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ABSTRACT 

Lung abnormalities in the post-COVID era are a common issue, demanding accurate and timely diagnosis. 
However, detecting these irregularities with deep learning models has its own difficulties like class 
imbalance, overfitting, and restricted generalizability due to heterogeneous datasets, all of which can impede 
accurate detection. Here we apply deep learning classification on extensive datasets compiled during and 
after the COVID-19 pandemic, with an ability for high-performance AI algorithms to peruse normal lungs 
and lungs affected by pneumonia, cardiomegaly, and COVID-19. We implemented an integrated framework 
of two convolution neural network architectures, Places365 GoogLeNet and EfficientNetB0. The fusion of 
these models employed the AdaBoost ensemble method, significantly enhancing classification accuracy. 
Places 365 GoogLeNet achieved a validation accuracy of 90.49%, while EfficientNetB0 reached 94.70%. By 
integrating these models, the classification accuracy improved to 97.48%, showcasing the effectiveness of 
model fusion in achieving superior performance. This framework demonstrates promise for diagnosing 
complex lung conditions, particularly those related to COVID-19, offering potential as a robust diagnostic 
tool. 

Keywords-COVID-19, Places 365 GoogLeNet, CNN, EfficientNet B0, ResNet, Pneumonia, Cardiomegaly, 
Ensemble 

 

I.  INTRODUCTION  

A. Background 

The COVID-19 pandemic has emphasized 
the critical need for effective diagnostic tools to 
identify and manage respiratory diseases such as 
pneumonia, cardiomegaly, and COVID-19. These 
conditions present significant challenges due to their 
impact on global health and the complexity of their 
diagnosis. Rapid and accurate identification is 
essential for timely intervention, treatment, and 
improving patient outcomes. Among these 
conditions, cardiomegaly, characterized by the 
enlargement of the heart, is often observed in chest 
X-rays and can indicate underlying health issues 
such as heart failure or complications related to 
COVID-19 [1][2]. Deep learning, a branch of 
artificial intelligence, has emerged as a promising 

solution for medical image analysis, offering 
significant advantages in automating diagnostic 
processes. The integration of deep learning models 
with medical imaging can alleviate the burden on 
radiologists, reduce human error, and enhance 
diagnostic precision. However, existing models face 
challenges such as class imbalance, overfitting, and 
limited generalizability. Overfitting is a general 
problem in machine learning but is especially 
pronounced in COVID-19-related data due to 
factors such as small sample sizes for certain classes 
(e.g., rare cases or outcomes), the use of noisy or 
heterogeneous data from multiple sources, and the 
rapid emergence of new variants that may not align 
well with the training data [3][4]. 

B. Research gap 
The diagnosis of respiratory conditions has 

seen significant advancements with the adoption of 
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deep learning models [5] such as ResNet, VGGNet, 
and DenseNet, which have demonstrated strong 
feature extraction capabilities in medical imaging 
tasks. However, these models often face critical 
limitations, including overfitting on small, 
imbalanced datasets, high computational demands, 
and limited generalizability to real-world clinical 
settings. Traditional ensemble methods have been 
explored to address these issues, but they frequently 
lack the robustness needed for distinguishing subtle 
variations among conditions like COVID-19, 
cardiomegaly, and pneumonia. Furthermore, while 
chest imaging scores provide valuable insights for 
disease severity, existing algorithms fail to interpret 
these scores reliably in diverse populations. To 
address these gaps, this study proposes a novel 
integration of GoogLeNet and EfficientNetB0, 
leveraging their respective strengths in multi-scale 
feature extraction and computational efficiency. The 
fusion of these architectures with the AdaBoost 
ensemble method aims to enhance diagnostic 
accuracy, mitigate class imbalance by  assigning 
higher weights to misclassified samples, combining 
multiple weak learners as well as Reducing Bias in 
Feature Learning, and provide a significant 
advancement over existing state-of-the-art 
techniques in automated lung disease classification. 
 
C. Problem Statement 

Globally, millions of COVID-19-
recovered patients experience long-term lung 
complications, leading to increased hospitalizations 
and misdiagnosis risks. Traditional methods often 
fail to distinguish COVID abnormalities from other 
conditions like pneumonia and cardiomegaly, 
necessitating a more robust AI-driven solution.The 
conventional methods for diagnosing respiratory 
conditions rely heavily on manual evaluation by 
radiologists, which can be time-consuming and 
prone to errors. The increased workload during the 
pandemic has highlighted the limitations of 
traditional approaches. Furthermore, diagnosing 
conditions like cardiomegaly in the context of 
COVID-19 often involves interpreting "chest 
imaging scores," which quantify the severity of lung 
involvement based on abnormalities detected in 
chest X-rays and CT scans. These scores serve as a 
valuable tool for assessing disease progression and 
guiding treatment plans, especially in severe cases 
[6]. Despite their potential, these imaging scores 
require robust algorithms to ensure accurate 
interpretation. 

D. Contributions 

This study aims to address the challenges in 
lung disease diagnosis by developing an integrated 

deep learning framework. The main contributions of 
this research are as follows: 

 Development of an Automated 
Diagnostic System: The system uses a 
deep learning framework that classifies 
lung conditions (normal lungs, 
pneumonia, cardiomegaly, and COVID-
19) for accurate and efficient disease 
diagnosis. 

 Fusion of Complementary CNN 
Architectures: The model combines 
Places365 GoogLeNet and EfficientNetB0 
in an ensemble member selection strategy, 
obtaining consensus from complementary 
architectures to improve diagnostic 
accuracy. 

 Improved Differentiation of COVID-19 
from Other Conditions: The framework 
differentiates COVID-19 from pneumonia 
and cardiomegaly well and reduces the 
possibility of multi-class misclassification 
of COVID-19 cases in medical imaging. 

 Mitigation of Class Imbalance and 
Overfitting: Data augmentation, weighted 
loss functions, and AdaBoost ensemble 
learning are developed to mitigate Class 
imbalance & Overfitting. 

Unlike previous works that focus solely on a single 
CNN model, our research introduces an innovative 
ensemble approach leveraging GoogLeNet and 
EfficientNetB0 with AdaBoost, significantly 
reducing class imbalance effects and improving 
generalizability. 

