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ABSTRACT 
 

Existing approaches often rely on centralized or reactive planning methods, which can become inefficient 
or cause deadlocks in complex environments. There is a clear need for a process that handles these 
challenges while maintaining real-time performance and robustness. We propose a multi-agent path 
planning method based on the improved Asynchronous Actor-Critic Agent (A3C) algorithm. First, we 
enhance the Actor-Critic neural network within the A3C framework by integrating it with the VGG 
network to develop a fully decentralized strategy. Additionally, we improved the reinforcement learning 
rewards and penalties, allowing agents to perform real-time reactive path planning with partially visible 
information, exhibiting implicit coordination. Second, we use the sequence information input characteristics 
and long-term memory capabilities of Long Short Term Memory (LSTM) neural networks, allowing the 
neural network to gain "long-term memory" and enhance network learning speed. The LSTM neural 
network replaces the deep neural networks (DNN) in the original A3C network. We tested this approach in 
various environments with different sizes, agent quantities, and obstacle densities. Finally, we quantified 
the results based on average planning length, average planning time, and success rates over 100 tests. The 
experimental results show that the proposed method significantly improves the success rate and efficiency 
of multi-agent path planning in noisy and uncertain environments. 

Keywords: Multi-Agent Path planning, A3C, VGGnet, LSTM  
 
1. INTRODUCTION  
 

With the rapid development of Deep 
Reinforcement Learning (DRL) in multi-agent 
systems, various practical application challenges 
and solutions in the direction of Multi-Agent Deep 
Reinforcement Learning (MADRL) have emerged. 
Path planning in a collision-free environment is 
crucial for many agents to complete tasks quickly 
and efficiently, and using deep reinforcement 
learning for multi-agent path planning is a new 
research field in artificial intelligence. Multi-agent 
path planning training methods can be divided into 
three categories:  

(i) Centralized: The centralized training method 
assumes that the actions of all agents are 
determined by a central server that knows the 
intentions of all agents.  The centralized method has 
three limitations. First, as the number of agents 
increases, the computational complexity of 
centralized control and scheduling becomes high. 

Second, due to communication issues, the 
centralized method cannot scale to large systems. 
Third, centralized systems are prone to failures in 
the central server, communication between agents, 
or the sensors on any single agent, for example, the 
optimal centralized planning algorithm CBS [1]. 
However, as the number of agents increases, the 
central processor consumes a large amount of 
resources, severely affecting the efficiency of 
MAPF.  

(ii) Distributed: The distributed path planning 
algorithm adopts a decentralized approach, 
eliminating the need for a central processor, and 
making it more scalable and better suited for MAPF 
environments. For example, the classic distributed 
low-level obstacle avoidance algorithm ORCA [2]. 
Yang Hailan et al. [3] proposed a multi-agent path 
planning algorithm based on memristor 
reinforcement learning, which improves the 
probability transition function and pheromone of 
the ant colony algorithm, and suggests using 
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memristors as neural network synapses to enhance 
the DQN (deep Q-network) algorithm, effectively 
solving path planning issues in unknown 
environments. Chen et al. [4] proposed an improved 
deep deterministic policy gradient algorithm, which 
accelerates algorithm convergence by building a 
dual neural network and experience replay matrix, 
and uses batch priority sampling to train the neural 
network, addressing MAPF path planning in 
complex environments. Compared to centralized 
path planning algorithms, it is more adaptable to 
maps and better at handling dynamics. Meanwhile, 
distributed computing can address the dimensional 
explosion problem. However, conventional neural 
networks struggle with real-time path planning, 
often resulting in collisions, deadlocks, and 
congestion among agents. To address MAPF 
collisions, deadlocks, and congestion issues, Zhou 
et al. [5] proposed a path planning algorithm 
combining reservation tables and traffic rules, 
which prevents agent collisions by setting traffic 
rules and maintaining reservation tables storing all 
agents’ positions at specific times. A dynamically 
weighted map is created using the reservation table, 
allowing agents to avoid congested areas based on 
map weights. Digani et al. [6] used a hierarchical 
map method, dividing the map into a topological 
structure layer and a grid map layer, and cutting the 
map into different regions. The segmented regions 
are treated as nodes in the topological structure, and 
the D* algorithm is used for path planning based on 
the edge weights of the topology. Lou et al. [7] 
designed a strategy to resolve multi-agent path 
conflicts and congestion by detecting whether 
overlapping nodes or overlapping time exist on the 
routes of agents. If conflicts are detected, agents are 
guided to replan their routes. Although the above 
algorithms can solve multi-agent collisions, 
deadlocks, and congestion problems, both weighted 
map creation and map segmentation come at the 
cost of multi-agent operational efficiency [8]. 
Furthermore, the hierarchical map method involves 
manual segmentation, making it less adaptable to 
reflect agent congestion issues.  

