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ABSTRACT 

 
This research focuses on the adaptation and optimization of the Xception deep learning model for the 
detection of breast cancer using mammogram images, contributing to the field of precision medicine. Breast 
cancer, a leading cause of morbidity globally, benefits significantly from early and precise detection. Our 
study leverages transfer learning to modify the Xception architecture, introducing custom adjustments to its 
final layers to better capture the subtle signs of malignancy in mammograms. These modifications are aimed 
at improving the model's accuracy without compromising its specificity. The model was optimized using the 
Adam optimizer alongside the ReLU activation function, which helped in dynamic learning rate adjustment 
and enhanced feature detection from complex mammographic images. We assessed the model's performance 
through a comprehensive set of metrics including accuracy (90.42%), precision, recall, F1 score, ROC AUC 
score (0.9388), and Cohen's Kappa. These metrics collectively suggest a robust improvement over traditional 
detection methods, with a significant reduction in false positives and negatives. This research  findings show 
that the modified Xception model not only meets but exceeds expectations in terms of diagnostic accuracy 
and reliability, offering a potent tool for clinicians. This research not only advances the application of deep 
learning in medical imaging but also paves the way for further research into AI-assisted diagnosis, potentially 
transforming clinical decision-making processes in breast cancer management. The implications of this work 
extend beyond immediate diagnostic benefits, supporting a broader shift towards more personalized and 
effective healthcare solutions. 
Keywords: Breast Cancer Detection, Mammogram Analysis, Deep Learning, Xception Model, Optimization 

Techniques, Medical Imaging 
 

1.0 INTRODUCTION 
 
1.1 Overview of Breast Cancer Detection 
Breast cancer remains one of the leading causes of 
mortality among women globally, and its early 
detection is critical for improving survival 
outcomes (Siegel et al., 2022). While traditional 
diagnostic methods—such as clinical 
examinations, ultrasound, and biopsies—are 
effective, they tend to be invasive, time-intensive, 
and reliant on specialized expertise. 
Mammography, widely recognized as the gold 
standard for early detection and evaluation of 
mammary gland abnormalities, has significantly 

contributed to screening efforts. However, the 
manual interpretation of mammograms is 
inherently subjective and susceptible to errors, 
resulting in false positives and false negatives that 
may lead to unnecessary interventions or missed 
diagnoses (Elmore et al., 2002). 
This paper specifically investigates the 
application of automated machine learning 
techniques for the accurate and efficient detection 
of breast cancer using mammographic images. By 
developing a computer-aided diagnostic (CAD) 
model, the research aims to enhance diagnostic 
precision, reduce human dependency, and 
minimize diagnostic delays. The scope of the 
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study is confined to the classification of 
mammographic abnormalities using deep learning 
models, with a focus on performance evaluation 
and comparison. 
The key contributions of this study are: 

1. The development of an end-to-end deep 
learning framework for breast cancer 
classification from mammograms. 

2. The integration of image preprocessing, 
feature extraction, and classification into 
a unified pipeline. 

3. A comprehensive evaluation of the 
proposed model against existing 
approaches in terms of accuracy, 
sensitivity, and specificity. 

The practical implications of this research include 
the potential deployment of automated diagnostic 
tools in clinical settings, especially in low-
resource regions where expert radiologists are 
scarce. Such systems could support radiologists 
by acting as a second opinion and significantly 
reduce diagnostic burden while improving early 
detection rates. 
1.2 Challenges in Mammogram Analysis 
Mammograms are inherently complex and thus 
pose several challenges. Overlapping tissues, low 
contrast, and subtle abnormalities such as 
microcalcifications or masses all contribute to 
diagnostic difficulties (Suckling et al., 1994). The 
major challenges are: 

•High Inter-Observer Variability: 
Radiologists may interpret mammograms 
differently, hence different results. 
Low SNR: Noises and artifacts in 
mammograms may obscure many 
diagnostic features. 
•Superficial Features: The precise 
identification of minute calcifications or 
abnormal textures is possible with 
advanced image processing methods (He 
et al., 2016). 

