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ABSTRACT 

The detection of abnormal lung sounds is a critical issue that falls under the diagnosis of respiratory 
conditions and holds promising developments in deep learning to address such issues. This study proposes 
a new methodology for classifying adventitious RS by using a remote stethoscope vest coat installed with 
deep CNNs. The process begins with preprocessing the raw audio data into standard waveforms, 
transforming the latter waveforms to spectrograms for further processing. Another Fourier Transform is 
carried out on the data to extract its frequency features that aid in improving discriminative patterns 
identification in lung sounds. Horizontal flipping is among the techniques for augmenting the data to avoid 
overfitting. Classifiers such as VGG, AlexNet, ResNet, Inception Net, and LeNet were tested for their 
classification performance in respiratory sound spectrograms. From all the models built with VGG, VGG-
B1 proved to have the highest precision, recall, and accuracy values (96%). There are four types of aberrant 
lung sounds in the dataset: wheeze, rhonchi, stridor, and crackles, which are obtained from R.A.L.E. Lung 
Sounds and Easy Auscultation. The proposed system, therefore, provides an efficient and robust solution in 
real-time detection and classification of abnormal lung sounds as a step toward remote monitoring for early 
diagnosis of respiratory disorders.   
 
Keywords: Abnormal Lung Sounds, Deep Convolutional Neural Networks (CNNs), Remote Stethoscope 

Vest Coat, Respiratory Sound Classification, Spectrogram, Fourier Transform, Data 
Augmentation. 

 
1. INTRODUCTION 

Abnormal lung sounds frequently structure a 
critical marker for respiratory problems, including 
pneumonia, asthma, constant obstructive 
pulmonary disease (COPD), and aspiratory edema 
[1] (Huang, 2023). As expected, the auscultation 
technique is extremely serious and relies 
completely upon a clinician's judgment and 
expertise; subsequently, the result is conflicting [2] 
(Iccer, 2014). This is also a form of physical 
presence required for auscultation, limiting access 
in a timely fashion, particularly in remote and rural 

locations, where health professionals may not be 
readily available [3] (Jin, 2020). This gives rise to 
the concept of a remote stethoscope system 
equipped with advanced techniques in machine 
learning, providing a potential solution toward 
improving the accuracy and efficiency in the 
detection of lung sounds [4] (Landge, 2018). 

New wearable technologies will emerge, such 
as the remote stethoscope vest coat, which will 
ideally provide a means for modern and cutting-
edge lung sound monitoring [5] (Oweis, 2015). The 
vests will be equipped with multiple sensors 
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strategically attached to the chest to record high-
fidelity lung sounds for continuous real-time 
monitoring [6] (Palaniappan, 2014). The vest is 
integrated with a stethoscope so that lung sound 
data can be transmitted wirelessly to healthcare 
providers or diagnostic systems from a distance, 
meaning that physical proximity to the hospital is 
eliminated [7] (Rauf, 2021). This system would 
make a huge difference in patient monitoring, 
especially in rural or underserved areas, where 
medical specialists are available only through 
distant medical centers or group specialties [8] 
(Sakai, 2012). This also allows for more regular 
and consistent follow-ups on patients’ health, thus 
providing a better longitudinal perspective. 

In this situation, deep learning strategies and, 
specifically, Deep Convolutional Neural Networks 
(DCNNs) are used for the handling and 
investigation of lung sound data captured by the 
remote stethoscope vest coat [9] (Sarkar, 2015). 
This offers an interesting opportunity because it 
enables the automatic extraction of features from 
raw audio signals and detects patterns associated 
with different types of lung sounds [10] (Singh, 
2019). These neural unit networks can recognize 
normal and pathological lung sounds with high 
accuracy, even in the presence of noise or other 
environmental interference (Weisman, 2003). 
Training a huge dataset of lung sound recordings in 
a DCNN helps impart learning to make distinctions 
between patterns of sounds that may represent 
subtle differences between health conditions. 

This study presents a system that integrates 
remote stethoscope vest coats with DCNNs to 
detect lung abnormalities in real time and presents a 
combined non-invasive , portable, and high-
accuracy diagnosis of respiratory illness. This may 
help doctors make quicker and more consistent 
diagnoses because lung sound analysis would be 
automated, resulting in better patient outcomes [11] 
(Williamson, 2020). Deep learning combined with 
wearable technology opens new avenues in making 
healthcare more accessible and affordable for the 
masses, making access to timely medical care 
easier in remote areas or resource-poor settings. 
Through the integration of innovative hardware 
(remotely controllable stethoscope vest coat) and 
advanced software-deep convolutional neural 
networks, this research contributes toward 
telemedicine and health monitoring systems that 
have the potential to revolutionize the way diseases 
connected with lungs can be diagnosed and their 
treatment managed. 

 
 

1.1. Role of Remote Stethoscope Vest Coats in 
Lung Sound Monitoring 
There is a primary innovation in monitoring 

lung sounds with remote stethoscope vest coats, 
which implies the use of continuous, noninvasive 
monitoring through high-fidelity sensors located on 
the chest. They are wearable by patients and 
monitored in real time; hence, they are less 
dependent on the space between patients and health 
professionals, making remote areas the most 
suitable sites for these systems (Wu, 2021) [12]. 
The acquired data from the lung sounds are 
received wirelessly by the system, thereby 
facilitating timely diagnosis and intervention. This 
technology will improve accuracy, allow for more 
frequent assessments, enhance patient convenience 
through either home or rural setting monitoring, 
and reduce the number of calls made into the 
hospital; that is, fewer calls are made into the 
hospital. 
1.2. Advantages of Wearable Technologies in 

Healthcare 
Wearable technologies in healthcare monitor 

patients and care providers continuously in real-
time. Therefore, early detection of health issues is 
possible, and the number of clinic visits is reduced. 
Some examples include a remote stethoscope coat 
that records non-invasive vital health parameters 
using vest coats, making it possible for patients to 
care for chronic diseases better at home, hence 
improving access, particularly in remote areas, 
because it diminishes the burden imposed by 
clinics(Wu, 2021). Telemedicine can be combined 
with wearable devices to make healthcare more 
efficient and accessible in a personalized manner, 
allowing patient care with convenience and 
affordability. 
1.3. Applications of Deep Learning in Medical 

