
 Journal of Theoretical and Applied Information Technology 
30th June 2025. Vol.103. No.12 

©   Little Lion Scientific  
 

ISSN: 1992-8645                                                                    www.jatit.org                                                     E-ISSN: 1817-3195 

 
5250 

 

COMPARATIVE ANALYSIS OF CLASSICAL AND 
QUANTUM ALGORITHMS FOR SOLVING LINEAR 

SYSTEMS OF EQUATIONS: THEORETICAL INSIGHTS AND 
BENCHMARKING CHALLENGES 

DR.SRISUDHA GARUGU1, DR. V. RAVI KUMAR 2, D.ASHWINI3, PETHOTA SWAROOPA4 
K.V.D.S. SANTHOSH5 

1Department of Computer Science and Engineering, ACE Engineering College, 
                                   Ankushapur, Ghatkesar Mandal, Medchal District, Telangana-501301 

2Department of Computer and Engineering, ACE Engineering College 
3Department of Computer and Engineering, ACE Engineering College 
4Department of Computer and Engineering, ACE Engineering College 
5Department of Computer and Engineering, ACE Engineering College 

 
ABSTRACT 

 
Modern computers utilize a model based on a simple Turing machine concept. This study contains an 
extensive comparative review of classical and quantum algorithm approaches to solving a system of linear 
equations. The study details standard classical approaches like Gaussian Elimination or Conjugate Gradient 
Method and compares these with the algorithm of quantum theory algorithm HHL (Harrow-Hassidim-
Lloyd). It considers the logic behind each of them, their benchmarks, scalability, implementation 
difficulties and practical use. Benchmarking results illustrate the fact that a classical approach continues to 
do especially good for small to moderate sized problems. However, quantum computation has the potential 
for an exponential speedup using algorithms like HHL in well-conditioned sparse matrices. The current 
limits of the hardware are discussed and future research directions needed to be able to utilize quantum 
computing for larger scale linear algebra problems are presented. 
Keywords: Quantum Computation, Linear Algebra, Computational Complexity, Quantum Computing 

Scalability, HHL Algorithm 

1. INTRODUCTION 

The solution to simple linear systems of 
equations is important and constitutes a 
fundamental of scientific computing in 
disciplines that include physics, engineering, 
economics, and even data science. These systems 
described the equation Ax=b, where A is a 
matrix of coefficients and the vector b is made 
up of constants, comes up in tasks as diverse as 
the simulation of physical processes to 
optimization of industrial activities. 

The solution of large scale linear 
systems has a significant computational 
complexity that poses grave difficulties for 
classical approaches to computing. For example, 
in weather modeling, the ability to solve large 
scale linear systems to predict weather behaviors 
is essential and often time’s classical algorithms 
are rendered practically impossible. As system 
sizes increase, other common methods such as 

Gaussian Elimination and iterative algorithms 
like the Conjugate Gradient Method become 
increasingly limited in their practical 
efficiencies. This spurs the search for new 
methods which can yield great performance and 
speed improvements which are not easily 
achievable with conventional methods. 

 
Objectives 

The purpose of this study is to deeply 
assess both classical and quantum algorithms 
concerning the linear systems of equations – 
their algorithms, the logic behind them, their 
computational intricacies, and real world effects 
such as their Gaussian Elimination and the 
Conjugate Gradient steam’s classical 
comparisons to quantum computing’s Harrow-
Hassidim-Lloyd (HHL) Algorithm. By 
examination of all these aspects, the study 
reveals some possible benefits of quantum 
computation in meeting the requirements of large 
scale linear algebra constructs. 
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Through this, I will elucidate the scope 
of the problem of scientific computing and how 
classical, as well as quantum algorithms, are 
enabled to solve it. 

2. LITERATURE REVIEW 

The study of linear systems of equations 
has advanced considerably with respect to both 
classic and quantum paradigms. The classical 
methods like Gaussian elimination and the 
Conjugate Gradient Method have been carefully 
researched in regards to their effectiveness and 
practicality.  

