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ABSTRACT 
 

Community question-answering (CQA) platforms offer new opportunities for users to share knowledge 
online. Tags are added to data on these platforms to define, classify, and discover the information. Accurate 
tags help find users to answer the question. However, tags may be inaccurate or improper since users tag 
questions based on their understanding of the question's content and other tags that are on the site. Existing 
methods often fail to fully capture the semantic context of questions, especially those containing code 
snippets, leading to suboptimal tag suggestions. This highlights a gap in the literature for models that can 
effectively handle both natural language and programming content. To address this issue, we propose a novel 
deep learning approach combining advanced transformer-based architectures with keyword extraction 
techniques to understand the context in text and code snippets and produce relevant tags. Our proposed 
method will be able to suggest relevant and appropriate tags and demonstrate superior performance compared 
to state-of-the-art techniques, thus contributing new insights into context-aware tag recommendations for 
CQA systems. 

Keywords: Tag Recommendation, Community Question-Answering, Transformer, Keyword Extraction, 
Tritag Recommender 

 
1. INTRODUCTION  
 

Community Question Answering (CQA) 
sites, such as Stack Overflow and AskUbuntu have 
emerged as popular venues for users to ask questions 
and exchange knowledge on a broad range of 
subjects\cite{b1}. To cope with the enormous and 
ever-increasing amount of user-provided content, 
these sites heavily depend on tags—user-defined 
keywords or phrases that classify questions and 
enable content organization, searchability, and topic-
based browsing. A sample question posted on Stack 
Overflow is shown in Figure 1. 

Appropriate tagging is important for improving user 
interaction, making content more discoverable, and 
optimizing future processes such as expert 
suggestions. Tagging manually, however, is 
typically irregular, incomplete, or inaccurate due to 
the user's varied levels of expertise and the inherent 
subjectivity in assigning tags. Automated tag 
recommendation systems have thus become critical 
components of contemporary CQA sites to address 
these issues. 

Thus, by using proper and precise tags reflecting the 
content of the question, many aspects of site 
engagement such as connecting experts across 



 Journal of Theoretical and Applied Information Technology 
15th June 2025. Vol.103. No.11 

©   Little Lion Scientific  
 

ISSN: 1992-8645                                                                    www.jatit.org                                                     E-ISSN: 1817-3195 

  

 
5003 

 

different communities and directing the question to 
the appropriate people with appropriate knowledge 
can be enhanced. Stack Overflow does not limit 
user's freedom to tag creation and posting; they can 
create and select whatever tags they wish. However, 
the quality of tags is substantially influenced by the 
writing habits of the users, their English proficiency, 
and their experience level; thus, the tags used by 
different users tend to become inconsistent, which is 
a problem that contributes to tags. These issues 
highlight how desirable it is to have a tag 
recommendation system to automatically forecast 
tags for future questions posted on the site. 

 

Figure 1:A Sample Question on Stackoverflow 

This study focuses specifically on building an 
automated tag recommendation model using deep 
learning techniques for Stack Overflow questions. It 
does not cover non-technical CQA platforms or 
manual tagging behavior analysis. It assumes the 
availability of clean and labeled textual data and 
does not account for user intent or external metadata. 

The scope is limited to English-language questions 
and predefined tag sets within the dataset. 
Limitations include reliance on textual input quality, 
and exclusion of multimodal content such as images 
or code snippets not represented as text. 

Automated tagging systems offer many benefits 
aside from simply improving tagging accuracy and 
efficiency[3]. They are also crucial to maintaining 
tag consistency by collecting similar questions in 
standardized topics, greatly improving content 
organization and search capabilities. These systems 
are particularly beneficial for new or novice users by 
reducing the effort required to choose suitable tags 
through intelligent recommendations. Additionally, 
by reducing tagging mistakes and redundancy, 
automated tagging decreases the burden on 
moderators, allowing them to attend to higher-level 
activities such as community interaction and 
platform creation. Because of this, there has been a 

need to build automated tagging systems that can 
suggest appropriate and relevant tags[4]. 

2. RELATED WORKS 

In Community Question Answering (CQA) 
systems, the Tag Recommendation involves aiding 
users by suggesting relevant tags that can categorize 
their questions effectively. It presents a set of 
potential tags based on the question's content, from 
which users can select multiple tags—typically 
between one and five—to accurately label their 
questions. The tags improve the organization and 
discoverability of questions, enabling more efficient 
retrieval and better alignment with the user's search 
intentions. To achieve this, various models have 
been developed and refined to make tag 
recommendations more accurate, relevant, and 
contextually appropriate. 