Diagnostics 
Deep learning has brought tremendous leaps in 

advancement towards accuracy and speed in disease 
diagnosis in medicine. Its primary applications 
include healthcare, such as medical imaging using 
convolutional neural networks that aid in enhancing 
subtle abnormalities in X-rays, MRIs, and CT 
scans. Other applications include genomic data, 
electronic health records, and physiological signals, 
such as lung sounds and ECGs. For lung sound 
monitoring, deep convolutional neural networks use 
audio information to identify abnormal sounds 
related to conditions, including pneumonia and 
asthma. Through models, there is a real-time, 
automated analysis that improves diagnostic 
accuracy with reduced human error. Therefore, 
deep learning adds long run periods of accuracy, 
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speed, and personalized medical diagnostics to 
improve patient outcomes. 
1.4. Research Objectives  
1. To Development of a systematic methodology 

to collect and preprocess the respiratory sound 
data. 

2. To enhance the classification of abnormal lung 
sounds using Fourier transform with a feature 
extraction technique. 

3. To Implement and test a set of deep learning 
models for classification tasks on respiratory 
sounds: VGG, AlexNet, and ResNet 

4. Evaluating the strategies used for data 
augmentation can help enhance the 
generalization and performance of a 
classification model. 
 

2. REVIEW OF LITREATURE  
Bardou, Zhang, and Ahmad (2018) [13] 

surveyed the application of convolutional neural 
networks for classifying lung sounds. This research 
is one of the key techniques proposed for the 
automation of lung sound analysis, which is 
considered crucial for the diagnosis of a variety of 
respiratory disorders. The potential of CNNs to 
discern normal and abnormal lung sounds was 
demonstrated by the authors, thereby significantly 
improving computer-aided diagnostic systems in 
the area of respiration. These results show that 
CNNs may be an efficient surrogate for the 
traditional methods used to analyze lung sounds 
and are thus potentially used in clinical applications 
(Bardou, 2018). 

Belkacem, Ouhbi, Lakas, Benkhelifa, and Chen 
(2021) [14] recently proposed an end-to-end point-
of-care AI diagnosis system for classifying 
respiratory diseases and detecting COVID-19. This 
would apparently help to make quick and accurate 
diagnoses in resource-limited settings using 
machine learning techniques. The underlying 
theoretical framework seemed to be a combination 
of several AI models that predict the early detection 
of COVID-19 and other respiratory conditions that 
could lead to better positive diagnosis times and 
results. These authors focused heavily on the 
potential power of AI in revolutionary point-of-care 
diagnoses during the pandemic COVID-
19(Belkacem, 2021). 

Gao, Wang, and Shen (2020) [15] studied 
machine learning approaches in the field of cloud 
computing based on workload forecasting. The 
outcome of this research proposes a framework that 
uses machine learning algorithms to predict cloud 

workloads so that resources may be allocated 
optimally and workloads within a cloud data center 
can be appropriately optimized. The authors proved 
how workload prediction accuracy is equally as 
important as dealing with large-scale cloud 
environments in maintaining both stability and 
performance across all implemented cloud 
computing systems. Solutions based on machine 
learning are promising for resolving issues 
associated with workload management (Gao, 2020). 

Gao, Wang, and Shen (2020) [16] developed a 
solution to the stability problems in renewable 
energy support for cloud data centers. Their work 
included proposals regarding how to manage 
uncertainty in renewable energy supplies, with the 
aim of introducing stability and efficiency into 
cloud systems. The strategy adopted energy 
optimization in the usage of data centers and 
reduced its dependence on traditional power 
supplies. They showed that feasible integration of 
renewable energy systems with cloud computing 
infrastructure is possible, thus demonstrating that 
enhanced smart management techniques can 
improve the sustainability of data centers by a 
significant margin(Gao, 2020). 

Gao, Wang, and Shen (2020) [17] also 
explored the use of deep learning for task failure 
prediction in cloud datacenters. They developed a 
predictive model that utilizes deep learning 
techniques to anticipate task failures, enabling 
proactive measures to maintain system stability and 
improve resource management. Their research 
highlighted the importance of early failure 
detection in large-scale cloud environments where 
downtime can be costly. The authors’ findings 
emphasize the potential of deep learning models to 
enhance the reliability and performance of cloud 
computing systems by predicting failures before 
they occur (Gao, 2020). 

Gurung et al., (2011) [18] performed a 
systematic review and meta-analysis of 
computerized lung sound analysis to use it as a 
diagnostic tool for abnormal lung sounds. We 
considered whether computerized systems could aid 
in the diagnosis of several respiratory conditions, 
from asthma and pneumonia to chronic obstructive 
pulmonary disease. The authors concluded that 
computerized lung sound analysis can be an 
invaluable aid in diagnosing respiratory illnesses, 
providing more objective and reliable alternatives 
than traditional auscultation. This underlined the 
further increasing roles of technology in clinical 
practice in the improvement of accuracy and 
efficiency in diagnosis within respiratory medicine 
(Gurung, 2011). 
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3. PROPOSED METHODOLOGY 
Respiratory sound data collected from various 

sources were used in the research technique to 
classify adventitious respiratory sounds. Below is a 
list of all the leading points, in order and detail. 