In contrast, quantum computing 
brought new and hopeful techniques such as 
the Harrow-Hassidim-Lloyd HHL algorithm can 
be exponential faster given the appropriate 
parameters, also known simply as HHL. In this 
section it presents an extensive literature review 
of the most important classical and quantum 
algorithms for linear systems for the last few 
decades. 

2.1 Classical Algorithms 

2.1.1 Gaussian Elimination 
Gaussian Elimination is a well-

established method for solving linear systems 
and remains an essential technique in numerical 
linear algebra. Numerous studies have explored 
its computational complexity and possible 
improvements. Trefethen and Bau (1997) offered 
a comprehensive overview of Gaussian 
Elimination, emphasizing its numerical stability 
and pivoting strategies [1]. The computational 
complexity is O(n3) with a space complexity of 
O(n2). Golub and Van Loan (2013) examined the 
efficiency of Gaussian Elimination in large-scale 
matrix computations and looked into parallel 
implementations [2]. Demmel et al. (2007) 
proposed optimizations aimed at minimizing the 
number of floating-point operations for large 
matrices [3]. 

Gaussian Elimination is commonly 
employed to solve systems of linear equations. It 
systematically eliminates variables by 
transforming the system into an upper triangular 
form, which allows for efficient back-
substitution to find the solution. While it 
performs well for small to medium sized 
problems, its cubic time complexity can render it 
less suitable for very large systems. 

2.1.2 Conjugate Gradient Method 

A good iterative technique for sparse 
and symmetric positive definite systems is the 
Conjugate Gradient, or CG method [4]. 
Conjugate Gradient method , originally proposed 
by Hestenes & Stiefel (1952) for well-
conditioned matrices [4] dissipates rapidly. 
Shewchuk (1994) addressed topics like 
preconditioning and convergence in his 
comprehensive tutorial on real-world 
implementations. Complexity of computation: 
o(n2), complexity of space: o(n). [5]. In order to 
improve performance in computational physics 
applications, Saad (2003) investigated 
enhancements to Krylov subspace methods, such 
as variations of the CG method [6]. 

 

 
2.2 Quantum Algorithms 

2.2.1 Harrow-Hassidim-Lloyd Algorithm 

The HHL algorithm [4] to efficiently 
solve linear systems was introduced as a 
quantum breakthrough that really had only truly 
existing in 2009. For some problem instances, it 
was shown by Harrow, Hassidim and Lloyd 
(2009) that an exponential speedup over classical 
methods could be theoretically justified via the 
HHL algorithm [7]. HHL's precision 
requirements were raised by Childs et al. (2017), 
increasing its viability for near-term quantum 
hardware implementations [8]. The use of HHL 
in quantum machine learning applications, 
specifically in support vector machines, was 
investigated by Rebentrost et al. (2018) [9]. 
Under certain circumstances it exhibits an 
exponential speedup over classical methods.it 
uses entanglement and quantum superposition to 
encode several vectors into quantum states. 
Hardware limitations, error correction, and qubit 
coherence are implementation challenges.  

By encoding matrix operations into 
quantum states, the HHL algorithm takes 
advantage of quantum parallelism. It can achieve 
exponential speedup under certain conditions 
(e.g., sparse matrices with low condition 
numbers), though practical implementations are 
currently limited by hardware challenges and 
quantum error correction requirements 
 
2.2.2 Variational Quantum Linear Solver  

Given the constraints of current 
quantum hardware, hybrid quantum-classical 
approaches have gained attention. Bravo-Prieto 
et al. (2019) introduced the Variational Quantum 
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Linear Solver which adapts classical 
optimization techniques to quantum circuits for 
solving linear systems [10].Cerezo et al. (2021) 
provided a review of variational quantum 
algorithms, discussing their advantages and 
limitations compared to purely quantum 
approaches [11].Arute et al. (2019) 
experimentally demonstrated VQLS on a 
quantum processor, providing benchmark results 
against classical solvers [12]. 
 