(iii) Parameter sharing: Path planning is distributed, 
but the learning process is centralized. This method 
can leverage each agent's capabilities and 
compensate for the shortcomings of centralized path 
planning, adapting to location-based planning 
environments. It does not require knowledge of the 
dynamic model of the environment, has no 
communication requirements, and can be used in 
cooperative and competitive settings. However, it 
requires a central coordinator, which is not fully 
autonomous, and its scalability is poor. As a result, 

it does not support the training of a large number of 
agents, and the training time is relatively long. For 
example, the MADDPG algorithm [9], uses 
centralized training and distributed execution. Tao 
[10] proposed a decentralized partially observable 
multi-agent path planning method based on 
evolutionary reinforcement learning (MAPPER) to 
learn efficient local planning strategies in mixed 
dynamic environments. This method uses image-
based representations to describe the behavior of 
dynamic obstacles and trains strategies in mixed 
dynamic environments without the homogeneity 
assumption. However, in three-dimensional 
environments, the training time and complexity 
significantly increase, and the method lacks 
generalization capability.  

In summary, multi-agent path planning, as well 
as problems such as collisions, deadlocks, and 
congestion, have corresponding studies. However, 
the aforementioned multi-agent path planning 
algorithms often overlook these problems, while the 
path planning algorithms that aim to address these 
issues do so at the expense of agent operational 
efficiency. The lack of integrated research into both 
aspects prevents a fundamental improvement in 
MAPF efficiency.  

Therefore, this paper designs a framework based 
on VGG16-LSTM, using an LSTM neural network 
to replace the original fully connected layers, 
enabling the network to have long-term memory 
capabilities. It proposes the A3C algorithm as the 
core algorithm of the framework, constructing 
different dynamic and static obstacle environments 
and designing corresponding action selection 
strategies and reward functions. This framework 
achieves multi-agent collaborative control, real-
time path planning, and real-time obstacle 
avoidance through the A3C algorithm, thereby 
improving the operational efficiency of multi-
agents. 

2. THEORETICAL FOUNDATION  

2.1 Reinforcement Learning (RL) 

2.1.1 Introduction to Reinforcement 
Learning 

Through interaction with the environment, an 
agent observes the potential impacts of its behavior 
and learns to adjust its actions for better responses to 
rewards. In reinforcement learning, machine learning 
algorithms control an autonomous agent that 
observes the environmental state and takes actions at 
each time step. After the agent takes action, the 
environment transitions to a new state based on the 
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current state and the selected action's result. The state 
is statistical information about the environment, 
containing all the information the agent needs (such 
as the positions of actuators and sensors), so the 
agent can choose the optimal action. 

The sequence of actions taken by the agent is 
influenced by the rewards provided by the 
environment. A reward is a scalar that the 
environment provides to the agent when transitioning 
from one state to another. The agent's goal is to learn 
a policy π that maximizes the expected return. The 
policy returns actions based on the agent's current 
state. The interaction between the agent and the 
environment generates information. When the 
environment provides positive rewards, the agent is 
more likely to execute the current action the next 
time it encounters the same situation, whereas 
negative rewards will make the agent avoid 
executing the current action. 

Formally, RL can be described as a Markov 
Decision Process (MDP). There are various methods 
to solve reinforcement learning problems, including 
value function-based methods, policy search 
methods, and a hybrid actor-critic method that uses 
both value function and policy search 
[11][12][13][14]. 