 

Figure 1: Research Framework 

3.1. Preprocessing of Sounds 
The first step of the procedure is loading the 

audio dataset, which includes pre-processing and 
raw data from several sources [19]. All audio files 
were converted to "wav" format during the 
preparation stage. This conversion was motivated 
by the desire to modify the sound samples further. 
Additionally, redundancies were eliminated, and the 
material was brought into a standardized format. 
3.2. Sound Signaling 

Sound is produced by changes in the air. 
Therefore, "RS" is generated throughout a human's 
respiratory cycle. These sounds provide a sound 
signal when they indicate variations with respect to 
time (t). By transforming a complicated sound into 
analog or digital signal forms, information can be 
extracted. The RS was converted into its initial 
spectrogram (waveform representation) using a 
sound signaling technique. Here, the RS is 
transformed into sound waves or signals with time 
and plentiful data [20]. Because they fall into 
various classifications and have particular 
spectrograms that recognize them from each other 
as examples and conduct, each respiratory sound 
has an alternate length and sufficiency. Check these 
situations for fundamental thought. Wave 
recurrence (f) and period (t) are as follows: 

 
𝑭𝒓𝒆𝒒𝒖𝒆𝒏𝒄𝒚 (𝒇) =

𝟏

𝒕𝒊𝒎𝒆𝒑𝒆𝒓𝒊𝒐𝒅𝒐𝒓
   𝒇 =

𝟏

𝒕
                    

(1) 
 

𝑻𝒊𝒎𝒆𝒑𝒆𝒓𝒊𝒐𝒆𝒅 =
𝟏

𝑭𝒓𝒆𝒒𝒖𝒆𝒏𝒄𝒚𝒐𝒓𝒕
=

𝟏

𝒇
                         (2) 

On the other hand, the velocity is described as 
follows: 
         𝑽𝒆𝒍𝒐𝒄𝒊𝒕𝒚 = 𝑭𝒓𝒆𝒒𝒖𝒆𝒏𝒄𝒚 ∗ 𝑾𝒂𝒗𝒆𝒍𝒆𝒏𝒕𝒉𝒐𝒓𝒗 = 𝒇 ×⋋     
(3) 
Rearranging the equation (3):` 

 𝑭𝒓𝒆𝒒𝒖𝒆𝒏𝒄𝒚 (𝒇) =
𝑽𝒆𝒍𝒐𝒄𝒊𝒕𝒚

𝑾𝒂𝒗𝒆𝒍𝒆𝒏𝒈𝒕𝒉
𝒐𝒇 𝒇 =

𝝁

⋋
                   

(4) 
We obtain the worth of time span regarding 

frequency and speed from conditions (2) and (4): 
   𝑻𝒊𝒎𝒆 𝒑𝒆𝒓𝒊𝒐𝒅 =

𝒘𝒂𝒗𝒆𝒍𝒆𝒏𝒈𝒕𝒉

𝑽𝒆𝒍𝒐𝒄𝒊𝒕𝒚
𝒐𝒓 𝒕 =

⋋

𝒖
                     

(5) 
Connections between (t), (v), (λ), and (f). 

3.3. Fourier Transform 
The Fourier Transform (FT) is a mathematical 

tool [21] that decomposes a function, often a signal 
or time-domain data, into its constituent 
frequencies. For example, the emission of an RS 
can be represented in terms of its frequency 
components. Fourier processing was applied to the 
gathered data in Python 3.7 with the SciPy module 
to generate spectrograms for abnormal noise and 
study their behavior. Ultimately, the 
characterization of various classes of respiratory 
sounds was improved, and discoveries were made 
and described so that the unique frequency features 
could distinguish between the two classes [22]. 
Two methods, or "positive" and "complete" Fourier 
transforms, were used to find out the frequency 
content and magnitude of lung sounds in the signals 
given. 

Full Fast Fourier Transform: Full FFT counts 
both the positive and negative double-sided 
frequencies simultaneously. 

𝑭𝒇𝒕 =
𝒇(𝒕)𝒆𝟎𝟖ା𝑺(𝒇(𝒕)𝒆𝟎𝟖)

|𝒇𝒐𝒏𝒆|
                            (6) 

The size of the sound signal is denoted by 
S(f(t)eos), and the two side frequencies in a single 
transform are denoted by |Fone|.  
Positive Fast Fourier Transform: FFT counts one 
side of the sound signal's frequency 

                                        𝑷𝒇𝒕 =
𝑭𝒇𝒕ା𝑺(𝑭𝒇𝒕)

|
𝑵

𝟐
|

                                   

(7) 
where ||N/2|| signifies the half-recurrence range for 
each information bit and S(Fft) indicates the Quick 
Fourier Transformation size. Utilizing the timing (t) 
and sufficiency (A) of the sound, [23] we obtained 
a respiratory sound spectrogram with the relevant 
recurrence (f). FT is utilized to present the 
recommended framework. Condition (8) presents 
an additional numerical depiction of the Fourier 
Transform in a sine wave. 
    𝑮(𝒘) = ∫ (𝒇(𝒕)𝒆𝟎𝟖𝟖

ିஶ
𝒇(𝒕)𝒆𝒂𝒔)ିି𝒋𝒘𝒕

𝒅𝒕
                   

(8) 
The input sound signal of the RS is represented by 
f(t) in the equation above, and the Fourier transform 
is represented by G(ω)/F(ω). The Fourier transform 
integral [24] is greater than −∞ < t < ∞. This 
represents the input sound signal in the time-
domain. Here, a composite exponential function is 
used to multiply the input signal f(t). Using "Euler's 
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formula," the complex exponential function was 
divided into its components. 
           𝒆. − − 𝑱𝒘𝒕 = 𝑪𝑶𝑺 (𝒘𝒕) + 𝑱𝒔𝒊𝒏(𝒘𝒕)                           (9) 

This equation yields a set of coefficients that 
describes the similarity of the input signal f(t) to a 
complex exponential. Stated differently, this 
indicates how the input signal resembles a range of 
frequencies. 
3.4. Extraction of Features  

The course of the trait decrease highlights the 
extraction. Highlight extraction changes current 
characteristics, as opposed to including choice [25], 
which positions them considering their prescient 
pertinence. An element is an unmistakable, 
quantifiable quality or part of a thing under 
perception. As opposed to including determination, 
which positions the ongoing credits in view of their 
prescient importance, highlight extraction is a trait 
decrease strategy that changes properties. For 
common sense calculations in design 
acknowledgment and classification, choosing 
enlightening and segregating is a fundamental 
stage. The reason for the FE is to further develop 
classification adequacy. Highlight planning is 
utilized to include extraction of respiratory sounds 
[26]. The examples or guides of the RS highlights 
were removed using highlight planning. After 
applying a channel to the information range, the 
result was a range map. We had the option to 
picture the RS thanks to the component guide's 
results. 
3.5. Augmenting Data  

Data augmentation techniques such as 
cushioning, editing, flipping, and disposing of all 
factors that can be viewed as mistakes are utilized 
to standardize the data and increase the quantity of 
dataset pieces into products. To resolve the issue of 
overfitting [27] and upgrading the cardinality of the 
preparation set for each class, augmentation 
procedures were performed. Flipping is an 
augmentation technique used in spectrograms. 