3. COMPARATIVE ANALYSIS OF 

CLASSICAL AND QUANTUM 
METHODS  

Computational scalability is a major 
problem for classical algorithms. For instance, 
Gaussian Elimination’s O(n³) time complexity 
becomes a bottleneck for high-dimensional 
systems, while iterative methods like the 
Conjugate Gradient are more efficient for sparse 
matrices 

 
3. Comparative Analysis of Classical and 
Quantum Methods  

Computational scalability is a major 
problem for classical algorithms.For instance, 
Gaussian Elimination’s O(n³) time complexity 
becomes a bottleneck for high-dimensional 
systems, while iterative methods like the 
Conjugate Gradient are more efficient for sparse 
matrices 
 
3.1 Gaussian Elimination Methodology 
 

Gaussian Elimination is a way to solve 
linear equations (Ax=b). It works by changing 
the augmented matrix [A∣b] into a simpler, upper 
triangular form using row operations (Strang, 
2009) [1]. 
 
Step-by-Step Process: 
 
1. Forward Elimination: The method starts by 

using the row operations to convert A into 
upper triangular matrix. It involves 
eliminating variables below the main 
diagonal by subtracting suitable multiples of 
one equation from another. 

Example: 

 

2. Back Substitution: After the matrix A is 
transformed into upper triangular form 
solution vector x can be determined by back 
substituting the values starting from the last 
equation upwards (Trefethen & Bau, 1997) 
[3]. 

 
Computational Complexity 
 
 Time Complexity: O(n3), where n is the 

dimension of A-matrix. This complexity 
arises primarily from the forward elimination 
step which involves n2 operations each 
requiring n divisions or multiplications 
(Demmel, 1997) [4]. 

 Space Complexity: O(n2), for storing the 
augmented matrix [A∣b]. (Higham, 2002) [5]. 

 
Applicability 
 
 Effectiveness: Gaussian Elimination is 

effective for general matrices and small to 
moderate-sized systems of equations (Golub 
& Van Loan, 2013) [2]. 

 Limitations: It becomes computationally 
expensive and inefficient for very large 
sparse matrices due to its dense matrix 
operations. Sparse matrices, which have 
mostly zero entries, do not benefit from the 
structure of Gaussian Elimination's 
operations, leading to inefficiencies in both 
time and space (Saad, 2003) [6]. 

 
3.2 Conjugate Gradient Method 
 
Iterative Approach 
 

The Conjugate Gradient Method is an  
algorithm used to solve symmetric positive 
definite linear systems Ax=b. 
 Algorithm: It begins with a guess x0  and 

iteratively improves solution using conjugate 
directions. Each iteration k computes a new 
solution xkthat minimizes the quadratic form ½ 
XT-bTX     (Shewchuk, 1994). 

 Conjugate Directions: Successive search 
directions pk  are conjugate with respect to the 
matrix A, meaning pi

T Apj=0 for i≠j. This 
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property accelerates convergence compared to 
gradient descent methods. (Golub & Van Loan, 
2013). 

 
Complexity Analysis 
 
 Time Complexity: The Conjugate Gradient 

Method has time complexity of O(n2) per 
iteration, where n is dimension of  matrix A. 
This is really helpful for big, sparse systems 
since it doesn't have the O(n3) complexity that 
direct methods, like Gaussian Elimination, 
have. 

 Space Complexity: It only needs O(n) space to 
hold vectors and temporary stuff during each 
step. 

 
Performance Considerations 
 
Convergence Properties: For well-conditioned 
and symmetric positive definite matrices in 
particular, the method usually converges quickly, 
frequently in less iterations than conventional 
iterative methods(Barrett et al., 1994). 

Applications it’s commonly applied in 
optimization problems and numerical 
simulations where matrices have these 
characteristics. Parents have to balance between 
familial responsibilities and professional work 
and must also deal with intense competition 
Example of such LINR problems are solving 
systems that arise in computational fluid 
dynamics and finite element analysis or image 
processing. (Greenbaum, 1997).In this overview 
of Conjugate Gradient Method an iterative 
process which is ideal for large sparse systems 
which is practical for optimization and used 
extensively in scientific sundry, compute of 
storage and performed experiment. 

