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ABSTRACT 
 

They were more advanced than ever in ransomware, fileless execution, polymorphic encryption, and 
encrypted C2 communications. The problem, however, widens, with Ransomware as a Service (RaaS) now 
having joined the party. To fight against these trends, we introduce a next-generation ransomware defense 
framework that is a deep learning-based real-time detection system capable of detecting ransomware in real 
encrypted network traffic without any payload inspection. In particular, the system classifies traffic using 
statistical flow metrics, protocol-specific patterns, and behavioral anomalies by means of transformer-based 
models. The trained model is tested on a 35 million flow dataset consisting of real ransomware samples, 
benign enterprise traffic, and adversarial flow samples with around 98.9%, 99.2%, and 98.5% in accuracy, 
precision, and recall, respectively. In addition, it is robust and scalable for adversarial training and federated 
learning. The system is deployed into the enterprise environment and has the capability to provide real-time 
response (0.5s detection) and hence is viable for current enterprise, IoT, and cloud networks. 

Keywords: Ransomware Detection, Encrypted Network Traffic, Deep Learning, Transformer Models, 
Federated Learning, Adversarial Machine Learning 

 
1. INTRODUCTION  
 

Ransomware is becoming one of the most 
pressing cyber threats and is reaching people across 
the globe, including individuals, enterprises, and 
government institutions. Unlike traditional 
malware, modern ransomware variants, namely, 
Kryptik and WannaCry, have eked out a lot from 
traditional malware by harnessing innovative 
effectiveness-avoiding methods, i.e., contingency, 
polymorphic encryption, and enciphered command-
and-control (C2) communications. These 
techniques are not compatible with the signature-
based detection mechanisms, as more and more 
attackers are beginning to execute meeting attacks 
using Transport Layer Security (TLS) [3] and Deep 
Packet Inspection (DPI) [4]. 
The market for Ransomware as a Service (RaaS), 
however, was widespread and further aggravated 
the current threat landscape. This way, even the 
low-skilled cybercriminals can run sophisticated 
ransomware campaigns, and it also tremendously 
increases the global attack surface. Furthermore, 
modern blockchain styles of ransomware employ 
strong anti-SI, aggregation, and adversarial ML 

techniques to prevent detection methods. Most such 
techniques detect with traditional impedance 
responses on the basis of endpoints, are most 
reliable, and also produce a lot of false positives 
and low time responses [6]. 
To overcome these limitations, recent research tries 
to repel the use of some machine learning (ML) and 
deep learning (DL) methods that could be used for 
detecting ransomware at the network layer. 
Network layer approaches are in contrast to the 
effect of endpoint-based detection methods that 
depend on static signatures, static traffic flow 
behavior, statistical anomalies, and protocol-
specific patterns, which are applicable in encrypted 
communications. As such, CNNs and RNNs can be 
proven to detect ransomware-embedded traffic 
flows with high accuracy [8]. However, critical to 
existing ML systems are their representational 
vulnerability to adversarial attacks, inability to 
scale to large networks, and only a limited capacity 
for zero-day attacks [9]. 
Given this situation, we hypothesize that, from 
flow-level behavioral, statistical, and protocol-
specific features, we can accurately detect 
encrypted network traffic used by ransomware 
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companies without using payload content. We aim 
at designing a real-time, transformer-based 
ransomware detection framework with high 
accuracy, robustness against adversarial evasion, 
and scale across one or more enterprise, cloud, and 
IoT environments in this work. 
2. LITERATURE REVIEW 

2.1 Evolution of Ransomware and Attack 
Mechanisms 

 Besides plain locker malware, ransomware 
have become sophisticated multi-phase cyber threat 
to enterprise networks, cloud and IoT networks [8]. 
Email phishing and exploit kits were the early ways 
of ransomware variants like CryptoLocker and 
WannaCry, though the modern ones like Conti, 
REvil, and LockBit also use the double extortion 
tactics by which attackers encrypt the data and only 
exfiltrate it too [9][10]. Finally, ransomware-as-a-
service (RaaS) has appeared on the ransomware 
domain, making it easier for cybercriminals to use 
this tool without expert skills [11]. It is revealed by 
research that asset like cloud computing, industrial 
control systems (ICS) and smart infrastructure have 
been prominent ransomware targets because of 
poor network segmentation and weak access 
controls [12][13]. 
 
2.2 Deep Learning for Ransomware Detection at 
the Network Layer 
 Ransomware detection at the network 
layer is very common using deep learning-based 
approaches because it can generalize patterns of 
ransomware attacks rather than relying on static 
signatures [14]. Currently modern IDS have 
problems against evolving ransomware threats, 
deep learning classifiers on the other hand can 
identify ransomware based on: protocol behaviors, 
network entropy fluctuations and statistical 
deviations [15][16]. Various studies propose hybrid 
deep learning architectures like convolutional 
neural network (CNN), recurrent neural network 
(RNN) and transformers-based models for real time 
encrypted traffic classification [17][18]. In addition, 
Generative Adversarial Networks (GANs) have 
also been used to produce samples of adversarial 
ransomware to train better models for resisting 
evasive tactics [19].  
 
2.3 Behavioral Analysis and Anomaly Detection 

in Encrypted Communications 
 

Since ransomware operators are 
increasingly using TLS encryption for stealthy 
communication; the conventional packet-based 

analysis techniques are rendered useless [20]. In 
response to this, researchers have started to perform 
behavioral traffic analysis, by analyzing patterns of 
the network flow, levels of entropy not in line with 
normal levels, and irregularities in TLS handshakes 
[21] [22]. Empirical studies show that ransomware 
infected hosts are characterized by prominent 
network behaviors (e.g., high frequency of 
‘beaconing’ to C2 servers, abnormal increases in 
encrypted data traffic, irregular DNS queries) 
[23][24]. These risks are mitigated using software 
defined networking (SDN) based defense 
mechanisms that offer an improved real time access 
control and ransomware flow mitigation [25][26]. 
Besides, blockchain-based cybersecurity solutions 
were suggested to track ransomware indicators on 
decentralized networks using an immutable 
distributed ledger technology to provide real time 
threat intelligence sharing [27]. The other 
innovative approach reflects monitoring with 
hardware performance counter (HPC) to observe 
the ransomware’s encryption activity by computing 
the CPU and memory usage patterns [28][29]. 
 
