
 Journal of Theoretical and Applied Information Technology
15th July 2025. Vol.103. No.13

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4661

MULTI-AGENT PATH PLANNING BASED ON IMPROVED
ASYNCHRONOUS ACTOR-CRITIC AGENT ALGORITHM.

TEH NORANIS BINTI MOHD ARIS1, CHEN NINGNING2, NORWATI MUSTAPHA3,
MASLINA ZOLKEPLI4

1, 2, 3, 4 Department of Computer Science, Faculty of Computer Science and Information Technology,

Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia

E-mail: 1nuranis@upm.edu.my (corresponding author), 2gs63185@student.upm.edu.my,
3norwati@upm.edu.my, 4masz@upm.edu.my

ABSTRACT

Existing approaches often rely on centralized or reactive planning methods, which can become inefficient
or cause deadlocks in complex environments. There is a clear need for a process that handles these
challenges while maintaining real-time performance and robustness. We propose a multi-agent path
planning method based on the improved Asynchronous Actor-Critic Agent (A3C) algorithm. First, we
enhance the Actor-Critic neural network within the A3C framework by integrating it with the VGG
network to develop a fully decentralized strategy. Additionally, we improved the reinforcement learning
rewards and penalties, allowing agents to perform real-time reactive path planning with partially visible
information, exhibiting implicit coordination. Second, we use the sequence information input characteristics
and long-term memory capabilities of Long Short Term Memory (LSTM) neural networks, allowing the
neural network to gain "long-term memory" and enhance network learning speed. The LSTM neural
network replaces the deep neural networks (DNN) in the original A3C network. We tested this approach in
various environments with different sizes, agent quantities, and obstacle densities. Finally, we quantified
the results based on average planning length, average planning time, and success rates over 100 tests. The
experimental results show that the proposed method significantly improves the success rate and efficiency
of multi-agent path planning in noisy and uncertain environments.

Keywords: Multi-Agent Path planning, A3C, VGGnet, LSTM

1. INTRODUCTION

With the rapid development of Deep
Reinforcement Learning (DRL) in multi-agent
systems, various practical application challenges
and solutions in the direction of Multi-Agent Deep
Reinforcement Learning (MADRL) have emerged.
Path planning in a collision-free environment is
crucial for many agents to complete tasks quickly
and efficiently, and using deep reinforcement
learning for multi-agent path planning is a new
research field in artificial intelligence. Multi-agent
path planning training methods can be divided into
three categories:

(i) Centralized: The centralized training method
assumes that the actions of all agents are
determined by a central server that knows the
intentions of all agents. The centralized method has
three limitations. First, as the number of agents
increases, the computational complexity of
centralized control and scheduling becomes high.

Second, due to communication issues, the
centralized method cannot scale to large systems.
Third, centralized systems are prone to failures in
the central server, communication between agents,
or the sensors on any single agent, for example, the
optimal centralized planning algorithm CBS [1].
However, as the number of agents increases, the
central processor consumes a large amount of
resources, severely affecting the efficiency of
MAPF.

(ii) Distributed: The distributed path planning
algorithm adopts a decentralized approach,
eliminating the need for a central processor, and
making it more scalable and better suited for MAPF
environments. For example, the classic distributed
low-level obstacle avoidance algorithm ORCA [2].
Yang Hailan et al. [3] proposed a multi-agent path
planning algorithm based on memristor
reinforcement learning, which improves the
probability transition function and pheromone of
the ant colony algorithm, and suggests using

 Journal of Theoretical and Applied Information Technology
15th July 2025. Vol.103. No.13

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4662

memristors as neural network synapses to enhance
the DQN (deep Q-network) algorithm, effectively
solving path planning issues in unknown
environments. Chen et al. [4] proposed an improved
deep deterministic policy gradient algorithm, which
accelerates algorithm convergence by building a
dual neural network and experience replay matrix,
and uses batch priority sampling to train the neural
network, addressing MAPF path planning in
complex environments. Compared to centralized
path planning algorithms, it is more adaptable to
maps and better at handling dynamics. Meanwhile,
distributed computing can address the dimensional
explosion problem. However, conventional neural
networks struggle with real-time path planning,
often resulting in collisions, deadlocks, and
congestion among agents. To address MAPF
collisions, deadlocks, and congestion issues, Zhou
et al. [5] proposed a path planning algorithm
combining reservation tables and traffic rules,
which prevents agent collisions by setting traffic
rules and maintaining reservation tables storing all
agents’ positions at specific times. A dynamically
weighted map is created using the reservation table,
allowing agents to avoid congested areas based on
map weights. Digani et al. [6] used a hierarchical
map method, dividing the map into a topological
structure layer and a grid map layer, and cutting the
map into different regions. The segmented regions
are treated as nodes in the topological structure, and
the D* algorithm is used for path planning based on
the edge weights of the topology. Lou et al. [7]
designed a strategy to resolve multi-agent path
conflicts and congestion by detecting whether
overlapping nodes or overlapping time exist on the
routes of agents. If conflicts are detected, agents are
guided to replan their routes. Although the above
algorithms can solve multi-agent collisions,
deadlocks, and congestion problems, both weighted
map creation and map segmentation come at the
cost of multi-agent operational efficiency [8].
Furthermore, the hierarchical map method involves
manual segmentation, making it less adaptable to
reflect agent congestion issues.