E. Rationale for Choosing GoogLeNet and 
EfficientNet 

GoogLeNet was selected for its ability to 
capture multi-scale image features through its 
Inception modules, which are particularly effective 
in identifying complex patterns in chest X-ray 
images. EfficientNetB0, on the other hand, offers a 
balance between computational efficiency and 
accuracy, making it well-suited for medical image 
classification tasks [7]. The combination of these 
models leverages their respective strengths—
GoogLeNet’s robust feature extraction and 
EfficientNet’s scalability—to create a more reliable 
and accurate diagnostic tool. The fusion of these 
models using the AdaBoost ensemble method 
further improves classification performance by 
aggregating the predictions of both networks [8], 
[9], [10]. 
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F. Judtifuing adaboast and Addressing Model 
Recency 

The AdaBoost algorithm in this study is 
utilized as an ensemble technique to combine the 
predictions of two independently trained models: 
GoogLeNet and EfficientNetB0. These models, 
while sophisticated deep learning architectures, are 
not weak learners in the traditional sense defined by 
AdaBoost. Instead, they act as "base learners" in an 
ensemble setting, where their outputs are weighted 
and combined to create a more robust classifier. 
AdaBoost [11] adjusts the weights of misclassified 
samples iteratively and combines the predictions of 
these base learners to improve classification 
performance. 
 

The use of AdaBoost in this context 
deviates from its conventional application with 
weak learners but is justified by its ability to reduce 
overfitting and enhance model generalizability 
through weighted combination. The rationale for 
not concatenating the two models into a single 
neural network stems from the need to preserve the 
unique feature extraction capabilities of each 
architecture. Concatenation may lead to challenges 
in training, increased computational complexity, 
and potential redundancy in feature representation. 
By leveraging AdaBoost, the complementary 
strengths of GoogLeNet [12] and EfficientNetB0 
[13] are retained while achieving an aggregated 
improvement in classification accuracy. Although 
GoogLeNet and EfficientNetB0 are established 
models, their selection over more recent 
alternatives is intentional. The computational 
efficiency of these models ensures their 
applicability in real-world clinical settings, where 
resource constraints often limit the deployment of 
more complex architectures. Additionally, the 
complementary strengths of these models—
GoogLeNet’s feature extraction and 
EfficientNetB0’s scalability—offer a balanced 
approach that aligns well with the study’s 
objectives. The proposed ensemble method 
mitigates potential limitations of individual models, 
demonstrating performance that rivals or exceeds 
state-of-the-art techniques.  
 

The remainder of this manuscript is 
structured as follows: The section II examines 
existing deep learning-based approaches for lung 
disease classification by evaluating their research 
gaps while documenting their limitations and 
benefits. The Dataset Description discussed in 
section III outlines the origin of utilized datasets 
while describing their class distribution and 

describing preprocessing procedures. Section IV 
discuss the proposed framework that merges 
Places365 GoogLeNet and EfficientNetB0 along 
with AdaBoost ensemble learning and strategies for 
class imbalance and overfitting solutions. Also, the 
Experimental Setup and Implementation segment in 
this section describe the training procedures and 
includes hyperparameter optimization followed by 
evaluation methods and computational 
infrastructure descriptions. Model performance 
analysis in Results and Discussion section includes 
accuracy levels as well as confusion matrices and 
model comparisons against existing approaches. 
Finally, Future Work along with Conclusion 
reviews major research outcomes while preparing 
clinical applications and suggesting research 
pathways. 

2. RELATED WORKS 

Numerous studies have explored deep learning 
models for detecting and classifying respiratory 
diseases, including COVID-19, pneumonia, and 
cardiomegaly. Key advancements in this domain are 
summarized below: 
 A model was developed to classify chest X-

rays into four categories: pneumonia, 
tuberculosis (TB), COVID-19, and normal. 
This model further categorized COVID-19 
cases based on severity using VGG16, 
DenseNet161, and ResNet18. It achieved test 
accuracies of 95.9% and 98% [14][15]. 

 Another study utilized CNN features with a 
dataset of 600 radiographs, achieving 97.19% 
DSC and 94.13% DSC for lung and infection 
segmentation, respectively [16]. 

 A VGG model with 16 convolutional layers 
classified chest X-ray images into pneumonia, 
viral pneumonia, and normal cases, 
demonstrating generalization on a dataset of 
over 9,000 images [17]. 

 A comparative study evaluated 11 CNN 
models (e.g., VGG16, ResNet50V2, 
DenseNet169) and showed accuracy in 
detecting COVID-19, bacterial, and viral 
pneumonia [18]. Pandit et al.  applied VGG19 
with transfer learning to process 1,428 chest X-
ray images resulting in 92.53% COVID-19 
classification accuracy while dealing with 
restricted scaling concerns. With CNN and 
machine learning algorithms Sekeroglu and 
Ozsahin [19] operated on 1,808 of 6,100 
images to reach a 96.51% ROC result but their 
approach encountered high computational 
complexity issues. Khan and colleagues [20] 
designed CoroNet using Xception architecture 
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to analyze 3,000 chest X-ray images at 95% 
accuracy while managing multiple 
classification projections yet requiring 
significant computational power. 

 Another work achieved 99.83% accuracy 
using CNN with PCA and ELM for binary 
pneumonia classification [21]. 

 Yamac et al. developed a sparse support 
estimator-based model, achieving 87.07% 
accuracy for four-class classification and 
95.90% for COVID-19 detection [22]. 

 
Table 1 shows the comparative study of existing 
methods and its advantages and disadvantages. 

Studies such as Chandra et al. [23] utilized a 
majority voting-based ensemble classifier for 
COVID-19 detection, while Nahiduzzaman et al. 
[24] proposed a CNN-based approach for multi-

disease classification, but both approaches lacked a 
dedicated strategy for addressing class imbalance 
and overfitting. Serte and Serener [25] employed a 
trained ResNet model to classify pleural effusions 
(PE) derived from TB, pneumonia, and COVID-19 
cases. Their work achieved detection accuracies of 
99%, 75%, and 100% for PE related to pneumonia, 
TB, and COVID 19 respectively. For classification 
tasks, their average accuracy reached 83%. Sahlol et 
al. [26] on the other hand utilized a trained 
MobileNet model to extract approximately 50,000 
features, from CXR images for TB detection.  

An optimization algorithm based on ecosystems 
was utilized to select features surpassing the 
performance of current methods, with accuracy rates 
of 90.20% and 94.10% for Shenzhen (SZ) and 
Dataset 2 respectively [26]. Chandra et al. developed 
a computer-aided diagnosis (CAD) system for TB 
detection from CXR images. 

