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ABSTRACT 

 
The proposed work focuses on the enhancement of the EY5 model through the integration of BDO for image 
identification and classification for underwater scenes. The proposed methodology, developed for such an 
application, modifies the cell size in EY5, which prepares the model for applying BDO for higher speed and 
accuracy. The BDO algorithm in the EY5 comprises initialization, moving simulation, foraging, 
communication and cooperation, pursuit of prey, adaptation, learning procedures, and the termination 
procedure. A number of experiments were performed to evaluate the potentials of the developed optimized 
EY5 against competitors such as DeepSeaNet and MCANet. A true positive rate of 61.11% with a true 
negative rate of 58.82%, precision at 70% and has high overall classification accuracy. The improvement of 
the EY5 model is called as BeardYOLO Here, it shows more efficiency in terms of clustering and classifying 
the underwater images and becomes one of the best solutions to work with underwater images. The study 
thereby raises the possibility of achieving superior performance in a specific field by integrating both the 
theories of advanced optimization with modern artificial neural networks. 
Keywords:  Underwater Image Classification - Enhanced YOLOv5 - Bearded Dragon Optimization - 

BeardYOLO - Deep Learning - True Positive Rate - Precision - Neural Networks 
 
1. INTRODUCTION  

 

Underwater environment is known to distort 
images because of the light absorption and scattering 
and presence of particles and marine organisms [1]. 
Especially underwater environment is known to 
distort images because of the light absorption and 
scattering and presence of particles and marine 
organisms [2]. Recently it has registered certain 
remarkable developments due to innovations in 
technology. 

An image can be described as picture or visual 
information that conveys information about objects, 
scenes, and their events. Challenging endeavour in 
capturing high quality photographs is even more 
difficult when photos are taken in water environment 
[3]. Several features like type of water, depth, and 
light scattering by particles of different types of 
matter influence the degree of image clarity and its 
color balance. This demands the application of 
instrumentations and process that can provided 
pictures that are fit for further processing [4]. 

In image identification, the products are the 
objects or features of the image which are given a 
name or label. Some of them are object detection, 
facial recognition, and scene understanding [5]. It 
has to perform computations to seek out finer 
information and data forms in images. Taking into 
consideration the peculiarities of underwater image 
identification is rather problematic because the 
process is more complex than in the case of standard 
images [6]. They may see objects in a distorted 
manner, the normal red, green and blue colors of 
light may be seen differently since different colors 
have different wavelengths and they may not be able 
stop seeing something at a certain distance. Only 
with the help of modern methods of image analysis 
and artificial intelligence, accurate identification is 
possible in such conditions [7]. 

The process of sorting images into a particular 
class is commonly known as image classification. 
This includes feature extraction that entails 
identifying the important aspects of an image that 
will be used in training the learning machines [8]. 
These models, in turn, classify the images that are 
inputs to them and which are not seen before by the 
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model. Image classification is quite complex in sub-
aqueous environment, as pointed out above. 
Classification of marine life, underwater 
constructions, other underwater objects, etc needs to 
be done even in the worst conditions [2].  

While underwater images show quite a lot of 
differences with the images of the surfaces because 
the light absorption and scattering in the water 
changes the colour of the objects and also reduces the 
range. It is common that these images need to 
undergo some enhancements to improve their 
qualify in order to be used for identification and 
classifying purposes [2]. Some of the techniques that 
can be used to enhance the quality of the underwater 
images include color correction, enhancement of 
contrast and haze removal. Once enhanced, they can 
be subjected to identification and classification 
processes as specified [9]. 

Underwater image identification can be defined 
as the process of identifying the features in an 
underwater image that includes marine species, 
structures and environmental changes [10]. This is 
important for various purposes such as in marine 
studies, engineering prospecting, archaeology, and 
environmental conservation. Recognition of the 
objects in underwater images is useful in studying 
the patterns within marine lives, the estimate of the 
population density of particular species and the 
status of coral reefs and other underwater 
environments [11]. 

The step of the underwater image visually 
categorizes the images into different categories such 
as the type of fish, types of corals or perhaps 
different scenes of underwater environment. This 
calls for good training datasets which should well 
encompass as many underwater scene and objects as 
possible [12]. This kind of datasets incorporate 
intense learning methodologies such as Yolo and 
CNNs, to enhance the learning styles to classify new 
images efficiently. It apply to many science and 
industries for instance, automatic marine organism 
identification for measuring the quantities of species, 
deep sea operation purpose [13]. 

The use of image processing and feature 
extraction through machine learning has been made 
easier due to the recent developments meeting the 
need of analyzing imagery of underwater images 
[14]. With the emerging concerns in recognizing and 
categorizing images under water, researchers and 
engineers have come up with better solutions to the 
problems which are likely to lead to increased 
effectiveness of the process. This progress is 
mandatory for coming up with such developments 

needed for marine research, conservation of the 
aquatic habitats, and inventions in underwater 
technologies [15]. 
1.1. Problem Statement  

The blurring of images that occurs in case images 
are captured underwater is a main problem in 
handling images for identification or categorization. 
Light loss and scattering in the water cause 
distortions and decrease the contrast and sharpness 
of objects, making the vision and obtaining clear 
images difficult. This is due to the fact that other 
elements such as particulate matter and marine 
organisms also contribute to low visibility within the 
image and features of the objects. This call for higher 
levels of preprocessing like pre-processing the image 
resolution, blurring of the images, or even the low-
level noise in the image, is very essential if the 
quality and the detail of the image is to be improved. 
It is therefore important to identify the proper 
solution for overcoming these problems in order to 
enhance the accuracy of underwater image 
identification. To resolve these challenges there are 
great opportunities for additional improvement in 
analyses and interpretation of the underwater image, 
as such technologies are used in marine biology, 
environmental monitoring, and underwater 
exploration. 

 
1.2. Motivation  

Marine conservation is highly reliant on proper 
collection of data relating to its underwater world. 
Identification and classification of underwater 
objects is critically important for depth surveillance 
of aquatic species, census of different species, and 
estimate of the health of coral reefs. Due to the 
problem of light scattering, low visibility and 
varying underwater environment, there is a need to 
enhance the image processing methodologies as well 
as create efficient machine learning algorithms. 
Solving these challenges will definitely enhance the 
accuracy and standard of the underwater image 
analysis. This means that if more advanced methods 
of ID and classification systems are developed in the 
future, conservation of various marine species and 
organisms will be more effective and 
comprehensively beneficial to the use of ocean 
resource. 
 
1.3. Objectives  

The aim is thus to design and implement more 
efficient techniques for image processing to enhance 
the superiority enhancing of underwater images. 
Some of the problems which affect the image 
received are the light absorption, scattering and 
presence of particles hence leading to change of 
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colors, low contrast and blurring. Solving these 
problems requires developing the technique of 
implementing accurate color correction, defogging 
and despeckling algorithms. This will further 
enhance the definitions of the underwater images and 
greatly assist is identification and classification. 
Higher image quality helps to identify more images 
for analysis and interpretation in such areas as 
marine biology, underwater archaeology and 
environment monitoring. 
 
1.4 Need for the Study 

Underwater environments present serious 
challenges for visual interpretation due to factors like 
turbidity, light distortion, and particulate 
interference, which degrade image quality and 
hinder classification accuracy. Reliable analysis in 
such settings demands a framework that can adapt to 
varying visual conditions while preserving detection 
speed and consistency. Static learning methods lack 
the flexibility to respond effectively to dynamic 
aquatic scenarios. An approach is needed that 
incorporates adaptive optimization, enhances feature 
localization, and maintains performance across 
diverse underwater visuals. By integrating structured 
image learning with responsive optimization, the 
classification process becomes more resilient. Such 
a model is essential for supporting applications in 
marine habitat evaluation, underwater exploration, 
and ecological monitoring, where clarity and 
precision are critically required. 
 