Table 1: Comparison Between Previous Studies and Our 

Study on Ransomware Detection 
 

Technique (Year) 
[#] 

Scope (RT) Acc / Key Value 

DL + Entropy 
(2024) [1] 

Windows 
(No) 

94% – Entropy 
features 

DNA + ML (2020) 
[7] 

File (No) 95% – DNA mimic 

Hybrid ML (2021) 
[3] 

Crypto (No) 92.5% – Multi-stage 
profiling 

Metaheuristic + 
Traffic ML (2022) 
[4] 

Android 
(Partial) 

93% – Optimized 
detection 

Resource Monitor 
(2023) [13] 

System (Yes) 91% – HW metrics 

ML Survey (2023) 
[5] 

General (N/A) N/A – Overview 

Entropy Analysis 
(2021) [6] 

File (No) 89% – Entropy metrics 

Evolutionary ML 
(2021) [8] 

Android (No) 90% – Imbalance 
handling 

DL (CNN-GRU) 
(2020) [9] 

Encrypted 
(Yes) 

96% – Obfuscation 
resilience 

Threat Hunting 
(2022) [10] 

Enterprise 
(Yes) 

94% – Proactive 

Multi-Level ML 
(2021) [11] 

Crypto (No) 91.2% – Attack phase 
model 

Feature Selection 
(2022) [12] 

Android (Yes) 93.8% – Traffic 
detection 

Resource 
Monitoring (2023) 
[13] 

Local (Yes) 91% – System-level 

ML Framework 
Review (2022) 
[14] 

General (N/A) N/A – Benchmark 

ML Review 
(2024) [15] 

General (N/A) N/A – Gaps 
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Obfuscation 
Defense (2023) 
[16] 

Windows 
(Partial) 

87% – Evading 
detection 

Dataset Repo 
(2020) [17] 

Eval (N/A) N/A – Benchmarking 

Honeypot Design 
(2020) [–] 

IoT (Yes) 90.5% – Deception 

SDN Detection 
(2021) [18] 

Self-spread 
(Yes) 

93.5% – Net 
mitigation 

Behavior Analysis 
(2022) [20] 

Targeted (No) N/A – Tactics insight 

HW Trojan 
Simulation (2022) 
[21] 

CPS (No) N/A – Feasibility test 

HPC Classifier 
(2024) [22] 

Non-virt 
(Yes) 

88% – Low-level 
signature 

ATT&CK 
Mapping (2023) 
[23] 

Behavioral 
(No) 

N/A – Tactical 
patterns 

Explainable AI 
(2024) [24] 

General (Yes) 96% – AI 
interpretability 

Pre-Encrypt 
Mining (2020) 
[25] 

Crypto (Yes) 91% – Early signal 

Federated 
Learning (2021) 
[26] 

IIoT (Yes) 95.6% – Distributed 
ML 

Area-Based Study 
(2025) [27] 

General (No) N/A – Attack 
taxonomy 

GANs Detection 
(2022) [28] 

Encrypted 
traffic (Yes) 

97% – Zero-day 

Web Defense 
(2024) [29] 

CPS (Yes) 94% – Auto-mitigation 

Nilsimsa + RF 
(2024) [30] 

IoMT (Yes) 100% – No feature 
eng. 

Secure Storage 
(2020) [31] 

Infra (No) N/A – Storage 
prevention 

Transformer DL + 
XAI (2025) [–] 

Ent/IoT/Cloud 
(Yes) 

98.9% – Adv. 
detection 

Technique (Year) 
[#] 

Scope (RT) Acc / Key Value 

DL + Entropy 
(2024) [1] 

Windows 
(No) 

94% – Entropy 
features 

DNA + ML (2020) 
[7] 

File (No) 95% – DNA mimic 

Hybrid ML (2021) 
[3] 

Crypto (No) 92.5% – Multi-stage 
profiling 

Metaheuristic + 
Traffic ML (2022) 
[4] 

Android 
(Partial) 

93% – Optimized 
detection 

Resource Monitor 
(2023) [13] 

System (Yes) 91% – HW metrics 

ML Survey (2023) 
[5] 

General (N/A) N/A – Overview 

Entropy Analysis 
(2021) [6] 

File (No) 89% – Entropy metrics 

Evolutionary ML 
(2021) [8] 

Android (No) 90% – Imbalance 
handling 

DL (CNN-GRU) 
(2020) [9] 

Encrypted 
(Yes) 

96% – Obfuscation 
resilience 

Threat Hunting 
(2022) [10] 

Enterprise 
(Yes) 

94% – Proactive 

Multi-Level ML 
(2021) [11] 

Crypto (No) 91.2% – Attack phase 
model 

Feature Selection 
(2022) [12] 

Android (Yes) 93.8% – Traffic 
detection 

Resource 
Monitoring (2023) 

Local (Yes) 91% – System-level 

[13] 
ML Framework 
Review (2022) 
[14] 

General (N/A) N/A – Benchmark 

ML Review 
(2024) 
(2025)[15][32][33] 

General (N/A) N/A – Gaps 

Obfuscation 
Defense (2023) 
[16] 

Windows 
(Partial) 

87% – Evading 
detection 

Dataset Repo 
(2020) [17] 

Eval (N/A) N/A – Benchmarking 

Honeypot Design 
(2020) [–] 

IoT (Yes) 90.5% – Deception 

SDN Detection 
(2021) [18] 

Self-spread 
(Yes) 

93.5% – Net 
mitigation 

Behavior Analysis 
(2022) [20] 

Targeted (No) N/A – Tactics insight 

HW Trojan 
Simulation (2022) 
[21] 

CPS (No) N/A – Feasibility test 

HPC Classifier 
(2024) [22] 

Non-virt 
(Yes) 

88% – Low-level 
signature 

ATT&CK 
Mapping (2023) 
[23] 

Behavioral 
(No) 

N/A – Tactical 
patterns 

Explainable AI 
(2024) [24] 

General (Yes) 96% – AI 
interpretability 

Pre-Encrypt 
Mining (2020) 
[25] 

Crypto (Yes) 91% – Early signal 

Federated 
Learning (2021) 
[26] 

IIoT (Yes) 95.6% – Distributed 
ML 

Area-Based Study 
(2025) [27] 

General (No) N/A – Attack 
taxonomy 

GANs Detection 
(2022) [28] 

Encrypted 
traffic (Yes) 

97% – Zero-day 

Web Defense 
(2024) [29] 

CPS (Yes) 94% – Auto-mitigation 

 
3. PROBLEM STATEMENT 

Among the latest cybersecurity threats, 
ransomware has topped the list as the most 
dangerous threat affecting people, businesses, and 
government institutions across the globe. 
Sophistication of ransomware attacks and highly 
adopted advanced enemy techniques have made 
traditional detection and mitigation methods 
obsolete. Traditional security methods like rule-
based intrusion detection systems (IDS) and 
signature-based antivirus programs do not keep up 
with the changes in ransomware attacks. In 
particular, this research intends to tackle the 
aforementioned critical challenges by creating a 
strong, scalable, and adaptive ransomware detection 
framework that is effective in detecting malicious 
activity even in an encrypted network. 
 
3.1 Increasing Complexity of Ransomware 
Attacks 
 Traditionally, ransomware has always left 
some trace on the victim's system, but this has 
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evolved, full stop. Too many families are fileless 
and execute directly in memory, leaving little to no 
forensic trace on the victim's system, so static 
analysis methods are largely ineffective. 
 
The ransomware variants used in modern times 
utilize advanced evasion techniques to evade 
traditional detection mechanisms. These include: 

 Metamorphic and Polymorphic 
Encryption: The attack uses encryption 
techniques to dynamically generate new 
malware signatures and makes signature-
based detection obsolete. 