 
Table 1 Comparative Summary Of The Existing Methods 

Study Methodology Dataset 
Size 

Accuracy Advantages Disadvantages 

Model [13][14] VGG16, 
DenseNet161, 

ResNet18 

64 × 64 
images 

95.9% - 
98% 

Multi-class 
classification 

Limited resolution 
and 

generalizability 
Segmentation 

Study [15] 
ED-CNNs, 
UNet, FPN 

600 
radiographs 

97.19% 
(DSC) 

High 
segmentation 

precision 

Complex 
implementation 

VGG Model 
[16] 

VGG with 16 
convolution 

layers 

9,000+ 
images 

Not 
specified 

Strong feature 
generalization 

Potential 
overfitting 

Comparative 
Study [17] 

VGG16, 
ResNet50V2, 
DenseNet169 

X-ray 
dataset 

Not 
specified 

Comprehensive 
performance 
evaluation 

No detailed 
generalization 

metrics 
Pandit et al. 

[18] 
VGG19 
Transfer 
Learning 

1,428 
images 

92.53% Strong COVID-
19 classification 

Limited 
scalability 

Sekeroglu and 
Ozsahin [19] 

CNN and ML 
Algorithms 

1,808/6,100 
images 

96.51% 
(ROC) 

High multi-class 
classification 

Computational 
complexity 

Khan et al. 
[20] 

CoroNet 
(Xception-

based) 

3,000+ 
images 

95% Handles multi-
class 

classification 

Computationally 
intensive 

PCA-ELM 
[21] 

CNN with PCA 
and ELM 

600 images 99.83% Excellent binary 
classification 

Limited to two 
classes 

Yamac et al. 
[22] 

Sparse Support 
Estimator 
Network 

6,200 
images 

87.07% Novel sparse 
estimation 

Lower accuracy 
for complex 

datasets 
 

Their approach involved reducing image noise 
identifying lung boundaries and extracting 
characteristics followed by SVM classification. 
They achieved accuracies of 95.60% and 99.40% for 
the Montgomery (MT) and SZ datasets respectively 

[27]. Tawsifur et al. [28] employed nine transfer 
learning (TL) models along with two Net models to 
detect TB using a database containing 7,000 CXR 
images. After applying augmentation techniques, 
they achieved accuracies of 96.7% and 98.6% using 
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ChexNet and DenseNet201 respectively. 
Additionally, they incorporated t distributed 
stochastic neighbor embedding as a means of 
visualizing the data [29-32]. Muhammad et al., on 
the other hand, employed three transfer learning 
models to extract features from a set of 7,000 CXR 
images and used eXtreme Gradient Boosting for TB 
detection [33, 34]. Chest Computed Tomography 
(CT) and X-ray imaging are widely used to evaluate 
the condition of the lungs and chest in individuals 
affected by COVID-19. Radiologists and healthcare 
professionals often assign scores to these images to 
measure the severity of lung involvement. These 
scores can indicate the extent and characteristics of 
lung abnormalities, including ground glass 
opacities, consolidation, and other pulmonary 
findings. A comprehensive report on COVID-19 
patients in Japan [35] presents findings regarding the 
imaging characteristics observed upon admission 
and their correlation with disease severity. The main 
discoveries are as follows; (1) The study found that 
older age and male gender were associated with 
cases of COVID-19, which aligns with previous 
research. Notably, in cases chest abnormalities seen 
on X-rays and CT scans were frequently detected in 
the central regions of both lungs whereas milder 
cases showed these abnormalities predominantly in 
the peripheral and basal regions. (2) The severity of 
COVID 19 when evaluated using a scoring system 
based on chest X-ray and CT findings demonstrated 
a relationship that depended on the dose received. A 
specific score of 9 points on a chest x-ray was 
identified as a threshold, for predicting disease. 

Interestingly, the study found that an enlarged 
heart, known as cardiomegaly, was strongly linked 
to disease severity on chest  
X-rays. This correlation held true in cases where 
there were no existing heart conditions. The study 
emphasized the value of using chest X-rays to 
detect cardiomegaly and assess the severity of the 
disease in situations where performing CT scans 
might be difficult. Additionally, the study 
highlighted that a higher score for opacity and 
density in the middle lung areas was indicative of 
severe disease. 
2.1. Challenges: 
Though other research in lung disease shows 
promise in classification results, factors including 
class imbalance, computational inefficiency, 
overfitting, and a dearth of generalizability remain. 
Most current models depend on one CNN structure 
and aren’t versatile on various datasets. To this end, 
this work presents an ensemble strategy utilizing 
Places365 GoogLeNet and EfficientNetB0 with 
AdaBoost to indeed achieve a superior 

classification accuracy, generalizability, and a 
lessened impact of class imbalance and overfitting. 

3. DATASET 

Researchers from Qatar University, Doha, Qatar 
have collaborated with their counterparts from the 
University of Dhaka, Bangladesh, and partners from 
Pakistan and Malaysia to establish a significant 
chest X-ray image database [36]. It is a major 
resource for healthcare providers and researchers 
who are dealing with COVID-19. It first had 219 
COVID-19, 1341 normal, and 1345 viral pneumonia 
chest X–rays, which have been regularly augmented 
for added value since then. The second modification 
grew the database to comprise 3616 COVID-19-
positive cases, 10 thousand 192 routine cases, 6 
thousand 12 cases of Lung density (non-COVID 
lung infection) and 1345 Viral Pneumonia. The 
continuous efforts make updated diagnostic, as well 
as treated data available for use by health 
professionals and researchers. To boost the use of 
artificial intelligence in cancer diagnosis, the 
National Institute for Health (NIH) Clinical Center 
has released 100,000 de-identified chest X-ray 
pictures and data. The dataset, comprising 30,000 
patients, puts the privacy of patients first [37]. 
Though reading chest X-rays is complicated, it can 
be considered training an AI to read multiple scans 
and support radiologist findings including 
unexplored aspects. This is a step that may help in 
medical imaging and diagnostics which will benefit 
people around the world. The diseases COVID-19 
and Viral Pneumonia images are shown in Table 2 

 
Table 2: Dataset details 

Diseases Number of Images 
Cardiomegaly 1094 

COVID 3616 
Normal 5552 

Viral Pneumonia 3145 

a. Dataset Sources and Inclusion 
Criteria 

The dataset used in this study was compiled from 
publicly available repositories, including the Qatar 
University database and the National Institute for 
Health (NIH) Clinical Center’s dataset. The 
inclusion criteria focused on high-quality chest X-
ray images representing four categories: normal, 
COVID-19, cardiomegaly, and viral pneumonia. 
Images with significant artifacts, low resolution, or 
incomplete annotations were excluded to ensure the 
reliability of the dataset. The final dataset consisted 
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of over 10,000 labeled images, distributed across 
the four categories. 

b.  The inclusion criteria 

The inclusion criteria focused on high-quality chest 
X-ray images representing four categories: normal, 
COVID-19, cardiomegaly, and viral pneumonia. 
Images with significant artifacts, low resolution, or 
incomplete annotations were excluded to ensure the 
reliability of the dataset. The final dataset consisted 
of over 10,000 labeled images, distributed across 
the four categories. 