2.1.2 A3C Algorithm 
Commonly used methods in reinforcement 

learning are usually Q-learning algorithms, and the 
concept of DRL emerged with the successful 
combination of deep learning and Q-learning, 
specifically with the advent of DQN[15][16][17]. 
However, DQN, a value function-based 
reinforcement learning method, is more suitable for 
solving discrete low-dimensional problems and 
cannot handle continuous high-dimensional 
problems. Q-learning is an off-policy method that 
cannot perform online updates. Since machine 
learning requires samples to be independently and 
identically distributed, DQN employs an experience 
replay mechanism, storing the agent's data in an 
experience replay unit, and the data can be batch 
processed or randomly sampled from different time 
steps to reduce non-stationarity and remove update 
correlations. However, this mechanism leads to 
higher memory consumption and increased 
computational load for each real interaction 
[18][19]. Due to these limitations, the 
Asynchronous Advantage Actor-Critic (A3C) 
algorithm emerged. 

The A3C algorithm is applicable to both discrete 
and continuous high-dimensional problems. It uses 
parallel asynchronous execution of multiple agents 

instead of the experience replay mechanism in 
DQN to achieve decorrelation and improve 
algorithm stability. Simply put, the asynchronous 
concept is realized by using a multi-threaded 
parallel mechanism, where each sub-thread 
corresponds to an agent, explores the environment 
using different strategies in the same state, and 
obtains the corresponding parameter gradients. 
Once the required number of update steps is 
reached, the parameters are pushed to the main 
thread to update the current optimal parameters. 
A3C employs the Temporal Difference (TD) 
algorithm, which is a further improvement of the 
TD(λ) algorithm based on n-step TD learning and 
integrates weighting methods. N-step TD learning 
updates the current value function using n-step 
value function estimates, with the update formula 
shown as equation (1): 

 

 
 

Represents the error signal which, is updated in the 
direction of the error signal to correct errors. From 
the above equation, we can use the n-step value 
function to estimate the current value function. When 
solving problems, it is necessary to carefully 
consider which value estimation method to use to 
better approach the true value. To solve this problem, 
the n-step estimates are combined with a geometric 
weighting method to form the  algorithm, 
which involves multiplying  by a weighting 
factor  to obtain  as shown in 
equation (2), with the update formula shown in 
equation (3): 

 

 
 is a constant between 0 and 1, with  acting 

as the weight. As time increases, , and 
the geometric weighting without memory results in 
low costs, making it possible to achieve  at 
the same cost as . Specifically, when , 
only the current state value is updated, making it 
equivalent to . When , the state value 
function update is equivalent to Monte Carlo (MC). 
Another key aspect of A3C is its use of the Actor-
Critic framework, which combines the advantages 
of Actor-only and Critic-only methods, achieving 
better convergence and single-step updates while 
applying them to continuous problems. 
A3C approximates the Policy Gradient (PG) 
method within the Actor-Critic framework. The 
main idea is to combine the Policy Gradient (Actor) 
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and value function approximation (Critic) methods, 
abandoning the use of returns to evaluate the true 
value function and instead using the Critic 
algorithm, i.e., function approximators, to evaluate 
the value function, as shown in equation (4): 
 

 
 

 is the parameter for updating the action value 
function in the Critic, and  is the parameter for 
updating the policy in the Actor. 
A3C (as shown in Figure 1) maintains a policy 

 and an estimate of a value function 
. Like the -step Q-learning variant, the 

Actor-Critic variant also operates in the forward 
view and uses the same n-step return combination to 
update the policy and value function. The policy and 
value function is updated after each  operation 
or upon reaching a terminal state. 
 

 
 

Figure 1: A3C algorithm framework diagram  

The updates executed by the algorithm can be 
regarded as 

 

 is an estimate of the advantage 
function. The advantage function is defined as: 

 

varies in different states, and its upper bound is 
. Through parallel Actor and cumulative 

updates, the stability of training can be effectively 
improved, which is similar to value-based methods. 
Although the parameters  for the policy and  for 
the value function are usually separate, in practice, 
they often share some parameters, making the 
training more stable and reliable. Generally, a 

convolutional neural network has a softmax output 
for the policy  and a linear output for the 
value function , with all non-output layers 
shared. Adding the entropy of the policy  to the 
objective function can effectively suppress linear 
outputs, thus preventing premature convergence to 
suboptimal deterministic policies. This technique 
was originally proposed in the literature [36] and 
found particularly useful in tasks requiring 
hierarchical behaviors. The gradient of the complete 
objective function, including the entropy 
regularization term, concerning the policy 
parameters is: 

 

 is the entropy. The hyperparameter  controls the 
strength of the entropy regularization term. 
 