The limitations of traditional diagnostic methods 
highlight the need for advanced computational 
techniques like deep learning to address these 
challenges. 
1.3 Role of Deep Learning in Medical Imaging 
Deep learning, particularly Convolutional Neural 
Networks (CNNs), has transformed medical 
Mammograms are inherently complex, which 
poses several challenges. The overlapping tissues, 
low contrast, and subtle abnormalities of 
microcalcifications or masses all contribute to 
diagnostic difficulty (Suckling et al., 1994). The 
major challenges are: 

•High Inter-Observer Variability: 
Radiologists may interpret mammograms 
differently, hence different results. 
Low SNR: Noises and artifacts in the 
mammograms obscure many diagnostic 
features. 
•Superficial Features: Advanced image 
processing techniques allow for the 
accurate identification of minute 
calcifications or abnormal textures (He et 
al., 2016). 

The limitations of traditional diagnostic methods 
highlight the need for advanced computational 
techniques like deep learning to address these 
challenges. 
y=f(x)∗w+b     (1) 
where f(x) represents the input feature map, ww 
denotes the kernel weights, b is the bias, and * is 
the convolution operator. 
It involves fine-tuning the parameters {M} to 
minimize a loss function {L}. For classification 
tasks, this is often the cross-entropy loss: 
L = - ∑ [yᵢ log(ŷᵢ) + (1 - yᵢ) log(1 - ŷᵢ)] (2) 
where yi is the true label, and y^i is the predicted 
probability for the ith sample. 
These techniques, combined with architectural 
enhancements, have the potential to significantly 
improve the sensitivity and specificity of breast 
cancer detection in mammograms, offering a 
transformative solution to longstanding diagnostic 
challenges. 
 
2.0 LITERATURE REVIEW 
2.1 Existing Approaches to Mammogram 
Analysis 
The analysis of mammograms has been a major 
focus of research due to its critical role in the early 
detection of breast cancer. Traditional approaches 
primarily relied on handcrafted features and 
statistical models to identify abnormalities such as 
masses or microcalcifications (Elmore et al., 
2002). While these methods contributed to early 
screening efforts, they often depended heavily on 
the expertise of radiologists and lacked robustness 
when applied to diverse datasets. The inability of 
such models to generalize across different image 
sources and patient populations limited their 
clinical applicability. 
Classical image processing techniques such as 
histogram equalization, Canny edge detection, 
and region segmentation have also been utilized 
to enhance image quality and extract potential 
regions of interest (Suckling et al., 1994). 
However, these techniques often struggle to detect 
subtle differences between benign and malignant 



 Journal of Theoretical and Applied Information Technology 
30th June 2025. Vol.103. No.12 

©   Little Lion Scientific  
 

ISSN: 1992-8645                                                                    www.jatit.org                                                     E-ISSN: 1817-3195 

 
5337 

 

tissues, leading to suboptimal diagnostic 
performance. Machine learning methods like 
Support Vector Machines (SVM) and Random 
Forests have also been applied for mammogram 
classification, but they require extensive feature 
engineering, which is both time-consuming and 
susceptible to human error. 
With the advent of deep learning, particularly 
Convolutional Neural Networks (CNNs), there 
has been a significant leap in automated 
mammogram analysis. CNNs offer the ability to 
learn hierarchical and abstract features directly 
from image data, outperforming traditional 
methods in many classification tasks (Litjens et 
al., 2017). Despite this advancement, major 
challenges remain—chief among them are the 
high demand for large annotated datasets, long 
training times, and a lack of model 
interpretability, all of which hinder widespread 
clinical adoption. 
Problem Statement and Research Gap 
While several deep learning-based studies have 
demonstrated promising results in breast cancer 
detection, a notable gap still exists in building 
efficient, generalizable, and interpretable 
diagnostic systems that can perform well across 
diverse clinical datasets with limited training 
samples. Most existing models are trained on 
specific datasets, limiting their adaptability in 
real-world screening environments. Additionally, 
there is insufficient emphasis on integrating 
lightweight models with minimal preprocessing 
for faster deployment in clinical and resource-
constrained settings. 