 DPI disabled: With the encryption of 
Command-and-Control (C2) 
Communications when using TLS 1.3 and 
QUIC protocols, DPI is not able to send 
the payload contents to their destination. 

 Ransomware as a service (RaaS): There is 
an increased rise of RaaS, which has made 
ransomware distribution more 
democratized, enabling non-technical 
cybercriminals to be on par with highly 
sophisticated attacks. 

With these enhancements in place, defending 
against and, more importantly, determining when to 
block ransomware threats in real-time is difficult 
for traditional security efforts. 
 
3.2 Limitations of Existing Ransomware 
Detection Methods 
 There have been different approaches for 
detecting running ransomware, which exist in many 
publications, and all these methods have their 
limitations: 

 Signature-Based Detection: Malware 
signatures are checked by antivirus 
software to verify whether there is a match 
to it in their database, and therefore, 
signature-based detection cannot defend 
against unknown attacks. 

 Heuristic-Based and Static Analysis: 
These approaches rely on predefined rules 
to detect the anomalies; however, they 
cannot work with obfuscation techniques 
such as code packing and encryption. 

 Behavioral and Anomaly-Based Detection: 
More effective than signature-based 
methods, behavioral detection often leads 
to high false positives because what is 
legitimate, encrypted traffic and what is 
related to ransomware communications 
cannot be easily discerned. 

 Traditional ML-based methods primarily 
rely on relatively simple feature extraction 

and classification models, which can be 
easily thwarted by adversarial ML 
methods, compromising their robustness. 

These limitations make the need for a more 
adaptive and intelligent approach, which is able to 
detect the ransomware activity in a complex and 
encrypted form, apparent. 
 
3.3 Challenges in Detecting Ransomware in 
Encrypted Network Traffic 

This has led to the adoption of an 
encrypted communication channel as one of the 
most pressing challenges of ransomware detection. 

 Firewalls can only block whole 
applications or have barely acceptable 
levels of false positives due to modern 
encryption protocols like TLS 1.3 and 
QUIC that can be detected, disabling the 
gate context to perform DPI-based 
detection that relies on the traffic 
behaviors. 

 No visibility of payload data in end-to-end 
encryption, which makes the network data 
traffic protection increasingly difficult for 
endpoint-based security mechanisms. 

 Advanced ransomware variants hide by 
using delayed execution techniques and by 
side channel communication (beaconing) 
in order to blend into the normal network 
activity so as to be inconspicuous. 

Thus, these evasion techniques involving 
encryption drive the need to transition into using 
deep learning-based models that can detect slight 
traffic anomalies and behavioral mutations. 
 
3.4 The Need for Real-Time, Scalable, and 
Adaptive Ransomware Detection 
 As both the frequency and the 
sophistication of these ransomware attacks continue 
to increase, it is necessary to have an effective 
defense mechanism. 

 LLML models are not fast enough to 
support real-time detection of ransomware 
incidents. Such a detection mechanism 
will be more responsive and adaptive. 

 Detection in Large Networks: Detection 
methods currently in use fail due to a lack 
of sufficient resources for large-scale 
enterprise deployments, given the high 
overhead. There is a need for a scalable 
framework that can analyze high-volume 
network traffic. 

 Provisions of Evolving Threats: Since 
cybercriminals are also using adversarial 
ML techniques more and more, static 
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models become ineffective over time. 
Also, since ransomware keeps evolving 
and new variants keep coming up, a 
system that is continuously learning and in 
place is required. 
 

3.5 Research Motivation and Objectives 
  
 This research suggests a next-generation 
ransomware defense framework that leverages a 
deep learning model to classify network traffic in 
real time in order to overcome the limitations of 
existing ransomware detection. The proposed 
system will: 

1. Create a deep learning model built on top 
of a transformer that is able to deduce 
encrypted ransomware traffic without 
examining the payload. 

2. Robust training techniques and dynamic 
adaptation strategies are explored to 
enhance resilience against adversarial ML 
attacks. 

3. Combine an anomaly, behavioral, and 
statistical flow-based verification layer for 
multi-layer detection. 

4. Optimize the model performance with 
federated learning and distributed 
inference to improve scalability for large-
scale enterprise deployments. 

5. Dynamic learning responds to and 
mitigates ransomware threats proactively 
by reacting to emerging ransomware 
tactics. 

4. METHODOLOGY 
 

Advanced deep learning models and 
advanced network-based anomaly detection 
techniques have been used in the Next-Generation 
Ransomware Defense Framework to detect, 
analyze, and mitigate real-time ransomware threats. 
Transform this into a means by which ransomware 
can be detected even while being encrypted (as TLS 
1.3, QUIC), and techniques such as polymorphism 
and adversarial ML used to avoid standard security 
solutions. It is highly scalable and highly adaptive 
to operation in both high-traffic enterprise 
environments, cloud infrastructures, and IoT 
networks. The methodology is presented in great 
detail, outlining how the data are collected, how 
features are engineered, how the various models are 
selected, how training procedures are applied, how 
the system is deployed in real time, how the error of 
the system is evaluated, and how data are processed 
for consequential analysis. This is a structured 
framework to detect and mitigate ransomware 

attacks in real-time. First, the network traffic 
features are extracted in terms of statistical and 
behavioral features, and they are further fed into the 
deep learning classification. The high-level 
overview of the distributed computing framework 
is presented in Figure 1. The final goal of such an 
alert system is to achieve real-time detection, 
analysis, and mitigation of ransomware threats 
through the usage of advanced deep learning 
models and network-based anomaly detection 
techniques. Using this methodology, ransomware 
can still be identified with encryption (TLS 1.3, 
QUIC), polymorphic behavior that attempts to 
evade traditional security solutions, or adversarial 
ML techniques. The system works on high-traffic 
enterprise networks, cloud-based infrastructures, 
and IoT networks, making it highly scalable and 
adaptable. It provides a very thorough treatment of 
the data collection, feature engineering, model 
selection, training procedures, real-time 
deployment, and system evaluation, to name a few. 
The Next-Generation Ransomware Defense 
Framework is a structure-based approach to detect 
and mitigate ransomware on the fly. First, it 
extracts features about statistical and behavioral 
characteristics of network traffic, then applies deep 
learning classification. This framework is 
illustrated in Figure 1 with a high-level view of the 
components. 
 
 

 
Figure 1: Overview of Ransomware Detection 

Framework 
 
It is composed of several layers, such as network 
traffic capture and feature extraction, and then goes 
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through statistical and behavioral analysis. The 
network activity features are passed through the 
deep learning model to classify the network activity 
as either benign or infected with ransomware. An 
automated threat response system guards against 
potential attacks in real time when they are 
detected. 
 
4.1 Data Collection and Dataset Details 
4.1.1 Data Sources 
 
Our detection framework is effective and depends 
on the diversity, comprehensiveness, and good 
labeling of the dataset. Based on the combination 
of: 

1. Publicly Available Datasets 
 CICIDS2017 and CICDDoS2019: 

Provides real-world ransomware attack 
traces and benign traffic collected from 
network intrusions. 

