data during training. The identified gap
leads to the research question: How can we improve
tag recommendation by leveraging both text and
code data without losing semantic information? Our
proposed model aims to address the limitations using
advanced domain-specific transformer models and
Keyword extraction models by utilizing both text
and code data. This new approach will enhance the
relevance
of recommended tags.

3. TRITAG RECOMMENDER

The TriTag Recommender we are
proposing uses two components namely Keyword
extractor and Tag Classifier which uses the title,
body text and code snippets to recommend tags for a
question. The high-level architecture of TriTag
Recommender’s is displayed in Figure 2.

3.1 Dataset Preprocessing
Out of all the features, we considered only

the Title, Body, and Tags of stackoverflow questions
because these keep the model simple and help in
capturing the semantics or context of the questions.
We performed data cleaning to increase the
effectiveness of the dataset. The data cleaning was
applied to the Title and Body of the questions. The
operations applied are

● Removed all HTML tags from the Title and
Body of the questions using the
BeautifulSoup library while extracting the

code snippets from the Body of the
questions. The code snippets will be present
between two HTML tags <code></code>
and these will be extracted to create a new
feature named code for the questions which
will be used for training the model.

● We checked the language of the questions
and identified that the majority of the
questions were in english and removed
questions from our dataset in languages
other than english.

Figure 2: Architecture of the TriTag Recommender

● The text content of the title and body were
converted into lowercase characters.

● All the Unicode characters like emojis were
removed from the text content.

● Extra spaces were removed from the text
content.

● Punctuation marks were removed from the
text content.

● All the links and numbers were removed
from the text content.

Finally, We had our required features - Title, Body,
and Code. These are cleaned and can be used for
recommending the tags.

 Journal of Theoretical and Applied Information Technology
15th June 2025. Vol.103. No.11

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5006

3.2 Keyword Extractor
The Keyword Extractor is used for

obtaining significant terms or words from the text
which are treated as tags for the question. KeyBERT
is a keyword extraction model that works using
BERT embeddings to identify keywords similar to a
document by using cosine similarity. It also supports
many embedding models. Since our data is English,
we utilize “all-MiniLM-L6-v2” from Sentence
Transformers, a pre-trained transformer model to
compute embeddings. The KeyBERT gives
important keywords in the increasing order of their
relevance score. These keywords are then filtered by
using a threshold of 0.5. This makes sure that only
the keywords which are important and semantically,
contextually relevant to the text are retained.

3.3 Tag Classifier

The architecture of the tag classifier is
shown in Figure 3. For the processing of the various
components of the question namely title, body text
and code we are utilizing two separate text encoders
and one code encoder. These encoders are utilized to
obtain feature representations or embeddings for
each individual component of the question. To get
accurate embeddings for our data, we will be
finetuning the encoder models.

Figure 3: Architecture of the Tag Classifier

The individual feature representations are passed to
the classification header where they are
concatenated to give a final feature representation.
This final representation is passed through a
sequential network of dense layers to perform multi-
label classification. The final output vector from this

sequential network is the probabilities of a tag
belonging to a question. These probabilities are
arranged in decreasing order of their probabilities
and the tags which are having probability greater
than 0.5 are given as the final output from the tag
classifier.

To identify and use the best combination of Text
Encoder and Code Encoder, we executed four
different combinations of the latest and advanced
transformer models for text and code. The text
transformers selected are all-distilroberta-v1 and T5
[12]. all-distilroberta-v1 is a sentence transformer
which is an Encoder type model. T5 is a Encoder-
Decoder type model. The code transformers used are
CodeT5 [13] and CodeBERT. The CodeBERT and
CodeT5 are based on BERT [14] and T5
architectures respectively and are trained on coding
data.

3.4 Fusion Layer

The keywords obtained from Keyword
extraction and the tags obtained from the Tag
Classifier are then combined to generate a final set
of tags that will be recommended to the user.