 This research aims to address this gap by 
developing a deep learning-based 
diagnostic framework that: 

 Minimizes the reliance on handcrafted 
preprocessing and feature engineering, 

 Maintains high classification accuracy 
with relatively smaller datasets, 

 And optimizes computational efficiency 
to facilitate real-time clinical 
implementation. 

 This work is essential in bridging the gap 
between state-of-the-art academic 
research and practical, deployable 
solutions for breast cancer screening, 
particularly in settings where 
radiological expertise or computational 
infrastructure is limited. 

2.2 Use of Xception Architecture in Image 
Analysis 
The Xception architecture, as proposed by Chollet 
(2017), is an extension of the Inception model with 

depth wise separable convolutions for improved 
efficiency and performance. This architecture has 
been widely adopted in medical imaging because it 
can capture very intricate patterns and relationships 
in image data. Depth wise separable convolution 
splits the process of performing a convolution 
operation into two steps: it performs the depth wise 
convolution, with one filter for each of the input 
channels, followed by a pointwise convolution that 
combines all the results of the previous step, which 
reduces its computational complexity significantly: 
Complexity Reduction = (H x W x C) / (K x K + C)
 (3) 
where H, W, and C represent the height, width, and 
number of channels of the input, and K is the kernel 
size. 
Through subtle anomaly detection, Xception shows 
significant potential in mammograms since it can 
be attuned to focus on high grain. Studies have 
proven modifications through the addition of 
specific domains layers or attention mechanisms 
may further improve performance on some specific 
clinical operations (Chollet 2017; Wang et al., 
2020). For instance, use of self-attention helps 
weigh regions of interest through dynamic 
weighting, just as a human eye. 
The use of Xception architecture  is a really 
powerful approach for the detection of breast 
cancer. It can process high-dimensional medical 
data efficiently while being computation- friendly. 
 
3.0 EXISTING METHODS FOR BREAST 
CANCER DETECTION IN MAMMOGRAMS 
Machine learning classifiers have been very useful 
in breast cancer detection and provided automated 
and scalable solutions for analysing 
mammographic data. Application of different 
classifiers, along with performance evaluation 
metrics, has significantly advanced this domain. 
However, the methods developed so far often 
indicate a need for further research to enhance 
accuracy, generalizability, and interpretability. 
Several machine learning classifiers have been 
applied to mammographic datasets. Each uses a 
different mechanism to separate cases as benign or 
malignant. Some of the commonly used classifiers 
are: 
Random Forest (RF) is an ensemble learning 
method that constructs multiple decision trees 
during training and outputs the mode of their 
predictions. It is a robust method against overfitting 
and can handle high-dimensional data, making it 
popular in medical diagnostics (Breiman, 2001). 
However, RF's reliance on a large number of trees 
increases computational complexity, and it may 
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struggle to detect subtle patterns in medical images. 
Similarly, classification can be done using 
straightforward and interpretable models called 
Decision Trees. DTs are based upon binary splits 
over feature thresholds. Although their simplicity 
and interpretability are advantages of DTs, they 
often fit the noise in small datasets or imbalanced 
datasets (Quinlan, 1986). Logistic Regression is an 
important baseline statistical model for fitting 
probability models to binary data. It is useful for 
linearly separable datasets, but its inability to 
capture non-linear relationships limits its 
application in complex mammographic analysis 
(Hosmer et al., 2013). K-Nearest Neighbours (K-
NN) classifies data points based on the majority 
class among their kk nearest neighbours. Although 
K-NN is simple and works well in low-dimensional 
spaces, it is computationally very expensive for 
large datasets and sensitive to the choice of kk and 
the distance metric used (Cover & Hart, 1967). 
SVCs - Linear SVC and non-linear SVC - are 
powerful tools for classification, especially in high-
dimensional spaces. They construct hyperplanes to 
separate classes with maximum margin, which 
makes them effective for a wide range of 
classification tasks. Linear SVC works very well 
with linearly separable data, whereas non-linear 
SVC uses kernel functions to deal with complex 
patterns (Cortes & Vapnik, 1995). However, SVCs 
can be computationally expensive, especially when 
dealing with large datasets. 
3.1 Performance Evaluation 
Standard metrics are used to evaluate the 
performance of these classifiers, including 
precision, recall, and F1-score, in terms of accuracy 
and reliability. Precision refers to the proportion of 
true positive predictions among all positive 
predictions, while recall refers to the ability to 
identify all positive cases. The F1-score is the 
harmonic mean of precision and recall. With high 
prevalence rates and usage across different health 
scenarios, this kind of measurement might miss out 
the nuance on the complexities within medical 
datasets, particularly imbalanced distributions, 
wherein a class dramatically outclasses another 
(Sokolova & Lapalme, 2009). 
3.2 Detection of Breast Cancer 
After being evaluated, the top-ranked classifier is 
put into service to classify breast cancer in novel, 
unseen data. The pipeline has ensured that there is 
a systematic approach in model selection and 
deployment. However, variability in datasets, 
imaging modalities, and demographics of patients 
limits generalization for these models. 
 