 CTU-13 and UGR16: Large-scale datasets 
containing botnet traffic, useful for 
ransomware C2 detection. 

 Stratosphere IPS Dataset: Captures real-
world malware traffic, including 
ransomware-infected communications. 

2. Controlled Ransomware Executions in a 
Secure Lab Environment 

 Ransomware Samples: We use real-world 
ransomware strains (e.g., WannaCry, 
Ryuk, Conti, LockBit, DarkSide, Maze) 
and execute them in an isolated sandboxed 
network to capture network traffic 
behavior. 

 Encrypted Command and Control (C2) 
Communication: The lab environment is 
monitored using Wireshark, Zeek (Bro 
IDS), and Suricata to track the encryption 
behavior of ransomware during its 
communication with C2 servers. 

 Lateral Movement Simulation: We analyze 
how ransomware spreads across enterprise 
networks, targeting file shares and 
endpoint devices. 

3. Benign Traffic Collection for Model 
Generalization 

 Enterprise Network Traffic: Normal user 
behavior from academic institutions, 
corporate environments, and data centers 
is recorded to avoid false positives. 

 Encrypted Legitimate Traffic: Web 
browsing (HTTPS), cloud application 
usage, VoIP calls, and VPN traffic are 
included to ensure that the model can 

differentiate between legitimate encryption 
and ransomware C2 behavior. 
 

4.1.2 Data Preprocessing and Standardization 
 
However, raw network data must be collected and 
processed, and only then can it be fed into deep 
learning models. 

 Packet-Level Feature Extraction: 
Extracting TCP, UDP, and TLS headers 
and removing unnecessary payload data 
for privacy protection. 

 Flow-Based Aggregation: Aggregating 
multiple packets into network flows 
containing session-level information (5-
tuple source IP, destination IP, source port, 
destination port, and protocol). 

 Feature Normalization and Encoding: 
o Min-max normalization for 

numerical values (e.g., packet 
size, time intervals). 

o One-hot encoding for categorical 
features (e.g., TLS cipher suites, 
protocol types). 

 We aim to perform labeling of samples as 
benign or ransomware-infected by 
exploiting ground truth labels from a 
sandbox environment, along with ground 
truth verification done by an expert. 

One crucial step to find ransomware with 
network traffic is to extract meaningful 
network traffic features. The extraction of the 
useful statistical, behavioral, and protocol-
specific information from the analysis of raw 
network packets is known as feature extraction. 
This process, as shown in Figure 2, takes raw 
network data as inputs and, as outputs, 
transforms them into a structured feature set for 
deep learning analysis. 
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Figure 2: Network Traffic Feature Extraction Process 

 
The feature extraction process comprises a 

combination of packet headers of packets, 
aggregation flows, statistical distributions, and 
behavioral anomalies. Ransomware detection is 
enhanced through these structured features, as they 
allow differentiating normal encrypted traffic from 
malicious activity. 
 
4.2 Feature Engineering and Parameter 
Selection 
 
4.2.1 Extracted Features 
 
We extract multi-dimensional features in order to 
improve the ransomware detection accuracy. 

1. Statistical Flow Features 
 The number of packets per flow, duration 

of flows, and packet inter-arrival times. 
 Byte distribution gives insight into how 

bytes are distributed across flows in the 
tunnel and the entropy of TLS handshakes. 

2. Behavioral Indicators 
 Ransomware often gives out periodic 

signals to C2 servers. 
 Abnormal TLS session behaviors: 

Excessive session resumption attempts 
might be a hint of ransomware trying to 
escape detection. 

3. Protocol-Specific Features 
 TLS record layer metadata (TLS 1.2 vs. 

TLS 1.3 handshake behaviors). 
 Features of QUIC handshake (usually used 

for stealthy malware communication), 

number of failed connection attempts (for 
ransomware scanning). 

 PCA and RFE are used for feature 
selection to reduce dimensionality and 
retain key discriminative attributes. 
 

4.2.2 Extracted Network Traffic Features for 
Ransomware Detection 

 
We rely heavily on multi-dimensional feature 
extraction to create encrypted network traffic in 
order for our ransomware detection framework to 
be effective. They are divided into three major 
groups of features that were extracted. 
 

1. Statistical Flow Features 
These characteristics characterize overall 
network flow behavior and can be used to 
identify anomalies in ransomware-infected 
traffic. 

 Total time elapsed between the first and 
last packet of a flow. 

 Packet Count per Flow: It is the total 
number of packets sent/received between 
two given sources and destinations. 

 Inter-Packet Time Variability: The time 
difference between consecutive packets 
within a flow. 

 Total bytes transmitted and received in a 
network session—Byte Distribution  

 TLS handshake entropy—helps to show 
how random handshake encrypted data is 
to detect ransomware encryption 
behaviors. 

2. Behavioral Indicators 
Identifying ransomware C2 (command and 
control) communications is highly 
dependent on the many behavioral 
patterns. 

 Being ransomware, it infects various 
devices and keeps sending periodic 
requests to the C2 server. 

 Abnormal Session Resumption Attempts: 
Evasion techniques may be detected by 
such abnormal session resumption 
activities. 

 Irregular DNS Query Patterns: Domain 
resolution attempts at a high frequency 
may be a red flag for domain-generated 
ransomware. 

 Connection failures: Several failed 
connection attempts within a short time 
span may be due to ransomware scanning 
or probing. 

3. Protocol-Specific Features 
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The new ransomware variants utilize 
encrypted communication channels; thus, 
the analysis is required on a protocol-
specific level. 

 TLS Record Layer Metadata: Features 
such as TLS version (e.g., TLS 1.3, TLS 
1.2) and cipher suite selection. 

 QUIC Handshake Characteristics: Such 
phenomena lead to shorter handshake 
times of the QUIC-based ransomware 
traffic compared to the normal encrypted 
traffic. 

Ransomware frequently communicates with 
multiple C2 servers to avoid detection and therefore 
logs the number of unique destination IPs among its 
indicators. Some ransomware families implemented 
a constant packet size to evade payload-based 
detection. 
 
4.3 Feature Selection Optimization 
 
This is optimized for feature selection to minimize 
the complexity of the supertable. 

1. Principal Component Analysis (PCA): 
Project the points in a lower-dimensional 
space, with as much information as 
possible contained in the lower-
dimensional projections. 

2. Recursive Feature Elimination (RFE) can 
be used to eliminate features that, although 
not redundant, result in a high 
classification accuracy. 
 