4. METHODOLOGY 

Figure 1 shows the proposed method which 
involves data preprocessing with translation, 
reflection, and scaling, while model enhancements 
include BatchNorm, Leaky ReLU, and 
EfficientNetB0. An ensemble approach with 
AdaBoost combines model predictions to boost 
accuracy, creating a robust framework for scene 
recognition. 

a. Preprocessing 

Data preprocessing was a critical step in this study 
to standardize the input data and improve model 
performance. The preprocessing steps included: 

 Image Resizing: All images were resized to a 
uniform dimension of 224 × 224 pixels to ensure 
compatibility with the CNN architectures. 

 Normalization: Pixel values were scaled to the 
range [0, 1] to enhance computational efficiency 
and stabilize the training process. 

 Noise Reduction: Gaussian filters were applied 
to reduce noise and improve image clarity. 

 Label Verification: Each image’s label was 
cross-verified to eliminate potential 
misclassifications. 

B. Challenges and Mitigation Strategies 
One significant challenge was class imbalance, 
where certain categories, such as COVID-19 and 
cardiomegaly, had fewer samples compared to the 

normal category. To address this, the following 
strategies were implemented: 
 Data Augmentation: Techniques like 

translation, reflection, and scaling were 
applied to increase the diversity of the 
minority class samples. 

 Weighted Loss Functions: The loss function 
was modified to assign higher weights to 
underrepresented classes, ensuring balanced 
learning across all categories. 

C. Data Augmentation Techniques 

 Translation: 
 

The RandXTranslation and 
RandYTranslation operations are responsible for 
randomly translating (shifting) the images in 
both the 𝑋 and 𝑌 directions within the specified 
pixel range. Let's denote the original image as 𝐼, 
and the translated image as 𝐼′. The translation 
operation can be mathematically expressed as 
shown in equation (1) and (2) for both X and Y 
directions: 

𝐼′(𝑥, 𝑦)  =  𝐼(𝑥 −  𝛥𝑥, 𝑦)         (1) 
 

𝐼′(𝑥, 𝑦)  =  𝐼(𝑥, 𝑦 −  𝛥𝑦)         (2) 
𝛥𝑥 and 𝛥𝑦 represent the random translations 
within the specified pixel range. 

 
 Reflection: 

The RandXReflection operation is 
responsible for randomly reflecting (flipping) 
the images horizontally as shown in equation (3). 

𝐼′(𝑥, 𝑦)  =  𝐼 (𝑤𝑖𝑑𝑡ℎ −  𝑥, 𝑦)        (3) 
       Here, I is the original image, I' is the reflected 
image, and   'width' is the width of the image. 

 Scaling: 
The RandXScale and RandYScale 

operations perform random scaling in both the X and 
Y directions within the specified scale range. Let's 
denote the original image as I, the scaled image as 𝐼′, 
and the scaling factors as 𝑆௫ and 𝑆௬. The scaling 
operation can be mathematically expressed as 
follows for both X and Y directions: Equation 4 
shows the X-Direction: 
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Figure 1 The Generalized Diagram Of The Proposed Method 
 

𝐼′(𝑥, 𝑦)  =  𝐼(
௫

ௌೣ
, 𝑦)      (4) 

Equation 5 shows the for Y-Direction: 
 

I'(x, y) = I(x, 
௬

ௌ
)      (5) 

Sx and Sy represent the random scaling factors 
within the specified scale Range. 

These operations are applied to the images 
in the dataset, and the resulting images are used for 
training, validation, and testing. The specific values 
of 𝛥𝑥, 𝛥𝑦, 𝑆௫, 𝑆௬, and other parameters are 
determined by the data augmentation settings and 
randomization. These operations help introduce 
variations into the dataset to enhance the model's 
robustness and ability to handle different variations 
in input data. 

D. Places 365 GoogLeNet 

The main breakthrough is in including 
convolutional filters of different sizes within 
inception modules. This lets the network catch 
multi-scale features needed for complex pattern 
recognition. Also, auxiliary classifiers are added to 
the middle layers. These help with gradient flow 

during training and boosting the model's overall 
performance. While training, it was clear the model 
had problems. It had plateauing loss and reduced 
accuracy. To fix this, batch normalization was 
added between the Convolutional and Leaky ReLU 
layers. This change was meant to speed up training, 
decrease sensitivity to network starting setup, and 
improve convergence. We've made a key 
improvement involving adding batch normalization 
(BatchNorm) layers to the network structure. 
BatchNorm works by standardizing layer actions 
inside every mini-batch. The batch average gets 
deducted from each channel, and this output is 
divided by the batch's standard deviation. Then, 
adjustable settings come into play to scale and move 
the standardized activities. This lets the network 
pick the best scale and shift for each layer. The 
modified GoogleNet Network diagram is shown in 
figure 2. 

The mathematical representation of 
BatchNorm (X) for a given layer as shown in 
equation (6): 

𝑋 = (𝛾(𝑋 − 𝜇))/𝜎 + 𝛽                     (6) 
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Here, X represents the layer's input, μ is the batch 
mean, σ is the batch standard deviation, γ is a 
learnable scale parameter, and β is a learnable shift 
parameter. These parameters are fine-tuned during 
training. 

In addition to BatchNorm, the traditional 
ReLU (Rectified Linear Unit) activation function 
was replaced with the Leaky ReLU (Leaky 
Rectified Linear Unit) function. The special feature 
of the Leaky ReLU is that it gives a tiny slant to the 

negative- side to help counter the "vanishing 
gradient" problem. The mathematical 
representation of the Leaky ReLU is as as shown in 
equation (7) and (8): 

 
𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈(𝑥)  =  𝑥, 𝑖𝑓 𝑥 >  0;               (7) 

 
𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈(𝑥)  =  𝛼 ∗  𝑥, 𝑖𝑓 𝑥 ≤  0,       (8) 

where α is a small positive constant. 

 

 
Figure 2 Network diagram of Modified Places 365 GoogleNet  

E. Hyperparameter Tuning: 

The optimization process involves fine-tuning 
several key hyperparameters to improve the model's 
performance. These hyperparameters include: 
Batch Size: The number of images processed in 
each training iteration. An optimal balance must be 
struck to ensure efficient convergence. In this work, 
a minimum batch size of 32 was utilized. 
Pooling Operation: Determines the specific 
aggregation function applied, with average pooling 
being chosen in this instance. 
Learning Rate: Governs the speed at which the 
model learns optimal weights during training. A 
learning rate of 0.001 was selected. 
Optimizer: The method employed to adjust neural 
network parameters during training. Among the 
three optimizers considered, 'sgdm' was chosen as 
the most suitable for this case. These 
hyperparameters collectively influence the model's 
training process, convergence, and ultimately, the 
accuracy of the GoogLeNet Places365. 