3.3 Need for Further Research 
Although these classifiers give good bases for 
automatic breast cancer detection, the performance 
of these classifiers is limited to challenges such as 
overfitting and sensitivity to parameter tuning in 
complex medical contexts where there is little 
interpretability. Moreover, most methods hardly 
make full use of inherent domain-specific features 
of mammograms, suggesting an area of 
improvement that could be well filled by advanced 
techniques like deep learning and architectural 
customizations. The integration of domain-
specific, self-attention mechanisms, and fine-tuned 
deep learning architectures significantly improves 
sensitivity and specificity and opens doors to more 
reliable and interpretable diagnostic models. 
 
4.0 PROPOSED METHODOLOGY  
4.1 Enhanced Breast Cancer Detection Using a 
Modified Xception Model 
The proposed methodology introduces a more 
enhanced approach by exploring deep learning 
using a modified version of the Xception model 
based on the identified challenges for the existing 
methodologies for detection of breast cancer. There 
are several drawbacks to traditional classifiers like 
Random Forest, Decision Trees, or Logistic 
Regression. These are incapable of determining 
complex patterns in high-dimensional data from 
medical images, especially within mammograms. 
These conventional models often struggle with the 
subtle and intricate features present in 
mammographic images, thus having lower 
sensitivity and precision in detecting malignancy. 
In addition, these models have a dependency on 
manually engineered features and face difficulties 
in generalizing across different datasets, which 
contribute to the inadequacy of these models (Zhao 
et al., 2018). 
The solution was in the use of a deep learning 
architecture suited for image classification( 
Kingma et al 2015), the Xception model with its 
established prowess for effectively handling 
complex image data. Our approach includes 
targeted modification to the Xception model with 
added sensitivity to subtle markers appearing in 
mammograms. Thus, this solution directly deals 
with the shortcomings of the traditional machine 
learning classifiers, which often fail to recognize 
intricate patterns without extensive feature 
engineering. 
 
4.2 Overview of the Xception Model 
The Xception model, designed for large-scale 
image recognition tasks, makes use of depth wise 
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separable convolutions that are efficient in 
processing complex patterns in images while 
keeping computational complexity low (Chollet, 
2017). Unlike the traditional machine learning 
classifiers, the Xception model can automatically 
extract relevant features from mammographic 
images, thereby reducing the amount of feature 
extraction required by hand. This work modifies 
the Xception architecture to fine-tune the model's 
last layers, recognizing the specific patterns 
associated with breast cancer. This permits the 
model to achieve a better sensitivity and precision 
level as compared to the traditional approach. 
The Xception model, trained(Glorot et al 2010) to 
adapt the final layers of the model for 
mammographic data, allows it to detect subtle signs 
of malignancy such as microcalcifications and 
unusual tissue density that may otherwise be 
missed with traditional methods. This adjustment 
directly targets the lack of sensitivity found in 
conventional classifiers, making sure that more 
early-stage breast cancer can be detected. 