4.4 Explainability and Interpretability Using 
XAI Techniques 
 
 The use of deep learning models in 
cybersecurity applications is hindered by the fact 
that they are often considered black box systems. 
This study incorporates the explainable AI (XAI) 
techniques SHAP (Shapley Additive Explanations) 
and LIME (Local Interpretable Model-agnostic 
Explanations) to increase the transparency. 
Consequently, SHAP values can identify which 
features are most useful in classifying ransomware 
and which ones should be protected/monitored, 
with network flow entropy, TLS handshake 
irregularities, and packet inter-arrival time making 
up the primary attributes. LIME, on the other hand, 
generates interpretable explanations for individual 
network flows to allow security analysts to quickly 
understand why a specific traffic session (e.g., 
flow) is deemed as ransomware. We include a plot 
of SHAP feature importance as well as case studies 
on how LIME explanations can help with forensic 

analysis. This way of approach guarantees that deep 
learning-based detection models will not only be 
accurate but also explainable and actionable in real-
world cybersecurity environments. 
 
4.5 Deep Learning Model Architecture 
 
4.5.1 Transformer-Based Ransomware Detection 
Model 
 
We present a model that encrypts and learns on 
network traffic using the power of transformers. 

 Embedding layer: Based on the 
technicality of extracting the network 
features, sequential dependency modeling 
is performed. 

 Can capture relationships between packets 
and flows within a session through the 
usage of a self-attention mechanism. 

 Multi-Head Attention Blocks: Processes 
different flow characteristics 
simultaneously. 

 Learns non-linear transformation using 
feedforward network layers and has the 
ability to classify ransomware traffic 
accurately. 

 The output layer is a SoftMax classifier 
that classifies whether a network flow 
coming into the interface is benign or 
ransomware-infected. 

This model is optimized for real-time detection 
with high accuracy and minimum latency in 
processing. 
 
4.5.2 Comparison of Model Inference Time 
Across Different Network Conditions 
 
The inference time of a ransomware detection 
system directly contributes to the network latency; 
therefore, it is critical to ensure the real-time 
applicability of the system. The inference latency of 
the models was then evaluated under different 
network conditions. 

 Average processing time per flow = 1.2 
ms; total time taken for detection = 0.5 
seconds in a 1 Gbps enterprise network. 

 On average, 0.9 ms of processing time is 
required to process a flow, and 0.4 seconds 
for total detection time. 

Further results show that the model is very 
responsive even when bandwidths are high. Real-
time ransomware classification is guaranteed 
without experiencing network bottlenecks and 
could be easily used for enterprise security 
operations. 
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4.5.3 Hyperparameter Tuning and Ablation 
Study 
 
In the process of optimizing deep learning models 
for the task of ransomware detection, 
hyperparameter tuning is an important step. The 
impact of different hyperparameters (e.g., learning 
rate, dropout rate, batch size) on detection accuracy 
and generalization performance is systematically 
evaluated in this study. Finally, we did an ablation 
study, using Grid Search and Bayes Opt in order to 
test different learning rates (0.001, 0.0005, 0.0001), 
dropout rates (0.2, 0.3, 0.5), and batch sizes (128, 
256, 512). We found that a 0.0005 learning rate, a 
dropout rate of 0.3, and a batch size of 512 prove to 
be the most computationally efficient for the 
optimal model. The impact of the different 
hyperparameters is illustrated by providing a 
comparative table of their performance (model 
convergence and real-time ransomware detection). 
 
4.6 Adversarial Machine Learning Defense 
Mechanisms 
 
4.6.1 Generative Adversarial Networks (GANs) 
for Adversarial Detection 

 
We leverage the power of GANs to produce 
adversarial samples of ransomware, behaving as an 
advanced evasion tactic to boost robustness in the 
model. 
 
4.6.2 Adversarial Training (AT) for Resilience 
 
Network samples perturbed by the attack are 
injected into the dataset while training to make sure 
the model can understand minor variations in 
ransomware activity. 
 
4.7 Adversarial Attack Evaluation and Defense       
Strategies 
 
4.7.1 Simulation of Adversarial Attacks 

 
Finally, we conduct a series of adversarial attack 
simulations designed to test our proposed 
ransomware detection model against adversarial 
evasion techniques that imitate such realistic 
ransomware obfuscation strategies. These attacks 
are produced with adversarial machine learning 
techniques such as the Fast Gradient Sign Method 
(FGSM), Projected Gradient Descent (PGD), and 
Carlini & Wagner (C&W) attacks. The adversarial 
scenarios to be evaluated were as follows. 
 

1. Ransomware communication flows were 
trafficked to appear as normal encrypted 
traffic patterns like HTTPS and VPN 
usage, hoping to evade detection. 

2. Attackers attempted to bypass anomaly 
detection mechanisms by adding small 
perturbations to network flow features 
such as inter-packet delay and flow 
duration. 

3. GAN-based adversarial samples were 
injected to produce synthetic ransomware 
traffic with similar statistical properties to 
benign traffic. 

4. Adaptive evasion attacks consisted of tests 
against reinforcement learning-based 
evasion techniques, that is, an adversarial 
agent that adaptively altered ransomware 
behavior in order to evade detection. 
 

4.7.2 Defense Strategies Against Adversarial 
Attacks 
 
The integrated rulers of the ransomware detection 
framework to counteract adversarial ML-based 
evasion techniques were the following: 

1. The model was retrained with variations 
along the adversarial attack distribution, 
where FGSM and PGD attacks were 
parameters to generate the perturbed 
samples to train the model to become more 
resistant. This way the model learns to 
detect even subtle perturbations of the 
attackers while keeping high detection 
accuracy under adversarial conditions. 

2. To expose the model to new methods of 
evading the ransomware detection, we 
implemented a Generative Adversarial 
Network (GAN) that can generate 
adversarial ransomware traffic crafted to 
defeat the existing ransomware detection 
model. 

3. The system applies feature normalization, 
statistical anomaly score, and entropy-
based filtering for detecting such 
adversaries at the feature level in network 
flow characteristics. 

4. Detection Framework: An ensemble model 
architecture of transformer-based 
classification and an additional auxiliary 
anomaly detection model ensures that 
attacks tailored to specific classifier 
channels do not cause failure of the 
detection system as a whole. 

5. It learns continuously on the fly by 
updating its models according to real-time 
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data that gets fed in on the network from 
the attack and learns how to adapt to new 
evasion strategies. 
 

4.7.3 Adversarial Sample Generation and Zero-
Day Ransomware Detection 
  
 In order to comprehensively evaluate the 
robustness of the proposed transformer-based 
ransomware detection model, we adversarially 
altered samples using different ML-based attack 
strategies to test our model’s robustness on these 
adversarial samples. We designed these adversarial 
samples to mimic real-world ransomware 
obfuscation and tested our model using these 
samples to determine its resilience. 
 
4.7.3.1 Adversarial Sample Generation 
Techniques 

 
Methods to create adversarial ransomware traffic 
samples were as follows. 
 

1. Perturbation-Based Evasion Attacks 
The Fast Gradient Sign Method (FGSM) and 
Projected Gradient Descent (PGD) were used 
to add small perturbations in extracted traffic 
features such as modulating packet timing, 
flow duration, and sequence, keeping the 
network behavior realistic. 
These modifications were made to confuse the 
model by making small changes to the 
statistical properties of ransomware traffic. 
 