4. IMPLEMENTATION DETAILS

The data required for training our models
for our system was obtained from Kaggle. This
dataset was extracted from Stack Exchange Data
Explorer. The data is collected from 2009 to 2020. A
tag is considered rare when its frequency of presence
falls below a given cutoff θ. The rationale is that a
tag that appears seldom throughout a large dataset,
like the one used in this study, is either poorly
designed or little used, making it unfamiliar to
programmers. Rare tags are eliminated to increase
the dataset’s usability. According to [3] [15] [16],
the cutoff θ was fixed at value 50 for detecting and
eliminating rare tags. As a result, we remove from
the dataset any posts that contain rare tags and posts
that only contain rare tags. The dataset, which started
with 23,020,127 postings, now has 29,284 common
tags and 34,369 unusual tags after this filtering.
There is an 80:20 split between the training and test
sets in the final data set.

The Hugging Face Transformers module in Python
was used to create the suggested system. After that,
it was run in a Kaggle environment on a GPU P100.
The batch size and learning rate are set to 8 and
0.001, respectively. Adam is utilized as the
optimizer, and the maximum length of input text is

 Journal of Theoretical and Applied Information Technology
15th June 2025. Vol.103. No.11

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5007

256. Over 200 epochs, the fine-tuning process has
been finished.

5. RESULT ANALYSIS

The effectiveness of the approach was
evaluated using Precision@k, Recall@k, and F1-
Score@k which were considered as the evaluation
metrics for the baseline models.

● Precision@k: The average ratio of
anticipated ground truth tags among the
top-k suggested tags is measured by
precision@k.

● Recall@k: The ratio of accurately
predicted ground truth tags in the list of
ground truth tags is reported by Recall@k.

● F1-score@k: Typically used as a summary
metric, F1-score@k is the harmonic mean
of Precision@k and Recall@k.

The four variants of the tag classifier are trained with
the trained set and are then evaluated based on their
performance on the test set. Their performance was
evaluated using Precision@1, Recall@1, and F1-
Score@1 metrics.

Table 1: Evaluation Metrics for Text and Code Encoder Models

Text Encoder Code Encoder Precision@1 Recall@1 F1-score@1

Sentence Transformer
(all-distilroberta-v1)

CodeT5 0.464 0.464 0.464

Sentence Transformer
(all-distilroberta-v1)

CodeBERT 0.117 0.117 0.117

T5 CodeBERT 0.590 0.590 0.590

T5 CodeT5 0.843 0.843 0.843

Their performance can be seen in Table 1. From the
table it can be seen that the combination of all-
distilroberta-v1 and CodeBERT performed worst
whereas the combination of T5 and CodeT5
performed best. Therefore, T5 and CodeT5
combination is selected as the optimal combination
of the models for tag classifier.

The Figure 4, Figure 5, Figure 6 are the Epochs vs
Precision, Epochs vs Recall and Epochs vs F1-score
respectively of different model combinations after
training for 200 epochs.

Figure 4: Epochs vs Precision graph

Figure 5: Epochs vs Recall graph

Figure 6: Epochs vs F1-Score graph

The performance of our TriTag Recommender made
up of T5 and CodeT5 encoders with KeyBERT is
compared with the competitive models or state-of-
the-art approaches as shown in Table 2 and is also
represented as a bar plot in Figure 7.

 Journal of Theoretical and Applied Information Technology
15th June 2025. Vol.103. No.11

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5008

Their performance is evaluated with metrics
Precision@5, Recall@5, and F1-Score@5. The
Recall@5 of our model is 0.885 which shows an
increase of 17% when compared with 0.757 which is
the highest of the competitive models. Similarly, The
Precision@5 of our model is 0.516 which shows an
increase of 5% when compared with 0.493 which is

the highest of the competitive models. Similarly, The
F1-Score@5 of our model is 0.652 which shows an
increase of 9% when compared with 0.597 which is
the highest of the competitive models. The metrics
clearly show that our model outperforms the existing
approaches