3.3 Harrow-Hassidim-Lloyd Algorithm 
The Harrow-Hassidim-Lloyd (HHL) 

quantum algorithm is one of most well-studied 
quantum algorithms for efficient computation in 
terms of solving linear equations, potentially 
leading to exponential speedup over best 
conventional approaches under some conditions. 
(Harrow, Hassidim & Lloyd, 2009). 
 
Principles of HHL Algorithm 
 
The HHL algorithm performs computer tasks 
that are traditionally difficult by making use of 
basic concepts of quantum mechanics such as 

quantum superposition and entanglement. This is 
a condensed explanation: 
 Quantum Superposition: Multiple classical 

states can be represented at once by quantum 
bits (qubits), to exist in a superposition of 
states. It makes it possible to encode several 
vectors or states into a quantum state in the 
context of HHL.(Nielsen & Chuang, 2010). 

 Quantum Entanglement: Qubits are capable 
of being entangled which means that even 
when they are separated when they are 
separated by great distances, the states of two 
qubits can be correlated. This characteristic 
permits for highly correlated computations and 
can facilitate the parallel processing of 
information. (Preskill, 2018). 

Exponential Speedup of HHL Algorithm 
 

Theoretical analysis suggests that HHL 
algorithm can provide an exponential 
acceleration compared to traditional methods 
when certain conditions are met: 

 

 Sparsity of Matrices: If the matrix A 
representing the system of equations is sparse 
(meaning it has few nonzero elements), the 
HHL algorithm can exploit this sparsity to 
reduce number of quantum operations 
required, thus achieving efficiency gains over 
classical sparse solvers. (Montanaro, 2016). 

 Condition Number: The condition number 
of matrix A also plays a crucial role. If AAA 
has a well-conditioned or moderately 
conditioned matrix (not too large), the HHL 
algorithm can efficiently approximate 
solutions with fewer quantum resources 
compared to classical methods. (Childs et al., 
2017) 

 
Implementation Challenges 

Despite its theoretical advantages, 
implementing the HHL algorithm faces several 
practical challenges on current quantum 
computing platforms: 
 Qubit Coherence: Quantum computations 

are highly sensitive to noise and errors, 
which can cause qubits to lose coherence 
(ability to maintain quantum states). This 
limits the extent and intricacy of  issues  that 
can be reliably solved (Preskill, 2018). 
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 Error Correction: In order to preserve the 
integrity of quantum computations over time, 
quantum error correction techniques are 
crucial. Quantum algorithms such as HHL 
become more difficult and overhead-
intensive when robust error correction codes 
are implemented (Terhal, 2015). 

 Hardware Requirements: A lot of high-
quality qubits and exact control over 
quantum gates are frequently needed for 
quantum algorithms. For complicated 
algorithms like HHL, current quantum 
hardware might not be able to achieve these 
criteria (Biamonte et al., 2017). 

 Algorithmic Overhead: Usually including 
multiple stages and quantum gates, quantum 
algorithms introduce computational overhead 
and possible sources of mistake. For real-
world applications, these stages must be 
optimized (Aaronson, 2015). 

Although the HHL algorithm presents a 
viable way for resolving linear systems of 
equations with potential to achieve exponential 
growth over traditional approaches at certain 
circumstances actualizing it on existing quantum 
platforms necessitates resolving important issues 
with qubit coherence, error correction and 
hardware capabilities.  

To fully utilize algorithms like HHL in 
practical applications, more technological 
advancements and research in quantum 
computing technologies are essential. 
 
3.4 Comparative Evaluation of Classical and 
Quantum Methods 
 
      There have been numerous studies 
comparing classical and quantum approaches. 
For example,  
 Montanaro (2016) gave a summary of 

quantum algorithms and evaluated their 
computational benefits over classical 
procedures [13].  

 Aaronson (2015) conducted a rigorous 
analysis of the underlying assumptions of 
quantum speedups, contending that the 
realization of quantum advantage requires the 
fulfillment of problem-specific requirements 
[14].  