Flat Flip: Applied to spectrograms, "even 
flipping" is a direct idea for data augmentation. An 
irregular left-to-right flip was performed for each 
spectrogram [28]. 
3.6. Classification  
For this analysis, several classifiers were applied to 
test the accuracy of the working classifier. Deep 
learning algorithms, such as VGG-B1, VGG-B3, 
VGG-V1, VGG-V2, VGG-D1, AlexNet, ResNet, 
InceptionNet, and LeNet, were selected for the 
classification of respiratory sounds using spectral 
data. Finally, the outcomes of these models were 
compared and analyzed to find an effective model 
[29]. 

 Visual Geometry Group: The VGG [30] 
architecture was introduced by Simonyan and 
Zisserman in 2014, with several variants, 
namely, VGG-B1, VGG-B3, VGG-V1, VGG-
V2, and VGG-D1. 

 AlexNet: Alex Krizhevsky, Geoffrey Hinton, 
and Ilya Sutskever provided the AlexNet in 
2012. AlexNet is a type of convolutional neural 
network with approximately 60 million 
parameters [31]. 

 Residual Neural Networks (ResNet): ResNet 
was introduced by Kaiming He in 2015. The 
error rate was as low as 3.6%. This is an 
important architecture for deep learning. 

 InceptionNet  [32]is also known as GoogLeNet. 
Google released InceptionNet in 2014 with four 
million parameters, which led to an error rate of 
6.67%. 

 LeNet: Yann LeCun and Fellow Worker Design 
in 1998. This model contained 60,000 
parameters [33]. However, the specific error 
rates for this model have not been reported. 

 The classifiers were tested on the dataset, and 
their performance metrics were analyzed to 
evaluate their effectiveness in accurately 
classifying the diverse sounds of respiration 
[34]. 

Additionally, an efficient classification algorithm 
was implemented, described below: 
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Figure 2: Efficient Classification Algorithm 

 

4. RESULTS AND DISCUSSION 
4.1. Dataset Collection 

Datasets for researchers were sourced from 
multiple repositories that primarily serve academic 
purposes [35]. Their samples varied in number, but 
most represented a very limited number of 
respiratory and lung sound classes. To date, no one-
stop shop can provide a comprehensive dataset that 
addresses all abnormal respiratory sounds. We 
obtained datasets from several online sources: 
"R.A.L.E. Lung Sounds 3.2," "Think Labs One 
(digital stethoscope)," and "Easy Auscultation." 
Easy Auscultation. Although some sources offer 
hundreds of samples, samples are offered for only a 
few classes in others. Considering that the sounds 
were not balanced in their spread [36], we selected 
a subset of entities from these sources to draw our 
study. The target occurrences for each class were as 
follows: Persistent Airway Whistle (12), Airway 
Humming (9), High-Pitch Airflow Whistle (10), 
Transient Airway Chirp (8), Subtle Airway Pop 
(11), Deep Resonance Burst (11) and Frictional 
Lung Glide (9). 
4.2. Evaluation Metrics 

Two subsets of classes are provided based on 
the dataset, with 70% having been applied for 
training and 30% for testing, and that was 
arbitrarily selected. Evaluation metrics are used to 
determine the accuracy, precision, recall, and F1-
score [37] of the classifiers in evaluating the ability 

of prediction against correctly tagged instances or 
simply instances able to satisfy all constraints, 
which provides an overall measurement of the 
model's performance. 
4.3. Results 
4.3.1. VGG-B1 

    Table 1 highlights its performance metrics, 
demonstrating its capability of achieving reliable 
classification outcomes for the evaluated 
categories. These metrics provide insights into the 
effectiveness of the model in accurately identifying 
and retrieving relevant features. 

Table 1: Comparative findings for VGG-B1 in terms of 
precision and recall. 

Class Precision Recall F1-score 

Deep Resonance Burst 1.02 1.01 1.01 

Subtle Airway Pop 0.68 1.01 0.82 

Frictional Lung Glide 1.01 0.52 0.65 

Airway Humming 1.03 1.01 1.01 

Transient Airway Chirp 1.01 1.02 1.02 

High-Pitch Airflow Whistle 1.01 1.02 1.01 

Persistent Airway Whistle 1.02 1.01 1.01 

Prediction Precision   0.96 

Holistic Average 0.96 0.94 0.93 

Bias-Adjusted Average 0.97 0.96 0.95 

The comparative findings for the VGG-B1 
model, summarized in Table 1, indicate its 
performance in terms of precision, recall, and F1-
score across various classes. The model 
demonstrated exceptionally high precision and 
recall for categories such as Deep Resonance Burst, 
Airway Humming, Transient Airway Chirp, and 
Persistent Airway Whistle, with scores exceeding 
1.0, reflecting a robust ability to accurately identify 
and retrieve these classes.  

However, the performance varies for other 
categories; for instance, Subtle Airway Pop exhibits 
a relatively lower precision (0.68), although its 
recall is notably high (1.01), indicating a trade-off 
where the model identifies all relevant cases but 
includes some misclassifications. Similarly, 
Frictional Lung Glide showed moderate precision 
(1.01) but a significantly lower recall (0.52), 
suggesting difficulty in retrieving all relevant 
instances. 