He et al.[5] proposed a complex system called 
PTM4Tag+ for automatic tag recommendation in 
Stack Overflow. The approach, which is based on 
pre-trained language models (PTMs), models the 
Title, Description, and Code of a post using a triplet 
architecture. PTMs are utilized to independently 
encode each component to generate feature 
representations. These are used to predict relevant 
tags in a multi-label classification task after 
concatenation. PTM4Tag+ was developed using a 
variety of encoder-only and encoder-decoder PTMs, 
including BERT, RoBERTa, CodeBERT, and 
CodeT5. In measures like F1-score@k, 
Precision@k, and Recall@k, CodeT5 under the 
PTM4Tag+ framework outperformed all the other 
variations, significantly outperforming previous 
state-of-the-art techniques like Post2Vec (CNN-
based). The authors also investigated smaller 
models, such as DistilBERT and CodeT5-small, 
which improved inference time by more than 47.2% 
while maintaining over 93.96% of the performance, 
to solve latency and deployment issues. PTM4Tag+ 
used rich semantic representations from pre-trained 
models to provide strong tag recommendations. 
 
Amsa-nguan et al. [6] have a practical AI-based 
approach for automatically topic tagging web 
content in Thai and English-translated formats. Their 
strategy involved gathering a sizable dataset of news 
articles from prominent Thai sources arranged into 
six categories: technology, politics, economics, 
entertainment, sport, and crime. To classify content, 
the study investigated several machine learning 
models, including Random Forest (RF), K-Nearest 
Neighbors (KNN) with TF-IDF representations, and 
an LSTM model with word embeddings. Depending 
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on the model, TF-IDF, and sequence vectorization 
were used for feature representation. The outcomes 
demonstrate that while all models perform well, 
Random Forest continuously beats the others on both 
Thai and English datasets. This model was selected 
to be implemented in an online topic tagging 
program. The final system architecture incorporates 
asynchronous processing for efficiency and supports 
user interaction via the web and API. 

An automated question-tagging system was 
proposed by Raja Ram et al. [7] to increase the 
precision and effectiveness of tagging in Community 
Question Answering (CQA) platforms. The method 
used preprocessed question data to predict tags using 
machine learning algorithms, namely Random 
Forest (RF) and k-Nearest Neighbors (KNN). To 
prevent model bias, feature extraction was then 
carried out using the top 100 tags, selecting a 
balanced set of positive and negative examples. The 
preprocessed text is transformed into numerical 
feature vectors appropriate for classification using 
TF-IDF vectorization. Using Euclidean distance, 
KNN finds the closest neighbors in the feature space 
and then tags them according to the majority class. 
RF aggregates the predictions of several decision 
trees using tuned parameters (max_depth = 5, 
n_estimators = 150). According to experimental 
results, KNN outperforms Random Forest (72%) by 
achieving a slightly higher accuracy of 75% across 
the top five tags. It utilized only the text content of 
posts thereby reducing its efficiency by not 
considering the code. 

To overcome the limitation of not utilizing code and 
to improve semantic understanding through code-
mixed deep representation learning, Li et al. [8] 
presented CDR4Tag, a novel method for tag 
recommendation in software information sites. The 
approach addressed two major challenges: 
leveraging the semantic richness of tags and 
integrating both text descriptions and code snippets 
of software objects. It does this by treating tag 
recommendation in a unique way as a sentence-pair 
matching task. A dual-interactive fusion approach 
comprising the Connective Semantic Interaction 
(CSI) and Separative Semantic Interaction (SSI) 
modules was proposed to accomplish this. CSI uses 
heuristic matching to calculate semantic similarity 
and BERT to encode software object descriptions 
and tags. In contrast, SSI encodes code snippets 
using GraphCodeBERT and uses hierarchy-aware 
multi-layer attention to capture deep semantic 
correlations between text and code. By combining 
representations from both modules and applying a 
fully connected layer and a softmax function, the 

system forecasts the likelihood of relevance for 
every tag. In terms of top-k recall, precision, and F1-
score, tests performed on four Stack Exchange 
datasets (StackOverflow, CodeReview, DBA, and 
WordPress) show that CDR4Tag performs better 
than cutting-edge baselines. 

