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ABSTRACT 
 

Controlling water quality in hydroponic farming is essential but challenging. IoT sensors help monitor water 
conditions, but the data they produce is often inaccurate and water quality control becomes ineffective. This 
research uses an innovative approach in remote monitoring and controlling water quality in hydroponic 
systems through the integration of Internet of Things (IoT) technology for real-time data collection and data 
processing algorithms. The proposed strategy is to use a Median Filter combined with Linear Quadratic 
Estimation to produce more precise water quality control for hydroponic plants. Median Filter effectively 
reduces the noise from data obtained from sensors, while Linear Quadratic Estimation is used to predict the 
state of water quality of hydroponic plans. Experimental results show that the proposed system achieves mean 
absolute error (MAE), and root mean square error (RMSE) values below 1% for both PPM and pH 
measurements. This indicates that sensor data can be effectively processed, and the estimation of water 
quality changes closely reflects the actual conditions of the water. The approach using these two methods can 
ensure that the water quality of hydroponic plants becomes more stable and controlled, thus having an impact 
on the fertility and health of the plants and increasing better yields.  
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1.  INTRODUCTION  

Global demand for food continues to increase 
along with population growth and less agricultural 
land. In this context, hydroponic farming has 
emerged as a sustainable and space-saving 
alternative to traditional farming, with the ability to 
grow crops in a controlled environment using 
nutrient-rich water solutions [1]. Water mixed with 
the nutrients needed by plants is continuously 
circulated to the plant roots 24 hours a day. It is 
important to note that the success of a hydroponic 
system is highly dependent on setting the right water 
quality parameters such as pH, nutrient 
concentration, and temperature. Deviations in water 
quality parameters from the needs of hydroponic 
plants can result in reduced nutrient absorption, 
suboptimal plant growth, and reduced yields. 

To address these challenges, the integration of the 
Internet of Things (IoT) in hydroponic systems 
allows for the collection of data from various sensors 

such as water pH, nutrient concentration, and water 
temperature in real-time, and enables remote water 
quality control [2]. In the practical deployment of 
IoT in hydroponic systems is often hampered by 
corrupt sensor data due to unstable voltage, 
environmental disturbances, and device limitations. 
This noisy data reduces measurement accuracy and 
risks causing wrong decisions in water quality 
management [3], which has an impact on crop health.  

This research is driven by the need to enhance the 
reliability and precision of water quality control in 
IoT-based hydroponic systems. To overcome the 
limitations caused by noisy sensor data in 
hydroponic systems. This research proposes to 
develop an innovative IoT-based strategy for water 
quality control in hydroponic plants. It is a two-stage 
data processing approach that integrates Median 
Filter and Linear Quadratic Estimation. Median 
Filter is used as the first-stage noise reduction 
technique, which is highly effective in removing 
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impulsive or spike noise while maintaining the 
integrity of the original signal. This ensures that 
outliers do not distort the overall data trend. Linear 
Quadratic Estimation is applied to further refine the 
sensor data processing by minimizing between the 
observed sensor values and the estimated values. The 
integration of Median Filter and Linear Quadratic 
Estimation (LQE) is designed to provide robust, real-
time estimates of water pH and nutrient levels, 
allowing for more accurate and enhance the ability 
to control water quality more optimally to get better 
end-in result. 

This strategy is expected to help maximize the 
growth of hydroponic plants, contributing to 
increased food production; and providing solutions 
to global challenges in terms of food security and 
sustainable water use [4]. The next step of this 
research is to build a hydroponic plant management 
system equipped with Machine Learning technology 
to increase the efficiency and productivity of modern 
agriculture. This research roadmap also aims to 
increase sustainable water use, as well as for food 
security. This is in line with the objectives of the 
Sustainable Development Goals (SDGs) to achieve a 
better and more sustainable life for everyone on this 
planet [5]. 

 

2.  OBJECTIVES AND BENEFITS 

The rapid advancements of Information and 
Communication Technology (ICT) and Electronics 
has led to the use of Internet of Things (IoT) systems 
in hydroponic farming, marking a significant step 
towards future agricultural technology. IoT systems 
allow for real-time remote monitoring and control of 
water quality, including parameters like pH and 
nutrient levels [2]. This continuous monitoring 
enables timely decision-making to optimize water 
quality for hydroponic plants. 

The objectives of this research are to address the 
primary challenge in hydroponic farming related to 
water quality control by designing and implementing 
an Internet of Things (IoT)-based system that can 
monitor and control the water quality of hydroponic 
plants in real-time and remotely. To address issues 
of inaccurate measurements and noise interference, 
this research applies Median Filter and Linear 
Quadratic Estimation (LQE) techniques to reduce 
noise in sensor data, thereby enhancing measurement 
accuracy and data quality. Additionally, it aims to 
improve the prediction of hydroponic water quality 
conditions. By applying these innovative IoT-based 
strategies, the research seeks to optimize water 
resource usage, ultimately minimizing the 

environmental impact of agriculture and contributing 
to more sustainable farming practices. 