(iii) Parameter sharing: Path planning is distributed,
but the learning process is centralized. This method
can leverage each agent's capabilities and
compensate for the shortcomings of centralized path
planning, adapting to location-based planning
environments. It does not require knowledge of the
dynamic model of the environment, has no
communication requirements, and can be used in
cooperative and competitive settings. However, it
requires a central coordinator, which is not fully
autonomous, and its scalability is poor. As a result,

it does not support the training of a large number of
agents, and the training time is relatively long. For
example, the MADDPG algorithm [9], uses
centralized training and distributed execution. Tao
[10] proposed a decentralized partially observable
multi-agent path planning method based on
evolutionary reinforcement learning (MAPPER) to
learn efficient local planning strategies in mixed
dynamic environments. This method uses image-
based representations to describe the behavior of
dynamic obstacles and trains strategies in mixed
dynamic environments without the homogeneity
assumption. However, in three-dimensional
environments, the training time and complexity
significantly increase, and the method lacks
generalization capability.

In summary, multi-agent path planning, as well
as problems such as collisions, deadlocks, and
congestion, have corresponding studies. However,
the aforementioned multi-agent path planning
algorithms often overlook these problems, while the
path planning algorithms that aim to address these
issues do so at the expense of agent operational
efficiency. The lack of integrated research into both
aspects prevents a fundamental improvement in
MAPF efficiency.

Therefore, this paper designs a framework based
on VGG16-LSTM, using an LSTM neural network
to replace the original fully connected layers,
enabling the network to have long-term memory
capabilities. It proposes the A3C algorithm as the
core algorithm of the framework, constructing
different dynamic and static obstacle environments
and designing corresponding action selection
strategies and reward functions. This framework
achieves multi-agent collaborative control, real-
time path planning, and real-time obstacle
avoidance through the A3C algorithm, thereby
improving the operational efficiency of multi-
agents.

2. THEORETICAL FOUNDATION

2.1 Reinforcement Learning (RL)

2.1.1 Introduction to Reinforcement
Learning

Through interaction with the environment, an
agent observes the potential impacts of its behavior
and learns to adjust its actions for better responses to
rewards. In reinforcement learning, machine learning
algorithms control an autonomous agent that
observes the environmental state and takes actions at
each time step. After the agent takes action, the
environment transitions to a new state based on the

 Journal of Theoretical and Applied Information Technology
15th July 2025. Vol.103. No.13

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4663

current state and the selected action's result. The state
is statistical information about the environment,
containing all the information the agent needs (such
as the positions of actuators and sensors), so the
agent can choose the optimal action.

The sequence of actions taken by the agent is
influenced by the rewards provided by the
environment. A reward is a scalar that the
environment provides to the agent when transitioning
from one state to another. The agent's goal is to learn
a policy π that maximizes the expected return. The
policy returns actions based on the agent's current
state. The interaction between the agent and the
environment generates information. When the
environment provides positive rewards, the agent is
more likely to execute the current action the next
time it encounters the same situation, whereas
negative rewards will make the agent avoid
executing the current action.

Formally, RL can be described as a Markov
Decision Process (MDP). There are various methods
to solve reinforcement learning problems, including
value function-based methods, policy search
methods, and a hybrid actor-critic method that uses
both value function and policy search
[11][12][13][14].

2.1.2 A3C Algorithm
Commonly used methods in reinforcement

learning are usually Q-learning algorithms, and the
concept of DRL emerged with the successful
combination of deep learning and Q-learning,
specifically with the advent of DQN[15][16][17].
However, DQN, a value function-based
reinforcement learning method, is more suitable for
solving discrete low-dimensional problems and
cannot handle continuous high-dimensional
problems. Q-learning is an off-policy method that
cannot perform online updates. Since machine
learning requires samples to be independently and
identically distributed, DQN employs an experience
replay mechanism, storing the agent's data in an
experience replay unit, and the data can be batch
processed or randomly sampled from different time
steps to reduce non-stationarity and remove update
correlations. However, this mechanism leads to
higher memory consumption and increased
computational load for each real interaction
[18][19]. Due to these limitations, the
Asynchronous Advantage Actor-Critic (A3C)
algorithm emerged.