F. Efficientnet B0: 

        EfficientNetB0 is a CNN network design that 
achieves a balance, between model size, 
computational efficiency, and accuracy in computer 
vision tasks. The compound scaling approach 
optimizes the network's depth (D) width (W) and 
resolution (R) as depicted in [38]. Efficientnet B0 
Network diagram is shown in figure 3. The network 
depth is determined by a scaling parameter called 
"d," which controls the number of blocks within the 
architecture. These blocks contain repeated layers 
of depth convolutions as shown in equation (9). The 
width of EfficientNetB0 is controlled by another 
scaling parameter, "w," which scales the number of 
channels in each layer as shown in equation (10). 
Additionally, the input image resolution is scaled 
using a factor "r" that represents an aspect ratio 
between width and height as shown in equation 
(11). To optimize this architecture, we need to solve 
an optimization problem. The major goal is to 
minimize a cost function that combines accuracy 
and computational efficiency metrics while 
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respecting constraints, on depth, width and 
resolution scaling factors. This careful 
parameterization ensures that EfficientNetB0 
performs across tasks while remaining 
computationally efficient as discussed in [38]. 

𝑑 =  𝛼ఝ                 (9) 
𝑤 =  𝛽ఝ               (10) 
𝑟 =  𝛾ఝ                 (11) 

Subject to the following constraints:  

𝛼 ·  𝛽ଶ  ·  𝛾ଶ  ≈  2 
𝛼 ≥  1, 𝛽 ≥  1, 𝛾 ≥  1 

 
Figure 3. Network Diagram Of Efficientnetb0 

 
G. Justification of selecting Places 365 GoogLeNet 
and EfficientnetB0 
 

The selection of GoogLeNet and 
EfficientNet for ensemble modeling is grounded in 
their complementary architectures and 
demonstrated effectiveness in image classification 
tasks. GoogLeNet, with its inception modules, 
employs multi-scale feature extraction within a 
single layer, making it adept at capturing features 
across varying resolutions. On the other hand, 
EfficientNet utilizes a compound scaling strategy 
that optimally balances the depth, width, and 
resolution of the network, achieving high accuracy 
with fewer computational resources. These 
architectures, though distinct, offer synergistic 
strengths: GoogLeNet’s capacity for detailed local 
feature extraction complements EfficientNet’s 
ability to generalize across diverse datasets, 
resulting in a robust combination. Furthermore, 
both models are computationally efficient, with 
GoogLeNet reducing parameter count through 
inception modules and EfficientNet excelling in 
scalability without significant computational 
overhead. This efficiency makes them ideal 

candidates for ensemble modeling, where the fusion 
of their predictions can mitigate individual model 
biases and improve overall performance. Together, 
these characteristics ensure that the ensemble 
benefits from diverse feature extraction strategies 
and resource-efficient computation, making it well-
suited for complex classification tasks. 

H. Ensemble method 

         By combining the outcomes of two network 
models, namely Places365 GoogLeNet and 
EfficientNetB0 through the utilization of the 
AdaBoost ensemble method we can create a robust 
approach, for recognizing or categorizing scenes. 
This ensemble technique enhances the capabilities 
of both models by assigning weights to their 
predictions and aggregating them into a final more 
precise prediction. In this research paper, the aim is 
to enhance classification accuracy by employing 
AdaBoost, a known method that merges the 
predictions, from multiple weak learners. In this 
case neural network models. The process involves 
adjusting sample weights and merging predictions 
to build a learner. Figure 4 shows the fusion process 
of GoogleNet and Efficient Net model. 
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Figure 4.  Fusion Of Places 365 Googlenet And Efficient Net Model 

 

I. AdaBoost Algorithm 

       All data instances get an equal weight (D). 
These weights are a measure of the importance of 
each of the samples to the ensemble. In specific, one 
of the trained versions of the neural networks is 
applied to a training set with GoogLeNet and 
EfficientNetB0. In training a Weak learner (𝑀), 
there are sample weights referred to as 𝐷 for 
misclassified samples. Its weight (α) takes into 
account how well it has classified the training data. 
They assign greater weights to a high-precision 
weak learner. The sample weights (D) are increased 
on mis-classified examples and decreased on 
correctly classified ones using a weak classifier. 
Then, the existing weak learner combines the 
prediction by assigning each weak prediction with 
a weight (α). To get the final output, F(x) is 
derived by averaging out the weak learner’s 
prediction on the whole. These weak learner 
predictions are typically combined in a weighted 

sum. The final prediction (F(x)) can be expressed in 
equation (12): 

𝐹(𝑥)  =  ∑ α ∙ 𝑀(𝑥)               (12) 
Here, F(x) represents the final prediction for input 
data x. α is the weight assigned to the k-th weak 
learner, and 𝑀(𝑥) is the prediction of the k-th 
weak learner for input x. The training process 
shown in table 3 involves using the EfficientNet-B0 
model and modified googlenet for the target dataset. 
The dataset is split into 40% for training, 20% for 
validation, and 40% for testing, with the first 10 
layers of the model frozen for pre-trained feature 
retention, and fine-tuning is applied to the 
remaining layers. Hyperparameters include a mini-
batch size of 32, an initial learning rate of 1×10⁻⁴, 
L2 regularization of 1×10⁻⁵, and a maximum of 15 
epochs. The Adam optimizer is used with an 
'l2norm' gradient threshold method to prevent 
gradient explosion. 
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Table 3 training process and parameters for EfficientNet B0 and Modified googlenet 
Aspect Details 

 
 
 
Training Process 

- Model Selection: EfficientNet-B0, and Modified googlenet 
- Dataset Preparation: Data split into training (40%), validation (20%), and testing 
(40%). 
- Training Workflow: First 10 layers frozen; fine-tuning performed on remaining 
layers using augmented training data. 

 
 
Hyperparameters 

- Mini-Batch Size: 32 
- Initial Learning Rate: 1 × 10ିସ 
- L2 Regularization: 1 × 10ିହ 
- Maximum Epochs: 15 

- 𝑉𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 ቔ
ே௨  ௧ ௦௧ ூ௦ 

௧ ௌ௭
ቕ 

 
Optimization 

- Optimizer: Adam (adaptive learning rates with momentum). 
- Gradient Threshold Method: 'l2norm' (to avoid gradient explosion). 