However, while the method [8] relies on supervised 
learning and annotated data, Devine et al. [9] address 
this limitation by introducing an unsupervised tag 
recommendation approach. This approach uses pre-
trained text embedding models to recommend tags 
rather than supervised training data. Models like 
MPNet and MiniLM, which are trained on natural 
language text pairs, are used to embed every Stack 
Overflow post and every tag that could be used. The 
cosine similarity between post embeddings and tag 
embeddings is then used to recommend tags. With 
an emphasis on “unpopular” tags, which are 
infrequent, the method is assessed on a 0.1% sample 
of Stack Overflow posts. Models that were trained 
on domain-specific data, such as title-body pairs 
from Stack Exchange posts, performed noticeably 
better than others. Interestingly, the MPNet (QA) 
model performed the best, with an R@1 of 0.161, 
showing that about 16% of its top-1 tag 
recommendations matched the actual post tags. 
 
A deep learning-based method for automatically 
recommending tags on Stack Overflow posts is 
presented by Subramani et al. [10]. The suggested 
approach predicts multiple tags for a given post 
based on its textual description by using Long Short-
Term Memory (LSTM) networks, a type of 
Recurrent Neural Network (RNN). The tag 
prediction system uses a pipeline that includes 
feature extraction, data cleansing, and multi-label 
classification with deep learning models. Cleaning 
the StackSample dataset, limiting it to the top 50 
most frequent tags, and eliminating extraneous 
components like HTML tags, stop words, and 
punctuation are the first steps in the process. Bag-of-
Words and GloVe word embeddings are used for 
feature extraction, and multi-label binarization is 
used for tag encoding. A comparison is made 
between the Gated Recurrent Unit (GRU), LSTM, 
and Multi-Layer Perceptron (MLP) models. The 
highest F1 score (54.3%) and Jaccard score ( 49.6%) 
are attained by GRU, while LSTM provides a good 
balance between accuracy and training efficiency. 
 
A specific BERT-based model called LegalBERT-th 
was created by Saengwaree et al. [11] for automatic 
question tagging in Thai legal Q&A forums. In this 
method, a Thai legal domain-specific dataset is 
created, and pre-trained language models are used 
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for tag prediction. The dataset comprises 10,000 
legal Q&A pairs that were manually tagged with 
legal topics like labor law, civil law, and criminal 
law after being gathered from online Thai legal 
discussion forums. Pre-processing, LegalBERT 
fine-tuning, and classification are all part of the 
process. While the tagging task is modeled as a 
multi-class classification problem, the pre-
processing phase includes tokenization and language 
cleaning specific to Thai. The researchers train and 
assess the tagging system using BERT-based 
models, such as Multilingual BERT (mBERT) and 
LegalBERT-th. The findings highlight the 
significance of domain-specific pre-training by 
showing that LegalBERT-th performs noticeably 
better than mBERT, with a test accuracy of 90.2% as 
opposed to 76.4% by mBERT. 
 
The existing recommendation systems show 
significant improvements by utilizing deep learning 
models, but they also have a few limitations. These 
include ignoring the semantic details provided by 
code snippets of the questions by removing them 
from the data during training. The identified gap 
leads to the research question: How can we improve 
tag recommendation by leveraging both text and 
code data without losing semantic information? Our 
proposed model aims to address the limitations using 
advanced domain-specific transformer models and 
Keyword extraction models by utilizing both text 
and code data. This new approach will enhance the 
relevance 
of recommended tags. 
 
3. TRITAG RECOMMENDER 

The TriTag Recommender we are 
proposing uses two components namely Keyword 
extractor and Tag Classifier which uses the title, 
body text and code snippets to recommend tags for a 
question. The high-level architecture of TriTag 
Recommender’s is displayed in Figure 2. 

3.1 Dataset Preprocessing 
Out of all the features, we considered only 

the Title, Body, and Tags of stackoverflow questions 
because these keep the model simple and help in 
capturing the semantics or context of the questions. 
We performed data cleaning to increase the 
effectiveness of the dataset. The data cleaning was 
applied to the Title and Body of the questions. The 
operations applied are 

● Removed all HTML tags from the Title and 
Body of the questions using the 
BeautifulSoup library while extracting the 

code snippets from the Body of the 
questions. The code snippets will be present 
between two HTML tags <code></code> 
and these will be extracted to create a new 
feature named code for the questions which 
will be used for training the model. 

● We checked the language of the questions 
and identified that the majority of the 
questions were in english and removed 
questions from our dataset in languages 
other than english. 

 
Figure 2: Architecture of the TriTag Recommender 

● The text content of the title and body were 
converted into lowercase characters. 

● All the Unicode characters like emojis were 
removed from the text content. 

● Extra spaces were removed from the text 
content. 

● Punctuation marks were removed from the 
text content. 

● All the links and numbers were removed 
from the text content. 