1.5 Scientific Contributions 

This study presents BeardYOLO, a hybrid 
framework combining Enhanced YOLOv5 with a 
bio-inspired Bearded Dragon Optimization 
algorithm for underwater image classification. The 
model introduces adaptive optimization through 
behaviorally driven phases like movement, pursuit, 
and learning, enabling dynamic parameter 
refinement under degraded visual conditions. 
Experimental validation on the LSUI dataset 
demonstrates improved classification accuracy, 
precision, and robustness. The work contributes a 
biologically regulated learning strategy that 
enhances deep model performance in complex and 
low-visibility underwater imaging scenarios 
 
1.6 Practical Implications and Professional 
Benefits 

The proposed BeardYOLO framework holds 
strong practical value for domains requiring reliable 
visual analysis in underwater environments. Its 
enhanced detection precision supports marine 
biodiversity assessment, enabling accurate species 

identification critical for conservation planning. The 
model’s robustness under turbidity and low visibility 
conditions benefits autonomous underwater vehicles 
(AUVs) used in offshore inspection, pipeline 
monitoring, and marine archaeology. For 
professionals in defense, fisheries, and 
environmental research, this work provides a 
deployable solution capable of real-time 
classification, reducing manual analysis time and 
improving operational accuracy. The biologically 
inspired optimization approach also sets a new 
direction for developing adaptive vision systems in 
industrial robotics and aquatic monitoring 
infrastructure, where visual degradation remains a 
core challenge. 
 
 
2. LITERATURE REVIEW 

“Near-Infrared Spectral Continuum Robot”[16] 
describes a lowered near infrared spectral range 
robot designed for discovery and categorisation 
operations. This kind of near-infrared spectroscopy 
enables this robot to identify the type and qualities 
of a diversity of underwater substances and 
organisms at the real-time manner. Thus, through 
adopting high quality spectral analysis, accurate and 
non-destructive environmental inspection can be 
achieved under water hence enhancing efficiency 
when exploring and gathering information. “FUZ-
SMO”[17] presents the Fuzzy Slime Mold 
Optimizer in order to handle false alarms for the 
classification of an underwater dataset. The method 
uses deep convolutional neural network to improve 
the classification performance of diabetes disease. 
Besides, through applying the concept of Fuzzy-
Logic to Slime Mold Algorithms, during the process 
only those parameters that are relevant for 
classification change and the above-mentioned 
approach increases the reliability and stability of the 
recognition of underwater objects in underwater 
conditions.  

 
“Evaluation Underwater Image Quality”[18] 

presents the Fuzzy Slime Mold Optimizer in order to 
handle false alarms for the classification of an 
underwater dataset. The method uses deep 
convolutional neural network to improve the 
classification performance of diabetes disease. 
Besides, through applying the concept of Fuzzy-
Logic to Slime Mold Algorithms, during the process 
only those parameters that are relevant for 
classification change and the above-mentioned 
approach increases the reliability and stability of the 
recognition of underwater objects in underwater 
conditions. “Hydro-acoustic Signature”[19] 
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proposes a system to extract features for underwater 
targets using image processing where HAc signals 
are represented as images. Converting the collected 
audio data into a visual format can be beneficial to 
utilize image processing techniques on the data 
collected. This has provided a major breakthrough in 
improving the accuracy of target recognition in 
respects such as sonar and hydro-acoustic systems 
boosting underwater navigation and monitoring. 

 
“Biofouling”[6] concentrates on the localization 

and feature extraction of biofouling through an 
underwater cleaning robot based on deep learning. 
Thus, using the convolutional neural networks’ 
suggestions as to where biofouling occurs on 
submerged surfaces, the system autonomously 
cleans. This invention helps in the preservation of 
underwater structures and ships for the optimal 
functionality period, and as well cuts down on labor 
intakes. “Transformer-Based Network”[20]  is 
suggested for improving contrast in underwater 
images. Due to the learned attention mechanism 
inherent in the transformer models, the proposed 
approach enhances image clarity and color balance 
to a great extent. This method helps overcome such 
issues as the lack of vision and color distortion in 
underwater imaging that lead to the overall 
improvement of visual information in underwater 
activity. “Improved YOLOv4” [21] proposes an 
online jellyfish identification and detection system 
in real-time using the improved YOLOv4-tiny 
model along with an upgraded underwater image 
processing scheme. Through customized 
modifications of YOLOv4-tiny to make the system 
suitable for underwater images and enhancing the 
image preprocessing, the proposed system detects 
the jellyfish effectively and accurately for expanding 
the scope of monitoring marine life for the concern 
of ecology. “Open-Set Framework”[22] presents an 
open-set underwater image classification based on 
autoencoders. To overcome the problem of unknown 
classes this framework uses autoencoders for feature 
extraction, as well as for identification of abnormal 
transactions. It was determined that this approach 
improves the stress and variety resistance of various 
classification systems that can be employed in 
different and constantly changing water 
environments to provide necessary identification. 

 
“Siltation Image Recognition”[23] These 

involve major adaptation of deep due to the 
efficiency of the developed convolutional neural 
network which enhances the identification learning 
methodologies for the identification of siltation 
surfaces in water passage channels through 

underwater robotic models. This is of siltation 
patterns that will assist in observing and maintaining 
water conveyance infrastructure. This will help 
maintain its functionality and optimum performance 
of numerous water management systems. “Invariant 
Feature-Based Species”[24] concentrates on the 
identification of species under water particularly 
involving deep learning with invariant features. The 
proposed solution works even when the conditions 
vary underwater since the network has learned to 
extract invariant features by using layers of the 
convolutional neural network. This approach also 
proves helpful in analyzing the species and helps in 
their conservation. “Framework for Fish Image”[10] 
proposes a feature learning and object recognition 
framework for the fish image in underwater 
environment. By employing deep learning 
mechanism, the framework enhances the ability of 
identifying fish and analyzing their behaviors 
noticeably. This will enhance ecological research, 
marine biological survey and assessment as well as 
the sound management of marine resources. 

 
“Hybrid Classical-Quantum” [25], an innovative 

hybrid classical-quantum algorithm, is introduced 
for underwater animal identification and 
classification. By combining classical machine 
learning techniques with the computational power of 
quantum algorithms, this method achieves higher 
classification accuracy and processing speed. This 
approach represents a significant advancement in 
underwater animal research and monitoring. 
“ACFM-Based Defect”[26] indicates methods for 
the visual and intelligent identification of flaws in 
underwater structures by employing the ACFM 
technique. This has the advantage of improving the 
capabilities of the ACFM in defect detection than the 
traditional use of the ACFM data alone together with 
basic image processing techniques. This makes it 
easier and safer in the inspection of submerged 
structures hence the monitoring and streamlining of 
safety practices in handling such structures. 

 
“DAMNet”[27], A dual attention mechanism 

deep neural network, which is used for underwater 
biological images classification, is presented. The 
feature-level attention-based solution pays attention 
to restricted and specific aspects of the images which 
helps to increase classification rates and provide 
better resistance to disturbances in edgy underwater 
conditions. This approach helps in the advancement 
of marine biology and monitoring of the underwater 
environment. “Striation”[28] to distinguish 
underwater and surface objects from striation 
images. The approach improves the identification of 
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various targets in the course of marine surveillance 
and exploration by using different striation patterns. 
This innovation will advance security and efficiency 
in different underwater operations. “CNN-
OSELM”[29] improved multi-layer fusion network 
that incorporates attention mechanism for fish 
disease recognition in aquaculture is presented in 
this paper. Integrated with convolutional neural 
networks and online sequential extreme learning 
machine, the accuracy of disease identification is 
ensured. This approach helps in the health 
management of aquaculture ventures to improve on 
the sustainable prop and efficient way of fish 
production. 

 
“DeepSeaNet” [30] A Bio-Detection Network 

Enabling Species Identification in the Deep Sea 
Imagery" describes DeepSeaNet, a network 
designed specifically for detecting and identifying 
species in deep-sea images. It uses advanced deep-
learning techniques to analyze and classify deep-sea 
imagery, providing accurate species identification in 
challenging underwater conditions. “MCANet”[31]  
Multi-channel attention network with multi-color 
space encoder for underwater image classification, 
introduced a multi-channel attention-based 
mechanism with multi-color space encoder. This 
system pays a lot of attention to the critical regions 
of the images and also uses multiple color spaces to 
classify the images which makes it overcome some 
of its drawbacks like bad colors and poor visions. 
Optimization algorithms are best in achieving the 
expected outcomes [32]-[70]. 
 
3. YOLOV5 AND BEARDED DRAGON-

INSPIRED (BeardYOLO)  
Stochastic Gradient Descent (SGD) is a 

commonly used optimization algorithm in machine 
learning, particularly for training deep learning 
models. SGD updates model parameters iteratively 
by computing gradients from randomly selected 
subsets of the training data. This method reduces 
computational burden and can escape local minima, 
leading to faster convergence. 
 