The benefits of this research include the 
enhancement of hydroponic plant growth through 
real-time data and effective IoT-based water quality 
control, enabling farmers to make quicker decisions 
in response to water quality changes. The developed 
strategies will support optimal and sustainable water 
use in hydroponic farming. Additionally, this 
research provides a foundational framework for 
future studies on improving water quality 
management using predictive data capabilities from 
machine learning technology. 

 

3.  LITERATURE REVIEW 

3.1 Water Quality 
Hydroponic systems allow plants to grow without 

soil by using water mixed with essential mineral 
nutrients. This nutrient-rich water is stored in a 
reservoir and pumped to the plant roots. Utilizing 
gravity, the water flows back to the reservoir through 
designated pipes. It is crucial to continuously 
monitor and maintain water quality to ensure that 
hydroponic plants can absorb the necessary nutrients 
and grow effectively [6]. Hydroponic farming offers 
numerous advantages, including faster and larger 
plant growth compared to soil-based systems, due to 
efficient water management and optimal sunlight 
exposure. Additionally, water usage is more efficient 
with a recirculating system, making hydroponics an 
environmentally friendly, clean, and healthy 
approach to enhancing food security [4]. 

3.2 ESP32 Development Kit 
The ESP32 is an open-source development board 

for a wide range of hardware and software 
applications. This powerful board is equipped with 
the capability to interface with both analog and 
digital sensors, enabling it to read several types of 
input such as touch switches, button presses, and 
environmental data. Furthermore, the ESP32 is 
designed to receive and process information through 
WiFi networks, leveraging its robust microprocessor 
to convert these inputs into actionable outputs [7]. 

There are many ESP32 software libraries that 
make the process of creating custom applications. 
These libraries offer pre-built functions and 
modules, so developers can focus on the core logic 
of their projects without having to worry about low-
level programming details. This combination of 
hardware flexibility and software support makes the 
ESP32 an invaluable tool for both novice and 
experienced embedded systems developers. 
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The effect of voltage changes has an impact on the 
Analog to Digital value, this can cause deviant 
measurement results from the installed sensor. The 
application of the Median Filter algorithm is needed 
as the first step to reduce impulse noise [8]. It will 
improve data quality from the measurement results 
of water pH sensors, and water nutrients (PPM). 

3.3 Sensor Module 
Monitoring water temperature is crucial for 

calculating electrical conductivity, as temperature 
variations can significantly affect electrical 
conductivity (EC) readings. Simultaneously, water 
temperature measurements help in assessing the 
overall environmental conditions of the hydroponic 
system and towards EC measurements as well [9]. 
The Parts per Million (PPM) concentration of 
dissolved substances in the water can be derived 
from the EC sensor measurement results. For this 
purpose, two waterproof DS18B20 temperature 
sensors are used. One sensor is used to monitor the 
water temperature within the reservoir of a 
hydroponic system, while the other measures the 
ambient air temperature. These DS18B20 sensors are 
capable of operating in environments with 
temperatures up to 125 degrees Celsius and provide 
digital output with a resolution ranging from 9 to 12 
bits [10].  

To measure water pH and water electrical 
conductivity (EC), it is essential to connect each of 
specific sensors to the analog pins of the ESP32 
module. Here is the water pH and PPM sensor 
specification [11]: 

 Water pH probe specification: 
 Detection Range: 0~14 
 Temperature Range: 0~60°C 
 Accuracy: ± 0.1pH (25 ℃)  
 Response Time: <1min 

 Water pH Signal Conversion Board 
specification: 
 Supply Voltage: 3.3~5.5V 
 Output Voltage: 0~3.0V 
 Probe Connector: BNC 
 Signal Connector: PH2.0-3P 
 Measurement Accuracy: ±0.1@25℃ 
 Dimensions: 42mm x 32mm 

 Water Conductivity probe specification: 
 Cell Constant: 1.0 
 Support Detection Range: 0~20ms/cm 
 Temperature Range: 0~40°C 

 Water Conductivity Signal Conversion Board 
specification: 
 Supply Voltage: 3.0~5.0V 
 Output Voltage: 0~3.4V 

 Probe Connector: BNC 
 Signal Connector: PH2.0-3Pin 
 Measurement Accuracy: ±5% F.S. 
 Board size: 42mm x32mm 

3.4 Raspberry-Pi 
The Raspberry Pi, a credit card-sized 

minicomputer, was developed by the Raspberry Pi 
Foundation in the UK under the guidance of 
Broadcom's Hardware Architect, Eben Upton.  
The Raspberry Pi functions similarly to a personal 
computer, enabling tasks such as email management, 
document creation, web browsing, and multimedia 
playback [12]. 

In this study, Raspberry Pi will be utilized as 
Database and to perform noise reduction by 
implemented Median Filter and perform predictions 
using Linear Quadratic Estimation (LQE). This 
algorithm will be implemented on Node-RED,  
it is a flow-based development tool for visual 
programming [13]. 