 
Finally, We had our required features - Title, Body, 
and Code. These are cleaned and can be used for 
recommending the tags. 
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3.2 Keyword Extractor 
The Keyword Extractor is used for 

obtaining significant terms or words from the text 
which are treated as tags for the question. KeyBERT 
is a keyword extraction model that works using 
BERT embeddings to identify keywords similar to a 
document by using cosine similarity. It also supports 
many embedding models. Since our data is English, 
we utilize “all-MiniLM-L6-v2” from Sentence 
Transformers, a pre-trained transformer model to 
compute embeddings. The KeyBERT gives 
important keywords in the increasing order of their 
relevance score. These keywords are then filtered by 
using a threshold of 0.5. This makes sure that only 
the keywords which are important and semantically, 
contextually relevant to the text are retained. 
 
3.3 Tag Classifier 

The architecture of the tag classifier is 
shown in Figure 3. For the processing of the various 
components of the question namely title, body text 
and code we are utilizing two separate text encoders 
and one code encoder. These encoders are utilized to 
obtain feature representations or embeddings for 
each individual component of the question. To get 
accurate embeddings for our data, we will be 
finetuning the encoder models. 
 

 
Figure 3: Architecture of the Tag Classifier 

 
The individual feature representations are passed to 
the classification header where they are 
concatenated to give a final feature representation. 
This final representation is passed through a 
sequential network of dense layers to perform multi-
label classification. The final output vector from this 

sequential network is the probabilities of a tag 
belonging to a question. These probabilities are 
arranged in decreasing order of their probabilities 
and the tags which are having probability greater 
than 0.5 are given as the final output from the tag 
classifier. 
 
To identify and use the best combination of Text 
Encoder and Code Encoder, we executed four 
different combinations of the latest and advanced 
transformer models for text and code. The text 
transformers selected are all-distilroberta-v1 and T5 
[12]. all-distilroberta-v1 is a sentence transformer 
which is an Encoder type model. T5 is a Encoder-
Decoder type model. The code transformers used are 
CodeT5 [13] and CodeBERT. The CodeBERT and 
CodeT5 are based on BERT [14] and T5 
architectures respectively and are trained on coding 
data. 
 
3.4 Fusion Layer 

The keywords obtained from Keyword 
extraction and the tags obtained from the Tag 
Classifier are then combined to generate a final set 
of tags that will be recommended to the user. 

 
 

 
4. IMPLEMENTATION DETAILS 

The data required for training our models 
for our system was obtained from Kaggle. This 
dataset was extracted from Stack Exchange Data 
Explorer. The data is collected from 2009 to 2020. A 
tag is considered rare when its frequency of presence 
falls below a given cutoff θ. The rationale is that a 
tag that appears seldom throughout a large dataset, 
like the one used in this study, is either poorly 
designed or little used, making it unfamiliar to 
programmers. Rare tags are eliminated to increase 
the dataset’s usability. According to [3] [15] [16], 
the cutoff θ was fixed at value 50 for detecting and 
eliminating rare tags. As a result, we remove from 
the dataset any posts that contain rare tags and posts 
that only contain rare tags. The dataset, which started 
with 23,020,127 postings, now has 29,284 common 
tags and 34,369 unusual tags after this filtering. 
There is an 80:20 split between the training and test 
sets in the final data set. 
 
The Hugging Face Transformers module in Python 
was used to create the suggested system. After that, 
it was run in a Kaggle environment on a GPU P100. 
The batch size and learning rate are set to 8 and 
0.001, respectively. Adam is utilized as the 
optimizer, and the maximum length of input text is 
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256. Over 200 epochs, the fine-tuning process has 
been finished. 
 
5. RESULT ANALYSIS 

The effectiveness of the approach was 
evaluated using Precision@k, Recall@k, and F1-
Score@k which were considered as the evaluation 
metrics for the baseline models. 
 

● Precision@k: The average ratio of 
anticipated ground truth tags among the 
top-k suggested tags is measured by 
precision@k. 

● Recall@k: The ratio of accurately 
predicted ground truth tags in the list of 
ground truth tags is reported by Recall@k. 

● F1-score@k: Typically used as a summary 
metric, F1-score@k is the harmonic mean 
of Precision@k and Recall@k. 

 
The four variants of the tag classifier are trained with 
the trained set and are then evaluated based on their 
performance on the test set. Their performance was 
evaluated using Precision@1, Recall@1, and F1-
Score@1 metrics. 