Table 2: Comparative Analysis on StackOverflow Dataset

Approach Recall@5 Precision@5 F1-Score@5

Roostaee [2] 0.720 0.392 0.493

PTM4Tag [16] 0.757 0.493 0.513

RACM [17] 0.653 0.452 0.345

T5+CodeT5+KeyBERT 0.885 0.516 0.652

To further analyze the effectiveness of the TriTag
Recommender beyond numerical metrics, we
performed a qualitative evaluation by observing
the model’s tag predictions on a variety of real-
world questions. This allowed us to assess the
semantic correctness, practical relevance, and
generalization capability of the models. Table 3
shows a few sample inputs with their
corresponding actual tags (as labeled in the
dataset) and the tags predicted by the TriTag
Recommender.

Figure 7: Performance metrics result

Table 3: Tag Prediction Comparison

Question Title Actual Tags Predicted Tags

application routes with spring mvc [“java”] [“java”]

regex python with unicode japanese
character issue

[“regex”, “python”]

[“regex”, “python”, “string”]

challenge optimize unlisting easy [“optimization”, “r”]

["algorithm”, “c++”, “java”, “optimization”,
“performance”, “math”]

why false output false in [“python-3.x”] [“python”, “python-3.x”]

 Journal of Theoretical and Applied Information Technology
15th June 2025. Vol.103. No.11

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5009

6. CONCLUSION

Tags play an important role in community
platforms. They are readily used to direct questions
to the feed of the users with expertise in answering
those questions. While these tags are helpful if they
are relevant or correct, this is not always true since
users have limited understanding. This affects the
platform’s performance. To solve this, we presented
a novel deep learning-based Recommender for
automated tag suggestions for CQA platforms using
domain-specific pre-trained transformer models, T5
and CodeT5 and KeyBERT. Our approach captures
the context of natural language and code and
recommends relevant tags. The scientific
contribution of our work lies in integrating domain-
specific transformer models (CodeT5 and T5) with
keyword extraction techniques (KeyBERT) to create
a hybrid tag recommender that outperforms existing
state-of-the-art solutions. This approach advances
the field by effectively combining code and natural
language understanding to achieve superior
performance in Recall@5, Precision@5, and F1-
Score@5 compared to prior works.

Even though our approach performed well, there are
a few limitations. There was semantic overlap in
tags, where the model sometimes struggled to
differentiate between tags with similar meanings like
Python and python-3.x. Our approach can only
suggest tags that are used during training and which
are present in the text. It cannot effectively suggest
tags for new or evolving topics or tags that are not
explicitly mentioned in the text.

In the future, we plan to explore tag generation
approaches to generate tags for even new or evolving
tags. It is to be noted that personalized
recommendations can be made by utilizing user
information like user profiles, user tags, user history,
etc.

REFERENCES:

[1] Chehreh, Isun, Ebrahim Ansari, and Bahram

Sadeghi Bigham. “Advanced Automated
Tagging for Stack Overflow: A Multi-Stage
Approach Using Deep Learning and NLP
Techniques.” In 2024 20th CSI International
Symposium on Artificial Intelligence and
Signal Processing (AISP), pp. 1-6. IEEE, 2024.

[2] Roostaee, M. “Language-independent Profile-
based Tag Recommendation for Community
Question Answering Systems.”

[3] Li, Can, Ling Xu, Meng Yan, and Yan Lei.
“TagDC: A tag recommendation method for

software information sites with a combination
of deep learning and collaborative filtering.”
Journal of Systems and Software 170 (2020):
110783.

[4] Li, Lin, PeiPei Wang, Xinhao Zheng, and Qing
Xie. “Code-enhanced fine-grained semantic
matching for tag recommendation in software
information sites.” In ICASSP 2023-2023 IEEE
International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pp. 1-5. IEEE,
2023.