2. Traffic Flow Morphing and Encryption-

Based Obfuscation 
GAN-generated adversarial samples were used 
to modify the traffic patterns of the 
ransomware to make them look very similar to 
the encrypted benign flows, such as HTTPS 
and VPN flows. 
First, QUIC and TLS 1.3 handshake 
manipulations were used to emulate benign 
cloud service communications. 
3. Adaptive Ransomware Behavior via 

Reinforcement Learning (RL) 
So, we trained an adversarial reinforcement 
learning agent that would continuously modify 
command-and-control (C2) communication 
patterns to detect such weaknesses in the 
model. By varying encryption parameters, 
randomizing the burst’s pattern, and 
introducing beaconing delays, the RL agent 
learned to make the detection more difficult. 
 

4.7.3.2 Defense Mechanisms Against Adaptive 
Ransomware Attacks 
 
We added multi-layered defense mechanisms to 
counter adversary ML-based evasion techniques. 

1. Adversarially Augmented Training Data 
 We hardened the model by retraining with 

adversarially generated ransomware traffic 
for future evasion. 

 Incorporating perturbation-based and 
GAN-generated adversarial samples 
increased the model’s generalization 
ability to unseen threats. 

2. Statistical and Temporal Feature Analysis 
for Robust Detection 

 Entropy-based filtering was applied to 
ransomware traffic flow statistics to make 
them irregular so that it would be hard for 
adversarial samples to pass through. 

 Anomaly detection on time series was 
used to detect anomalies in ransomware 
communication patterns over a longer 
period of time. 

3. Zero-Day Ransomware Detection 
Improvements 

 Traditional detection models generally 
experience a performance decrease in the 
presence of new ransomware variants they 
have not seen before. 

 The acquired zero-day detection rates 
improved by 92.5%, proving that the 
exposure to adversarial examples of 
ransomware in training significantly 
improves generalization capabilities. 

A comparative test with other non-adversarially 
trained models indicated that detections of newly 
emerging ransomware threats are improved by 
13.8%. 
 
4.8 Training Procedure and Federated Learning 
Integration 
 
4.8.1 Model Training Process 

• AdamW with weight decay to not overfit. 

• Batch size: 512 samples per time batch. 

• Adaptive scheduling of learning rate using 
Cosine Annealing with Warm Restarts. 

• Regularization: Dropout (0.3) and L2 
weight decay. 
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4.8.2 Federated Learning for Large-Scale 
Deployment 
 
Federated Learning (FL) is implemented to allow 
privacy preserving training across multiple 
organizations. 
 

 Fully performing secure aggregation of 
model updates without disclosing the raw 
network data. 

 It reduces the risk of exposure of sensitive 
data while improving the accuracy of the 
ransomware detection. 
 

4.9 Model Evaluation and Performance Metrics 
 
4.9.1 Metrics Used 

 For the classification performance: 
Accuracy, Precision, Recall, and F1-Score. 

 To measure the model's confidence across 
classification thresholds, the AUC-ROC 
Curve. 

 Their ability to detect movement is 
measured by the false positive rate (FPR) 
and false negative rate (FNR). 
 

4.9.2 Additional Performance Metrics: MCC 
and Balanced Accuracy 
 
It is also a recount of our progression from 
traditional performance metrics like accuracy, 
precision, recall and F1-score, into using additional 
measures like Matthews Correlation Coefficient 
(MCC) and Balanced Accuracy to better quantity 
model evaluation on imbalanced ransomware 
datasets. 
In scenarios with substantially different amounts of 
positive (ransomware) and negative (benign) 
samples in the dataset, MCC is also a more 
informative metric. True and false positives and 
negatives are considered, and it is therefore robust 
against data imbalance. 
Instead of Sensitivity and Specificity, Balanced 
Accuracy is used – the average of sensitivity 
(recall) and specificity that makes sure both 
ransomware and benign traffic are correctly 
classified regardless of which of these classes 
dominates the data. 
Our experimental results show that our model has 
an MCC of 0.97 and a Balanced Accuracy of 98.3% 
in terms of detecting the ransomware in several 
different network environments, showing strong 
generalizability. 
 
4.10 Benchmarking Against Traditional Models 

 
 The superiority of our model is compared 
to Random Forest, SVM, XGBoost and existing 
deep learning architectures (CNNs, RNNs, 
LSTMs). 
 
4.11 Real-Time Deployment and Security 
System Integration 
 
4.11.1 Modular Deployment Architecture 

 
 Capture live data from network gateways 

through the Network Traffic Collector. 
 The extracted features convert raw packets 

into structured features. 
 Real-time traffic flows are processed using 

a deep learning classifier. 
 Threat Response Module: Triggers 

automated mitigations by integrating with 
SIEM, IDS/IPS, and SDN-based security 
platforms. 

The implementation of the real-time ransomware 
detection system is scalable for enterprise networks 
as well as cloud-based environments. It combines a 
collection of several security components, 
consisting of network traffic collectors, feature 
extractors, deep learning models, and automated 
threat response components. The complete 
architecture of the detection system is depicted in 
Figure 3. 
 

 
Figure 3: Real-Time Ransomware Detection System 

Architecture 
The architecture proposed has the capability so that 
the ransomware detection occurs in real time, by 
the use of a deep learning-based classification 
engine, which is integrated in Security Information 
and Event Management (SIEM) systems and 
Intrusion Detection Systems (IDS). The setup of 
this system promotes automated threat mitigation 



 Journal of Theoretical and Applied Information Technology 
15th June 2025. Vol.103. No.11 

©   Little Lion Scientific  
 

ISSN: 1992-8645                                                                    www.jatit.org                                                     E-ISSN: 1817-3195 

 
4618 

 

and minimizes downtime and rapid incident 
response. 
 
4.11.2 Enterprise and Cloud Integration 
 

 It supports AWS, Azure, and Google 
Cloud environments. 

 Dynamic blocking of malicious flows 
upon detection is done with SDN-based 
threat mitigation. 
 

5. RESULTS AND DISCUSSION 
 
5.1 Introduction to Results and Performance 
Evaluation 
 

Extensively tested, the proposed Next-
Generation Ransomware Defense Framework 
provided effective, efficient, and scalable defense 
against ransomware attacks. The system is 
deployed to and evaluated on real ransomware 
attack data, large-scale enterprise traffic, and 
adversarial test cases. The outcomes show that the 
models can accurately detect ransomware activities 
in encrypted communications, that it is robust 
against adversarial evasions, and that they scale for 
large deployments. Detailed performance analysis, 
comparative evaluation, robustness of the model, 
findings on real deployment, and key 
experimentation insights are presented in this 
section. 
 
5.2 Dataset Statistics and Model Training 
Performance 
 
5.2.1 Dataset Composition and Preprocessing 
Outcomes 
 
We used the dataset of 35 million network flows 
that were gathered from a variety of public and 
private sources, such as CICIDS2017, CTU-13, 
UGR16, and running controlled ransomware in a 
sandboxed environment. The dataset was balanced 
(50 percent of benign traffic (enterprise, cloud, and 
normal web activity), 50 percent of ransomware-
infected traffic (real-world attacks from WannaCry, 
Ryuk, LockBit, Conti, DarkSide)). 
 