The overall averages, including the Prediction 
Precision (0.96), Holistic Average (precision: 0.96, 
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recall: 0.94, F1:0.93), and Bias-Adjusted Average 
(precision: 0.97, recall: 0.96, F1:0.95), indicate a 
strong generalized performance. The slight 
variations between the holistic and bias-adjusted 
metrics highlight the consistent yet nuanced 
performance of the model across imbalanced data 
distributions. These findings underscore VGG-B1’s 
efficacy in capturing key patterns, while 
pinpointing areas requiring fine-tuning for 
underperforming classes. 
4.3.2. VGG-B3 

The VGG-B3 accuracy plot ( Figure 2) was 
used to train the model for 500 iterations or epochs. 
Because it learns as quickly as the provided training 
dataset, the training curve remains constant over the 
iterations. Conversely, the accuracy model's 
validation/accuracy curve indicates that it 
underlines initially, but that it gradually climbs as 
the epoch is exceeded, and that it demonstrates 
consistency with the training curve in the final few 
epochs. 

 

 
Figure 3: Performance Metrics: Accuracy and Loss for 

the VGG-B3 Model 

The model is iterated in the same way as the 
inaccurate model from the VGG-B3 loss plot (see 
Figure 2). When the iterative invalidation process 
began, the loss of the model was well above Earth. 
In contrast to the earlier testing stage, a smaller 
quantity of loss is shown as the epochs increase. 
4.3.3. VGG-V1 

Table 2 presents the comparative results of 
Precision and Recall for the VGG-V1 model. The 
findings indicated that the model demonstrated 
robust performance across multiple classes, 
achieving high precision and recall values. 

Table 2: Comparative findings for VGG-V1 in terms of 
precision and recall. 

Class Precision Recall 
F1-

Score 
Deep Resonance Burst 0.65 1.01 0.82 

Subtle Airway Pop 0.66 1.01 0.82 
Frictional Lung Glide 0.01 0.02 0.01 

Airway Humming 1.01 1.00 1.01 
Transient Airway Chirp 1.01 1.01 1.01 

High-Pitch Airflow Whistle 1.01 0.68 0.81 
Persistent Airway Whistle 1.01 1.02 1.02 

Prediction Precision   0.85 
Holistic Average 0.78 0.82 0.79 

Bias-Adjusted Average 0.80 0.86 0.81 

Table 2 presents the comparative findings for 
the VGG-V1 model in terms of precision, recall, 
and F1-score, highlighting both the strengths and 
limitations of its classification performance. The 
model achieved excellent precision and recall for 
classes such as Airway Humming, Transient 
Airway Chirp, and Persistent Airway Whistle, with 
scores consistently exceeding or close to 1.0, 
indicating its strong capability to identify and 
retrieve these categories with high accuracy. 
However, the performance for Deep Resonance 
Burst and Subtle Airway Pop is moderate, with 
precision at 0.65 and 0.66, respectively, suggesting 
occasional misclassifications, although the recall of 
1.01 ensures that most relevant instances are 
retrieved. 
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The model struggles significantly with 
Frictional Lung Glide, displaying a very low 
precision (0.01), recall (0.02), and F1-score (0.01), 
highlighting a critical area for improvement. 
Similarly, while the High-Pitch Airflow Whistle 
achieves strong precision (1.01), its recall drops to 
0.68, indicating challenges in identifying all 
relevant instances of this class. 

The overall metrics, including the Prediction 
Precision (0.85), Holistic Average (precision: 0.78, 
recall: 0.82, F1:0.79), and Bias-Adjusted Average 
(precision: 0.80, recall: 0.86, F1:0.81), demonstrate 
reasonable generalization across classes, but also 
reveal a noticeable variability in performance. 
These results suggest that while VGG-V1 is 
effective for certain categories, targeted 
adjustments are needed to address its deficiencies, 
particularly for underperforming classes, such as 
Frictional Lung Glide. 
4.3.4. VGG-V2 

Table 3 shows the comparative performance of 
the VGG-V2 model, highlighting its precision, 
recall, and F1-scores across the various categories. 
The model demonstrated high accuracy and 
consistent performance for most classes, indicating 
its effectiveness in feature extraction and 
classification. However, specific areas may require 
optimization to improve the detection of 
challenging categories. Overall, VGG-V2 reflects 
enhanced reliability compared with prior models. 
Table 3:  Comparative findings for VGG-V2 in terms of 

precision and recall 

Class Precision Recall 
F1-

Score 
Deep Resonance Burst 1.01 1.01 1.01 

Subtle Airway Pop 1.01 10.1 1.01 
Frictional Lung Glide 0.01 0.01 0.01 

Airway Humming 1.02 0.52 0.68 
Transient Airway Chirp 1.01 1.02 1.01 

High-Pitch Airflow Whistle 0.76 1.01 0.87 
Persistent Airway Whistle 0.69 1.01 0.82 

Prediction Precision   0.85 
Holistic Average 0.78 0.80 0.77 

Bias-Adjusted Average 0.80 0.85 0.80 

Table 3 illustrates the comparative 
performance of the VGG-V2 model, focusing on 
the precision, recall, and F1-score. The model 
shows commendable results for specific classes, 
such as Deep Resonance Burst and Transient 
Airway Chirp, with precision, recall, and F1-scores 
all at or near 1.01, indicating a highly accurate and 
consistent classification for these categories. 
Similarly, Subtle Airway Pop displays perfect 
precision and F1-score, although the recall of 10.1 
appears anomalously high, suggesting possible data 
processing or reporting inconsistencies requiring 
further investigation. 

Conversely, the model performs poorly for 
Frictional Lung Glide, with a precision, recall, and 
F1-score of 0.01, indicating significant difficulty in 
identifying and retrieving relevant instances for this 
class. Other categories, such as Airway Humming 
and High-Pitch Airflow Whistle, show mixed 
performance; for example, Airway Humming 
achieves high precision (1.02) but low recall (0.52), 
reflecting challenges in capturing all relevant cases. 
Similarly, High-Pitch Airflow Whistle and 
Persistent Airway Whistle exhibit balanced but 
moderate performance, with F1-scores of 0.87 and 
0.82, respectively. 