The A3C algorithm is applicable to both discrete
and continuous high-dimensional problems. It uses
parallel asynchronous execution of multiple agents

instead of the experience replay mechanism in
DQN to achieve decorrelation and improve
algorithm stability. Simply put, the asynchronous
concept is realized by using a multi-threaded
parallel mechanism, where each sub-thread
corresponds to an agent, explores the environment
using different strategies in the same state, and
obtains the corresponding parameter gradients.
Once the required number of update steps is
reached, the parameters are pushed to the main
thread to update the current optimal parameters.
A3C employs the Temporal Difference (TD)
algorithm, which is a further improvement of the
TD(λ) algorithm based on n-step TD learning and
integrates weighting methods. N-step TD learning
updates the current value function using n-step
value function estimates, with the update formula
shown as equation (1):

Represents the error signal which, is updated in the
direction of the error signal to correct errors. From
the above equation, we can use the n-step value
function to estimate the current value function. When
solving problems, it is necessary to carefully
consider which value estimation method to use to
better approach the true value. To solve this problem,
the n-step estimates are combined with a geometric
weighting method to form the algorithm,
which involves multiplying by a weighting
factor to obtain as shown in
equation (2), with the update formula shown in
equation (3):

 is a constant between 0 and 1, with acting

as the weight. As time increases, , and
the geometric weighting without memory results in
low costs, making it possible to achieve at
the same cost as . Specifically, when ,
only the current state value is updated, making it
equivalent to . When , the state value
function update is equivalent to Monte Carlo (MC).
Another key aspect of A3C is its use of the Actor-
Critic framework, which combines the advantages
of Actor-only and Critic-only methods, achieving
better convergence and single-step updates while
applying them to continuous problems.
A3C approximates the Policy Gradient (PG)
method within the Actor-Critic framework. The
main idea is to combine the Policy Gradient (Actor)

 Journal of Theoretical and Applied Information Technology
15th July 2025. Vol.103. No.13

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4664

and value function approximation (Critic) methods,
abandoning the use of returns to evaluate the true
value function and instead using the Critic
algorithm, i.e., function approximators, to evaluate
the value function, as shown in equation (4):

 is the parameter for updating the action value
function in the Critic, and is the parameter for
updating the policy in the Actor.
A3C (as shown in Figure 1) maintains a policy

 and an estimate of a value function
. Like the -step Q-learning variant, the

Actor-Critic variant also operates in the forward
view and uses the same n-step return combination to
update the policy and value function. The policy and
value function is updated after each operation
or upon reaching a terminal state.

Figure 1: A3C algorithm framework diagram

The updates executed by the algorithm can be
regarded as

 is an estimate of the advantage
function. The advantage function is defined as:

varies in different states, and its upper bound is
. Through parallel Actor and cumulative

updates, the stability of training can be effectively
improved, which is similar to value-based methods.
Although the parameters for the policy and for
the value function are usually separate, in practice,
they often share some parameters, making the
training more stable and reliable. Generally, a

convolutional neural network has a softmax output
for the policy and a linear output for the
value function , with all non-output layers
shared. Adding the entropy of the policy to the
objective function can effectively suppress linear
outputs, thus preventing premature convergence to
suboptimal deterministic policies. This technique
was originally proposed in the literature [36] and
found particularly useful in tasks requiring
hierarchical behaviors. The gradient of the complete
objective function, including the entropy
regularization term, concerning the policy
parameters is:

 is the entropy. The hyperparameter controls the
strength of the entropy regularization term.

2.2 LSTM Neural Network

When faced with tasks like predicting the next
scene in a video, speech recognition, and language
translation, Deep Neural Networks (DNNs) and
Convolutional Neural Networks (CNNs) often
underperform. This is because the training samples
for these tasks are sequences of varying lengths and
continuous information, which are difficult to split
into isolated words or single video frames, whereas
DNNs and CNNs are more suitable for training on
fixed-size samples.

Recurrent Neural Networks (RNNs) excel in
training and predicting continuous sequence inputs
due to their looping mechanism, which connects
neurons of consecutive time sequences using a
weight matrix, strengthening unit connections. Thus,
the output is related not only to the current input but
also to the previous output, providing the neural
network with memory capabilities.

Although RNNs handle time series problems
effectively, they face issues like the gradient
vanishing problem, where significant short-term
input changes can greatly affect their state. The
gradient vanishing in RNNs occurs because the
derivative of the activation function tanh is between
0 and 1. During backpropagation, if the parameter
is initialized to a value less than 1, the product of
multiple (tanh function derivatives) results in a
very small partial derivative, leading to gradient
vanishing, causing slow parameter updates, or even
stopping updates altogether. This indicates that
RNNs have long-term dependency effects, meaning a
unit in the RNN is mainly influenced by its
neighboring units, and over prolonged periods,
results in smaller memory values.