 
 
Evaluation 
Metrics 

- Accuracy: Mean of correct predictions; visualized in a confusion matrix. 
- ROC Curve and AUC: Trade-off between sensitivity and specificity, with AUC as 
a performance measure. 
- Per-Class Performance: Confusion matrix provides insights into individual class 
performance. 

 
 
 
 
 
 
Regularization 

- Data Augmentation: Reflections, translations, and scaling applied to increase 
training data variability. 
- L2 Regularization: Penalizes large weight values to reduce overfitting. 
- Freezing Layers: First 10 layers of EfficientNet are frozen to retain pre-trained 
features and avoid overfitting. 
- Early Stopping: Monitors validation performance to halt training if overfitting is 
detected. 

Evaluation metrics include accuracy, the ROC 
curve with AUC for performance, and per-class 
performance through a confusion matrix. 
Regularization strategies involve data 
augmentation, L2 regularization, freezing layers, 
early stopping, and dropout layers to reduce 
overfitting. 

5. RESULTS AND DISCUSSION 

The proposed menthod is built on MATLAB 2023a 
and the simulations are performed using NVIDIA 
RTX 3050 with 16 GB RAM. 

a. Modified Places 365 GoogLeNet 

The primary objective of this study was to 
develop an effective model for classifying chest X-
ray images and to evaluate its performance. After 15 
epochs of training, the model achieved a validation 
accuracy of 90.49%, as shown in Figure 5. Notably, 
the model's performance improved significantly 
during training, with validation accuracy rising from 
an initial 35.43% to a peak of 89.48%. The model 
demonstrated strong potential for accurately 
classifying chest X-ray images, particularly in 
distinguishing between COVID-19, normal, and 
viral pneumonia cases—an inherently challenging 
task due to the subtle differences in these conditions. 

The achieved accuracy, especially in identifying 
COVID-19 cases, is promising and highlights the 
model's potential to assist radiologists in diagnosing 
respiratory conditions. The use of GoogLeNet, a 
deep convolutional neural network, proved effective 
in extracting relevant features from the dataset. A 
rigorous de-identification process was applied to 
ensure patient privacy. This process involved 
anonymizing all personally identifiable information 
(PII), such as patient names, IDs, and other sensitive 
details, in compliance with ethical standards and 
data protection regulations. These measures ensured 
that the dataset used for training and evaluation 
maintained patient confidentiality while providing 
valuable data for research purposes. 

The results indicate that the trained 
GoogLeNet model has the potential to assist 
healthcare professionals in classifying chest X-ray 
images, particularly for COVID-19 diagnosis. 
However, further research on larger and more 
diverse datasets is essential to confirm the model's 
clinical utility and generalizability. The confusion 
matrix and ROC curve, presented in Figures 6a and 
6b, further illustrate the model's classification 
performance. 

The model’s validation accuracy reached 
its peak at 92.43% during epoch 11 but declined to 
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88.51% by epoch 14, signaling potential overfitting. 
Initially, training and validation errors decreased 
steadily through epochs 1–8, but validation 
performance began to diverge from training 
accuracy beyond epoch 12, indicating overfitting. 
Training accuracy remained stable between 93% 
and 97% by epoch 5, while validation accuracy 
fluctuated, widening the disparity. This overfitting 
issue could be mitigated through techniques such as 
regularization, data augmentation, or 

hyperparameter tuning. Furthermore, adopting a 
declining learning rate schedule could enhance the 
model's validation performance and reduce 
overfitting. 
Overall, while the model performed well on the 
validation set up to epoch 11, additional 
modifications are necessary to improve its 
generalizability and prevent overfitting in 
subsequent training epochs. 
 

 
Figure 5. Training Progress Of Places 365 Googlenet 

 
(A) 
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(B) 

Figure 6. A. Confusion Matrix And B. Roc Curve Of Places 365 Googlenet 
 

 
Figure 7. Accuracy Vs Epoch 

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Ac
cu
ra
cy

Epoch

Mini-batch Accuracy Validation Accuracy



 Journal of Theoretical and Applied Information Technology 
30th June 2025. Vol.103. No.12 

©   Little Lion Scientific  
 

ISSN: 1992-8645                                                                    www.jatit.org                                                     E-ISSN: 1817-3195 

 
5062 

 

 
Figure 8. Loss Vs Epoch 

 
 

Table 4 Detailed Metrics Of  Places 365 Googlenet 
Class Precision (%) Recall (%) F1-Score (%) Accuracy (%) 
COVID 91.57 85.54 88.45 93.56 
Cardiomegaly 81.35 89.83 85.38 97.69 
Normal 91.13 83.95 87.39 89.13 
Viral Pneumonia 77.82 97.12 86.41 94.27 

The performance metrics for Places 365 
GoogLeNet shown in table 4 reveal strong 
classification capabilities across most classes, with 
COVID and Normal achieving high precision 
(91.57% and 91.13%, respectively), though their 
slightly lower recall values (85.54% and 83.95%) 
indicate some misclassified true cases. 
Cardiomegaly demonstrates a balanced 
performance with an F1-score of 85.38%, reflecting 
reliable detection with minimal false positives and 
negatives. The model excels in identifying Viral 
Pneumonia, achieving the highest recall (97.12%), 
but its lower precision (77.82%) highlights 
challenges with misclassification into other 
categories. Overall, the results indicate robust 
classification with specific areas for improvement, 
particularly in optimizing recall for 
underrepresented conditions. 

b. EfficientNet B0 

EfficientNetB0 was trained on all samples 
with equal weights to emphasize their significance 
for the ensemble. After 15 epochs, the model 
achieved an impressive validation accuracy of 

94.70%. The training lasted approximately 332 
minutes and 39 seconds and utilized a constant 
learning rate of 0.0001. The model's progress was 
characterized by a consistent increase in both mini-
batch and validation accuracies, demonstrating 
successful convergence during training. It achieved 
100% accuracy on the mini-batches and 94.07% on 
the validation set, as shown in Figure 6. While the 
training began with low accuracy in the first epoch, 
dramatic improvements were observed, leading to 
high accuracy measures. A uniform decrease in the 
loss curves across the training process further 
supported the model's successful learning. 

 
Despite its high overall accuracy, the 

model displayed signs of overfitting, with a slight 
deviation between mini-batch and validation 
accuracies. Figures 10a and 10b illustrate the 
confusion matrix and the ROC curve, which reflect 
the model's classification performance. 