 Additionally, Raspberry Pi will function as an 
MQTT broker, facilitating communication between 
various sensor modules in IoT devices.  
All measurement data from the water pH, PPM  
(parts per million), and temperature sensor modules 
will be transmitted to the Raspberry Pi using  
the MQTT protocol over a WiFi TCP/IP-based local 
area network. This setup ensures efficient data 
collection and processing, enabling real-time 
monitoring and analysis of the sensor data. 

3.5 MQTT Broker 
The Message Queuing Telemetry Transport 

(MQTT) protocol, in accordance with OASIS 
standards [14], is a technology that has a significant 
role in the field of the Internet of Things (IoT). 
Designed as a lightweight publish/subscribe 
messaging transport protocol, MQTT is optimized 
for connecting remote devices with minimal 
bandwidth consumption. The flexibility of MQTT 
technology has resulted in its widespread use across 
a variety of industries, including automotive, 
manufacturing, telecommunications, mining, and 
gas. The protocol facilitates seamless message 
transmission between IoT devices. This bidirectional 
communication capability enables the efficient 
broadcasting of messages to groups of devices, thus 
supporting the implementation of IoT on a large 
scale. 

One of the key strengths of MQTT is its ability to 
connect millions of IoT devices, ensuring reliable 
and scalable communication. This research is using 
Eclipse Mosquitto, an open-source message broker 
that implements MQTT versions 3.1 [15]. Eclipse 



 Journal of Theoretical and Applied Information Technology 
30th June 2025. Vol.103. No.12 

©   Little Lion Scientific  
 

ISSN: 1992-8645                                                                    www.jatit.org                                                     E-ISSN: 1817-3195 

 
5152 

 

Mosquitto is known for its lightweight architecture, 
making it suitable for use on both simple computing 
devices and high-performance servers. MQTT's 
lightweight and robust performance characteristics 
make it an ideal choice for IoT applications that 
require efficient and reliable communication. The 
use of Eclipse Mosquitto further enhances the 
adoption of this protocol, providing a flexible and 
scalable solution for diverse IoT applications. 

3.6 Node-RED 
Node-RED is a powerful programming tool 

designed to facilitate the integration of various 
hardware components, APIs, and online services in 
innovative and engaging ways [13]. It features a 
user-friendly, browser-based flow editor that 
simplifies the creation and management of complex 
workflows by allowing users to combine multiple 
nodes from an extensive palette. 

Node-RED’s intuitive flow-based programming 
interface allows researchers to efficiently design and 
implement these modules, while ensuring seamless 
integration and functionality. In this research, Node-
RED is used to develop the Median Filter software 
module and Linear Quadratic Estimation (LQE) 
software module, as well as several other 
computational methods and functions. In addition, 
Node-RED is also used to create comprehensive 
dashboards that visualize important measurements 
such as water pH, parts per million (PPM), water 
temperature, and air temperature. The dashboards 
provide real-time data visualization, which enhances 
the monitoring and control capabilities of the system.  

Node-RED’s flexibility and ease of use make it an 
ideal choice for developing advanced IoT 
applications and data-driven solutions. Its ability to 
integrate multiple technologies and present data in an 
easily accessible format underscores its value in both 
research and practical implementation. 

3.7 Median Filter 
Median filter is a highly effective method  

for eliminating noise while preserving the quality of 
the original signal [8]. Impulse noise, characterized 
by narrow, high-amplitude spikes, can severely 
distort sensor readings. In this research, Moving 
Median Filter is applied as a powerful technique to 
minimize impulse noise in sensor measurements, 
resulting in more accurate and reliable readings. 
Here is a brief overview of how a moving median 
filter works: 

1. Sliding Window: The filter uses a sliding 
window that moves across the sensor data. 
The window size is usually an odd number 
to ensure there is a middle value. 

2. Median Calculation: For each window 
position, the filter calculates the median 
value of the data points in that window. The 
median is the middle value after the data in 
the window has been sorted in ascending 
order. 

3. Value Replacement: The middle value in 
the window is replaced with the median 
value. This process is repeated as the 
window moves across the entire dataset. 

The output of the Moving Median Filter is a 
smoother signal with reduced impulse noise, making 
it more reliable for further analysis and processing. 
This technique is particularly useful in applications 
where maintaining signal purity is critical, such as in 
liquid sensors used to monitor water quality. 

3.8 Linear Quadratic Estimation 
The Linear Quadratic Estimation (LQE) 

algorithm, also known as the Kalman filter, is one of 
widely used estimation methods [16]. This algorithm 
works by estimating the next position based on the 
last known position and movement pattern, then 
adjusting the prediction using new incoming data to 
produce a more accurate position estimate.  