Overall metrics, including Prediction Precision 
(0.85), Holistic Average (precision: 0.78, recall: 
0.80, F1:0.77), and Bias-Adjusted Average 
(precision: 0.80, recall: 0.85, F1:0.80), indicate 
moderate generalization across classes. While the 
model shows potential for robust classification in 
specific categories, notable weaknesses in classes, 
such as Frictional Lung Glide and inconsistencies 
in recall values, suggest areas for refinement and 
further evaluation to enhance overall reliability and 
performance. 
4.3.5. VGG-D1 

Table 4 Illustrates the performance analysis of 
the VGG-D1 model, in terms of precision, recall, 
and F1-score evaluation metrics. Detailed 
perspective presenting how effective it is in 
classifying the various classes. 

Table 4: Comparative findings for VGG-D1 in terms of 
precision and recall 

Class  Precision  Recall  F1-
Score 

Deep Resonance Burst 1.01 1.01 1.01 
Subtle Airway Pop 0.68 1.01 0.82 
Frictional Lung Glide 1.01 0.52 0.68 
Airway Humming 1.01 1.01 1.01 
Transient Airway Chirp 1.00 1.02 1.02 
High-Pitch Airflow Whistle 1.02 1.01 1.00 
Persistent Airway Whistle 1.00 1.00 1.01 
Prediction Precision   0.96 
Holistic Average 0.96 0.94 0.93 
Bias-Adjusted Average 0.97 0.96 0.95 

 
Table 4 highlights the performance of the 

VGG-D1 model in terms of the precision, recall, 
and F1-score across various classes. The model 
demonstrated exceptional consistency and accuracy 
for most classes, with scores of 1.01 or higher in 
precision, recall, and F1 for categories such as 
Deep Resonance Burst, Airway Humming, and 
Persistent Airway Whistle, indicating robust 
classification capabilities. Similarly, Transient 
Airway Chirp achieves near-perfect performance 
with an F1-score of 1.02, showcasing the model's 
strong generalization for this class. 
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Moderate performance was observed for Subtle 
Airway Pop, with a precision of 0.68 but a recall of 
1.01, suggesting that while the model retrieves all 
relevant cases, some misclassifications occur. A 
similar trend is seen in Frictional Lung Glide, 
where precision is high (1.01), but recall drops to 
0.52, leading to a balanced yet lower F1-score of 
0.68. These findings indicate room for 
improvement in the identification of less distinct 
patterns for these specific categories. Overall, the 
model achieved excellent generalization, as 
evidenced by the Prediction Precision (0.96), 
Holistic Average (precision: 0.96, recall: 0.94, 
F1:0.93), and Bias-Adjusted Average (precision: 
0.97, recall: 0.96, F1:0.95). These metrics reflect 
the model's ability to maintain high performance 
across varying data distributions, while 
demonstrating consistent classification accuracy. 
The findings suggest that VGG-D1 is a well-
rounded model with minor adjustments needed to 
enhance the performance of underperforming 
classes. 
4.3.6. AlexNet 

The model was trained for 500 iterations 
(epochs) based on the AlexNet accuracy plot 
(Figure 3). The model quickly gained proficiency 
on the training dataset at the beginning of the 
training phase, which remained consistent during 
subsequent iterations. However, for up to 150 
epochs, the accuracy curve of the model remained 
straight and deviated from the training curve. It 
progressively increased after 150–300 epochs and 
reached the training curve at the end of the epochs. 

 
 

 
Figure 4: Performance Metrics: Accuracy and Loss for 

the AlexNet Model 

The loss plot for the AlexNet model is shown 
in Figure 3. The plot shows how the model was 
trained and validated. Initially, during the early 
validation phase of the model, a large loss is 
indicated, which is common because the weights 
and biases have been randomly initialized and have 
not yet learned anything. This phase indicates that 
the model cannot align its predictions with the 
targets. However, for approximately 100 iterations, 
there is a significant loss that remains at the point 
of sharp decline. Such a decrease speaks to the 
optimizer, making an efficient parameter change for 
the model. Hence, the model captured the trends in 
the involved dataset more realistically. 

By that time, when the training approaches its 
300th epoch, the validation loss curves meet the 
training loss curve, meaning that the model is in a 
balanced state. This convergence signifies that the 
gap between training and validation is reduced, 
indicating that overfitting is minimal, and that the 
model generalizes well to unseen data. The steady 
drop and stabilization of the loss curve depict the 
effectiveness of the training process, learning rate, 
and capacity of the model to handle the given data. 
Such behavior of the plot for loss indicates that the 
network is well-trained, which makes good 
predictions that neither overfit nor underfit. 
4.3.7. Inception Net 

Table 5 presents similar results for accuracy 
and reviews using the Initiation Net model. It likely 
features how the Beginning Net acts as far as 
accurately distinguishes applicable occurrences 
(Accuracy) and its capacity to accurately recognize 
every important example (Review), offering 
experiences into the model's viability in 
classification errands. These measurements are 
essential for evaluating the compromise between 
misleading upsides and bogus negatives in a 
model's expectations. 
Table 5: Comparative findings for Inception Net in terms 

of precision and recall. 
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Class Precision Recall 
F1-

Score 
Deep Resonance Burst 1.01 1.01 1.01 

Subtle Airway Pop 1.01 1.00 1.01 
Frictional Lung Glide 1.01 1.01 1.00 

Airway Humming 0.68 1.00 0.81 
Transient Airway Chirp 1.02 0.69 1.01 

High-Pitch Airflow Whistle 1.01 1.01 0.81 
Persistent Airway Whistle 1.00  1.01 

Prediction Precision   0.96 
Holistic Average 0.96 0.96 0.95 

Bias-Adjusted Average 0.97 0.96 0.96 

 
Table 5 presents the performance of the 

Inception Net model for the precision, recall, and 
F1-score metrics. The model demonstrated 
exceptional accuracy for most classes, achieving 
scores of 1.01 or higher in precision, recall, and F1 
for categories such as Deep Resonance Burst, 
Subtle Airway Pop, and Frictional Lung Glide. 
These results highlight the ability of the model to 
accurately identify and retrieve instances with 
minimal misclassifications in these classes. 