2.2 LSTM Neural Network 

When faced with tasks like predicting the next 
scene in a video, speech recognition, and language 
translation, Deep Neural Networks (DNNs) and 
Convolutional Neural Networks (CNNs) often 
underperform. This is because the training samples 
for these tasks are sequences of varying lengths and 
continuous information, which are difficult to split 
into isolated words or single video frames, whereas 
DNNs and CNNs are more suitable for training on 
fixed-size samples. 

Recurrent Neural Networks (RNNs) excel in 
training and predicting continuous sequence inputs 
due to their looping mechanism, which connects 
neurons of consecutive time sequences using a 
weight matrix, strengthening unit connections. Thus, 
the output is related not only to the current input but 
also to the previous output, providing the neural 
network with memory capabilities. 

Although RNNs handle time series problems 
effectively, they face issues like the gradient 
vanishing problem, where significant short-term 
input changes can greatly affect their state. The 
gradient vanishing in RNNs occurs because the 
derivative of the activation function tanh is between 
0 and 1. During backpropagation, if the parameter  
is initialized to a value less than 1, the product of 
multiple (tanh function derivatives ) results in a 
very small partial derivative, leading to gradient 
vanishing, causing slow parameter updates, or even 
stopping updates altogether. This indicates that 
RNNs have long-term dependency effects, meaning a 
unit in the RNN is mainly influenced by its 
neighboring units, and over prolonged periods, 
results in smaller memory values. 
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The Long Short-Term Memory (LSTM) variant 
effectively addresses the long-distance dependency 
problem in RNNs by adding a cell state  to store 
long-term states An LSTM memory cell is shown in 
Figure 2. The key mechanisms for LSTM's long-term 
memory function are the forget gate, input gate, and 
output gate. The forget gate, shown in the blue 
dashed box in Figure 2, determines how much 
"memory" from the previous node's cell state can be 
retained. The input gate, composed of the green and 
orange dashed boxes, includes the candidate gate in 
the orange dashed box. It determines how much of 
the current input can be remembered. The output 
gate, in the yellow dashed box in Figure 2, controls 
the proportion of "historical" information to combine 
with the current input. The gates are single-layer 
fully connected networks that control outputs by 
manipulating activation values and the products of 
the vectors they wish to control. 

 
 

Figure 2:  LSTM Memory Module 

3.   MULTI-AGENT PATH PLANNING 
BASED ON IMPROVED A3C ALGORITHM  

3.1 Policy Representation based on improved 
A3C Algorithm 

The purpose of this section is to transform the 
Multi-Agent Path Finding (MAPF) problem into the 
Reinforcement Learning (RL) framework. 

3.1.1 Agent State Space 
In a partially observable discrete grid 

environment, the agent can only observe the state of 
the environment within a limited field of view (FOV) 
centered on itself. Within the limited FOV, the 
available information is divided into different 
channels to simplify the agent's learning task. 
Specifically, each observation consists of two-
dimensional matrices representing obstacles, other 
agents' positions, the agent's target position (if within 
the FOV), and the target positions of other 
observable agents (as shown in Figure 3). When the 

agent approaches the edge of the environment, 
obstacles are added to all positions outside the 
boundary of the environment. 

 
 

Figure 3:  Observation Space for Agents  

 
3.1.2 Agent Action Space 

In the grid environment, the agent takes discrete 
actions: moving one cell in one of the four basic 
directions or remaining stationary. At each time step, 
some actions may be invalid, such as moving into 
obstacles or other agents. During training, actions are 
sampled only from valid actions, and an additional 
loss function helps learn this information. Compared 
to giving negative rewards to agents who choose 
invalid actions, this method can achieve more stable 
training. Additionally, to prevent convergence to 
oscillating policies, agents are prohibited from 
returning to the position they occupied in the 
previous time step during training (agents can remain 
stationary for multiple consecutive time steps). This 
is necessary to encourage exploration and the 
learning of effective strategies. If the agent chooses 
an invalid move during training, it will remain 
stationary at that time step. 