In this research, the system model and 
measurements model are assumed to be linear. 
Additionally, both process noise and measurement 
noise are considered to be zero-mean Gaussian. 
Initial estimates of the state and error covariance are 
derived from prior knowledge or empirical data. 
Furthermore, process noise and measurement noise 
are assumed to be independent, which simplifies the 
covariance calculations. Here is a simplified 
explanation of the key mathematical concepts 
involved in single dimension of LQE: 

1. Initialization Step 
 Set the initial state estimate 𝑥ො଴   
 Set the initial uncertainty 𝑃଴   

2. Prediction Step  
The prediction step is about forecasting the 
state of the system and its uncertainties 
before introducing new measurements.  
It involves two key equations: 
 State prediction:    

𝑥ො௞|௞ିଵ =  𝑥ො௞ିଵ|௞ିଵ (1) 
This equation predicts the state at  
the current time step (𝑘) based on the 
state estimate from the previous time step 
(𝑘 − 1). It assumes that the state remains 
the same unless updated by new 
measurements. 
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 Error covariant prediction:   
P௞|௞ିଵ =  P௞ିଵ|௞ିଵ + 𝑄        (2) 
This equation is the predicted error 
covariance, representing the uncertainty 
in the state prediction. (𝑄) is the process 
noise covariance, accounting for 
uncertainties in the process model. 

3. Update Step  
The update step refines the state prediction 
by incorporating new measurements.  
It consists of three main parts: 
 Calculate the Kalman Gain:   

𝐾௞ =
௉ೖ|ೖషభ

௉ೖ|ೖషభାோ
          (3) 

The Kalman Gain (𝐾௞) determines how 
much the predictions should be adjusted 
based on the new measurement.  
It balances the uncertainty in the 
prediction (𝑃௞|௞ିଵ) and the measurement 
noise (𝑅). A higher Kalman Gain means 
more weight is given to the new 
measurement. 

 Update the state estimate:  
𝑥ො௞|௞ =  𝑥ො௞|௞ିଵ + 𝐾௞(𝑧௞ − 𝑥ො௞|௞ିଵ) (4) 
This equation updates the state estimate 
(𝑥ො௞|௞) by incorporating the incoming 
new measurement (𝑧௞). The difference  
(𝑧௞ − 𝑥ො௞|௞ିଵ) is the measurement 
residual, indicating how much the 
prediction deviates from the actual 
measurement.  

 Update the error covariance:   
𝑃௞|௞ = (1 − 𝐾௞)𝑃௞|௞ିଵ          (5) 
This updates the error covariance (𝑃௞|௞), 
reflecting the reduced uncertainty after 
incorporating the new measurement.  

Where: 
 𝑥ො is the state estimate 
 𝑃 is the error covariance  
 𝑄 is the process noise covariance 
 𝑅 is the measurement noise covariance 
 𝐾 is the Kalman Gain 
 𝑧௞ is the measurement at time (𝑘)  

This cycle repeats for each new measurement, 
allowing the LQE algorithm to continuously refine 
its estimates. This iterative process helps in 
maintaining an accurate estimate of the true state 
over time. The algorithm is also capable of handling 
missing or delayed data, thus maintaining stability 
and regulation in the system.  

3.9 Results on Previous Research 
Hydroponic farming helps reduce soil erosion, 

water pollution, and pesticide use, all of which can 

have a major positive impact on the environment. 
Plants grown in a hydroponic system are completely 
dependent on the nutrients provided in the water. 
Maintaining proper nutrient levels throughout the 
growing cycle can be a challenge, as plant needs can 
change over time [1]. 

Traditional water monitoring systems and devices 
have several limitations. They require a lot of human 
effort to monitor water quality, which results in high 
time and labor costs. In addition, many traditional 
systems are unable to analyze and process the 
collected data [2]. 

Maintaining a stable pH level in a hydroponic 
system is a challenge. Experimental results indicate 
that attempts to lower water pH often result in 
temporary spikes, both upwards and downwards, 
leading to inaccurate decisions regarding the 
addition of pH-Down solutions. Even after achieving 
a homogeneous solution, fluctuations in pH sensor 
reading persist. These inaccuracies are attributed to 
unstable power supply voltages to the sensor 
modules and noise interference, which cause wide 
deviations and potential oscillations in measurement 
results [3]. 

Recent advances in Internet of Things (IoT) 
technology have significantly improved the 
monitoring and control of hydroponic farming 
systems. The iPONICS system is a prime example of 
an IoT-based hydroponic system capable of 
monitoring and controlling water quality to ensure 
optimal plant growth. Further reliability analysis, 
including fault induction and stress testing, is needed 
to improve system robustness. Furthermore, 
predicting nutrient values based on water quality 
sensor data remains a challenging task, especially in 
the context of more specific nutrient monitoring [17]. 

Monitoring and controlling hydroponic systems 
can be challenging. The Internet of Things (IoT) 
offers a solution by enabling real-time monitoring 
and control of these systems from anywhere and at 
any time. IoT system integration increases crop 
productivity through real-time monitoring and easy 
accessibility. In addition, the use of IoT can increase 
the efficiency of hydroponic systems, with a focus 
on evaluating IoT sensors and actuators to measure 
and regulate nutrient supply, thereby encouraging 
sustainable agricultural productivity [18]. 