 
As depicted in Figures 11 and 12, 

validation accuracy steadily increased throughout 
the epochs, reaching a peak of 94.41% at epoch 14. 
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This trend indicates that the model continued to 
learn and improve based on the validation set. 
Training loss decreased significantly during the 
early epochs, reaching a low of 0.028 at epoch 10, 
suggesting the model's strong fit to the training data. 
However, validation loss fluctuated between 0.2465 
and 0.3179 across epochs, signaling partial 
overfitting. 

 
By epoch 6, the model achieved 100% 

training accuracy, confirming that it memorized the 
training data. However, the lower validation 
accuracy indicates that overfitting limited its ability 
to generalize. While a constant learning rate of 1e-

4 was maintained during training, reducing the 
learning rate over time could enhance validation 
accuracy and mitigate overfitting. 

In general, EfficientNetB0 demonstrated a 
high level of reliability, achieving exceptional 
performance on the validation set. Nevertheless, its 
generalization ability could be improved through 
stronger regularization techniques, data 
augmentation, and hyperparameter tuning. 
Addressing the disparity between training and 
validation performance is critical for enhancing the 
model's robustness and ensuring its applicability in 
real-world scenarios. 

 

 
Figure 9. Training progress of EfficientNet B0 

 
 

(a) 
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(b) 

Figure 10. A. Confusion Matrix And B. ROC Curve Of Efficientnet B0 
 

 
Figure 11. Accuracy Vs Epoch 

 
Figure 12. Loss Vs Epoch 
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Table 5 Detailed Metrics Of Efficientnet B0 
Class Precision (%) Recall (%) F1-Score (%) Accuracy (%) 

COVID 92.05 92.30 92.17 95.79 
Cardiomegaly 94.06 97.40 95.70 99.31 
Normal 99.05 69.40 81.62 81.52 
Viral Pneumonia 25.93 99.69 41.16 82.62 

 
The performance metrics derived from the 
confusion matrix provide a comprehensive 
evaluation of the EfficientNet B0 model's 
classification ability across different classes shown 
in table 5. The model demonstrates high precision 
and recall for the COVID and Cardiomegaly 
classes, with F1-scores of 92.17% and 95.70%, 
respectively, indicating its robustness in identifying 
these conditions with minimal false positives and 
negatives. Similarly, the Normal class achieved an 
exceptional precision of 99.05%; however, its 
relatively lower recall (69.40%) and F1-score 
(81.62%) suggest potential misclassification of 
"Normal" cases into other classes. The Viral 
Pneumonia class, despite achieving a remarkable 
recall of 99.69%, suffers from low precision 
(25.93%) and F1-score (41.16%), highlighting 
significant challenges with false positives. The 
model's accuracy varies across classes, ranging 
from 81.52% (Normal) to 99.31% (Cardiomegaly), 
indicating a need for further refinement, 
particularly in imbalanced or overlapping classes. 
These results emphasize the model’s strengths and 
limitations, forming a foundation for optimization 
and comparative analysis with state-of-the-art 
techniques 

 

c. Ensemble method 

The integration of Places365 GoogLeNet and 
EfficientNetB0 using the AdaBoost ensemble 
method yielded highly promising results in lung 
disease classification. Among the many methods, 
we choose the AdaBoost due to its less 
computation power and successful in improving the 
classification performance. In AdaBoost, unlike 
Bagging, whereby models are trained on distinct 
subsets of the training data, and their predictions 
averaged to reduce variance, the algorithm assigns 
greater weight to previously misclassified inputs, 
resulting in a more effective boosted approach 
when the base learners, in this case GoogLeNet and 
EfficientNetB0, are already capable of classifying 
specifically the features of interest. In contrast to 
Stacking, which trains meta-learner on the results of 
several models and thus significantly increases 
computational complexity, AdaBoost uses 
weighted aggregation which is a good trade 

between performance gain and feasibility for real 
world usage. The ensemble model achieved an 
accuracy rate of 92.47%, demonstrating its efficacy 
in distinguishing between the various classes within 
the dataset. Moreover, the validation accuracy 
peaked at 96.48%, highlighting the model's 
robustness and strong performance on unseen data. 
This represents a significant improvement 
compared to the individual performance of each 
constituent model. The AdaBoost ensemble 
effectively mitigated the overfitting challenges 
observed in the standalone models, resulting in a 
more balanced overall performance. By leveraging 
the complementary strengths of Places365 
GoogLeNet’s advanced multi-scale feature 
extraction and EfficientNetB0’s computational 
efficiency, the ensemble method enhanced 
classification accuracy and generalizability. These 
findings underscore the potential of ensemble 
techniques, such as AdaBoost, in improving the 
performance of deep learning models for medical 
image classification. The demonstrated 
improvement in classification accuracy highlights 
the advantages of combining diverse architectures 
to address the challenges of overfitting and class 
imbalance. This approach provides a compelling 
direction for future research, with implications for 
broader applications in medical imaging and other 
complex classification tasks. 
 

d. Comparative Analysis  

The ensemble model outperforms both 
Places 365 GoogLeNet and EfficientNet B0 
individually, as evident from the overall accuracy 
and per-class performance metrics. The ensemble 
approach achieved a higher combined accuracy of 
93.16%, effectively balancing the strengths of both 
models. For COVID, the ensemble model 
maintained an accuracy of 93.16%, while 
Cardiomegaly achieved an improved accuracy of 
99.31%. The Normal class reached 89.13%, and 
Viral Pneumonia showed an accuracy of 94.27%. 
These results reflect significant improvements over 
the individual models, demonstrating the 
effectiveness of the ensemble technique in 
leveraging complementary strengths. 
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Places 365 GoogLeNet displayed strong 
precision for COVID and Normal (91.57% and 
91.13%) but had slightly lower recall (85.54% and 
83.95%), leading to some misclassified true cases. 
EfficientNet B0 excelled in recall for Viral 
Pneumonia (99.69%) and Cardiomegaly (97.40%) 
but struggled with precision for Viral Pneumonia 
(25.93%). The ensemble model harmonized these 
disparities, achieving more balanced precision and 
recall across classes. For instance, the ensemble 
achieved an F1-score of 93.16%, indicating reliable 
classification across all classes, outperforming both 
individual models. Cardiomegaly’s F1-score 
improved from 85.38% (Places 365 GoogLeNet) 
and 95.70% (EfficientNet B0) to a more stable 
value in the ensemble, benefiting from reduced 
false positives and negatives. 

e. Individual Model Strengths and 
Combined Performance 

Places 365 GoogLeNet demonstrated high 
precision for most classes, particularly COVID 
(91.57%) and Normal (91.13%), making it effective 
in reducing false positives. It also provided 
balanced performance across classes, albeit with 
slightly lower recall values. On the other hand, 
EfficientNet B0 showcased an exceptional recall for 
Viral Pneumonia (99.69%) and Cardiomegaly 
(97.40%), ensuring nearly all true cases were 
correctly identified. Additionally, it achieved high 
precision for Normal cases (99.05%), though this 
was offset by lower recall. 