3.1.3 Reward Function Design 
The reward function (as shown in Table 1) follows 

the same intuition used by most reward functions in 
grid worlds: the agent is penalized for each time step 
it does not stay on the target, leading to a strategy to 
reach the target as quickly as possible. 

Table 1: reward setting grid environment 

Movements Reward 

Movement (up/down/left/right) -0.3 
collision -2 
No movement (in/out of target position) 0.0/-0.5 
Finish a round 20 
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3.2 Improvement to the Actor-Critic Network 
and Introducing LSTM in A3C 

In the A3C algorithm, a deep neural network 
approximates the agent's policy, mapping current 
observations of the environment to the next action. 
This network has multiple outputs: one for the actual 
policy and the other for training. The advantage of 
this algorithm is that it does not require explicit agent 
communication, allowing multiple agents to learn a 
common strategy and achieve better training results 
in a shared environment. 

The 7-layer convolutional network shown in 
Figure 5 is an improvement on the Actor-Critic 
network, inspired by VGGnet [20][21][22]. In VGG, 
three 3×3 convolutional kernels can replace a 7×7 
convolutional kernel, and two 3×3 convolutional 
kernels can replace a 5×5 convolutional kernel, 
effectively increasing the depth and efficiency of the 
neural network while maintaining the same receptive 
field, thereby better meeting the complexity of 
modeling. This is because a 5×5 convolutional kernel 
can be considered as performing a fully connected 
operation over a 5×5 area, while using two 3×3 
convolutional kernels can convolve different parts of 
this area separately and then concatenate them, 
effectively realizing a fully connected operation over 
a 5×5 area. This method reduces the number of 
parameters that need to be learned, improving the 
model's efficiency and generalization ability, as 
shown in Figure 4. 

 
Figure 4: Schematic of two 3×3 convolution kernels 

replacing a 5×5 convolution  

 

 
Figure 5: Structure of a neural network consisting of 7 
convolutional layers crossed with a maximum pooling 

layer 

In Figure 5, several small 3×3 convolutional 
kernels are used between each max-pooling layer. 
Specifically, the two inputs of the neural network 
(local observations and target direction/distance) are 
preprocessed independently and then concatenated. 
The four-channel matrix representing local 
observations (11×11×4 tensors) passes through three 
convolutions and two stages of max-pooling, 
followed by a final convolutional layer. Meanwhile, 
the target unit vector and magnitude pass through a 
fully connected layer. Then, the concatenation of 
these two preprocessed inputs passes through two 
fully connected layers and is fed into an LSTM 
network with an output size of 512. The output layer 
consists of policy neurons with softmax activation, 
value output, and feature layers, used to train each 
agent to understand whether it hinders other agents 
from achieving their goals. To achieve cooperative 
behavior among agents, we apply penalties to 
encourage the movement of other agents (referred to 
as "blocking penalties"). If an agent stays at its target 
position while blocking another agent from reaching 
its goal, it receives a severe penalty (a penalty of -2 
in practice, as shown in Table 1). The "blocking" 
output in the network is trained to predict when an 
agent is blocking other agents, implicitly explaining 
to the agent for incurring additional penalties in such 
situations. During training, policy, value, and 
blocking outputs are batch updated every step or at 
the end of an episode. Generally, the value is updated 
to match the total discounted return 

by minimizing: 
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When updating the policy, the advantage function is 
approximated using bootstrapping from the value 
function:  

 
Where is constrained by the batch size . 
Additionally, the entropy term  is added to 
the policy loss, which has been shown to encourage 
exploration and prevent premature convergence by 
penalizing policies that always choose the same 
action. The policy loss is: 

 

With a small entropy weight  (actually 
). Two additional loss functions help 

guide and stabilize training. First, update the 
blocking prediction output by minimizing  
(the log-likelihood of prediction errors). Second, 
define the loss function  to minimize the log-
likelihood of choosing invalid moves. 

Since the input handled by reinforcement learning 
is essentially sequence information, the LSTM 
network with long-term memory capabilities is 
chosen to replace the fully connected layers in the 
original A3C network model, giving the entire 
network model better long-term memory. The overall 
model structure of the A3C network combined with 
LSTM for agent path planning is illustrated. 