 

4.  RESEACH METHOD 

Research methodology is the set of stages that 
must be established before conducting the research, 
ensuring that the research is conducted in a directed, 
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clear, efficient, and effective manner. The following, 
Figure 1 is a fishbone diagram of the research 
describe what will be done in this study. 

 

Figure 1:  Research flow based on fish bone diagram 

Several research has been conducted on the 
deployment of Internet of Things (IoT) within 
hydroponic systems [2][17][18]. This study adopts 
an applied experimental research design, grounded 
in engineering-based prototyping and empirical 
validation by presenting an advanced IoT-based 
strategy for enhancing water quality control in 
hydroponic systems. It is leveraging the integration 
of hardware, software, computer network and IoT 
protocols. The system utilizes water quality sensors, 
dosing pumps, ESP32 microcontrollers and 
Raspberry Pi, programmed with Arduino, JavaScript 
and Node-RED, to collect and process water quality 
data. The implementation of MQTT and TCP/IP 
protocols ensures seamless data transmission across 
the network.  

To improve the accuracy of water quality 
measurements, the research uses the Median Filter 
data smoothing techniques and Linear Quadratic 
Estimation (LQE). Data was collected through live 
trials and performance was evaluated using standard 
accuracy metrics such as MAE and RMSE. This 
design emphasizes iterative testing under controlled 
conditions, reflecting common practices in 
embedded systems and control engineering research. 
This type of research design aligns with previous 
studies in industrial process control and 
environmental monitoring, where similar filtering 
and estimation techniques have been used to improve 
sensor data reliability. For example, Kalman-based 
filters have been applied in pipeline integrity 
monitoring technique which is based on Linear 
Quadratic Estimator (LQE) [19]. 

This study is guided by the following research 
questions: 
1. How effectively can a Median Filter reduce 

impulsive noise in pH sensor and EC sensor 
measurements? 

2. Can the integration of Median Filter with Linear 
Quadratic Estimation (LQE) further improve the 

accuracy and stability of real-time water quality 
estimation? 

3. What is the impact on the overall performance of 
an IoT-based hydroponic system in terms of error 
metrics such as MAE and RMSE? 

The primary focus is on monitoring water quality 
parameters, including pH, PPM, and temperature, to 
ensure optimal conditions for plant growth. This 
comprehensive approach not only enhances the 
precision of water quality measurements but also 
provides an effective control mechanism, thereby 
improving the overall efficiency and productivity of 
hydroponic farming. The relevant data used in this 
research can be accessed in Mendeley Data 
(https://doi.org/10.17632/ghhxdnyh6v.1) 

 

4.1 Research Stages 
In this study, it will conduct IoT implementation 

to monitor and control water quality, MQTT 
integration, and as well as hardware and software 
development enhancements. The research stages are 
outlined as follows:  

1. Establish Requirements and Collect Data:  
Begin by gathering detailed information on 
the Median Filter, Linear Quadratic 
Estimation, relevant hardware modules, 
and their supporting software libraries. 

2. Construct Hardware:   
Building hardware modules that meet  
the usability goals, while ensuring 
compatibility and functionality.  

3. Software Development:   
Develop monitoring and control software, 
along with modular software tailored for 
each functional hardware modules.  

4. Integrate MQTT Broker:   
Set up and configure the MQTT Broker on 
a Raspberry Pi to facilitate communication 
between IoT devices.  

5. Implement Water Quality Monitoring and 
Control: Utilize Node-RED to implement 
IoT solutions for monitoring and 
controlling water quality parameters 
effectively.  

6. Deployment on Live Trial:  
Deploy the developed hardware and 
software modules in a Wireless-LAN for 
live hydroponic trial model. 

7. Evaluation:   
Conduct a comprehensive evaluation to 
assess the performance and effectiveness of 
the system. 
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4.2 Achievement Indicators 
Testing is an iterative process to identify errors in 

a system that may be caused by numerous factors, 
either related to software, hardware, or errors in the 
design, implementation, and specification processes. 
Correction of these errors is continuously carried out 
until the desired results are achieved.  
The following are the achievement indicators for this 
research: 

1. Median Filter and Linear Quadratic 
Estimation development were successfully 
developed and integrated into a model of 
hydroponic system with IoT-based sensors 
for real-time water quality monitoring and 
control. 

2. The accuracy of water quality measurement 
is increased by reducing sensor data noise 
by up to 90% through median filtering and 
increasing the accuracy of water quality 
measurement with LQE, resulting in a 
deviation of less than 5% from the true 
value. 

3. Monitoring pH, water PPM, and 
temperature can be done effectively and in 
real-time, with data stored locally and water 
quality reports generated periodically. 