 Journal of Theoretical and Applied Information Technology
15th July 2025. Vol.103. No.13

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4665

The Long Short-Term Memory (LSTM) variant
effectively addresses the long-distance dependency
problem in RNNs by adding a cell state to store
long-term states An LSTM memory cell is shown in
Figure 2. The key mechanisms for LSTM's long-term
memory function are the forget gate, input gate, and
output gate. The forget gate, shown in the blue
dashed box in Figure 2, determines how much
"memory" from the previous node's cell state can be
retained. The input gate, composed of the green and
orange dashed boxes, includes the candidate gate in
the orange dashed box. It determines how much of
the current input can be remembered. The output
gate, in the yellow dashed box in Figure 2, controls
the proportion of "historical" information to combine
with the current input. The gates are single-layer
fully connected networks that control outputs by
manipulating activation values and the products of
the vectors they wish to control.

Figure 2: LSTM Memory Module

3. MULTI-AGENT PATH PLANNING
BASED ON IMPROVED A3C ALGORITHM

3.1 Policy Representation based on improved
A3C Algorithm

The purpose of this section is to transform the
Multi-Agent Path Finding (MAPF) problem into the
Reinforcement Learning (RL) framework.

3.1.1 Agent State Space
In a partially observable discrete grid

environment, the agent can only observe the state of
the environment within a limited field of view (FOV)
centered on itself. Within the limited FOV, the
available information is divided into different
channels to simplify the agent's learning task.
Specifically, each observation consists of two-
dimensional matrices representing obstacles, other
agents' positions, the agent's target position (if within
the FOV), and the target positions of other
observable agents (as shown in Figure 3). When the

agent approaches the edge of the environment,
obstacles are added to all positions outside the
boundary of the environment.

Figure 3: Observation Space for Agents

3.1.2 Agent Action Space

In the grid environment, the agent takes discrete
actions: moving one cell in one of the four basic
directions or remaining stationary. At each time step,
some actions may be invalid, such as moving into
obstacles or other agents. During training, actions are
sampled only from valid actions, and an additional
loss function helps learn this information. Compared
to giving negative rewards to agents who choose
invalid actions, this method can achieve more stable
training. Additionally, to prevent convergence to
oscillating policies, agents are prohibited from
returning to the position they occupied in the
previous time step during training (agents can remain
stationary for multiple consecutive time steps). This
is necessary to encourage exploration and the
learning of effective strategies. If the agent chooses
an invalid move during training, it will remain
stationary at that time step.

3.1.3 Reward Function Design
The reward function (as shown in Table 1) follows

the same intuition used by most reward functions in
grid worlds: the agent is penalized for each time step
it does not stay on the target, leading to a strategy to
reach the target as quickly as possible.

Table 1: reward setting grid environment

Movements Reward

Movement (up/down/left/right) -0.3
collision -2
No movement (in/out of target position) 0.0/-0.5
Finish a round 20

 Journal of Theoretical and Applied Information Technology
15th July 2025. Vol.103. No.13

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4666

3.2 Improvement to the Actor-Critic Network
and Introducing LSTM in A3C

In the A3C algorithm, a deep neural network
approximates the agent's policy, mapping current
observations of the environment to the next action.
This network has multiple outputs: one for the actual
policy and the other for training. The advantage of
this algorithm is that it does not require explicit agent
communication, allowing multiple agents to learn a
common strategy and achieve better training results
in a shared environment.

The 7-layer convolutional network shown in
Figure 5 is an improvement on the Actor-Critic
network, inspired by VGGnet [20][21][22]. In VGG,
three 3×3 convolutional kernels can replace a 7×7
convolutional kernel, and two 3×3 convolutional
kernels can replace a 5×5 convolutional kernel,
effectively increasing the depth and efficiency of the
neural network while maintaining the same receptive
field, thereby better meeting the complexity of
modeling. This is because a 5×5 convolutional kernel
can be considered as performing a fully connected
operation over a 5×5 area, while using two 3×3
convolutional kernels can convolve different parts of
this area separately and then concatenate them,
effectively realizing a fully connected operation over
a 5×5 area. This method reduces the number of
parameters that need to be learned, improving the
model's efficiency and generalization ability, as
shown in Figure 4.

Figure 4: Schematic of two 3×3 convolution kernels

replacing a 5×5 convolution

Figure 5: Structure of a neural network consisting of 7
convolutional layers crossed with a maximum pooling

layer

In Figure 5, several small 3×3 convolutional
kernels are used between each max-pooling layer.
Specifically, the two inputs of the neural network
(local observations and target direction/distance) are
preprocessed independently and then concatenated.
The four-channel matrix representing local
observations (11×11×4 tensors) passes through three
convolutions and two stages of max-pooling,
followed by a final convolutional layer. Meanwhile,
the target unit vector and magnitude pass through a
fully connected layer. Then, the concatenation of
these two preprocessed inputs passes through two
fully connected layers and is fed into an LSTM
network with an output size of 512. The output layer
consists of policy neurons with softmax activation,
value output, and feature layers, used to train each
agent to understand whether it hinders other agents
from achieving their goals. To achieve cooperative
behavior among agents, we apply penalties to
encourage the movement of other agents (referred to
as "blocking penalties"). If an agent stays at its target
position while blocking another agent from reaching
its goal, it receives a severe penalty (a penalty of -2
in practice, as shown in Table 1). The "blocking"
output in the network is trained to predict when an
agent is blocking other agents, implicitly explaining
to the agent for incurring additional penalties in such
situations. During training, policy, value, and
blocking outputs are batch updated every step or at
the end of an episode. Generally, the value is updated
to match the total discounted return

by minimizing:

 Journal of Theoretical and Applied Information Technology
15th July 2025. Vol.103. No.13

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4667

When updating the policy, the advantage function is
approximated using bootstrapping from the value
function:

Where is constrained by the batch size .
Additionally, the entropy term is added to
the policy loss, which has been shown to encourage
exploration and prevent premature convergence by
penalizing policies that always choose the same
action. The policy loss is:

With a small entropy weight (actually
). Two additional loss functions help

guide and stabilize training. First, update the
blocking prediction output by minimizing
(the log-likelihood of prediction errors). Second,
define the loss function to minimize the log-
likelihood of choosing invalid moves.

Since the input handled by reinforcement learning
is essentially sequence information, the LSTM
network with long-term memory capabilities is
chosen to replace the fully connected layers in the
original A3C network model, giving the entire
network model better long-term memory. The overall
model structure of the A3C network combined with
LSTM for agent path planning is illustrated.

Figure 6: Improved A3C Network Model Structure

As shown in Figure 6, each thread has Actor and
Critic networks with the same structure. The global
network also has Actor and Critic networks but only
serves to store the corresponding parameters. During
training, the global network saves the parameters of
the best-performing network in the sub-threads and
then pushes these parameters to each local network
via a synchronization mechanism. Sub-threads
compute gradients for the corresponding Actor and
Critic networks during training and perform gradient
descent in the global network, saving the

corresponding network parameters. Each time the
sub-threads complete an action, the push and pull
operations of network parameters are repeated to
ensure consistency and optimal performance.

4. SIMULATION EXPERIMENT AND AN
ANALYSIS

The experimental environment in this paper is an
improved grid world based on the Asprilo
benchmark [23], typically used by classical or
learning-based MAPF solvers. Asprilo is a
benchmark framework for multi-agent path planning,
focusing on typical scenarios in internal logistics and
warehouse automation with multiple mobile agents.
It provides concise specifications for these problems,
along with tools to generate benchmark instances,
verify path planning, and visualize instances (as
shown in Figure 7) and planning results.

Figure 7: Schematic diagram of grid environment

4.1 Introduction to Baseline Methods
The baseline methods in this experiment include

the classic distributed low-level obstacle avoidance
ORCA [24][25][26] (Optimal Reciprocal Collision
Avoidance) algorithm, the optimal centralized
planning CBS [27][28][29] (Conflict-Based Search)
algorithm, and a coupled planning algorithm ODrM*
[30][31][32] (with expansion factor). The
dynamic obstacle avoidance in the ORCA algorithm
relies on the analysis of the velocities between the
agent, other agents, and obstacles. CBS is a two-layer
algorithm, while the ODrM* algorithm performs
coupled replanning for all agents in the environment.

 Journal of Theoretical and Applied Information Technology
15th July 2025. Vol.103. No.13

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4668

4.2 Experimental Design and Result Analysis
In the experiment, at the beginning of each round,

the grid environment size is randomly chosen to be
10, 40, or 70, with a doubled probability for size 10.
The obstacle density is selected from a triangular
distribution between 0% and 50%. Each grid
environment ensures at least one path for the agent to
reach the target point, with agents, targets, and
obstacles placed randomly and uniformly. At each
time step, agents' actions are executed in random
order, ensuring equal execution priority. Eight agents
are placed in each environment during training. At
time step 0, all agents in the same environment are
synchronized to act in parallel. During training, our
method and baseline methods are executed with the
same parameter settings. See Table 2 for details.

Table 2: Parameter setting in the experiment.

Parameter Setting
Max_Episode_Length 256

 0.95

EXPERIENCE_BUFFER_SIZE 128
GRID_SIZE 11

ENVIRONMENT_SIZE (10,70)

OBSTACLE_DENSITY (0,5)

NUM_META_AGENTS 3

LR_Q 2e-5

DEMONSTRATION_PROB 0.5

optimizer Nadam

value loss MSE

imitation loss Cross Entropy

After training, testing is conducted under various

grid environment sizes, obstacle densities, and agent
scales. Grid environment sizes are set to 10 and 20,
obstacle densities to 0, 0.2, 0.3, and 0.4, and agent
scales to 4, 8, 16, 32, and 64. The experiment
compares the success rates of different planners, i.e.,
whether they complete tasks within the specified
time steps. Agents plan their paths in grid
environments of size 10 and 20, within a maximum
of 256 time steps. One hundred tests are conducted in
environments with fixed grid sizes and obstacle
densities. Performance comparisons with baseline
algorithms are evaluated by calculating the average
plan lengths, success rates, and average plan times
over these 100 tests. The experimental results are
shown in Figures 8 to 13.