 Without the need for full-scale quantum 
hardware, Shao & Montanaro (2021) 

presented quantum-inspired classical 
algorithms that make use of quantum 
principles [15]. 

 
3.5 Implementation Challenges and Future 
Directions 

Notwithstanding the theoretical benefits 
of quantum algorithms, there are a number of 
obstacles to their actual application:  
1. The limits of Noisy Intermediate-Scale 
Quantum (NISQ) devices and their effect on 
algorithms such as HHL were examined by 
Preskill (2018) [16].  
2. In their implementation of HHL on 
superconducting quantum processors, Zhao et al. 
(2021) identified error correction as a significant 
bottleneck [17]. 
3. Biamonte et al. (2017) examined the 
relationship between quantum computing and 
machine learning, highlighting unresolved issues 
using modifying quantum linear solvers for 
practical datasets [18]. 
 

With the introduction of quantum 
computing, there is now a substantial increase in 
the body of literature on solving linear problems. 
Because of their proven optimizations and 
dependability, classical algorithms continue to 
dominate real-world applications. However, 
quantum techniques like HHL and VQLS present 
viable substitutes, especially for large-scale 
issues where exponential speedup is practical. 
Future studies should concentrate on enhancing 
hardware capabilities and developing hybrid 
methods that blend conventional and quantum 
techniques. 

 

4. COMPARATIVE ANALYSIS 

Different algorithms provide unique 
techniques to solve linear systems of equations 
each with trade-off regarding applicability and 
computational efficiency. The theoretical 
underpinnings, performance indicators, and 
practical uses of HHL Algorithm, the Conjugate 
Gradient Method, and Gaussian Elimination are 
examined in this comparative study. This study 
intends to clarify the benefits and drawbacks of 
each algorithm in handling various 
computational issues by analyzing their time and 
space complexity, solution accuracies, scalability 
and practical applications. 
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Theoretical Comparison 
 
Gaussian Elimination: 
 The time complexity for an n×n matrix is 

O(n3). Van Loan and Golub (2013). 
 O(n2) is the space complexity. Bau and 

Trefethen (1997).  
 
A straightforward technique for resolving 

linear equation systems is Gaussian Elimination, 
which involves methodically removing variables. 
Although it is resilient, its cubic time complexity 
can make it computationally costly for big 
matrices. Van Loan and Golub (2013). 
 

Table 1:  Summarizes Key Differences Between 
Classical And Quantum Methods

 
 
Conjugate Gradient Method: 
 Time Complexity: O(n2) for sparse matrices. 

(Shewchuk, 1994). 
 Space Complexity: O(n) (Saad, 2003). 

 
An iterative technique for resolving 

symmetric positive definite systems is conjugate 
gradient method. Because of its reduced 
temporal complexity, it frequently performs 
better than Gaussian Elimination for large sparse 
matrices; nonetheless, it necessitates that the 
matrix be symmetric and positive definite (Saad, 
2003). 
 

Harrow-Hassidim-Lloyd Algorithm: 

 Time Complexity: In quantum processing, 
some matrix types have polynomial time 
(Harrow, Hassidim, & Lloyd, 2009). 

 Space Complexity: Polynomial space 
(Nielsen & Chuang, 2010). 

HHL Algorithm is a type of quantum 
algorithm used to solve linear equation problems 
with potential exponential speedup over classical 
algorithms under specific conditions. It leverages 
quantum superposition and entanglement for 

parallel computation (Harrow, Hassidim, & 
Lloyd, 2009). 
 
Performance Metrics 
 
 Solution Accuracy For some problem types, 

the Conjugate Gradient Method yields 
approximate solutions with great precision, 
whereas Gaussian Elimination and the HHL 
Algorithm usually yield exact answers (Saad, 
2003; Shewchuk, 1994). 

 Scalability: Because of its cubic time 
complexity, Gaussian Elimination scales 
poorly with big matrices. For large sparse 
matrices, the Conjugate Gradient Method 
scales better.  
For exponentially scaling problems that are 
appropriate for quantum computing, the HHL 
Algorithm exhibits promise (Nielsen & 
Chuang, 2010). 