[5] He, Junda, Bowen Xu, Zhou Yang, DongGyun
Han, Chengran Yang, Jiakun Liu, Zhipeng
Zhao, and David Lo. “PTM4Tag+: Tag
recommendation of stack overflow posts with
pre-trained models.” Empirical Software
Engineering 30, no. 1 (2025): 1-41.

[6] Amsa–nguan, Thitiworada, Nawakarn
Leerattanachote, Ponlawat Suparat, Piyanit
Wepulanon, and Santitham Prom–on.
“Development of the Topic Tagging System for
Thai and English-Translated Web Contents.” In
2024 21st International Joint Conference on
Computer Science and Software Engineering
(JCSSE), pp. 239-245. IEEE, 2024.

[7] Raja Ram A, Sanjay kumar V, Ratheesh B.
“Automated Question Tagging Using Machine
Learning”

[8] Li, Lin, Peipei Wang, Xinhao Zheng, Qing Xie,
Xiaohui Tao, and Juan D. Vel´asquez. “Dual-
interactive fusion for code-mixed deep
representation learning in tag
recommendation.” Information Fusion 99
(2023): 101862.

[9] Devine, Peter, and Kelly Blincoe.
“Unsupervised extreme multi label
classification of stack overflow posts.” In
Proceedings of the 1st International Workshop
on Natural Language-based Software
Engineering, pp. 1-8. 2022.

[10] Subramani, Srinivas, Sangeetha Rajesh, Kirti
Wankhede, and Bharati Wukkadada.
“Predicting tags of stack overflow questions: A
deep learning approach.” In 2023 Somaiya
International Conference on Technology and
Information Management (SICTIM), pp. 64-68.
IEEE, 2023.

[11] Wiratchawa, Kannika, Tanutcha Khunthong,
and Thanapong Intharah. “LegalBERT-th:
development of legal Q&A dataset and
automatic question tagging.” In 2021 18th
international conference on electrical
engineering/electronics, computer,
telecommunications and information
technology (ECTI-CON), Chiang Mai. 2021.

 Journal of Theoretical and Applied Information Technology
15th June 2025. Vol.103. No.11

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5010

[12] Raffel, Colin, Noam Shazeer, Adam Roberts,
Katherine Lee, Sharan Narang, Michael
Matena, Yanqi Zhou, Wei Li, and Peter J. Liu.
“Exploring the limits of transfer learning with a
unified text-to-text transformer.” Journal of
machine learning research 21, no. 140 (2020):
1-67.

[13] Wang, Yue, Weishi Wang, Shafiq Joty, and
Steven CH Hoi. “Codet5: Identifier-aware
unified pre-trained encoder-decoder models for
code understanding and generation.” arXiv
preprint arXiv:2109.00859 (2021).

[14] Devlin, Jacob, Ming-Wei Chang, Kenton Lee,
and Kristina Toutanova. “Bert: Pre-training of
deep bidirectional transformers for language
understanding.” In Proceedings of the 2019
conference of the North American chapter of the
association for computational linguistics:
human language technologies, volume 1 (long
and short papers), pp. 4171-4186. 2019.

[15] Xu, Bowen, Thong Hoang, Abhishek Sharma,
Chengran Yang, Xin Xia, and David Lo.
“Post2vec: Learning distributed representations
of Stack Overflow posts.” IEEE Transactions on
Software Engineering 48, no. 9 (2021): 3423-
3441.

[16] He, Junda, Bowen Xu, Zhou Yang, DongGyun
Han, Chengran Yang, and David Lo.
“PTM4Tag: sharpening tag recommendation of
stack overflow posts with pre-trained models.”
In Proceedings of the 30th IEEE/ACM
International Conference on Program
Comprehension, pp. 1-11. 2022.

[17] Lu, Sijin, Pengyu Xu, Bing Liu, Hongjian Sun,
Liping Jing, and Jian Yu. “Retrieval Augmented
Cross-Modal Tag Recommendation in Software
Q&A Sites.” arXiv preprint arXiv:2402.03635
(2024).