3.1 Enhanced YOLOv5  

Enhanced YOLOv5 (EY5) builds on the 
strengths of YOLOv5, an advanced object detection 
model known for its efficiency and accuracy in real-
time applications. EY5 incorporates various 
improvements to optimize performance further, 
including the application of SGD for training. 
 
3.1.1 Data Preparation and Annotation of EY5 

Data preparation and annotation serve as the 
foundation for training the EY5 model. This step 
involves gathering a comprehensive dataset of 
images and annotating each image with labels 
indicating the locations and classes of objects. 
Consider a dataset 𝐷 consisting of 𝑁 images. Each 
image 𝐼  (where 𝑖 ranges from 1 to 𝑁) is 
accompanied by an annotation 𝐴. The annotation 
provides details about the objects in the image, 
represented as a set of bounding boxes. 𝐵  and 
corresponding class labels 𝐶. This can be expressed 
mathematically in Eq.(1). 

𝐷 = {(𝐼 , 𝐴)} 𝑓𝑜𝑟 𝑖 = 1,2, . . , 𝑁 (1) 

Each annotation 𝐴 Contains information about M 
objects in the image. For an image 𝐼  With 𝑀 objects, 
the annotation can be represented as Eq.(2). 

𝐴 = ൛൫𝐵 , 𝐶൯ൟ 𝑓𝑜𝑟 𝑗 = 1,2, . . , 𝑀 (2) 

where 𝐵 represents the bounding box for the 𝑗th 
object in an image 𝐼  and and 𝐶 denotes the class 
label of the 𝑗th object. Each bounding box 𝐵  is 
defined by four parameters (𝑥, 𝑦) coordinates of the 
center, width 𝑤, and height ℎ are mathematically 
represented in Eq.(3) 

𝐵 = ൫𝑥 , 𝑦 , 𝑤 , ℎ൯ (3) 

The annotated dataset 𝐷 is then split into training and 
validation sets. Let 𝑇 denote the training set and 𝑉 
the validation set, with 𝑇 and 𝑉 containing 𝑘 and 𝑖 
images, respectively, such that 𝑘 +  𝑙 =  𝑁 
expressed in Eq.(4) and Eq.(5). 

𝑇 = {(𝐼 , 𝐴)} for 𝑖 = 1,2, … , 𝑘 (4) 

𝑉 = {(𝐼 , 𝐴)} for 𝑖 = 𝑘 + 1, 𝑘 + 2, … , 𝑁 (5) 

Data augmentation techniques are applied to the 
training set 𝑇 to increase its diversity. This involves 
transformations such as scaling, cropping, flipping, 
and color adjustments. Let 𝑇′ represent the 
augmented training set in Eq.(6). 

𝑇ᇱ = ൛൫𝑓(𝐼), 𝑓(𝐴)൯|(𝐼 , 𝐴) ∈ 𝑇ൟ (6) 

where 𝑓 denotes the augmentation function applied 
to images and annotations. 
 
The annotated and augmented dataset 𝑇ᇱ forms the 
input for training the EY5 model, ensuring it learns 
robust features from varied examples, ultimately 
enhancing its performance. The annotated validation 
set 𝑉 is used to assess the performance during and 
after training, guiding further refinements. Fig 1 
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shows the unprocessed underwater images from the 
dataset. 
 

 
Fig 1. Unprocessed Underwater Images 

 
3.1.2  Network Architecture Design of EY5 

The network architecture design of EY5 involves 
constructing a CNN to process images and predict 
bounding boxes and class probabilities. This 
architecture includes several components: a 
backbone network, a neck, and a head. 
 

The backbone network denoted as B, extracts 
feature maps from input images. EY5 utilizes a 
CSPDarknet backbone, which enhances feature 
propagation and gradient flow through cross-stage 
partial connections. Let 𝐼 denote the input image and 
𝐹 The feature maps generated by the backbone are 
expressed as Eq.(7). 

𝐹 = 𝐵(𝐼) (7) 

The neck of the architecture denoted as 𝑁, refines 
these feature maps, enhancing the model's ability to 
identify objects at several scales. Feature pyramid 
networks (FPN) are commonly used for this purpose. 
The neck processes the backbone's output 𝐹 and 
produces refined feature maps 𝐹ே illustrated in 
Eq.(8). 

𝐹ே = 𝑁(𝐹) (8) 

The head of the architecture, denoted as 𝐻, is 
responsible for predicting bounding boxes, 
confidence scores, and class probabilities from the 
refined feature maps 𝐹ே. The output of the head 
consists of bounding box coordinates (𝑥, 𝑦, 𝑤, ℎ), 
confidence scores 𝑐, and class probabilities 𝑝 for 
each grid cell in the image. Let 𝑃 represent the set of 
all predictions expressed as Eq.(9). 

𝑃 = 𝐻(𝐹ே) (9) 

For each grid cell, the head outputs 𝐵 bounding 
boxes. Each bounding box prediction includes four 
coordinates, one confidence score, and 𝐶 class 
probabilities. Let 𝐺 represent the grid with 𝑆 𝑥 𝑆 
cells, and let each cell 𝑔 in 𝐺 produce 𝐵 bounding 
box predictions. Thus, the total number of 
predictions 𝑃 can be expressed as Eq.(10). 

𝑃

= ቊ
൫𝑥, , 𝑦, , 𝑤, , ℎ, , 𝑐, , 𝑝,,൯|        

     𝑔 ∈ 𝐺, 𝑏 = 1,2, … , 𝐵, 𝑐 = 1,2, … 𝐶
ቋ 

(10) 

To optimize feature extraction, the CSPDarknet 
backbone incorporates residual connections and 
dense blocks, enhancing gradient flow and feature 
reuse. Let 𝐿 represent the layers in the backbone, 
and let 𝐹 denote the feature maps after layer 𝐿 in 𝐿 
are expressed in Eq.(11). 

𝐹 = 𝐿(𝐹ିଵ) for 𝐿 ∈ 𝐿 (11) 

The network architecture design ensures efficient 
processing and accurate predictions, enabling the 
model to detect objects effectively. Each component 
of the architecture—backbone, neck, and head—
plays a critical role in transforming input images into 
precise bounding boxes and class probability 
predictions, forming the core of the EY5 model. 
 
3.1.3 Incorporation of Stochastic Gradient 
Descent of EY5  

Incorporating SGD into the training process of 
EY5 optimizes model parameters efficiently. SGD 
updates the parameters iteratively by computing 
gradients from randomly selected mini-batches of 
the training dataset. 
 
Let 𝜃 represent the parameters of the EY5 model, 
including weights and biases. The objective is to 
minimize the loss function 𝐿 with respect to 𝜃 by 
updating the parameters using SGD are represented 
in Eq.(12). 

𝜃௧ାଵ = 𝜃௧ − 𝜂∇𝐿(𝜃௧) (12) 

where 𝜃௧ and 𝜃௧ାଵ denote the parameters at time 
steps 𝑡 and 𝑡 + 1, respectively. 𝜂 represents the 
learning rate, governing the size of parameter 
updates, and ∇𝐿(𝜃௧) denotes the gradient of the loss 
function with respect to the parameters at time step 
𝑡. 
 
The gradient is computed by back propagating the 
error through the network, starting from the output 
layer and propagating backward through the layers. 

 

    
 

   



 Journal of Theoretical and Applied Information Technology 
30th June 2025. Vol.103. No.12 

©   Little Lion Scientific  
 

ISSN: 1992-8645                                                                    www.jatit.org                                                     E-ISSN: 1817-3195 

 
5298 

 

Each parameter is adjusted in the opposite direction 
of the gradient, moving the model parameters toward 
the optimal values that minimize the loss function. 
In the case of EY5, the loss function consists of three 
components: localization loss, confidence loss, and 
classification loss. The total loss is the sum of these 
individual losses: 

𝐿 = 𝐿 + 𝐿 + 𝐿௦ (13) 

where in Eq.(13), 𝐿 , 𝐿 , and 𝐿௦ represent the 
localization, confidence, and classification losses, 
respectively. 
 