Table 1: Evaluation Metrics for Text and Code Encoder Models 

 

Text Encoder Code Encoder Precision@1 Recall@1 F1-score@1 

Sentence Transformer 
(all-distilroberta-v1) 

CodeT5 0.464 0.464 0.464 

Sentence Transformer 
(all-distilroberta-v1) 

CodeBERT 0.117 0.117 0.117 

T5 CodeBERT 0.590 0.590 0.590 

T5 CodeT5 0.843 0.843 0.843 

Their performance can be seen in Table 1. From the 
table it can be seen that the combination of all-
distilroberta-v1 and CodeBERT performed worst 
whereas the combination of T5 and CodeT5 
performed best. Therefore, T5 and CodeT5 
combination is selected as the optimal combination 
of the models for tag classifier. 
 
The Figure 4, Figure 5, Figure 6 are the Epochs vs 
Precision, Epochs vs Recall and Epochs vs F1-score 
respectively of different model combinations after 
training for 200 epochs. 
 

Figure 4: Epochs vs Precision graph 

Figure 5: Epochs vs Recall graph 

Figure 6: Epochs vs F1-Score graph 

The performance of our TriTag Recommender made 
up of T5 and CodeT5 encoders with KeyBERT is 
compared with the competitive models or state-of-
the-art approaches as shown in Table 2 and is also 
represented as a bar plot in Figure 7.  
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Their performance is evaluated with metrics 
Precision@5, Recall@5, and F1-Score@5. The 
Recall@5 of our model is 0.885 which shows an 
increase of 17% when compared with 0.757 which is 
the highest of the competitive models. Similarly, The 
Precision@5 of our model is 0.516 which shows an 
increase of 5% when compared with 0.493 which is 

the highest of the competitive models. Similarly, The 
F1-Score@5 of our model is 0.652 which shows an 
increase of 9% when compared with 0.597 which is 
the highest of the competitive models. The metrics 
clearly show that our model outperforms the existing 
approaches

 

Table 2: Comparative Analysis on StackOverflow Dataset 

 

Approach Recall@5 Precision@5 F1-Score@5 

Roostaee [2] 0.720 0.392 0.493 

PTM4Tag [16] 0.757 0.493 0.513 

RACM [17] 0.653 0.452 0.345 

T5+CodeT5+KeyBERT 0.885 0.516 0.652 

To further analyze the effectiveness of the TriTag 
Recommender beyond numerical metrics, we 
performed a qualitative evaluation by observing 
the model’s tag predictions on a variety of real-
world questions. This allowed us to assess the 
semantic correctness, practical relevance, and 
generalization capability of the models. Table 3 
shows a few sample inputs with their 
corresponding actual tags (as labeled in the 
dataset) and the tags predicted by the TriTag 
Recommender. 
 
 
 
 
 

Figure 7: Performance metrics result

 
Table 3: Tag Prediction Comparison 

Question Title Actual Tags Predicted Tags 

application routes with spring mvc [“java”] [“java”] 

regex python with unicode japanese 
character issue 

[“regex”, “python”] 
 

[“regex”, “python”, “string”] 

challenge optimize unlisting easy [“optimization”, “r”] 
 

["algorithm”, “c++”, “java”, “optimization”, 
“performance”, “math”] 

why false output false in [“python-3.x”] [“python”, “python-3.x”] 
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6. CONCLUSION 

Tags play an important role in community 
platforms. They are readily used to direct questions 
to the feed of the users with expertise in answering 
those questions. While these tags are helpful if they 
are relevant or correct, this is not always true since 
users have limited understanding. This affects the 
platform’s performance. To solve this, we presented 
a novel deep learning-based Recommender for 
automated tag suggestions for CQA platforms using 
domain-specific pre-trained transformer models, T5 
and CodeT5 and KeyBERT. Our approach captures 
the context of natural language and code and 
recommends relevant tags. The scientific 
contribution of our work lies in integrating domain-
specific transformer models (CodeT5 and T5) with 
keyword extraction techniques (KeyBERT) to create 
a hybrid tag recommender that outperforms existing 
state-of-the-art solutions. This approach advances 
the field by effectively combining code and natural 
language understanding to achieve superior 
performance in Recall@5, Precision@5, and F1-
Score@5 compared to prior works. 
 
Even though our approach performed well, there are 
a few limitations. There was semantic overlap in 
tags, where the model sometimes struggled to 
differentiate between tags with similar meanings like 
Python and python-3.x. Our approach can only 
suggest tags that are used during training and which 
are present in the text. It cannot effectively suggest 
tags for new or evolving topics or tags that are not 
explicitly mentioned in the text. 
 
In the future, we plan to explore tag generation 
approaches to generate tags for even new or evolving 
tags. It is to be noted that personalized 
recommendations can be made by utilizing user 
information like user profiles, user tags, user history, 
etc. 
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