 10TB of raw packet-level data captured to 
be processed, transformed, and converted 
to framed flow-based records and feature 
engineered to extract behavioral patterns. 

 A. Feature Selection Results: 
o There was 100+ extracted 

features, which were reduced to 

30 highly discriminative features 
with PCA and Recursive Feature 
Elimination (RFE) to improve 
model efficiency. 

 Hence, the training dataset included 70% 
of the total dataset (24.5M flows). 

 Hyperparameter tuning was done using 
15% of the dataset (5.25M flows) in the 
Validation Dataset. 

 15% (5.25M flows) for the final evaluation 
on unseen data (testing dataset). 
 

5.2.2 Training Convergence and Model 
Optimization 
 
 The training process was performed on a 
multi-GPU distributed computing cluster with 4 
NVIDIA A100 GPUs, 128GB RAM, and fast 
storage (SSD). The results for all of the training 
convergence metrics were substantial 
improvements over my previous models. 
 

 It was effective at loss reduction, shown 
by the reduction of the cross-entropy loss 
function from 1.42 to 0.06. 

 Thus, training time: the training process of 
the whole model took 48 hours with 
federated learning optimizations, which is 
two orders of magnitude less in terms of 
computational overhead compared to 
centralized models. 

 Batch Size and Learning Rate Tuning: In 
order to achieve rapid convergence 
without oscillations, we chose a batch size 
of 512 and an adaptive cosine annealing 
learning rate. 

 Our regularization improvements, dropout 
with a rate of 0.3, were effective, as was 
L2 weight decay with a strength of 0.01, 
which stopped the overfitting. 

 
5.3 Performance Metrics and Model Evaluation 
 
5.3.1 Classification Performance Metrics 
 
 The key metrics to evaluate the model's 
classification performance were used as presented 
in Table 2. 

Table 2: Performance Metrics of the Proposed 
Ransomware Detection Model 

 
Metric Value 

Accuracy 98.9% 
Precision 99.2% 
Recall 98.5% 
F1-Score 98.8% 
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AUC-ROC Score 0.997 
False Positive Rate 
(FPR) 

1.2% 

False Negative Rate 
(FNR) 

1.1% 

 
These results indicate that the model effectively 
distinguishes ransomware from benign network 
traffic with minimal false positives and false 
negatives. The high AUC-ROC score of 0.997 
suggests strong confidence in detection across 
various classification thresholds. 
 
5.3.2 Comparative Analysis with Traditional 
Methods 
 
In order to show the superiority of our transformer-
based model, we compared it with several existing 
deep learning architectures as well as traditional 
ML models. 
 

Table 3: Comparative Performance Analysis of the 
Proposed Transformer-Based Model vs. Traditional 

Machine Learning and Deep Learning Models 
 

Model Accuracy Precision Recall F1-
Score 

Proposed 
Transformer 
Model 

98.9% 99.2% 98.5% 98.8% 

Random 
Forest 

89.7% 88.5% 85.4% 86.9% 

XGBoost 91.2% 90.1% 87.8% 88.9% 

CNN-LSTM 
Hybrid 

94.3% 95.1% 92.7% 93.9% 

RNN-Based 
Model 

92.6% 91.3% 89.8% 90.5% 

 
The transformer-based models yield 9–10% above 
the traditional ML models and 4–5% above deep 
learning baselines (CNN, RNN), proving that they 
provide better performance in the task of encrypted 
traffic analysis and ransomware detection. 
 
5.4 Real-Time Deployment Performance 
 
5.4.1 System Latency and Detection Speed 
 
The ransomware detection framework was tested in 
enterprise-scale (1 Gbps and 10 Gbps links) high-
speed networks. Testing the inference latency on 
real-time network streams. 
 

 Average Packet Processing Time: 1.2 ms 
per network flow. 

 Detection Delay: 0.5 seconds (sub-second 
response time) from packet ingestion to 
ransomware classification. 

 Throughput: The model can process up to 
20,000 flows per second on a single GPU, 
making them applicable in large-scale 
network monitoring. 
 

5.4.2 Adaptive Learning for Zero-Day 
Ransomware Detection 
 
However, the way that traditional machine learning 
models work against zero-day ransomware is 
reliant on static datasets, and thus, they have a hard 
time confronting this malware. In response to this, 
we take advantage of reinforcement learning (RL) 
and online learning to implement adaptive learning 
strategies. By employing a reward-based 
mechanism that can reward or punish the model for 
its classification accuracy, RL allows the model to 
refine its ransomware detection strategy based on 
the real-time attack behavior. Online learning is 
consequently even more lightweight regarding 
flexibility and can compute dynamically the model 
weights, saving from retraining very often. In order 
to test the effectiveness of this approach, we trained 
static models as well as adaptive models with 
incremental ransomware datasets and compared the 
results. We see that adaptive models perform much 
better than static models in detecting zero-day 
ransomware with 92.5% accuracy. Finally, the 
pipeline of adaptive learning (with a flow diagram 
for adaptive learning) is included, which shows 
how real-time updates of model parameters are 
done from the network traffic. By doing so, this 
approach helps guarantee that ransomware 
detection will still be effective according to changes 
in attack methodologies. 
 
5.4.3 Describes a real-world deployment case 
study: simulated ransomware attack 
 
To complement our framework’s capability 
validation, a controlled ransomware attack 
simulation was conducted in a corporate network 
setting. We experimented with deploying three 
separate ransomware families (Conti, LockBit, and 
Ryuk) and having our model monitor traffic while 
learning about encrypted flows indicative of 
ransomware. The key findings were: 
 

 Target Attack Detected: The system 
detected the target attack in 0.45 seconds 
from the first network compromise. 
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 Threat Mitigation: The system had an 
SDN-based firewall that automatically 
blocked C2 communication and prevented 
encryption of data. 

Moreover, high precision is represented by the fact 
that only 1.3% of legitimate encrypted traffic (TLS-
based web browsing) was wrongly flagged as 
misuse. 
The models show real-world viability for this case 
study, which allows us to detect and mitigate the 
fact of ransomware infection to an extent before the 
damage is overwhelming. 
 
5.5 False Positive Rate and Real-World 
Applicability 
 
 To study the false positive rate (FPR) 
impact on business oper-at-ions, we sen-t the 
mod-el to live enter-pris-e traffic for 72 hours over 
mul-tiple envi-ron-ments: 
 

 Also verified that in the corporate IT 
network, less than 1.5% FPR was achieved 
in order to minimize interruptions to 
normal business operations. The model 
was able to detect fileless ransomware 
attacks in encrypted sessions with 99.1% 
accuracy in cloud-based infrastructure 
(AWS, Azure). 

 The model was used to detect 
ransomware-infected smart devices on 5G 
IoT gateways with 98.7% accuracy. 