 
 

Figure 6: Improved A3C Network Model Structure  

As shown in Figure 6, each thread has Actor and 
Critic networks with the same structure. The global 
network also has Actor and Critic networks but only 
serves to store the corresponding parameters. During 
training, the global network saves the parameters of 
the best-performing network in the sub-threads and 
then pushes these parameters to each local network 
via a synchronization mechanism. Sub-threads 
compute gradients for the corresponding Actor and 
Critic networks during training and perform gradient 
descent in the global network, saving the 

corresponding network parameters. Each time the 
sub-threads complete an action, the push and pull 
operations of network parameters are repeated to 
ensure consistency and optimal performance. 

4.   SIMULATION EXPERIMENT AND AN 
ANALYSIS 

The experimental environment in this paper is an 
improved grid world based on the Asprilo 
benchmark [23], typically used by classical or 
learning-based MAPF solvers. Asprilo is a 
benchmark framework for multi-agent path planning, 
focusing on typical scenarios in internal logistics and 
warehouse automation with multiple mobile agents. 
It provides concise specifications for these problems, 
along with tools to generate benchmark instances, 
verify path planning, and visualize instances (as 
shown in Figure 7) and planning results. 

 

 
 

Figure 7: Schematic diagram of grid environment  

 

4.1 Introduction to Baseline Methods  
The baseline methods in this experiment include 

the classic distributed low-level obstacle avoidance 
ORCA [24][25][26] (Optimal Reciprocal Collision 
Avoidance) algorithm, the optimal centralized 
planning CBS [27][28][29] (Conflict-Based Search) 
algorithm, and a coupled planning algorithm ODrM* 
[30][31][32] (with expansion factor ). The 
dynamic obstacle avoidance in the ORCA algorithm 
relies on the analysis of the velocities between the 
agent, other agents, and obstacles. CBS is a two-layer 
algorithm, while the ODrM* algorithm performs 
coupled replanning for all agents in the environment. 
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4.2 Experimental Design and Result Analysis 
In the experiment, at the beginning of each round, 

the grid environment size is randomly chosen to be 
10, 40, or 70, with a doubled probability for size 10. 
The obstacle density is selected from a triangular 
distribution between 0% and 50%. Each grid 
environment ensures at least one path for the agent to 
reach the target point, with agents, targets, and 
obstacles placed randomly and uniformly. At each 
time step, agents' actions are executed in random 
order, ensuring equal execution priority. Eight agents 
are placed in each environment during training. At 
time step 0, all agents in the same environment are 
synchronized to act in parallel. During training, our 
method and baseline methods are executed with the 
same parameter settings. See Table 2 for details. 

Table 2: Parameter setting in the experiment. 

Parameter Setting 
Max_Episode_Length 256 

 0.95 

EXPERIENCE_BUFFER_SIZE 128 
GRID_SIZE 11 

ENVIRONMENT_SIZE (10,70) 

OBSTACLE_DENSITY (0,5) 

NUM_META_AGENTS 3 

LR_Q 2e-5 

DEMONSTRATION_PROB 0.5 

optimizer Nadam 

value loss MSE 

imitation loss Cross Entropy 

 
After training, testing is conducted under various 

grid environment sizes, obstacle densities, and agent 
scales. Grid environment sizes are set to 10 and 20, 
obstacle densities to 0, 0.2, 0.3, and 0.4, and agent 
scales to 4, 8, 16, 32, and 64. The experiment 
compares the success rates of different planners, i.e., 
whether they complete tasks within the specified 
time steps. Agents plan their paths in grid 
environments of size 10 and 20, within a maximum 
of 256 time steps. One hundred tests are conducted in 
environments with fixed grid sizes and obstacle 
densities. Performance comparisons with baseline 
algorithms are evaluated by calculating the average 
plan lengths, success rates, and average plan times 
over these 100 tests. The experimental results are 
shown in Figures 8 to 13. 