The stochastic nature of SGD involves randomly 
selecting mini-batches of data for each parameter 
update. This randomness helps the model escape 
local minima and navigate the loss landscape more 
effectively, leading to faster convergence and 
improved generalization. 
 
3.1.4  Loss Function Formulation of EY5  

The formulation of the loss function is crucial in 
training EY5 as it guides the optimization process to 
minimize errors in object localization, confidence 
estimation, and classification. The loss function 
combines three components: localization loss 
(𝐿),confidence loss ൫𝐿൯, and classification 
loss (𝐿௦). 
 
Let 𝐵

ௗ   and 𝐵
௧ denote the predicted and ground 

truth bounding boxes, respectively, for the 𝑗-th 
object in the 𝑖-th image. The localization loss is 
calculated using a suitable distance metric, such as 
smooth 𝐿1 loss expressed in Eq.(14). 

𝐿

=   𝑠𝑚𝑜𝑜𝑡ℎଵ

ெ

ୀଵ
൫𝐵

ௗ
, 𝐵

௧
൯

ே

ୀଵ
 

(14) 

where smooth 𝐿1 is the smooth 𝐿1 loss function. 
 
The confidence loss evaluates the accuracy of object 
presence predictions within each bounding box. It 
penalizes the model for incorrect confidence scores, 
encouraging it to estimate the likelihood of objects 
being present accurately. In Eq.(15), let 𝑐

ௗ  and 

𝑐
௧  represent the predicted and ground truth 

confidence scores, respectively. 
𝐿

=   𝑏𝑖𝑛𝑎𝑟𝑦_𝑐𝑟𝑜𝑠𝑠_𝑒𝑛𝑡𝑟𝑜𝑝𝑦
ெ

ୀଵ
ቀ𝑐

ௗ
, 𝑐

௧
ቁ

ே

ୀଵ
 (15) 

Where 𝑏𝑖𝑛𝑎𝑟𝑦_𝑐𝑟𝑜𝑠𝑠_𝑒𝑛𝑡𝑟𝑜𝑝𝑦 is the 
𝑏𝑖𝑛𝑎𝑟𝑦_𝑐𝑟𝑜𝑠𝑠_𝑒𝑛𝑡𝑟𝑜𝑝𝑦 loss function. 
 

The classification loss measures the discrepancy 
between the predicted class probabilities and the 
ground truth labels. Let 𝑝

ௗ and 𝑝
௧  denote the 

predicted and ground truth class probabilities, 
respectively, for the 𝑗-th object in the 𝑖-th image and 
class 𝑐 are illustrated in Eq.(16). 

𝐿௦

=    𝑝
௧

𝑙𝑜𝑔


ୀଵ

ெ

ୀଵ
൫𝑝

ௗ
൯

ே

ୀଵ
 (16) 

where log denotes the natural logarithm. The total 
loss function 𝐿 is the sum of the localization, 
confidence, and classification losses shown in 
Eq.(17). 

𝐿 = 𝐿 + 𝐿 + 𝐿௦ (17) 

Minimizing this loss function during training 
guides EY5 to accurately localize objects, estimate 
confidence scores, and classify objects, leading to 
improved performance in object detection tasks. 
 
3.1.5. Data Augmentation Techniques of EY5 

Data augmentation techniques play a crucial role 
in enhancing the robustness and generalization 
ability of EY5 by increasing the diversity of the 
training dataset. These techniques introduce 
variations in the training images, allowing the model 
to learn from a broader range of scenarios. 
 
Let 𝑇 denote the training dataset, consisting of 𝑁 
images with corresponding annotations. Data 
augmentation techniques are applied to augment the 
training dataset, producing a new augmented dataset 
𝑇ᇱ. One common data augmentation technique is 
random scaling, which randomly resizes images to 
different scales. Let 𝑆ௗ  represent the random 
scaling factor applied to each image. The scaled 
image 𝐼௦ௗ   can be obtained as shown in Eq.(18). 

𝐼௦ௗ = 𝑆ௗ × 𝐼 (18) 

Another augmentation technique is random 
cropping, where random regions of the image are 
cropped and resized to the original size. Let 𝑥ௗ  
and 𝑦ௗ denote the random crop coordinates, and 
𝑊 and 𝐻 represent the width and height of 
the cropped region, respectively. The cropped image 
𝐼 can be expressed as Eq.(19). 

𝐼

= 𝑐𝑟𝑜𝑝൫𝐼, 𝑥ௗ , 𝑦ௗ , 𝑊, 𝐻൯ 
(19) 

Flipping is another augmentation technique where 
images are horizontally or vertically flipped. Let 
𝐹 represent the flipping factor, which determines 
whether the image is flipped horizontally, vertically, 
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or not flipped at all. The flipped image 𝐼ௗ  can 
be obtained as shown in Eq.(20). 

𝐼ௗ = 𝑓𝑙𝑖𝑝൫𝐼, 𝐹൯ (20) 

These augmentation techniques introduce 
variability in the training images, making the model 
more robust to variations in lighting conditions, 
viewpoints, and object orientations. By training on a 
diverse set of augmented images, EY5 learns to 
generalize better and perform more effectively in 
real-world scenarios. 
 
3.1.6. Training Process with SGD of EY5 

The training process of EY5 involves optimizing 
model parameters using SGD with the formulated 
loss function. This iterative process updates the 
parameters to minimize the loss and improve the 
model's performance in object detection tasks. 
 
Let 𝜃 represent the parameters of the EY5 model, 
including weights and biases. The objective is to 
minimize the total loss function 𝐿 with respect to 𝜃 
by updating the parameters using SGD are expressed 
as shown in Eq.(21). 

𝜃௧ାଵ = 𝜃௧ − 𝜂∇𝐿(𝜃௧) (21) 

where 𝜃௧ and 𝜃௧ାଵ denote the parameters at time 
steps 𝑡 and 𝑡 + 1, respectively. 𝜂 represents the 
learning rate, controlling the size of parameter 
updates, and ∇𝐿(𝜃௧) denotes the gradient of the loss 
function with respect to the parameters at time step 
𝑡. 
 
During each iteration of the training process, a mini-
batch of training data is randomly sampled from the 
augmented dataset 𝑇ᇱ. Let 𝐵 represent the mini-
batch size and 𝐷 denote the mini-batch of training 
data. The parameters 𝜃 are updated using the 
gradients computed from this mini-batch expressed 
in Eq.(22). 

∇𝐿(𝜃௧) =
1

𝐵
 ∇𝐿൫𝐷

, 𝜃௧൯


ୀଵ
 (22) 

where 𝐷
 represents the 𝑖-th data point in the mini-

batch. The gradients are computed by 
backpropagating the error through the network, 
starting from the output layer and propagating 
backward through the layers. Each parameter is 
adjusted in the opposite direction of the gradient, 
moving the model parameters toward the optimal 
values that minimize the loss function.  
 

The training process continues for a fixed 
number of epochs, with each epoch consisting of 

multiple iterations. By iteratively updating 
parameters based on gradients computed from mini-
batches, SGD optimizes the EY5 model, enabling it 
to detect objects in images accurately. Fig 2 
illustrates the processed underwater images, 
 
 

 
Fig 2. Processed Underwater Images 

 
 
3.1.7. Evaluation and Fine-Tuning of EY5 

Once the training process of EY5 is complete, the 
model is evaluated using a separate validation 
dataset to assess its performance and fine-tuned if 
necessary. Evaluation involves measuring the 
model's accuracy in detecting objects and refining its 
parameters to improve performance further. Let 𝑉 
represent the validation dataset, consisting of 𝑙 
images with corresponding annotations. The model's 
predictions on the validation dataset are compared 
against ground truth annotations to evaluate its 
performance using metrics such as mean average 
precision (mAP) and intersection over union (IoU). 
 
The mAP measures the correctness of object 
detection by calculating the average precision across 
different recall levels. 

𝑚𝐴𝑃 =
1

𝑐
 𝐴𝑃



ୀଵ
 (23) 

where in Eq.(23) 𝐶 is the number of object classes, 
and 𝐴𝑃 represents the average precision for class 𝑐. 
 