Lastly, to demonstrate the performance gap 
between the suggested transformer-based model 
and conventional machine learning as well as deep 
learning methods, we visualize a mesh-based 
comparison of the important evaluation metrics. 
The next figure shows the accuracy, precision, 
recall, and F1 score comparison between different 
models. 

 
 

Figure 4: Performance Comparison of Ransomware 
Detection Models 

 
Figure 4 shows the results that the transformer-
based model outperforms other approaches 
consistently with regard to all evaluation metrics. It 
has an accuracy of 98.9%, which is much higher 
than the other models, namely the CNN-LSTM 
(94.3%), RNN-based model (92.6%), XGBoost 
(91.2%), and Random Forest (89.7%). As an 
additional advantage, the Transformer models show 
their high precision (99.2%) and recall (98.5%), 
both high detection rates and fewer false negatives. 
Deep learning-driven network traffic classification 
in the detection of ransomware is validated by these 
findings, especially in encrypted environments. 
 
5.6 False Positive Mitigation Strategies 
 
While the proposed deep learning model has a false 
positive rate (FPR) of only 1.2%, the false alarms 
must be minimized for the real-world deployment. 
To handle this, the applied mitigation strategies are 
as follows: 

1. Transformer-based models: Combine with 
traditional ML classifiers (e.g., XGBoost) 
to cross-verify flagged ransomware 
behaviors so as to reduce the number of 
false positives. 

2. Dynamic Decision Thresholds: Adaptive 
thresholds based on network context (e.g., 
burst patterns in C2 communications) 
ensure that benign encrypted traffic is not 
unnecessarily flagged. 

3. XAI for Justification: Integrates SHAP 
(Shapley Additive explanations) and 
LIME (Local Interpretable Model agnostic 
explanations) to let security analysts 
confirm why a specific traffic flow was 
flagged. 

4. Behavioral Pattern Reinforcement: Based 
on historical behavioral analysis, 
frequently observed traffic (false positives) 
goes through a second verification before 
being identified as ransomware. 

5. Continuous feedback loop: We implement 
a process whereby false positives are 
confirmed and used to improve the next 
round of detection model retraining, as this 
will help to prevent the same mistakes 
from occurring in future analysis. 
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6. ADVERSARIAL MACHINE LEARNING 
RESILIENCE 
 
6.1 Defense Against Evasion Techniques 
 
To evaluate the model’s resilience in the face of 
such an adversarial ML attack, we injected 
perturbed ransomware samples. Using GAN-
generated adversarial training, the adversarial 
evasion success rate was reduced to 3.1% compared 
with 26.5% in traditional ML models. 
 
6.2 Zero-Day Ransomware Detection 
 
In order to test the zero-day ransomware detection, 
we designed a new ransomware strain (e.g., 
ALPHV/BlackCat and RedAlert) that was not 
included in the training. Despite its wide 
applicability, the model accurately identified 92.5% 
of these novel threats, i.e., it adapted well to new 
ransomware families. 
 
7. DISCUSSION OF KEY FINDINGS 
 

 Having 98.9% accuracy and 1.2% FPR in 
models makes the models apt for 
enterprise cybersecurity environments, 
which can decrease unnecessary alarms. 

 Quit slowing you down: With adversarial 
training techniques, resilience is highly 
increased, allowing you to neutralize 
common evasion tactics of modern 
ransomware. 

 Terms of Scalability for Large-Scale 
Deployments: By integrating federated 
learning, we have support for multi-
organization deployment without data 
privacy security concerns, which is very 
useful in cloud security, IoT, and 
enterprise networks as well. 

 It has near real-time detection through its 
0.5-second detection time. This means that 
by the time the encryption process of the 
ransomware is complete, Sophos can 
intercept, thus acting as a proactive 
defense solution. 

 
8. CONCLUSION AND FUTURE WORK 
 
8.1 Conclusion 
 
This research describes the Next-Generation 
Ransomware Defense Framework, which, indeed, 
can cope with the ever-increasing difficulty of 
detecting, analyzing, and mitigating ransomware 

attacks in real-time operating network 
environments. Current security solutions like 
signature-based detection, heuristic rule-based 
approaches, and endpoint security solutions are 
found to be useless in addressing the latest fileless, 
polymorphic, and AI-driven ransomware. We 
overcome this limitation by developing a deep 
learning model that enables effective ransomware 
detection in encrypted communication via our deep 
association transformer (DAT) and from large-scale 
enterprise networks via federated learning. 
While being able to detect and classify ransomware 
traffic is so critical, the experimental results show 
that the proposed model achieves 98.9% 
classification accuracy, 99.2% precision, and 98.5% 
recall to classify ransomware traffic. The results 
indicate that the proposed model has a better 
performance on the classification of ransomware 
traffic compared to the traditional machine learning 
models (Random Forest, XGBoost, Convolutional 
Neural Network (CNN), and Recurrent Neural 
Network (RNN)). Zero-day ransomware threat 
detection runs with 92.5% accuracy and is thus a 
critical aspect of current cybersecurity defense 
strategies. Furthermore, the real-time inference 
speed for our model (0.5 s detection and 1.2 
milliseconds per flow) is extremely low, making 
our model low latency, making it usable in an 
enterprise, cloud, and IoT space. 
Besides, adversarial training considerably improves 
the robustness of the model against ransomware 
evasion attacks, resulting in only 3.1% adversarial 
bypass compared to 26.5% in the traditional ML 
approach. With federated learning, detection 
models can be improved collaboratively together by 
different organizations to scale up the process and 
yet maintain data privacy so as not to reveal private 
network traffic. 
The system is capable of universally unobtrusive 
integration with Security Information and Event 
Management (SIEM) systems, devices, and 
appliances, as well as Intrusion Detection and 
Prevention Systems (IDS/IPS) and security 
technologies based on Software Defined 
Networking (SDN). The modular microservices 
architecture also guarantees a certain flexibility in 
the deployment of the framework into various 
environments such as corporate IT networks, cloud-
based infrastructures, and edge computing systems. 
The proposed framework is a significant leap ahead 
in ransomware detection and network security and 
provides a strong, robust, scalable, and privacy-
preserving method of dealing with the ever-
changing ransomware attack landscape. 
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8.2 Future Work 
 
Future research to further enhance ransomware 
detection would be to develop self-learning AI 
models to improve zero-day ransomware detection 
and strengthen adversarial training to defend 
against the evolving evasion techniques. Further, 
we will investigate using FPGAs, TPUs, and Edge 
AI to leverage hardware acceleration for faster 
detection speed and scalability in large enterprise 
and IoT applications. Cybersecurity feeds 
integration and Dark Web monitoring will be fed 
into real-time threat intelligence to predict 
ransomware campaigns prior to the attack in order 
to proactively deploy defense mechanisms. 
Additionally, SDN-based mitigation strategies for 
AI-powered auto-becoming systems will be 
designed to enable real-time ransomware 
containment, and industry collaborations will come 
to facilitate large-scale realization and validation 
for real-world testing and validate continuous 
detection capability improvement. 
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