4. Successfully integrated IoT-based 
monitoring and control system with MQTT 
protocol that enables comprehensive 
remote and real-time farm management. 

5. Designing a user-friendly interface with 
clear visualization of water quality data and 
control options for manual adjustment, as 
well as ensuring that the functions on the 
dashboard work properly. 

 

5.  IMPLEMENTATION 

5.1 System Architecture Design 
The air temperature, water temperature, water pH, 

and water EC sensors are connected to an ESP32 
microcontroller, which also controls the dosing 
pump for adjusting water pH and nutrient levels.  
The ESP32 module includes MQTT client software 
to connect with the Node-RED MQTT client on the 
Raspberry Pi via Wireless LAN for sending and 
message reception.  

 
Figure 2:  Water Quality Control for Hydroponic Plan 

System Architecture 

The Raspberry Pi module functions as an MQTT 
broker and water quality controller, equipped with a 
monitoring dashboard and database. Measurement 
data from the air temperature, water temperature, 
water EC sensor, and water pH sensors are sent to the 
MQTT broker under the topic "Monitoring."  
The data received by the Node-RED MQTT client is 
processed by the Median Filter and Linear Quadratic 
Estimation (LQE) modules within Node-RED, then 
stored in a database and displayed on the monitoring 
dashboard. The control of water nutrient levels and 
pH for hydroponic plants is managed through the 
Nutrient and pH control module in Node-RED using 
the topic "Control." These messages are received  
by the ESP32 module, which activates the dosing 
pump to add the required solution to the water. 

5.2 Water Quality Control and Monitoring 
Function 

Under normal conditions, the system operates 
periodically every 2 seconds to measure air 
temperature, water temperature, water PPM, and 
water pH. The water PPM adjustment function  
can be performed by entering the amount of AB-Mix 
plant nutrient solution in milliliters unit, pressing  
the "AB MIX" button to activate the dosing pumps 
of nutrient solutions-A and nutrient solutions-B. 
Similarly, water pH control can be achieved by 
entering the desired amount of pH solution to be 
added to the water and pressing the "PH UP" button 
to increase the water pH or the "PH DN" button to 
decrease it. All hydroponic plants have specific pH 
and nutrient targets. For example, Pak-Choi grows 
optimally in water with a pH of 7 and  
a nutrient concentration from 1050 to 1400 PPM. 
An example of water quality monitoring and control 
over a 2-hour period is shown in Figure 3 and the 
final result in Figure 4.  

 

Figure 3:  Water Quality monitoring  

The orange line represents the processed raw 
sensor data using a Median Filter, while the final 
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values estimated using LQE are shown by the red 
line. The data displayed on the dashboard can be 
cleared by pressing the "CLEAR" button. As shown 
in Figure 4, the LQE estimation results provide  
a final measurement of water PPM is 1109.08 and 
final measurement of water pH value is  7.02. 

 

Figure 4:  Final result Water Quality monitoring  

5.3 pH and PPM Water Sensor Measurement 
The results of the solution measurement example 

at a temperature of 30°C for the pH sensor using a 
pH 7 buffer solution, and the EC sensor using a 
conductivity standard of PPM 1084 can be presented 
in Figure 5 and Figure 6. Visual observations 
indicate significant impulse noise in the direct 
measurements from the pH and EC sensors, which 
can affect measurement accuracy.  

As seen in Figure 5, the pH measurement of water 
varies from 6.95 to 7.70. The average pH value of 
solution is 7.06, the median is 7, and has a deviation 
of 0.1. Comparing the average and median values, it 
is evident that the median-based measurements are 
same to the true pH solution values, which is 7. 

 

Figure 5:  pH Sensor Measurement  

The PPM measurements calculation taken from 
EC sensor result in Figure 6, ranged from 0 to 
1133.27.  The average PPM value of solution is 
1048.85, the median is 1089.83 and has a deviation 
of 81.41. Comparing the average and median values, 
it is evident that the median-based measurements are 

closer to the true values of conductivity standard 
solution, which is 1084. 

 

Figure 6:  EC Sensor Measurement in PPM unit  

5.4 Median Filter Implementation 
The application of the Median Filter in measuring 

PPM and pH values of water can reduce noise  
that may be caused by electrical fluctuations, 
environmental disturbances such as residues on the 
sensor, or variations within the sensor itself.  
The window size for the data sample observation in 
the Median Filter needs to be carefully determined. 
A window size that is too small is ineffective at 
eliminating noise, while a window size that is too 
large can remove important measurement details [8].  
As a reference for determining the window size, 
values around the inflection point of the Mean 
Absolute Error (MAE) or Root Mean Squared Error 
(RMSE) calculations can be chosen, as shown in 
Figure 7 for pH water measurement and Figure 8 for 
PPM water measurement. 