IoU quantifies the overlap between expected and 
ground truth bounding boxes, providing a measure 
of localization accuracy. IoU is calculated as the 
ratio of the intersection area to the union area of the 
predicted and ground truth bounding boxes are 
expressed as Eq.(24). 
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𝐼𝑜𝑈 =
𝐴𝑟𝑒𝑎 𝑜𝑓 𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛

𝐴𝑟𝑒𝑎 𝑜𝑓 𝑈𝑛𝑖𝑜𝑛
 (24) 

Based on the evaluation results, fine-tuning may be 
performed to optimize the model's performance 
further. This involves adjusting hyperparameters 
such as learning rate, batch size, and augmentation 
strategies, as well as conducting additional training 
epochs if necessary. 
 
Hyperparameter tuning aims to find the optimal 
configuration that maximizes the model's 
performance on the validation dataset. Techniques 
such as grid search, random search, or more 
advanced methods like Bayesian optimization may 
be employed to explore the hyperparameter space 
efficiently.  
 

Fine-tuning ensures that the EY5 model achieves 
the best possible performance on unseen data, 
enhancing its effectiveness in real-world object 
detection tasks. By iteratively evaluating and 
refining the model, EY5 continues to improve its 
accuracy and robustness, ultimately delivering 
superior performance in various applications. 
 
3.2. Bearded Dragon Optimization (BDO) 

Bearded Dragon Optimization (BDO) is a 
metaheuristic algorithm inspired by the foraging 
behavior of bearded dragons. It stimulates the 
movement and hunting strategies of these reptiles to 
efficiently explore and exploit search spaces, making 
it suitable for optimizing complex problems. 

 Initialization: Initialize a population of 
bearded dragons representing solutions to the 
optimization problem. Each dragon's position in the 
search space corresponds to a candidate solution. 

 Movement Simulation: Simulate the 
movement of bearded dragons within the search 
space. Dragons employ various movement 
strategies, including random wandering, targeted 
movement towards promising areas, and exploration 
of uncharted regions. 

 Foraging Behavior: Emulate the foraging 
behavior of bearded dragons to exploit local food 
sources efficiently. Dragons adapt their movement 
based on the quality of solutions in their vicinity, 
favoring regions with higher fitness values. 

 Communication and Collaboration: 
Facilitate communication and collaboration among 
dragons to share information about promising 
regions in the search space. Dragons exchange 
knowledge through pheromone trails or other 
communication mechanisms, guiding each other 
toward better solutions. 

 Prey Pursuit: Employ hunting tactics to 
pursue and capture prey, analogous to exploring 
regions with high potential for improvement in the 
optimization problem. Dragons prioritize areas with 
promising solutions, adjusting their movement to 
converge toward optimal solutions. 

 
 Adaptation and Learning: Enable dragons 

to adapt and learn from their experiences during the 
optimization process. Dragons adjust their 
movement strategies based on the success or failure 
of previous foraging attempts, gradually improving 
their efficiency in exploring the search space. 

 Termination: Terminate the optimization 
process when stop criterion is satisfied, such as 
reaching a maximum number of iterations or 
achieving a satisfactory level of solution quality. 
Evaluate the final population of dragons to obtain the 
optimized solution(s) to the optimization problem. 

 
By applying Bearded Dragon Optimization to 

optimize the EY5 model, we leverage the algorithm's 
ability to efficiently explore and exploit search 
spaces, leading to improved performance and 
parameter tuning. Through simulated foraging and 
hunting behaviors, BDO guides the optimization 
process towards better solutions, enhancing the 
effectiveness of the EY5 model in real-world object 
detection tasks. 

 
3.2.1 Initialization of BeardYOLO 

Initialization is the first step in optimizing the 
EY5 model using BDO. In this step, we initialize a 
population of bearded dragons representing potential 
solutions to the optimization problem. Each dragon's 
position in the search space corresponds to a 
candidate solution. 
 
Let 𝑃 denote the population size, representing the 
number of bearded dragons in the population. Each 
dragon 𝑑 is represented by a vector 𝑋 in the search 
space, where 𝑋 = (𝑥ଵ, 𝑥ଶ , … , 𝑥) and 𝑛 is the 
dimensionality of the search space. 
 
The position of each dragon is randomly initialized 
within the search space, ensuring a diverse initial 
population. Let 𝑥 and 𝑥௫  represent the lower 
and upper bounds of the search space, respectively. 
The position of each dragon 𝑑 is initialized as 
Eq.(25). 

𝑋 = (𝑥ଵ, 𝑥ଶ , … , 𝑥), where 𝑥 ∈
[𝑥 , 𝑥௫] 

(25) 

The initialization process ensures that each 
dragon explores a different region of the search 
space, promoting diversity within the population. 
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This diversity is essential for the exploration phase 
of BDO, allowing dragons to search a wide range of 
potential solutions. 
 
3.2.2 Movement Simulation of BeardYOLO 

In the movement simulation step of 
BeardYOLO, we emulate the movement of bearded 
dragons within the search space. Dragons employ 
various movement strategies, including random 
wandering, targeted movement towards promising 
areas, and exploration of uncharted regions. 
 
Let 𝑃 denote the population size, representing the 
number of bearded dragons in the population. Each 
dragon 𝑑 is represented by a vector 𝑋 in the search 
space, where 𝑋 = (𝑥ଵ, 𝑥ଶ , … , 𝑥) and 𝑛 is the 
dimensionality of search space. 
 
The movement of each dragon is simulated by 
updating its position based on its current position 
and velocity. Let 𝑉 represent the velocity vector of 
the dragon 𝑑 , where 𝑉 = (𝑣ଵ, 𝑣ଶ, … , 𝑣). The 
updated position 𝑋

ᇱ of dragon 𝑑 after movement is 
expressed in Eq.(26). 

𝑋
ᇱ = 𝑋 + 𝑉 (26) 

To simulate random wandering, a random velocity 
vector 𝑣

ௗ is generated for each dragon, 
representing random movement in the search space. 
Let 𝑣௫  and 𝑣  denote the maximum and 
minimum velocity magnitudes, respectively. The 
random velocity vector 𝑉

ௗ  is initiated as Eq.(27). 
𝑉

ௗ = ൫𝑣ଵ
ௗ , 𝑣ଶ

ௗ , … . 𝑣
ௗ൯, where 

𝑣
ௗ ∈ [𝑣 , 𝑣௫] 

(27) 

Dragons also perform targeted movement towards 
promising areas in the search space. This is achieved 
by updating the velocity vector 𝑉 based on the 
quality of solutions in the dragon’s vicinity. Let 
𝑓(𝑋) represent the fitness function value of dragon 
𝑑. The updated velocity vector 𝑉

௧௧  is given by 
Eq.(28). 

𝑉
௧௧

= 𝛼. ∇𝑓(𝑋) (28) 

where 𝛼 is a scaling factor ∇𝑓(𝑋) is the gradient of 
the fitness function with respect to the dragon’s 
position. 
 
In random wandering and targeted movement, 
dragons explore uncharted regions of the search 
space to discover new promising solutions. This is 
achieved by introducing a random exploration factor 
𝜖 that determines the degree of exploration. The final 
velocity vector 𝑉  is a combination of random 

wandering, targeted movement, and exploration, are 
expressed in Eq.(29). 

𝑉 = (1 − 𝜖). 𝑉
௧௧

+ 𝑉
ௗ  (29) 

The movement simulation step of BeardYOLO 
enables dragons to explore the search space 
efficiently, balancing between the exploitation of 
promising solutions and the exploration of uncharted 
regions. This adaptive movement strategy enhances 
the ability of dragons to converge toward optimal 
solutions in the optimization process. 
 
3.2.3 Foraging Behavior of BeardYOLO 

In the foraging behavior step of BeardYOLO, we 
emulate the foraging behavior of bearded dragons to 
exploit local food sources efficiently. Dragons adapt 
their movement based on the quality of solutions in 
their vicinity, favoring regions with higher fitness 
values. Let 𝑃 denote the population size, 
representing the number of bearded dragons in the 
population. Each dragon 𝑑 is represented by a 
vector 𝑋 in the search space, where 𝑋 =
(𝑥ଵ, 𝑥ଶ, … , 𝑥) and 𝑛 is the dimensionality of the 
search space. 
 
The foraging behavior of each dragon is guided by 
the fitness values of solutions in its vicinity. Dragons 
prioritize regions with higher fitness values, as these 
regions are more likely to contain optimal solutions. 
Let 𝑓(𝑋) represent the fitness function value of 
dragon 𝑑 , and let 𝑁 denote the neighborhood of the 
dragon 𝑑 , comprising nearby solutions. 
 