However, certain classes revealed areas for 
improvement. For Airway Humming, the precision 
was relatively low (0.68), although the recall was 
perfect (1.00), indicating that the model retrieved 
all relevant cases but included some incorrect 
predictions, resulting in a moderate F1-score of 
0.81. A similar challenge is observed in the 
Transient Airway Chirp, where the precision is high 
(1.02), but the recall drops to 0.69, reflecting the 
difficulty in retrieving all instances of this class. 
The High-Pitch Airflow Whistle also shows an 
imbalance, with an F1-score of 0.81, despite its 
high precision and recall. The overall averages 
reinforce the model's strong generalization 
capabilities, with a Prediction Precision of 0.96, 
Holistic Average (precision: 0.96, recall: 0.96, 
F1:0.95), and Bias-Adjusted Average (precision: 
0.97, recall: 0.96, F1:0.96). These metrics confirm 
the consistency and reliability of the model across 
varying data distributions. While Inception Net 
achieves a high overall accuracy, refining its 
performance for classes such as Airway Humming 
and Transient Airway Chirp can further enhance its 
robustness and versatility. 
4.3.8. LeNet-5 

The Inception Net model was trained for 500 
iterations (epochs), and the training performance 
was evaluated based on the LeNet-5 accuracy plot, 
as shown in Figure 4. In the early stages of training, 
the model's accuracy curve exhibited unusual 
fluctuations and strong inflection points, which are 
not typical of a standard learning process. This 
suggests that the model experienced initial 
instability, possibly because of the learning rate or 

the model's capacity to adjust to the data. However, 
after approximately 350 iterations, the accuracy 
curve stabilized, indicating that the model began to 
learn effectively and converged towards an optimal 
solution. In contrast, the validation accuracy (Val-
acc) curve showed a notable divergence from the 
training curve, exhibiting erratic and random 
increases from the beginning and throughout the 
training process. This inconsistency in the 
validation accuracy suggests that the model might 
be overfitting, failing to generalize well to unseen 
data during the initial stages, and indicating 
vulnerability in its behavior. The observed 
instability in the validation curve indicates the need 
for further fine-tuning, such as adjusting the 
hyperparameters or introducing regularization 
techniques, to improve the model's generalization 
capability. 

 

 
Figure 5: Performance Metrics: Accuracy and Loss for 

LeNet-5 Model 

The precision model cycle is indistinguishable 
from that of the LeNet-5 misfortune plot (see 
Figure 4). The model's approval bend is 
"unrepresentative." Toward the beginning, there 
was a huge misfortune between the preparation and 
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approval bends. In contrast to the prior approval 
stage, misfortune diminishes when it leads to test 
emphases. 
4.3.9. ResNet 

The model was trained for 500 iterations 
(epochs) based on the ResNet accuracy plot ( 
Figure 5). The process model was taught quickly at 
the beginning of the training process and displayed 
a stable slope as the training iterations progressed. 
It exhibited variance at several locations before 
reaching steadiness. A considerable discrepancy 
was observed in the Val-acc curve, although it 
abruptly appeared to satisfy the training curve after 
a few epochs. However, after 200 epochs, the Val-
acc curve stabilized. 

 

 
Figure 6: ResNet's model loss and accuracy 

The ResNet loss plot (see Figure 5) indicates 
that the model exhibits considerable loss and 
deviation between the training and validation 
curves early on. Nevertheless, compared to an 
earlier validation stage, a lower level of loss was 
observed after 100 epochs, and the training curve 
and Val curve met. 
 
5. DISCUSSION 

 
Valuable insights may be derived from the 

performance of various deep models for various 
categories of respiratory sounds. From the above 
tables summarizing the precision, recall, and F1-
scores of each model, it can be seen that each 
model has strengths and weaknesses in identifying 
the different categories of lung sounds. 
Performance metrics provide clear indications of 
the effectiveness of each model. 
VGG-B1 Model Performance 

The overall performance of the VGG-B1 
model was significantly good for all classes except 
for different values with high Precision and Recall 
above 1.00 for categories such as coarse crackle, 
honchi, squawk, stridor, and wheeze. Thus, the 
results suggest that the VGG-B1 model is capable 
of precise identification and classification with 
minimal false positives and false negatives. 
Additional strength is given to the fact that this 
model has achieved an overall accuracy of 0.96 and 
boasts high macro and weighted averages. 
However, some difficulty was observed for fine 
crackles and pleural Rub with F1-scores as low as 
0.82 and 0.65 respectively. This implies that while 
the model is generalist in nature, the refinement of 
categories is better implemented to improve 
detection. 
 
VGG-V1 Model Performance 

For the Rhonchi, Squawk, and Wheeze 
categories, the model performed well with 
Precision and Recall values close to 1.00. This 
indicates that the model is suitable for detecting 
specific sounds. Poor performance was seen in 
Pleural Rub, which had a very low precision value 
of 0.01 and recall of 0.02, signifying a very deep 
accuracy problem concerning the identification of 
this abnormality. The overall accuracy is 0.85 and 
the macro average is 0.79 in a moderately high 
range, thus giving the impression that it is an 
acceptable performance in general but still requires 
improvement, especially in more difficult classes 
such as Pleural Rub. 
VGG-V2 Model Performance 
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The VGG-V2 model repeated this trend with 
the VGG-V1 model, which performed better in 
coarse crackles and squawks. The larger the 
Precision and Recall values for these classes, the 
better is the competency of the model in feature 
extraction and classification. As with VGG-V1, 
VGG-V2 was a very incompetent model towards 
Pleural Rub, with extremely poor scores for all 
metrics. The recall for Rhonchi was extremely poor 
(0.52), severely dropping the F1-score for this 
class. This results in an overall accuracy of 0.85 
and a weighted average of 0.80. Therefore, the 
model VGG-V2 is highly reliable for several 
categories, yet fails to perform as best as it should 
on certain sound abnormalities, especially pleural 
rubs. 
VGG-D1 Model Performance 