 

Figure 7:  pH Median Filter Windows Size 

 

 

Figure 8:  PPM Median Filter Windows Size 
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In this research, the window size for the PPM 
Median Filter is 11, and the window size for the pH 
Median Filter is 9. As shown in Figure 9 and  
Figure 10, the significant noise in the sensor 
measurement results has been greatly reduced after 
passing through the Median Filter. The PPM 
measurements varied from 1063.61 to 1116.83, with 
an average value of 1089.79 and a deviation of 8.01. 
The pH measurements varied from 6.98 to 7.15, with 
an average value of 7 and a deviation of 0.01. 

 

Figure 9:  pH Median Filter Implementation 

 

 

Figure 10:  PPM Median Filter Implementation 

5.5 Linear Quadratic Estimation 
Implementation 

After passing through the Median Filter, water 
quality estimation can be done using Linear 
Quadratic Estimation (LQE). LQE is an estimation 
method that uses a mathematical model to predict the 
actual value based on observed data. This method 
was chosen because of its ability to provide more 
accurate estimates even though there is uncertainty 
in the data. The values (𝑅) and (𝑄) are matrices used 
in the LQE algorithm to improve the estimation [19].  

(𝑅)  represents the covariance of measurement 
noise that reflects the uncertainty in sensor 
measurements. For a 1-dimensional model, the 
determination of the value of (𝑅) can be obtained 
from the calculation of the variance value of the 
sensor output data. (𝑄) represents the covariance of 
process noise that reflects the uncertainty in the 
process model, where a smaller value (𝑄) indicates 

that the process model is more dependable. The 
determination of the value (𝑄)  is determined based 
on an understanding of the dynamics of the system 
obtained from the results of the trial and visual 
observations of the output produced by considering 
the expected accuracy and speed of estimation 
factors. Some of the testing results from all the tests 
that have been carried out can be seen in Figure 11 
to Figure 15. The red line is the outcome LQE 
calculation result.  

 

Figure 11:  LQE Trial with Q Values is (R/1) 

 

 

Figure 12:  LQE Trial with Q Values is (R/50) 

 

 

Figure 13:  LQE Trial with Q Values is (R/500) 
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Figure 14:  LQE Trial with Q Values is (R/5000) 

 
Figure 15:  LQE Trial with Q Values is (R/100000) 

It can be seen that the application of estimation 
using LEQ on the outcome of Median Filter output 
has a significant impact as shown in Figure 16 and  
Figure 17. Based on the variance calculation of the 
data sample, the values (R) for water pH is 0.0002, 
and PPM is 97.12. From the results of the trial 
application of several values (Q) for measuring water 
pH and PPM, it was found that the optimal value (Q) 
is (R/5000). By adding the LQE module, the results 
of water PPM measurements have a variation in 
value from 1074.23 to 1101.23. The average value is 
1090.10 and the deviation is 4.46. While the 
measurement of water pH has a variation in value 
from 6.98 to 7.02, with an average value of 7 and a 
deviation value of 0.005. 

 

Figure 16:  LQE Implementation for pH Measurement 

 

Figure 17:  LQE Implementation for PPM Measurement 

 
6.  RESULT 

The main objective of this research was to develop 
and evaluate an IoT-based water quality control 
system for hydroponic farming that enhances the 
accuracy of sensor data through the integration of 
Median Filtering and Linear Quadratic Estimation 
(LQE). The system aimed to reduce noise in sensor 
measurements, improve estimation accuracy, and 
enable real-time monitoring and control of water 
parameters such as pH and PPM.  

The following describes the results in controlling 
water quality in hydroponic systems through the 
integration of Internet of Things (IoT) technology for 
real-time data collection, and the implementation of 
strategies using Median Filters combined with Linier 
Quadratic Estimation. 

6.1 Median Filter and LQE Result Analysis 
This study was to evaluate the accuracy of pH and 

PPM measurements for hydroponic plants using 
effective data processing techniques, namely the 
combination of Median Filter and LQE. 
Measurements were carried out on a pH 7 buffer 
solution, and a conductivity standard with a PPM 
value of 1084 at a temperature of 30 Celsius. The 
results of MAE and RSME calculations can be seen 
in Table 1 and Table 2. 

Table 1: MAE Relative Error of pH 

PPM 
Measurement 

MAE RMSE 
Relative Error 

(MAE) 
Sensor 0.073 0.171 1.044% 
Median Filter 0.011 0.016 0.153% 
LQE 0.006 0.008 0.092% 

Table 2: MAE Relative Error of PPM 

PPM 
Measurement 

MAE RMSE 
Relative Error 

(MAE) 
Sensor 55.792 193.535 5.147% 
Median Filter 9.297 11.426 0.858% 
LQE 7.009 8.393 0.64% 
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The results show that the application of the 
Median Filter significantly reduced impulsive noise 
in both pH and PPM measurements. The raw sensor 
data for PPM showed a mean absolute error (MAE) 
of 55.792 with a relative error of 5.147%, which was 
reduced to an MAE of 9.297 and relative error of 
0.858% after Median Filtering. This confirms that 
the first-stage noise reduction method achieved its 
objective of enhancing sensor reliability. 