The fitness value of each dragon’s neighborhood 𝑁 
is computed as the average fitness value of all 
dragons in the neighborhood. Let 𝑓(𝑁) represent the 
fitness value of a neighborhood 𝑁 and let 𝑘 denote 
the number of dragons in the neighborhood. The 
fitness value 𝑓(𝑁) is calculated as Eq.(30). 

𝑓(𝑁) =
1

𝑘
 𝑓൫𝑋൯



ୀଵ
 (30) 

where 𝑋 represents the position of the dragon 𝑑 in 
the neighborhood 𝑁 . 
 
Dragons adjust their movement towards regions with 
higher fitness values by updating their velocity 
vectors accordingly. The updated velocity vector 
𝑉

  is given by Eq.(31). 

𝑉


= 𝛽. ∇𝑓(𝑁) (31) 

where 𝛽 is a scaling factor, and ∇𝑓(𝑁) is the 
gradient of the fitness value of the neighborhood 
with respect to the dragon’s position. 
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To balance exploration and exploitation, dragons 
also incorporate a random exploration factor 𝜖 
similar to the movement simulation step. The final 
velocity vector 𝑉  for foraging is a combination of 
targeted movement towards regions with higher 
fitness values and random exploration. 

𝑉 = (1 − 𝜖). 𝑉


+ 𝜖 + 𝑉
ௗ (32) 

where in Eq.(32), 𝑉
ௗ  is the random velocity 

vector for exploration. The foraging behaviour of 
dragons in BeardYOLO enables them to exploit 
local food sources efficiently by prioritizing regions 
with higher fitness values. By adapting their 
movement based on the quality of solutions in their 
vicinity, dragons converge towards optimal 
solutions more effectively, enhancing the 
performance of the optimization process. 
 
3.2.4 Communication and Collaboration of 
BeardYOLO 

In the communication and collaboration step of 
BeardYOLO, we facilitate communication and 
collaboration among dragons to share information 
about promising regions in the search space. 
Dragons exchange knowledge through pheromone 
trails or other communication mechanisms, guiding 
each other toward better solutions. 
 
Let 𝑃 denote the population size, representing the 
number of bearded dragons in the population. Each 
dragon 𝑑 is represented by a vector 𝑋 in the search 
space, where 𝑋 = (𝑥ଵ, 𝑥ଶ , … , 𝑥) and 𝑛 is the 
dimensionality of the search space. 
 
Dragons communicate by sharing information about 
promising regions in the search space. This 
communication can be facilitated through 
pheromone trails or other signaling mechanisms. Let 
𝐶 denote the communication vector of the dragon 
𝑑 , representing the information shared by 
neighboring dragons. 
 
The communication vector 𝐶 is computed as the 
weighted sum of information shared by neighboring 
dragons. Let 𝑁 denote the neighborhood of the 
dragon 𝑑 , comprising nearby dragons, and let 𝑤 
represent the weight assigned to the information 
shared by the dragon 𝑑 with respect to the dragon 
𝑑 . The communication vector 𝐶 is calculated as 
Eq.(33). 

𝐶 =  𝑤



ୀଵ
. 𝑋 (33) 

where 𝑘 is the number of dragons in the 
neighborhood 𝑁 and 𝑋 represents the position of 
the dragon 𝑑 in the neighborhood 𝑁 . 
 
The weights 𝑤 are determined based on the quality 
of solutions shared by neighboring dragons. Dragons 
assign higher weights to solutions in their vicinity 
with higher fitness values, indicating promising 
regions in the search space. The weights 𝑤 are 
calculated using a function that depends on the 
fitness values of neighboring dragons. Let 𝑓൫𝑋൯ 
represent the fitness value of dragon 𝑑, and let 𝑓௫ 
and 𝑓 represent the maximum and minimum 
fitness values in the neighborhood 𝑁 , respectively. 
The weight 𝑤  is computed as Eq.(34). 

𝑤 =
𝑓൫𝑋൯ − 𝑓

𝑓௫ − 𝑓

 (34) 

Dragons update their movement based on the 
information shared by neighboring dragons through 
the communication vector 𝐶 . The updated velocity 
vector 𝑉

 is given by Eq.(35). 

𝑉
 = 𝛾. 𝐶 (35) 

where 𝛾 is a scaling factor that controls the influence 
of communication on the movement of dragons. 
 

The communication and collaboration step of 
BeardYOLO enables dragons to share information 
about promising regions in the search space, guiding 
each other toward better solutions. By leveraging 
collective intelligence, dragons collaboratively 
explore the search space more effectively, leading to 
improved optimization performance. 
 
3.2.5 Prey Pursuit of BeardYOLO 

In the prey pursuit step of BeardYOLO, dragons 
employ hunting tactics to pursue and capture prey, 
analogous to exploring regions with high potential 
for improvement in the optimization problem. 
Dragons prioritize areas with promising solutions, 
adjusting their movement to converge toward 
optimal solutions. 
 
Let 𝑃 denote the population size, representing the 
number of bearded dragons in the population. Each 
dragon 𝑑  is represented by a vector 𝑋 in the search 
space, where 𝑋 = (𝑥ଵ, 𝑥ଶ , … , 𝑥) and 𝑛 is the 
dimensionality of the search space. 
 
Dragons pursue prey by updating their movement 
towards regions with higher fitness values, 
indicating the presence of promising solutions. The 
velocity vector 𝑉  is updated to prioritize regions 
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with higher fitness values, encouraging dragons to 
converge toward optimal solutions. 
 
To guide dragons toward promising regions, a prey-
pursuit vector 𝑉

௬ is computed based on the 
gradient of the fitness landscape. Let 𝑓(𝑋) denote 
the gradient of the fitness function with respect to the 
dragon's position. The prey pursuit vector 𝑉

௬ is 
given by Eq.(36). 

𝑉
௬

= 𝛿. ∇𝑓(𝑋) (36) 

where 𝛿 is a scaling factor that controls the influence 
of prey pursuit on the movement of dragons. 
Dragons also incorporate a random exploration 
factor 𝜖 similar to previous steps to balance 
exploration and exploitation. The final velocity 
vector 𝑉  for prey pursuit is a combination of 
targeted movement toward regions with higher 
fitness values and random exploration are expressed 
in Eq.(37). 

𝑉 = (1 − 𝜖). 𝑉
௬

+ 𝜖. 𝑉
ௗ  (37) 

where 𝑉
ௗ  is the random velocity vector for 

exploration. 
 

Updating the movement towards regions with 
higher fitness values, dragons in BeardYOLO 
effectively pursue and capture prey, leading to 
improved convergence toward optimal solutions in 
the optimization process. The prey pursuit step 
enhances the exploration and exploitation 
capabilities of dragons, enabling them to navigate 
the search space more efficiently and achieve 
superior optimization performance. 
 
3.2.6 Adaptation and Learning of BeardYOLO 

In the adaptation and learning step of 
BeardYOLO, dragons dynamically adjust their 
movement strategies based on their experiences 
during the optimization process. By learning from 
past successes and failures, dragons improve their 
efficiency in exploring the search space and 
converging toward optimal solutions. 
 
Let 𝑃 denote the population size, representing the 
number of bearded dragons in the population. Each 
dragon 𝑑 is represented by a vector 𝑋 in the search 
space, where 𝑋 = (𝑥ଵ, 𝑥ଶ , … , 𝑥) and 𝑛 is the 
dimensionality of the search space.  
 
Dragons adapt their movement strategies by 
adjusting the parameters that control the balance 
between exploration and exploitation. These 
parameters include the scaling factors 𝛼, 𝛽, 𝛾, and 𝛿 

used in previous steps to modulate the influence of 
different behaviors on the movement of dragons. 
 
The adaptation process involves updating these 
scaling factors based on the success or failure of 
dragons in exploring the search space and 
converging toward optimal solutions. Let 𝐹 denote 
the fitness value of the dragon 𝑑 at iteration 𝑡, and 
let 𝐹௦௧ represent the best fitness value achieved by 
any dragon in the population. The adaptation of the 
scaling factors is governed by the following 
equations Eq.(38), Eq.(39), and Eq.(40). 