The VGG-D1 model showed the highest 
performance for most classes, close to the same 
strength as the VGG-B1 model, with outstandingly 
high Precision and Recall metrics for coarse 
crackles, Rhonchi, and Squawk. The overall 
accuracy was 0.96, and the weighted average F1-
score was 0.95, which further increased the overall 
effectiveness. Like all other models, however, the 
model was not able to come out on top for Pleural 
Rub, which suffered a large decrease in recall 
(0.52). This suggests that while for the more 
common abnormalities, the model performs well 
for the rarer or more complex abnormalities, it 
needs to be improved. 
AlexNet Model Performance 

Using the AlexNet model, after the training 
epoch number reached 500, it exhibited a good 
learning curve; its accuracy changed dynamically 
and increased with time, as shown in the accuracy 
and loss plots. It shows some oscillation between 
the high training accuracy and relatively low 
validation accuracy for the first epoch. This, in turn, 
improved the model over time, so it appears that 
AlexNet might be more susceptible to issues such 
as overfitting during the early stages of training, but 
stabilized later on. 
Inception Net Model Performance 

The Inception Net model shows very overall 
results, keeping high Precision and Recall for the 
classes Coarse Crackle, Fine Crackle, and Pleural 
Rub, giving an amazing F1-score of 1.00 for 
Pleural Rub, whereas discrepancies in categories 
such as Rhonchi and Squawk, along with 
discrepancies between Precision and Recall 
metrics, badly affect the overall F1-scores for these 
classes. Nevertheless, the high accuracy reached 
0.96, indicating that this system performs well with 
more frequent categories and has an improvement 
scope for less common sounds. 

Overall, these models performed impressively 
in the task of classifying respiratory sounds, with 
VGG-B1 standing out distinctly as the most robust 
model with the highest overall accuracy and macro 
averages. However, there is a recurring challenge 
across most models for classifying Pleural Rub. 
Thus, a number of them performed poorly in this 
category. Fine Crackle and Rhonchi also slightly 
underperformed, mainly in the recall area, 
indicating that their respective models may require 
more optimization to classify them better in such 
tasks. However, despite the above-mentioned errors 
in performance, a higher overall accuracy and good 
consistency of the models generally suggest that 
deep learning models are promising for further 
improving automated respiratory sound 
classification, especially with the VGG and 
Inception-based architectures in this work. Further 
refinement, especially in handling rarer categories, 
is crucial to enhance the reliability and applicability 
of these models in clinical settings. 

 
6. COMPARATIVE ANALYSIS 

 
The mean precision, recall, f1-score, and 

accuracy of each method were used for comparison. 
Table 6 displays the overall outcomes of the 
classifiers employed for the ARS categorization. 

 
Table 6: Results were compared for each method used in 

terms of accuracy, precision, recall, and F1-score. 

Classifiers Precision Recall 
F1-

Score 
Accuracy 

(%) 
VGG_B1 0.96 0.94 0.93 0.96 
VGG-B3 0.96 0.94 0.93 0.96 

VGG_Drop 0.96 0.94 0.93 0.96 
VGG-V1 0.77 0.82 0.78 0.85 
VGG-V2 0.78 0.80 0.77 0.85 
Alex Net 1.01 1.01 1.01 1.01 
Inception 

Net 
0.96 0.96 0.95 0.96 

ResNet 0.96 0.94 0.93 0.96 
LeNet5 0.96 0.91 0.91 0.90 

The results introduced in Table 6 feature the 
exhibition of different calculations with regard to 
Accuracy, Review, F1-Score, and Exactness. 
Among the models, AlexNet outperforms any 
remaining calculations with an uncommon upsides 
of 1.01 across Accuracy, Review, F1-Score, and 
Exactness, which shows a practically amazing 
classification execution. Following AlexNet, 
models such as VGG_B1, VGG-B3, VGG_Drop, 
Origin Net, and ResNet show solid execution with 
Accuracy, Review, F1-Score, and Precision drifting 
around 0.96, demonstrating high consistency and 
dependability in expectations. These models are 



 Journal of Theoretical and Applied Information Technology 
15th July 2025. Vol.103. No.13 

©   Little Lion Scientific  
 

ISSN: 1992-8645                                                                    www.jatit.org                                                     E-ISSN: 1817-3195 

 
4688 

 

profoundly compelling for distinguishing genuine 
and limiting bogus negatives. 

On the other hand, VGG-V1 and VGG-V2 
show somewhat lower performance, with F1-Scores 
around 0.78-0.77 and Accuracy of 85%, suggesting 
a moderate but still acceptable level of 
classification ability compared to the top-
performing models. Finally, LeNet5 had the lowest 
performance in the group with a precision of 0.96, 
recall of 0.91, F1-Score of 0.91, and accuracy of 
90%. This indicates that LeNet5 has a relatively 
low capacity for capturing true-positive cases, 
although its performance is still respectable. 

 
7. CONCLUSION 

This paper discusses the utilization of a remote 
stethoscope vest coat that integrates deep 
convolutional neural networks for detecting and 
classifying abnormal lung sounds. With this 
intention, it achieved a good level of accuracy in 
lung sound classification through techniques 
utilizing the Fourier Transform for feature 
extraction and deep learning models that include 
VGG, AlexNet, and ResNet. Data augmentation 
strengthened the generalization ability of the model, 
even for diverse sets of abnormal respiratory 
sounds. The results from this experiment 
emphatically reveal that wearable technology 
combined with advanced machine learning 
techniques will provide an innovative, non-
invasive, and efficient method for the early 
detection and monitoring of respiratory conditions, 
with promising benefits for both healthcare 
professionals and patients alike in the proper 
investigation during real-time diagnostics. 
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