Figures 8 and 9 show that with fewer agents, the
average planning length of the ORCA method is
significantly longer than the other three methods.
This is understandable because, in the multi-agent
dynamic environment obstacle avoidance problem,

multiple ORCA methods are used to find a common
solution. This involves obtaining a set of velocities
that can avoid collisions with multiple agents and
obstacles and then selecting a velocity from this set.
As the number of agents increases, our method
shows a significant increase in average planning
length compared to other methods. More agents lead
to more frequent blocking situations, significantly
increasing the average planning length.

Figures 10 and 11 show that our method performs
very well with low obstacle density. With low
obstacle density, agents can easily bypass each other.
In dense environments, joint actions are necessary
for agents to reach their goals (sometimes requiring
drastic path changes), where our method can be
easily outperformed. Similarly, ORCA's performance
is much worse; it cannot prevent deadlocks and
performs very poorly in most scenarios involving
more than 16 agents and any obstacles due to its
completely decoupled reactivity. In a grid
environment of size 10, with different obstacle
densities, our method almost always shows better
success rates than traditional multi-agent path
planners. Traditional multi-agent path planners
require global information about the environment. In
a grid environment of size 10, our FOV is 11,
meaning our method also knows the global
information in this environment. Finally, since
training involves grid environments of different sizes
but the agent scale remains unchanged, it is observed
that as the number of nearby agents within the FOV
increases, the agents' performance worsens. Overall,
our method adapts to different team sizes,
environment sizes, and obstacle densities, despite
allowing agents to access only local information
about the environment. In low obstacle density
environments, it exhibits the same performance, and
in some cases, even outperforms state-of-the-art
multi-agent path planners, despite these planners
accessing global information of the system.

Multi-agent path planning involves simultaneously
planning paths for multiple agents in a given space to
ensure they do not collide while minimizing total
runtime. The average planning time in the
experiment is shown in Figures 12 and 13. Our
method performs well in terms of average planning
length and success rate across different grid sizes and
obstacle densities. However, our method takes longer
average planning times compared to the CBS method,
the ODrM* method, and the ORCA method.

 Journal of Theoretical and Applied Information Technology
15th July 2025. Vol.103. No.13

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4669

Figure 8: Average planning length in a grid of size 10
with different obstacle densities

Figure 9: Average planning length in a grid of size 20
with different obstacle densities

Figure 10: Success rates in a grid of size 10 with
different obstacle densities

Figure 11: Success rates in a grid of size 20 with
different obstacle densities

Figure 12: Average planning time in a grid of size 10
with different obstacle densities

Figure 13: Average planning time in a grid of size 20
with different obstacle densities

 Journal of Theoretical and Applied Information Technology
15th July 2025. Vol.103. No.13

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4670

5. CONCLUSION

This paper addresses issues in MAPF path planning
such as poor real-time performance, weak obstacle
recognition, multi-agent collisions, deadlocks, and
congestion by designing a VGG16-LSTM-based
framework. The A3C algorithm is proposed as the
core algorithm of the framework, with different
dynamic and static obstacle environments
constructed, along with corresponding action
selection strategies and reward functions. This
framework utilizes the A3C algorithm to achieve
multi-agent cooperative control, real-time path
planning, and obstacle avoidance. Meanwhile,
experiments and analyses are conducted on the
proposed algorithm across various scenarios,
dimensions, and evaluation metrics, demonstrating
that the VGG16-LSTM-A3C-based multi-agent path
planning method improves MAPF’s real-time
performance, enhances agents’ obstacle recognition
capabilities, and resolves collision, deadlock, and
congestion issues encountered during operation,
thereby achieving the goal of improving MAPF
efficiency.
Based on this research, there are still some
shortcomings, and our future research directions will
address these shortcomings:
1. Experimental results show a gap in minimizing
total runtime compared to other multi-agent path
planning methods. Therefore, a new method to
reduce the total runtime is necessary.
2. In dense and highly structured environments,
effectively solving lifelong multi-agent path planning
requires costly coordination among agents and
frequent replanning capabilities, posing a significant
challenge for existing coupled and decoupled
methods.

ACKNOWLEDGMENT

Thank you to the Faculty of Computer Science and
Information Technology, Universiti Putra Malaysia
for providing financial support under allocation
vote 6236500.