 
Fig1: Proposed Methodology 

Adopting this approach allows the model to benefit 
from the feature extraction capabilities learned 
from the large, diverse ImageNet dataset and then 
adapt these features to the specifics of 
mammographic images (Xie et al 2017). This 
approach also solves the problem of needing 
extensive labelled mammographic data for 
training, since it makes it possible for the model to 
perform well even on a smaller dataset. This is a 
considerable gain compared to the usual methods, 
because the training often requires immense 
labelled data, which is cumbersome and time-
consuming. 
Finally, the proposed methodology (LeCun et al 
2019) using a modified Xception model offers a 
significant advancement over traditional machine 
learning approaches in breast cancer detection. The 
proposed model addresses key limitations of 
current methodologies, such as automating feature 
extraction, reducing dependency on large labelled 

datasets, and improving sensitivity to subtle cancer 
markers. This innovative approach can 
revolutionize breast cancer diagnostics by offering 
a more precise and reliable tool for early detection. 
 
5.0 OPTIMIZATION TECHNIQUES: ROLE 
OF ADAM OPTIMIZER, BENEFITS OF 
RELU ACTIVATION FUNCTION, MODEL 
TRAINING PROCESS, AND 
HYPERPARAMETER TUNING 
 
It has advanced optimization techniques, notably 
Adam optimizer and ReLU activation function, to 
optimize the performance of the modified Xception 
model in breast cancer detection. Optimization 
techniques in these optimizations are important for 
optimizing the training process and helping ensure 
the model converges both fast and accurately. 
5.1 Role of Adam Optimizer in Training 
The Adam optimizer is the most widely used 
optimization algorithm in deep learning that offers 
the benefits of both momentum and adaptive 
learning rates. It adjusts the model's weights by 
incorporating first and second moment estimates of 
gradients, which helps to obtain more stable and 
faster convergence. The update rules of the Adam 
optimizer are described as follows: 
mt = β1 * mt-1 + (1 - β1) * ∇L(θ)  (4) 
vt = β2 * vt-1 + (1 - β2) * ∇L(θ)^2  (5) 
m̂t = mt / (1 - β1

t)    (6) 
v̂t = vt / (1 - β2

t)    (7) 
θt = θt-1 - α * m̂t / (√v̂t + ε)   (8) 
here mt and vt – moment estimates of first and 
second  

β1 and β2 moment estimates decay rates  
α  is learning rate  
Dynamic Learning Rate from the Adam optimizer 
allows an adapted Xception model to adjust the 
learning rate to optimize the adaptation of models 
in complex high dimensional feature space, such as 
in cases of mammograms. 
5.2 Benefits of ReLU Activation Function 
ReLU, the Rectified Linear Unit, is a widely used 
activation function in CNNs for introducing non-
linearity. The model learns to take on complex 
patterns and representations of images because of 
it. It is defined as : 
f(x)=max(0,x)   (9) 
Where f(x) is the output, and x is the input. This 
simple activation function helps solve the 
vanishing gradient problem, allowing for faster and 
more efficient training, particularly in deep 
networks like Xception. In addition, ReLU 
activates only positive values, which ensures 
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sparsity in the network and promotes a more 
efficient learning process. 
The efficiency of using ReLU in training a deep 
model like Xception lies in the fact that whenever 
the input is positive, ReLU passes the gradient, 
while it sets the gradient to zero for negative inputs 
and therefore significantly accelerates convergence 
as compared to older activation functions like 
sigmoid or tanh. 
5.3 Model Training Process and 
Hyperparameter Tuning 
 Training the modified Xception model 

involves several critical steps that lead to 
optimal performance in breast cancer 
detection: 

 Data Preprocessing: The preprocessing steps 
like normalisation and resizing are performed 
on the mammogram images before training, 
with the goal of ensuring consistency and 
further improving the model's convergence. 
For scaling all the images to a uniform range, 
normally between 0 and 1, and for resizing into 
the input dimension of the Xception model,. 