𝛼௧ାଵ = 𝛼௧ + 𝜇. (𝐹 − 𝐹௦௧) (38) 

𝛽௧ାଵ = 𝛽௧ + 𝜇. (𝐹 − 𝐹௦௧) (39) 

𝛾௧ାଵ = 𝛾௧ + 𝜇. (𝐹 − 𝐹௦௧) (40) 

where 𝜇 is the adaptation rate, controlling the 
magnitude of adjustments to the scaling factors. 
These equations update the scaling factors based on 
the difference between the fitness value of the 
dragon 𝑑  and the best fitness value achieved by any 
dragon in the population. 
 
Dragons may learn from the movement strategies of 
neighboring dragons by observing their success or 
failure in navigating the search space. Let 𝑁 denote 
the neighborhood of the dragon 𝑑, and let 𝑀 
represent the movement strategy of neighboring 
dragons. Dragons update their movement strategy 
based on the movement strategies of neighboring 
dragons using the following equation Eq.(37). 

𝑀 =
1

𝑘
 𝑀



ୀଵ
 (37) 

where 𝑘 is the number of dragons in the 
neighborhood 𝑁 , and 𝑀 represents the movement 
strategy of the dragon 𝑑 in the neighborhood 𝑁 . 
 

The adaptation and learning step of BeardYOLO 
enables dragons to dynamically adjust their 
movement strategies based on their experiences and 
observations during the optimization process. By 
learning from past successes and failures and 
adapting their behavior accordingly, dragons 
enhance their efficiency in exploring the search 
space and converging toward optimal solutions. 
 
3.2.7 Termination of BeardYOLO 

In the termination step of BeardYOLO, the 
optimization process is concluded when a stopping 
criterion is met. This criterion indicates that the 
dragons have sufficiently explored the search space 
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and achieved a satisfactory level of solution quality. 
The termination step ensures that the optimization 
process does not continue indefinitely and prevents 
unnecessary computational burden. 
 
Let 𝑇௫   denote the maximum number of iterations 
allowed for the optimization process. At each 
iteration 𝑡, the fitness values of all dragons in the 
population are evaluated to determine the progress 
of the optimization process. 
 
The termination criterion is based on whether the 
maximum number of iterations 𝑇௫  has been 
reached or if a satisfactory level of solution quality 
has been achieved. Let 𝐹௧௧  represent the target 
fitness value, indicating the desired level of solution 
quality. The termination condition for the 
optimization process is defined as follows in 
Eq.(37). 

If 𝑡 ≥ 𝑇௫  𝑜𝑟 𝐹௦௧ ≥ 𝐹௧௧ , then 
terminate the optimization 

(37) 

where 𝐹௦௧ represents the best fitness value 
achieved by any dragon in the population. If the 
maximum number of iterations 𝑇௫ is reached 
before the target fitness value 𝐹௧௧ is achieved, 
the optimization process is terminated to prevent 
further computation. Similarly, if the best fitness 
value 𝐹௦௧ surpasses the target fitness value 𝐹௧௧ , 
the optimization process is terminated as the desired 
level of solution quality has been attained. 
 

The termination step ensures that the 
optimization process concludes in a timely manner 
and avoids unnecessary computational resources. By 
defining a clear stopping criterion, BeardYOLO 
effectively manages the optimization process and 
delivers satisfactory results within a reasonable 
timeframe. 

Pseudocode  - BeardYOLO 
Input: 
    Dataset D = {I1, I2, ..., In} 
    Initial YOLOv5 parameters θ 
    Initial BDO population P = {p1, p2, ..., pm} 
 
Output: 
    Optimized YOLOv5 parameters θ* 
    Enhanced performance metrics 
 
Begin 
Step 1: Data Preparation 
    Augment Dataset D: 
        For each image I in D: 
            Apply rotation, scaling, flipping, color 
adjustment 

 
Step 2: Initialization 
    Initialize YOLOv5 parameters θ 
    Initialize BDO population P with random 
weights 
 
Step 3: Fitness Evaluation 
    For each individual pi in P: 
        Apply pi to YOLOv5 parameters θ 
        Compute fitness using loss function L(θ, D) 
        Evaluate Precision, Recall, F-measure 
 
Step 4: Movement Simulation 
    For generation g from 1 to max_generations: 
        For each individual pi in P: 
            Update position of pi based on BDO 
rules 
            Evaluate new fitness of pi 
        Apply mutation and crossover to maintain 
diversity 
 
Step 5: Foraging Behavior 
        Calculate foraging probabilities for each pi 
based on fitness 
        Update positions using the best individual's 
information 
        Reinforce positive foraging paths 
 
Step 6: Communication and Collaboration 
        For each individual pi in P: 
            Exchange information among 
neighboring individuals 
            Update position of pi using the mean 
position of neighbors 
        Apply social learning mechanisms 
 
Step 7: Prey Pursuit 
        Identify the best prey (optimal parameters) 
in the current generation 
        Adjust positions of individuals to pursue the 
best prey 
        Refine YOLOv5 parameters θ based on the 
best prey’s position 
 
Step 8: Adaptation and Learning 
        Adjust BDO parameters dynamically for 
better convergence 
        Incorporate feedback from fitness 
evaluation 
        Update YOLOv5 parameters θ iteratively 
 
Step 9: Termination 
        If termination criteria (max generations or 
convergence threshold) met: 
            Break 
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        Else: 
            Continue to next generation 
    End For 
 
    Return Optimized YOLOv5 parameters θ* 
and performance metrics 
End 

The above Pseudocode depicts the overall 
functionality of BeardYOLO. 

 
4. DATASET 

The Large Scale Underwater Image Dataset 
(LSUI) is an extensive collection designed to 
facilitate research and development in underwater 
image processing, identification, and classification. 
This dataset includes thousands of underwater 
images captured in various marine environments, 
providing a diverse range of scenes and conditions. 
The images cover multiple categories, such as 
different species of marine life, underwater 
landscapes, and artificial objects, offering a 
comprehensive resource for training and testing 
machine learning models. 
 
One of the primary challenges addressed by the 
LSUI dataset is the variability in underwater imaging 
conditions. Factors like light absorption, scattering, 
and turbidity affect image quality, making consistent 
data collection difficult. The LSUI dataset contains 
images taken at different depths, times of day, and 
levels of water clarity, ensuring a broad 
representation of these variables. This diversity is 
crucial for developing robust algorithms that can 
perform accurately across different underwater 
scenarios.  
 
The dataset is annotated with detailed metadata, 
including labels for objects and features within each 
image. This annotation enables precise identification 
and classification tasks, providing a valuable 
resource for supervised learning approaches. The 
metadata includes information about the location, 
depth, and environmental conditions under which 
each image was captured, adding context that can 
enhance model training. 
 
The LSUI dataset supports various applications in 
marine research and environmental monitoring. 
Researchers can utilize the dataset to study marine 
biodiversity, track changes in underwater 
ecosystems, and monitor the health of coral reefs and 
other critical habitats. The comprehensive nature of 
the LSUI dataset makes it an essential tool for 
advancing the understanding of underwater 
environments and improving conservation efforts. 

 
 The LSUI dataset's extensive and diverse collection 
of underwater images addresses the challenges 
inherent in underwater imaging. By providing a rich 
resource for training and testing, it supports the 
development of more accurate and reliable 
algorithms for underwater image processing, 
identification, and classification. This progress is 
vital for applications in scientific research, 
environmental monitoring, and underwater 
exploration. 
 
5. RESULT AND DISCUSSION 

The comparison of three classification 
algorithms DeepSeaNet, MCANet, and 
BeardYOLO, reveals significant differences in their 
performance metrics, as presented in the provided 
data and summarized in Table. 1. These metrics 
include True Positives (TP), True Negatives (TN), 
False Positives (FP), False Negatives (FN), True 
Positive Rate (TPR), True Negative Rate (TNR), 
False Positive Rate (FPR), False Negative Rate 
(FNR), Precision, Classification Accuracy (CA), and 
F-Measure (FM) are expressed in Eq.(3). 

 
Classification 
Algorithms CA FM 

DeepSeaNet 54.487 54.110 

MCANet 61.233 60.964 

Beard YOLO 79.874 79.811 
Table 1. Classification Accuracy and F-Measure. 