Figures 8 and 9 show that with fewer agents, the 
average planning length of the ORCA method is 
significantly longer than the other three methods. 
This is understandable because, in the multi-agent 
dynamic environment obstacle avoidance problem, 

multiple ORCA methods are used to find a common 
solution. This involves obtaining a set of velocities 
that can avoid collisions with multiple agents and 
obstacles and then selecting a velocity from this set. 
As the number of agents increases, our method 
shows a significant increase in average planning 
length compared to other methods. More agents lead 
to more frequent blocking situations, significantly 
increasing the average planning length. 

Figures 10 and 11 show that our method performs 
very well with low obstacle density. With low 
obstacle density, agents can easily bypass each other. 
In dense environments, joint actions are necessary 
for agents to reach their goals (sometimes requiring 
drastic path changes), where our method can be 
easily outperformed. Similarly, ORCA's performance 
is much worse; it cannot prevent deadlocks and 
performs very poorly in most scenarios involving 
more than 16 agents and any obstacles due to its 
completely decoupled reactivity. In a grid 
environment of size 10, with different obstacle 
densities, our method almost always shows better 
success rates than traditional multi-agent path 
planners. Traditional multi-agent path planners 
require global information about the environment. In 
a grid environment of size 10, our FOV is 11, 
meaning our method also knows the global 
information in this environment. Finally, since 
training involves grid environments of different sizes 
but the agent scale remains unchanged, it is observed 
that as the number of nearby agents within the FOV 
increases, the agents' performance worsens. Overall, 
our method adapts to different team sizes, 
environment sizes, and obstacle densities, despite 
allowing agents to access only local information 
about the environment. In low obstacle density 
environments, it exhibits the same performance, and 
in some cases, even outperforms state-of-the-art 
multi-agent path planners, despite these planners 
accessing global information of the system. 

Multi-agent path planning involves simultaneously 
planning paths for multiple agents in a given space to 
ensure they do not collide while minimizing total 
runtime. The average planning time in the 
experiment is shown in Figures 12 and 13. Our 
method performs well in terms of average planning 
length and success rate across different grid sizes and 
obstacle densities. However, our method takes longer 
average planning times compared to the CBS method, 
the ODrM* method, and the ORCA method. 



 Journal of Theoretical and Applied Information Technology 
15th July 2025. Vol.103. No.13 

©   Little Lion Scientific  
 

ISSN: 1992-8645                                                                    www.jatit.org                                                     E-ISSN: 1817-3195 

 
4669 

 

 
 

Figure 8: Average planning length in a grid of size 10 
with different obstacle densities  

 
 

Figure 9: Average planning length in a grid of size 20 
with different obstacle densities 

 
 

Figure 10: Success rates in a grid of size 10 with 
different obstacle densities 

 
 

Figure 11: Success rates in a grid of size 20 with 
different obstacle densities  

 
 

Figure 12: Average planning time in a grid of size 10 
with different obstacle densities 

 
 

Figure 13: Average planning time in a grid of size 20 
with different obstacle densities 
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5.   CONCLUSION 

This paper addresses issues in MAPF path planning 
such as poor real-time performance, weak obstacle 
recognition, multi-agent collisions, deadlocks, and 
congestion by designing a VGG16-LSTM-based 
framework. The A3C algorithm is proposed as the 
core algorithm of the framework, with different 
dynamic and static obstacle environments 
constructed, along with corresponding action 
selection strategies and reward functions. This 
framework utilizes the A3C algorithm to achieve 
multi-agent cooperative control, real-time path 
planning, and obstacle avoidance. Meanwhile, 
experiments and analyses are conducted on the 
proposed algorithm across various scenarios, 
dimensions, and evaluation metrics, demonstrating 
that the VGG16-LSTM-A3C-based multi-agent path 
planning method improves MAPF’s real-time 
performance, enhances agents’ obstacle recognition 
capabilities, and resolves collision, deadlock, and 
congestion issues encountered during operation, 
thereby achieving the goal of improving MAPF 
efficiency.  
Based on this research, there are still some 
shortcomings, and our future research directions will 
address these shortcomings: 
1. Experimental results show a gap in minimizing 
total runtime compared to other multi-agent path 
planning methods. Therefore, a new method to 
reduce the total runtime is necessary. 
2. In dense and highly structured environments, 
effectively solving lifelong multi-agent path planning 
requires costly coordination among agents and 
frequent replanning capabilities, posing a significant 
challenge for existing coupled and decoupled 
methods.  
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