The addition of LQE further refined the sensor 
data. PPM measurement errors decreased to an MAE 
of 7.009 and relative error of 0.64%, indicating an 
87.44% improvement from the original sensor 
readings. Similarly, for water pH measurements, the 
relative error decreased from 1.044% to 0.092%, 
showing an overall improvement of 91.21%. These 
results validate the effectiveness of LQE in 
generating stable and accurate estimates for real-time 
applications. 

From the results of the application of the Median 
Filter and LQE, it was found that this method is 
effective for use in controlling water quality for 
hydroponic plants. The measurement results from 
the sensor that has been processed using the Median 
Filter and LQE showed values very close to the 
actual data. It was found that the average error value 
was less than 1% for water PPM measurements and 
the average error value was less than 0.1% for water 
pH measurements. Further analysis showed that this 
method is able to respond to changes in water quality 
accurately, so it can be used to maintain optimal 
conditions for the growth of hydroponic plants. The 
measurement results showed that the MAE and 
RMSE values for water PPM and pH measurements 
provide a good picture of accuracy. 

 

7.  DISCUSSION  
Several studies have explored the integration of 

IoT in hydroponic systems for real-time monitoring 
[2][17][18]. While earlier systems acknowledged the 
issue of sensor inaccuracy due to environmental 
noise or unstable voltage sources [3]. The majority 
rely on simple averaging techniques, which require a 
deeper investigation into the root cause of signal 
limitations by noisy sensor data. This research 
proposes a hybrid signal processing method that 
integrates a Median Filter for impulse noise 
suppression and Linear Quadratic Estimation (LQE) 
for predictive refinement. 

The results of this study indicate that the use of 
Median Filter and LQE can significantly improve the 
accuracy of water quality control for hydroponic 
plants. The system architecture, which integrates pH 

and EC sensor to ESP32 as IoT device, a Raspberry 
Pi functioning as an MQTT broker, and a Node-RED 
dashboard, facilitated real-time data collection, 
analysis, and control. It allowed users to remotely 
track water quality metrics and operate dosing 
pumps via an intuitive interface.  

While the proposed system performs effectively in 
terms of sensor, there are several limitations such as 
the need for periodic sensor calibration, requiring 
longer measurement times and dependence on 
WLAN connectivity. The experiments were 
conducted using a limited set of calibration 
conditions, including a single pH buffer solution  
(pH 7) and one standard nutrient concentration  
(PPM 1084). Further studies with more variations of 
buffer solutions and measurements are needed to 
strengthen these findings and explore the influence 
of other factors on the accuracy of PPM and pH 
measurements of water. 

In addition, the implementation of this system on 
a larger scale may require additional adjustments to 
ensure optimal performance. The system currently 
relies on fixed parameters for the Median Filter 
window size and LQE covariance values. While 
effective in the current setup, these parameters may 
not be optimal under different sensor vendor. An 
adaptive mechanism or learning-based optimization 
for tuning these parameters dynamically was outside 
the scope of this research but represents a promising 
area for future exploration. Further research is 
needed to overcome these limitations and evaluate 
this method under different environmental 
conditions. 

 

8.  CONCLUSION  
This research presents an innovative two-stage 

data enhancement approach that integrates Median 
Filtering and Linear Quadratic Estimation (LQE) to 
address a persistent challenge in IoT-based 
hydroponic systems related to inaccurate sensor 
readings [3]. Although IoT has been widely adopted 
for hydroponic monitoring, many existing 
approaches lack effective noise mitigation 
techniques, resulting in inconsistent and unreliable 
data [17]. 

Overall, an innovative IoT-based strategy utilizing 
Median Filter and Linear Quadratic Estimator (LQE) 
has demonstrated its effectiveness in managing 
water quality in hydroponic systems. This approach 
not only improves measurement accuracy but also 
provides reliable estimates despite significant sensor 
interference. As a result, this study provides a 
systematic and experimentally validated solution 
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that significantly enhances measurement accuracy, 
with relative error reductions exceeding 85% for 
both pH and PPM readings.  

By validating the approach through MAE and 
RMSE analysis, this study advances the state of the 
art in precision agriculture and smart farming. It 
offers a low-cost, high-accuracy methodology for 
water quality control. it can help hydroponic farmers 
maintain optimal water conditions for plant growth, 
thereby increasing yields and resource efficiency. 

The integration of technology in hydroponic 
farming is expected to increase further, with 
advances such as smart sensors and artificial 
intelligence enabling more precise control over plant 
growth and nutrient management [1]. It is certain that 
artificial intelligence can overcome issues such as 
faulty sensors and abnormal measurements due to 
environmental factors by making informed decisions 
based on the state of the system. In addition, machine 
learning methods offer accurate water quality 
assessments [2]. Future developments can focus on 
improving the lag experienced in eliminating 
impulse interference and the estimation process 
using machine learning techniques. 
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