 Loss Function: During training, the model 
aims to minimize a categorical cross-entropy 
loss function for classification tasks. The loss 
function is defined as: 
L(y, ŷ) = - ∑_(i=1)^C y_i * log(ŷ_i) 
 (10) 
Where C represents the number of classes 
(benign or malignant), yi is the true label for 
class ii, and y^i\ is the predicted probability for 
class i. 

 Hyperparameter Tuning: Hyperparameters, 
such as learning rate (α\alpha), batch size, 
number of epochs, and the number of layers to 
fine-tune in the Xception model, are carefully 
selected through grid search or random search 
methods. For instance, the learning rate 
significantly affects the convergence rate, and 
a high learning rate may cause the model to 
overshoot the optimal weights, while a low 
learning rate can lead to slow convergence. 
Typical learning rates for Adam optimization 
range from 10-5 to 10-3. 

 The optimal hyperparameters are identified by 
evaluating the model's performance on a 
validation dataset and using evaluation metrics 
such as accuracy, precision, recall, and F1-
score to guide the tuning process. 

5.4 Impact on Breast Cancer Detection 
The combination of the Adam optimizer, ReLU 
activation, and effective hyperparameter tuning 
ensures that the modified Xception model learns 
efficiently and adapts well to the characteristics of 

mammographic images. The methodology of fine-
tuning the model for breast cancer detection will 
deliver high-accuracy predictions with minimal 
overfitting, thereby improving the sensitivity and 
specificity of breast cancer detection models. 
These advanced optimization techniques allow the 
model to extract relevant features from 
mammograms, like texture, shape, and edges, 
while avoiding pitfalls common in traditional 
machine learning models that often struggle with 
high-dimensional, noisy medical data. The use of 
transfer learning, combined with optimization 
strategies like Adam and ReLU, enhances the 
model's ability to generalize well to new, unseen 
data. 
 
6.0 EXPERIMENTAL SETUP 
6.1 Dataset Description 
Mammography images are used in an experimental 
setup to test the modified Xception model using 
labelled data, which consist of images categorized 
into Benign and Malignant categories. Each image 
used contains the label based on its density level of 
the tissue of the breast that comes along with the 
diagnosed mammography. The entire data set 
ensures a richer source of features for this 
mammography dataset, containing rich images 
with different kinds of density levels. It includes a 
total of 7632 mammogram images, with 5724 
images dedicated to training and 1908 images set 
aside for testing. 

 
Fig2 Dataset Description 

Each image represents a specific case with its 
corresponding density level and diagnosis. 
6.2 Data Preprocessing Techniques 
 The preprocessing of the dataset is crucial to 

ensure that the images are suitable for feeding 
into the deep learning model. Several 
preprocessing techniques are applied to 
enhance the data quality and ensure the model 
can learn meaningful features: 
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 Resizing: All images are resized to a standard 
size (e.g., 224x224 pixels), which is 
compatible with the input requirements of the 
Xception model. 

 Normalization: To speed up convergence 
during training, pixel values of the images are 
normalized to a range of 0 to 1 by dividing 
each pixel value by 255. 
Normalized Pixel Value=Pixel Value/255  

 
Fig3 Images after Normalization 

 Augmentation: Image augmentation 
techniques, such as rotation, flipping, 
zooming, and shifting, are applied to 
increase the variability of the training data 
and reduce overfitting. This allows the 
model to generalize better on unseen data. 

 Label Encoding: The labels Benign and 
Malignant are encoded into numerical 
values (0 for Benign and 1 for Malignant) 
to be used for model training. 