REFERENCES:

[1]Yifan Bai, Shruti Kotpalliwar, Christoforos

Kanellakis, George Nikolakopoulos, Multi-
agent Path Planning Based on Conflict-Based
Search (CBS) Variations for Heterogeneous
Robots. published 13 February 2025 in

Journal of Intelligent & Robotic Systems,
doi.org/10.1007/s10846-025-02229-0.

[2]Matthew D. Houghton, Michael J. Acheson,
Andrew P. Patterson, Alex Oshin, Irene M.
Gregory, Combined Bernstein Polynomial
Optimal Reciprocal Collision Avoidance
Differential Dynamic Programming for
Trajectory Replanning and Collision
Avoidance for UAM Vehicles, published 23
January 2023 in AIAA SCITECH 2023 Forum,
doi.org/10.2514/6.2023-2544.

[3]YANG H L,QI Y Q,RONG D.AGV path
planning based on memristor reinforcement
learning in warehouse environment. Computer
Engineering and Applications,
2024,59(17):318-327.
doi.org/10.1109/cac51589.2020.9326742.

[4]Yinliang Chen, Liang Liang. SLP-Improved
DDPG Path-Planning Algorithm for Mobile
Robot in Large-Scale Dynamic Environment.
published 28 March 2023 in Sensors,
doi.org/10.3390/s23073521.

[5]Mingjun Zhou. Analysis Of Current
Development Status of Global Path Planning
for Intelligent Carrier Robots in Warehouse
Logistics Scenarios . published 26 June 2024 in
Highlights in Science, Engineering and
Technology. doi.org/10.54097/3zcsde07.

[6]DIGANI V,SABATTINI L,SECCHI C.A
probabilistic eulerian traffic model for the
coordination of multiple AGVs in auto-matic
warehouse. IEEE Robotics and Automatic
Letters,2024,1. doi.org/10.1049/icp.2024.3708.

[7]Ping Lou, Yutong Zhong, Jiwei Hu, Chuannian
Fan, Xiao Chen. Digital-Twin-Driven AGV
Scheduling and Routing in Automated
Container Terminals. Published 13 June 2023,
Mathematics. doi.org/10.3390/math11122678.

[8]Changxi Zhu, Mehdi Dastani, Shihan Wang. A
survey of multi-agent deep reinforcement
learning with communication. Published June
2024 in Autonomous Agents and Multi-Agent
Systems, doi.org/10.1007/s10458-023-09633-6.

[9]Ziyang Jin, Yijun Wang, Jingying Lv. Edge
Computing Task Offloading of Internet of
Vehicles Based on Improved MADDPG
Algorithm, Published 29 February 2024 in KSII
Transactions on Internet and Information
Systems, doi.org/10.3837/tiis.2024.02.004.

[10]Mengxue Tao, Qiang Li, Junxi Yu. Multi-
Objective Dynamic Path Planning with Multi-
Agent Deep Reinforcement Learning,
Published 27 December 2024 in Journal of
Marine Science and Engineering,
doi.org/10.3390/jmse13010020.

 Journal of Theoretical and Applied Information Technology
15th July 2025. Vol.103. No.13

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4671

[11]Y. Wang, B. Xiang, S. Huang, and G.
Sartoretti, "SCRIMP: Scalable Communication
for Reinforcement- and Imitation-Learning-
Based Multi-Agent Pathfinding," in 2023
IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), 1 Oct.
2023, doi: 10.1109/iros55552.2023.10342305.

[12]M. Gergely, "Multi-Agent Deep Reinforcement
Learning for Collaborative Task Scheduling,"
in Proceedings of the 16th International
Conference on Agents and Artificial
Intelligence, 2024, doi:
10.5220/0012434700003636.

[13]S. Wiggins, Y. Meng, R. Kannan, and V.
Prasanna, "Characterizing Speed Performance
of Multi-Agent Reinforcement Learning," in
Proceedings of the 12th International
Conference on Data Science, Technology and
Applications, 2023, doi:
10.5220/0012082200003541.

[14]C. Zhu, M. Dastani, and S. Wang, "A survey of
multi-agent deep reinforcement learning with
communication," in Autonomous Agents and
Multi-Agent Systems, Jun. 2024, doi:
10.1007/s10458-023-09633-6.

[15]Z. Chen, "DQN–MADDPG Coordinating the
Multi-agent Cooperation," in Highlights,
Science, Engineering and Technology, 1 Apr.
2023, doi: 10.54097/hset.v39i.6720.

[16]J. A. J. Sujana and L. Namasivaayam,
"Pressure, Queue, and Average Speed - Based
Multi-Agent DQN for Optimizing Traffic
Signal Control," in 2024 International
Conference on Advances in Data Engineering
and Intelligent Computing Systems (ADICS),
18 Apr. 2024, doi:
10.1109/ADICS58448.2024.10533624.

[17]Z. Lu, "Improving the Performance of Deep Q
Network in Decision Making Environment:
Applying Multi-Head Attention into DQN," in
Proceedings of the 1st International
Conference on Engineering Management,
Information Technology and Intelligence,
2024, doi: 10.5220/0012958200004508.