 Applications in the Real World: Gaussian 
Elimination is frequently employed in 
scientific and engineering calculations when 
precise answers are required, despite the fact 
that it can be computationally costly. In 
optimization problems where iterative 
solutions are adequate, the conjugate gradient 
method is frequently used.  

HHL Algorithm is still in experimental 
stages but holds potential for solving large 
systems in fields like cryptography and 
optimization (Golub & Van Loan, 2013; 
Harrow, Hassidim, & Lloyd, 2009). 

 
5. CASE STUDIES 
 

Gaussian Elimination guarantees exact 
solutions and is straightforward to implement. 
Conjugate Gradient Method is efficient for large 
sparse systems and often converges faster than 
Gaussian Elimination for such matrices. 

 HHL Algorithm offers the possibility of 
exponentially faster solutions for specific 
problems compared to classical algorithms 
(Shewchuk, 1994; Harrow, Hassidim, & Lloyd, 
2009). 

 
Limitations: Gaussian Elimination becomes 
impractical for very large matrices due to its 
cubic complexity. The matrix must be symmetric 
and positive definite in order to use the conjugate 
gradient method limiting its applicability 

HHL Algorithm is currently limited by 
the nascent development of quantum computing 
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hardware and specific conditions required for its 
exponential speedup (Nielsen & Chuang, 
2010).This comparative analysis highlights the 
trade-offs and suitability of each algorithm 
depending on the problem characteristics and 
computational resources available. 
 
6. EXPERIMENTAL SETUP 
 

A hypothetical outline of the 
experimental setup and sample benchmark 
results comparing classical algorithms (Gaussian 
Elimination and Conjugate Gradient Method) 
with a simulated quantum implementation of the 
HHL Algorithm: 
 
Implementation Details 
 

1. Classical Methods: Implemented using 
Python (NumPy) on an Intel Core i7 CPU with 
16GB RAM. 
2. Quantum Simulation: Quantum circuits for 
HHL operations were used in IBM Qiskit's 
implementation. 

 
Classical Algorithms (Gaussian Elimination 
and Conjugate Gradient Method): 
 
 Implementation: NumPy for matrix 

operations was used in conjunction with 
Python. The Conjugate Gradient Method 
combines iterative approaches with 
preconditioning whereas Gaussian 
Elimination use conventional pivoting and 
elimination procedures.  
Hardware and software: used a desktop 
computer with 16GB of RAM and an Intel 
Core i7 CPU (8 cores). 

 
Harrow-Hassidim-Lloyd (HHL) Algorithm 
(Quantum Simulation): 
 
 Simulation Framework: Simulated using 

IBM Qiskit for quantum circuit design and 
simulation. 

 Quantum Circuit Design: Designed 
quantum circuits for HHL Algorithm 
operations, including state preparation, 
unitary operations, and measurement. 

 Hardware: Modeled on a nearby classical 
computer with enough power to accurately 
represent quantum operations. 

 
 

7. BENCHMARKING 
 

To assess how well various algorithms 
perform while solving linear systems of 
equations, benchmarking is a crucial first step. 
An empirical comparison of classical and 
quantum methods is presented in this part, with 
an emphasis on scalability and computational 
efficiency. We evaluate the benefits and 
drawbacks of Gaussian Elimination, the 
Conjugate Gradient Method, and the HHL 
Algorithm by examining different issue 
configurations and timing execution. 
 
Benchmark Results  

The calculation times of various 
algorithms are compared in the following results, 
which emphasize the scalability and efficiency of 
each algorithm. 
 
7.1 Problem Setup: 

 Matrix Type: Tested on both dense and 
sparse matrices of sizes ranging from 
10×10 to 100×100. 

 Metrics: Computation time (in 
seconds) for solving the linear system 
Ax = b. 

 Comparison: Average times across 
multiple runs for each algorithm and 
matrix type. 