 Data Cleaning: Any corrupted images or 
anomalies in the dataset are removed to 

ensure that only high-quality data is used 
for training and testing. 

 Training and Validation Split 
To evaluate the model's performance 
effectively, the dataset is split into a 
training set and a testing set. The training 
set consists of 5724 images, while the 
testing set is comprised of 1908 images. 
This split ensures that the model has 
enough data for training while retaining a 
sufficient amount of data for validation. 
6.3 The following steps outline the data 
splitting process: 

 Training Set: A total of 5724 images are 
used for training the model. These images 
are fed into the model during the training 
process, allowing the model to learn the 
distinguishing features of breast cancer 
markers. 

 Testing Set: The 1908 images in the 
testing set are used for model evaluation. 
These images are not seen during training, 
ensuring that the model's generalization 
capabilities are tested. The performance 
metrics (accuracy, precision, recall, F1-
score) are computed using the testing set. 

 Cross-Validation: To further assess the model's 
robustness, a k-fold cross-validation technique 
could be applied, although for simplicity, the 
dataset is primarily split into training and 
testing sets. 

The training and validation split ensures that the 
model is able to learn effectively on a substantial 
number of samples, while still having a reliable set 
of data to evaluate its performance on new, unseen 
data. 
 
7.0 RESULTS AND DISCUSSION 
 
7.1 Performance Metrics: Accuracy, Sensitivity, 
Specificity 
In this study, the performance of the modified 
Xception model for breast cancer detection was 
evaluated using several key metrics: accuracy, 
precision, recall, F1 score, ROC AUC score, and 
Cohen's Kappa score. These metrics provide a 
comprehensive assessment of the model's ability to 
correctly classify mammogram images as either 
benign or malignant. 
The evaluation metrics and their corresponding 
values are as follows: 
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Fig4 Performance Metrics 

These results indicate a strong performance in 
breast cancer detection, showing the model’s 
reliability and robustness. 
7.2 Comparison with Existing Models 
To provide context for the effectiveness of the 
modified Xception model, we compare its results 
with those of existing models from the literature 
that have applied machine learning techniques to 
mammogram image analysis. 

1. Model Comparison with other 
Approaches: A study by Aisha et al. 
(2020) utilized a for breast cancer 
detection, achieving an accuracy of 0.86. 
In comparison, our modified Xception 
model performed better, with an accuracy 
of 0.9042, suggesting that the custom 
modifications to the Xception architecture 
offer superior performance in detecting 
subtle patterns in mammograms (Aisha et 
al., 2020). 
2. Comparison with Traditional 
Machine Learning Models: In a 
comparison of traditional machine 
learning classifiers such as Random 
Forest and Support Vector Machines 
(SVM), García et al. (2019) reported an 
accuracy of 0.89 with SVM for breast 
cancer detection in mammogram images. 
Although this result is comparable to our 
model’s accuracy, our modified Xception 
model outperforms these methods by 
achieving higher precision, recall, and 
ROC AUC scores (García et al., 2019). 
This further supports the hypothesis that 
deep learning models, particularly 
architectures like Xception, outperform 
conventional machine learning methods 
for complex image analysis tasks. 

3. Comparison with CNN-Based 
Models: A study by Sharma et al. (2021) 
employed a convolutional neural network 
(CNN) model for breast cancer 
classification and reported an accuracy of 
0.90, which is similar to our model's 
performance. However, the use of a 
customized Xception model in our 
research, coupled with a self-attention 
mechanism, further enhances the model’s 
precision and sensitivity compared to the 
standard CNN models (Sharma et al., 
2021). 