[18]M. S. R. Krishna and S. S. Mangalampalli,
"PWSA3C: Prioritized Workflow Scheduler in
Cloud Computing Using Asynchronous
Advantage Actor Critic (A3C) Algorithm," in
IEEE Access, 2024, doi:
10.1109/access.2024.3457518.

[19]C. Sun, T. Li, M. Wu, and S. Chu, "Research
on adaptive circuit structure optimization in
electronic design based on Asynchronous
Advantage Actor Critic (A3C) algorithm," in

Journal of Intelligent & Fuzzy Systems, 6 Nov.
2024, doi: 10.3233/jifs-241935.

[20]S. Prasad and R. Nayaka, "Deep learning based
image classification using small VGGNet
architecture," in AIP Conference Proceedings,
2024, doi: 10.1063/5.0194640.

[21]S. K. Arthi R, "Deep Learning based Brain
Stroke Detection using Improved VGGNet," in
WSEAS Transactions on Biology and
Biomedicine, 12 Oct. 2023, doi:
10.37394/23208.2023.20.21.

[22]D. Upadhyay, M. Manwal, V. Kukreja, and R.
Sharma, "Deep Learning-based VGGNet,
GoogleNet, and DenseNet121 Models for
Cervical Cancer Prediction," in 2024 5th
International Conference for Emerging
Technology (INCET), 24 May 2024, doi:
10.1109/incet61516.2024.10593267.

[23]R. Stern, N. Sturtevant, A. Felner, S. Koenig,
H. Ma, T. Walker, J. Li, D. Atzmon, L. Cohen,
T. K. Kumar, R. Barták, and E. Boyarski,
"Multi-agent pathfinding: Definitions, variants,
and benchmarks," in Proceedings of the
International Symposium on Combinatorial
Search, 1 Sep. 2021, doi:
10.1609/socs.v10i1.18510.

[24]M. D. Houghton, M. J. Acheson, A. P.
Patterson, A. Oshin, and I. M. Gregory,
"Combined Bernstein Polynomial Optimal
Reciprocal Collision Avoidance Differential
Dynamic Programming for Trajectory
Replanning and Collision Avoidance for UAM
Vehicles," in AIAA SCITECH 2023 Forum, 23
Jan. 2023, doi: 10.2514/6.2023-2544.

[25]T. Itzhaki and V. Shaferman, "Bounded and
Linear Quadratic Optimal Low-Thrust
Collision Avoidance in Circular Orbits," in
AIAA SCITECH 2024 Forum, 8 Jan. 2024, doi:
10.2514/6.2024-0094.

[26]Z. Liu, C. Yao, W. Na, C. Liu, and Q. Chen,
"MAPPO-Based Optimal Reciprocal Collision
Avoidance for Autonomous Mobile Robots in
Crowds," in 2023 IEEE International
Conference on Systems, Man, and Cybernetics
(SMC), 1 Oct. 2023, doi:
10.1109/smc53992.2023.10394332.

[27]G. Pooja and S. Bhosale, "Conflict-Based
Search for Optimal Multi-Agent Pathfinding,"
in International Journal of Advanced Research
in Science, Communication and Technology,
30 Jan. 2023, doi: 10.48175/ijarsct-8161.

[28]J. Ryu, Y. Kwon, S. Yoon, and K. Lee,
"Conflict Area Prediction for Boosting Search-
Based Multi-Agent Pathfinding Algorithms,"
in 2024 IEEE International Conference on

 Journal of Theoretical and Applied Information Technology
15th July 2025. Vol.103. No.13

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4672

Robotics and Automation (ICRA), 13 May
2024, doi: 10.1109/icra57147.2024.10610843.

[29]K. Okumura, "LaCAM: Search-Based
Algorithm for Quick Multi-Agent
Pathfinding," in Proceedings of the AAAI
Conference on Artificial Intelligence, 26 Jun.
2023, doi: 10.1609/aaai.v37i10.26377.

[30]C. Henkel and M. Toussaint, "Optimized
directed roadmap graph for multi-agent path
finding using stochastic gradient descent," in
Proceedings of the 35th Annual ACM
Symposium on Applied Computing, 30 Mar.
2020, doi: 10.1145/3341105.3373916.

[31]C. Ferner, G. Wagner, and H. Choset, "ODrM*
optimal multirobot path planning in low
dimensional search spaces," in 2013 IEEE
International Conference on Robotics and
Automation, May 2013, doi:
10.1109/icra.2013.6631119.

[32]S. Ardizzoni, L. Consolini, M. Locatelli, and I.
Saccani, "Constrained Motion Planning and
Multi-Agent Path Finding on directed graphs,"
in Automatica, Jul. 2024, doi:
10.1016/j.automatica.2024.111593.