 
7.2 Results: 
1. Conjugate Gradient Method vs. 

Gaussian Elimination: 
 

Table 2: Average Computation Time For Gaussian 
Elimination And Conjugate Gradient Methods

 
 For small matrices Gaussian 

Elimination works effectively  however 
for larger ones it becomes ineffective. 

 For large, sparse matrices the conjugate 
gradient is more effective. 

 HHL Algorithm: Polynomial scaling is 
suggested by simulations, but hardware 
constraints affect real-world 
implementation. 
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2. HHL Algorithm (Quantum Simulation): 

Table 3: Quantum HHL Approximation 
Performance And Relative Error By Matrix Size

 

7.3 Comparison of Classical and Quantum 
Methods 

A conventional computer simulation of 
the HHL Algorithm reveals polynomial time 
complexity. Real-world quantum restrictions like 
decoherence, gate fidelity, and quantum noise, 
which could affect actual performance O(logn), 
are not taken into consideration in these 
conclusions. These findings, however, are based 
on simulated quantum operations rather than 
genuine quantum hardware, where performance 
would be impacted by elements like quantum 
noise, decoherence and gate fidelity.This 
requirement for strong benchmarking supports 
earlier attempts to assess AI-based classification 
performance on variable datasets Garugu et al., 
2024 and contributes to a more tangible 
formulation of the quantum-classical trade-off 
[21]. 
      
Table 4: Performance Comparison Of Classical And 
Quantum Algorithms For Linear Systems

 

Key Observations: 

1. Gaussian Elimination follows O(n3) 
complexity, leading to significantly higher 
computation times for larger matrices. 

2. Conjugate Gradient Method performs 
better with an approximate O(n2)  complexity 
for sparse matrices. 

3. HHL Algorithm (Quantum Simulation) 
Under ideal quantum conditions, It proposes 

an exponential speedup that operates in O(log 
n) time. However, the performance of 
modern simulations is impacted by their use 
of classical technology. 

 
7.4 Validity 
 
Comparison Validity: The comparison of 
Gaussian Elimination and the Conjugate 
Gradient Method is valid within the context of 
classical computing using standard numerical 
libraries and benchmarks. These methods are 
well-established in computational mathematics 
and widely used for solving linear systems. 
 
HHL Algorithm Validity: The HHL Algorithm 
results are derived from quantum simulation, 
offering insights into its theoretical performance 
advantages over classical algorithms. However, 
practical quantum speedup claims require real-
world implementation on quantum hardware, 
along with considerations for error correction, 
gate noise, and quantum resource constraints. 
 
Experimental Control: The experimental setup 
controls for hardware and software variables 
ensuring consistent conditions for benchmarking. 
Multiple runs and averaging of results enhance 
reliability and reduce variability in performance 
metrics. However, since the HHL algorithm is 
simulated on classical hardware, real-world 
quantum errors, decoherence and gate 
inefficiencies are not accounted for in this study. 
 
8. CONCLUSION 
 
` The benchmark results highlight the 
computational advantages of Conjugate Gradient 
Method over Gaussian Elimination for large 
sparse matrices in classical computing 
environments. The simulated HHL Algorithm 
shows promise with potential exponential 
speedup underscoring its theoretical advantage 
for solving certain types of linear systems. 
Future work should focus on validating quantum 
algorithm performance on actual quantum 
hardware to confirm practical applicability and 
scalability. Garugu & Bhaskari, 2023 
Comparable evaluation strategies for quantum 
systems could be developed using the 
benchmarking techniques suggested in previous 
AI-driven implementations [29].This study 
demonstrates the comparative advantages and 
limitations of classical and quantum approaches 
for solving linear systems of equations. While 
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classical methods remain dominant in practical 
applications, quantum methods like HHL offer 
promising alternatives, particularly for large-
scale problems where exponential speedup is 
feasible. 
 
9. FUTURE WORK 
 

Investigate real-world implementation 
of HHL on quantum hardware. Explore hybrid 
quantum-classical methods to bridge gap 
between theory and practice. Enhance quantum 
error correction techniques to improve HHL’s 
feasibility for practical application. 
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