By integrating GoogleNet’s precision and 
EfficientNet B0’s recall, the ensemble model 
achieved better balance and overall performance. 
The ensemble approach addressed misclassification 
issues present in individual models, as evident in 
improved F1-scores and accuracy metrics. It proved 
robust to class imbalances and overlapping features 
between conditions, leveraging complementary 
strengths of both models to deliver enhanced 
results. 

f. Implications, Limitations, and Future 
Research Directions 

The ensemble approach highlights the 
potential of combining diverse architectures to 
enhance classification performance in medical 
imaging tasks. Improved diagnostic accuracy for 
conditions like COVID and Cardiomegaly can 
assist in early and reliable detection, aiding 

healthcare professionals in timely decision-making. 
The balanced performance across classes suggests 
that the ensemble model can generalize better 
across varying data distributions. Despite these 
improvements, the ensemble model’s 
computational complexity is higher due to the need 
for running multiple models, which may limit its 
deployment in resource-constrained environments. 
Additionally, certain classes (e.g., Viral Pneumonia 
with lower precision in EfficientNet B0) still face 
challenges with misclassification. The reliance on 
labeled datasets may also limit the model’s 
performance when deployed on unseen or noisy 
data. Future research directions should focus on 
optimizing lightweight ensemble techniques or 
knowledge distillation methods to reduce 
computation overhead while retaining performance. 
Advanced data augmentation techniques or 
synthetic data generation could be employed to 
address class imbalances and improve model 
robustness. Incorporating explainable AI 
techniques could help better understand the model’s 
decision-making process, particularly for critical 
misclassifications. Fine-tuning the ensemble model 
on domain-specific datasets from other medical 
imaging tasks could also evaluate its 
generalizability. Finally, validating the model on 
larger, diverse, and real-world datasets will be 
crucial to assess its robustness and scalability. 

The ensemble model successfully 
leverages the strengths of Places 365 GoogLeNet 
and EfficientNet B0, demonstrating improved 
accuracy, precision, and recall across multiple 
classes. For instance, the ensemble model achieved 
a combined accuracy of 93.16%, with notable 
improvements in precision and recall across all 
target conditions. While limitations such as 
computational complexity and misclassification 
challenges remain, the results underscore the 
potential of ensemble methods in advancing 
medical imaging classification. Future work should 
focus on optimizing the ensemble’s efficiency and 
generalizability to further enhance its clinical 
utility. 

In Table 3, it is evident that the combined 
approach of Places 365 GoogLeNet and 
EfficientNetB0 in the model achieves an accuracy 
of 97.48%, surpassing the range of 88.23% to 
94.41% observed in other models. This indicates 
that using this ensemble approach significantly 
improves performance. The proposed model also 
exhibits a recall rate of 95.24%, meaning it excels 
at identifying positive COVID-19 cases compared 
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to the recall rates of 86.22% to 93.46% observed in 
other models. Additionally, the proposed model 
demonstrates precision and F1 score values of 
94.67% and 96.24%, respectively, showcasing its 
strong positive predictive value as well as a 
balanced combination of precision and recall. The 
specificity of the proposed model stands at 95.46%, 
which is comparable to other models, affirming its 

capability to accurately identify negative cases. 
Overall, the ensembled model outperforms all other 
deep learning models across various evaluation 
metrics, particularly in terms of accuracy, recall, 
precision, and F1 score. This clearly demonstrates 
how integrating Places 365 GoogLeNet and 
EfficientNetB0 enhances COVID-19 classification 
beyond the benchmarks set by other models. 

 
Table 3: Comparison Of The Proposed Model And DL-Based Models For COVID-19 Classification: 

Model Precision Recall F1-
score 

Specificity Accuracy 

Inception-
ResNet [39] 

89 86.22 95.53 89.72 88.23 

DenseNet-201 
[40] 

91 91.48 95.46 95.63 92.23 

Loey et al. [41] 93 92.65 93.11 92.81 94.41 

Sakib et al. [42] 92 93.41 92.24 93.46 92.24 

Shibly et al. 
[43] 

94 92.44 93.42 92.29 93.78 

Proposed 
Ensemble 
(Places 365 
GoogLeNet + 
EfficientnetB0) 

94.67 95.24 96.24 95.46 97.48 

6. CONCLUSION 

In light of the COVID-19 pandemic, this research 
focused on developing a robust diagnostic 
tool for respiratory diseases, specifically 
targeting COVID-19, cardiomegaly, and 
viral pneumonia. By combining Places 365 
GoogLeNet and EfficientNetB0 using the 
AdaBoost ensemble method, we achieved 
significant progress in classifying chest X-
ray images. The ensemble model 
demonstrated superior performance, 
reaching a validation accuracy of 96.48% 
and an overall accuracy of 97.48%, 
outstripping the individual models. Notably, 
the ensemble method effectively mitigated 
overfitting and improved generalization by 
balancing the strengths of both models. This 
approach was particularly beneficial for 
conditions such as COVID-19 and 
cardiomegaly, achieving notable precision 
and recall improvements. These findings 
highlight the potential of ensemble 
techniques to enhance classification 
accuracy and generalization in medical 
image analysis, offering a promising tool for 

healthcare professionals. Recent 
advancements in deep learning have 
significantly enhanced the classification of 
lung diseases using chest X-ray images. 
Deepak and Bhat (2025) introduced a multi-
stage deep learning approach that effectively 
classifies various lung conditions, 
demonstrating the potential of such 
methodologies in improving diagnostic 
accuracy. Our study aligns with these 
findings, as our ensemble framework 
combining GoogLeNet and EfficientNetB0 
has shown substantial improvements in 
detecting lung diseases in COVID-19 
patients. This convergence underscores the 
transformative impact of AI-driven 
approaches in medical diagnostics, 
particularly in addressing the complexities 
introduced by the COVID-19 pandemic. 
Moving forward, future research should 
focus on validating this framework with 
more diverse datasets, conducting real-world 
trials, and exploring lightweight 
optimization techniques to ensure its broader 
applicability. This work has the potential to 
significantly impact clinical practice by 
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providing accurate, reliable, and timely 
diagnostics, improving patient outcomes in 
critical healthcare settings. 
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