The results indicate that, while existing methods 
such as traditional machine learning classifiers and 
basic CNN architectures show competitive 
performance, the introduction of Xception model 
provides enhanced results in terms of both accuracy 
and sensitivity, making it a promising solution for 
breast cancer detection in mammograms. 
7.3 Interpretation of Results 
The high accuracy (0.9042) and precision 
(0.9046) values demonstrate that the modified 
Xception model is effective at detecting breast 
cancer in mammograms with minimal false 
positives. This indicates that the model reliably 
identifies malignant tumours, reducing the risk of 
unnecessary biopsies and treatments. 
The recall value (0.9042) indicates that the model 
is also effective at detecting a large portion of true 
malignant cases, which is crucial in a medical 
context where missing a diagnosis could have 
severe consequences. The F1 score (0.882) reflects 
a balanced performance, emphasizing that the 
model strikes a good equilibrium between 
precision and recall. 
The ROC AUC score (0.9388) is particularly 
noteworthy as it demonstrates that the model has a 
strong capability to distinguish between benign and 
malignant cases. An ROC AUC score closer to 1 
indicates a high-quality model, with the modified 
Xception model performing excellently in this 
regard. 
The Cohen Kappa score (0.4075) suggests that 
while the model has strong performance metrics, 
there is still some room for improvement in terms 
of agreement with human radiologists or ground 
truth labels. Further refinements in model training 
and additional data could help improve this score. 
Overall, the modified Xception model 
demonstrates significant potential for improving 
the accuracy and reliability of breast cancer 
detection in mammograms. Its performance 
surpasses that of traditional machine learning 
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classifiers and even basic CNN architectures, 
offering a valuable tool for clinical use. 
 
8.0 CONCLUSION 
 
This paper presents a novel modification of the 
Xception model specifically tailored for breast 
cancer detection in mammographic images. The 
proposed architecture demonstrates substantial 
improvements in diagnostic accuracy, achieving 
an overall classification accuracy of 90.42% and 
a high ROC AUC score of 0.9388. These 
performance metrics underscore the model’s 
strong capability to differentiate between benign 
and malignant cases, while significantly reducing 
both false positives and false negatives. 
The novelty of this study lies in the customized 
adaptation of the Xception architecture, where the 
integration of advanced optimization 
techniques—such as the Adam optimizer and 
ReLU activation—enabled the model to 
effectively capture subtle, complex patterns 
within mammograms. This enhancement in 
sensitivity and specificity over traditional 
machine learning approaches highlights the 
model's robustness and generalization ability, 
especially in challenging diagnostic contexts. 
The impact of this research is twofold: technically, 
it advances the design of deep learning 
frameworks for medical imaging; practically, it 
provides a clinically viable tool that can aid 
radiologists in making more accurate and timely 
decisions. By reducing dependency on manual 
interpretation and improving diagnostic 
reliability, this work supports the broader goal of 
advancing precision medicine in breast cancer 
care. Furthermore, the success of this model opens 
avenues for future research in optimizing and 
deploying lightweight, interpretable, and scalable 
deep learning models across diverse healthcare 
environments. 
 
9.0 FUTURE SCOPE OF THE RESEARCH 
 
The addition of advanced attention mechanisms 
such as Self-Attention or even Transformer-based 
architecture may contribute significantly to 
enhancing the focusing ability of this model over 
the most critical regions in mammographic images. 
In this case, mechanisms allow the model 
dynamically prioritize the regions where a tumor 
could be slightly undistinguishable or is entirely 
covered with dense tissue to result in an improved 
accuracy. This integration would enhance the 
model's sensitivity but also enable the refinement 

of its decision-making process with critical feature 
identification, ultimately improving model 
performance in more complex detection scenarios 
of breast cancer. 
Further improvement in the diagnostic accuracy 
can be achieved by increasing the dataset to include 
a larger variety of mammographic images and 
integrating multi-modal data from other imaging 
techniques such as MRI and ultrasound. 
Combining these modalities with patient-specific 
data will allow for a more comprehensive approach 
to breast cancer detection. Future work might also 
involve the real-time application of the model in 
clinical settings, providing essential support to 
radiologists to make more accurate and effective 
diagnoses of breast cancer. This would ultimately 
translate to better patient outcomes and detection at 
an earlier stage. 
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