 
True Positives (TP) and True Negatives (TN): 
BeardYOLO demonstrates the highest TP and TN 
values, with 1990.641 and 2006.254, respectively. 
This indicates its superior ability to identify positive 
and negative cases correctly. MCANet follows with 
a TP of 1514.811 and TN of 1549.288, while 
DeepSeaNet records the lowest TP (1342.723) and 
TN (1383.806). The higher TP and TN values of 
BeardYOLO underscore its effectiveness in accurate 
classification. 
 
False Positives (FP) and False Negatives (FN): 
The FP of BeardYOLO is 505.554 and FN is 
501.551 which is a considerable reduction in errors. 
MCANet has an FP of 964.721, FN of 975.180, 
while DeepSeaNet has the highest FP (1067.653) 
and FN (1209.817). This shows how efficient 
BeardYOLO is in avoiding making wrong 
predictions to make itself robust. 
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True Positive Rate (TPR) and True Negative Rate 
(TNR): 
The results reveal that BeardYOLO delivers the best 
TPR value of 79.875% and TNR value of 79.873% 
which demonstrates an excellent ability to detect 
both true positives and negatives. The detection 
proficiency of MCANet reaches a TPR value of 
60.836% and a TNR value of 61.626% but 
DeepSeaNet performs at a TPR value of 52.603% 
with a TNR value of 56.448%. The measured values 
show that BeardYOLO demonstrates outstanding 
capability to detect actual and non-actual positive 
cases. 
 
False Positive Rate (FPR) and False Negative 
Rate (FNR): 
The low FPR 20.127% and FNR 20.125% of 
BeardYOLO indicate that it inaccurately classifies 
subjects only minimally. The FPR rate of MCANet 
amounts to 38.374% while its FNR rate reaches 
39.164%. DeepSeaNet generates the highest FPR 
(43.552%) and FNR (47.397%). The metrics 
demonstrate that BeardYOLO has achieved the best 
performance in minimizing false classification 
results. 
 

 
Fig 3. Classification Accuracy and F-Measure. 

 
Precision: 
BeardYOLO has one of the highest precision 
percentages of 79.747% while MCANet has 
61.093% and DeepSeaNet with 55.706%. The high 
value of BeardYOLO denotes a higher classification 
accuracy of the positive class while the low value of 
False positive shows that there are very few false 
positive cases. 
 
Classification Accuracy (CA): 
BeardYOLO has the best classification accuracy of 
79.874% compared to MCANet with 61.233% and 

DeepSeaNet with 54.487%. Higher CA value for 
BeardYOLO means that it performs better in 
classifying instances compared to the other models. 
 
F-Measure (FM): 
The F-Measure, which balances precision and recall, 
is also highest for BeardYOLO at 79.811%. 
MCANet follows with an F-Measure of 60.964%, 
and DeepSeaNet records an F-Measure of 54.110%. 
BeardYOLO's high F-Measure value highlights its 
balanced and robust performance across different 
metrics. 
 
Classification Algorithms Performance: 
The classification accuracy and F-Measure are 
presented in the Table in Fig. 1 for all three 
algorithms. From the evaluation outcomes, the 
proposed BeardYOLO achieves a classification 
accuracy and F-Measure of 79.874% & 79.811% 
respectively whereas MCANet 61.233 & 60.964 
respectively and DeepSeaNet with 54.487 & 54.110 
respectively. These values represent a clear proof of 
BeardYOLO performance in both indicated metrics. 
Intriguingly, the performance levels of the three 
classification algorithms include DeepSeaNet, 
MCANet and BeardYOLO differ significantly. 
These are the Fowlkes Mallows Index (FMI) and the 
Matthew’s Correlation Coefficient are depicted in 
Fig.3. 
 

 
Fig 4. Fowlkes-Mallows Index and Matthews 

Correlation Coefficient 

 
Matthews Correlation Coefficient (MCC): 

The performance evaluation of a binary classifier 
is done by the Matthews Correlation Coefficient that 
shows the precision of the classifier and accounts for 
the true and false positive as well as true and false 

0

10

20

30

40

50

60

70

80

90

CA FM

R
es

ul
ts

 (
%

)

Performance Metrics 

DeepSeaNet MCANet BeardYOLO

0

10

20

30

40

50

60

70

80

90

FMI MCC

R
es

u
lt

s 
(%

)

Performance Metrics

DeepSeaNet MCANet BeardYOLO



 Journal of Theoretical and Applied Information Technology 
30th June 2025. Vol.103. No.12 

©   Little Lion Scientific  
 

ISSN: 1992-8645                                                                    www.jatit.org                                                     E-ISSN: 1817-3195 

 
5307 

 

negatives. BeardYOLO achieves an MCC of 59.748, 
this value is substantially higher than MCANet MCC 
which is 22.463 or DeepSeaNet MCC is 9.056. A 
higher MCC value for BeardYOLO means it is better 
in classifying the images with more accurate true 
positive and true negative rates and less false rates. 
 

The table Table 2. summarizes the FMI and 
MCC for the three algorithms. BeardYOLO leads 
with an FMI of 79.811 and an MCC of 59.748, 
followed by MCANet with an FMI of 60.964 and an 
MCC of 22.463. DeepSeaNet records the lowest 
values, with an FMI of 54.132 and an MCC of 9.056. 
These metrics highlight BeardYOLO's superior 
performance in both clustering accuracy and 
classification quality. 
 

Classification 
Algorithms FMI MCC 

DeepSeaNet 54.132 9.056 

MCANet 60.964 22.463 

EMUBOOST 79.811 59.748 
Table 2. Fowlkes-Mallows Index and Matthews 

Correlation Coefficient 
 
Analysis: 
The FMI and MCC results indicate higher accuracy 
of BeardYOLO compared to MCANet and 
DeepSeaNet in the classification of underwater 
images. From the FMI analysis, it is evident that 
BeardYOLO presents considerable precision in the 
clustering of images, thus enhancing the 
identification and clustering process. The MCC 
metric also supports the effectiveness of 
BeardYOLO’s balanced classification making by 
minimizing more false positive and false negatives. 
 
6. CONCLUSION: 

Extensive work has been done to investigate the 
improvement of the Enhanced YOLOv5 (EY5) 
model, using Bearded Dragon Optimization (BDO), 
for identification and classification of underwater 
images. Different steps such as Initialization, 
Movement Simulation, Foraging behavior, 
Communication & Collaboration, Prey Pursuit, 
Adaptation & Learning, Termination has been then 
methodically explored for integration of BDO in 
EY5 framework, known as BeardYOLO. The 
proposed comprehensive method has shown 
improvement over existing conventional models 
such as DeepSeaNet and MCANet. Empirical 
findings suggest that BeardYOLO outperforms 
state-of-the-art FedLearner in both its true positive 
and true negative rates in addition to precision and 
overall classification accuracy. BDO application has 

greatly improved clustering and classification 
performance in order to resolve special issues in 
underwater image processing. For tasks such as 
marine biodiversity studies, underwater surveillance 
and environmental monitoring, these improvements 
are crucial for providing high accuracy and 
reliability. Conducting the study reveals the capacity 
to optimize deep learning using the prospective of 
leveraging advanced optimization algorithms, such 
as BDO, to provide more efficient and accurate deep 
learning models. The evidence suggests that bio 
inspired optimization, in combination with state-of-
the-art neural networks hold promise as a specialized 
method for complex classification problems. 
BeardYOLO is a marked step forward in underwater 
image classification. Besides, the optimized model 
surpasses existing solutions and establishes a new 
benchmark for future research and applications of 
this field. The work also validates and shows the 
effectiveness of blending evolutionary algorithms 
with more elaborate neural structures for locating 
good solutions to hard problems and also for 
designing innovations in deep learning and 
optimization techniques such as generative models 

 
Author’s Critique and Opinion 

The proposed BeardYOLO framework exhibits 
strong performance in underwater image 
classification, especially under challenging visual 
distortions. While the integration of BDO enhances 
adaptability and precision, the model’s performance 
may vary across datasets with different aquatic 
conditions. Parameter tuning remains sensitive and 
may require dynamic adjustment. Incorporating 
reinforcement-based adaptation or cross-domain 
validation could further improve robustness. The 
approach demonstrates clear potential, but future 
enhancements must address scalability and 
consistency in broader deployment scenarios. 
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