
 Journal of Theoretical and Applied Information Technology
15th July 2025. Vol.103. No.13

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4693

REFINEMENT OF A SOFT-CORE PROCESSOR
IMPLEMENTATION ON FPGA

GYOO SOO CHAE1
1Professor, Baekseok University, Division of Advanced IT, Cheonan-City, South Korea

E-mail: 1gschae@bu.ac.kr

ABSTRACT

CPUs with soft cores represent a category of microprocessors whose architecture and functionality can be
delineated entirely utilizing languages used to describe hardware, such as Verilog or VHDL. These
processors offer a high degree of customization tailored to specific applications and are deployable on
platforms for reconfigurable hardware, including Field Programmable Gate Arrays (FPGAs). After the
design is successfully implemented, the potential exists for developing Application Specific Integrated
Circuits (ASICs) for large-scale production. This study entails designing, simulating, and validating an 8-
bit processor utilizing VHDL. The envisaged processors are intended for application in control systems
characterized by modest to moderate complexity. Moreover, the 8-bit soft processor design lays the
groundwork for potential ASIC development. The simulation outcomes, facilitated by a commercial
software (ModelSim), are comprehensively illustrated via timing diagrams. Additionally, the practical
outcomes of this design's execution on the VIRTEX-5 are meticulously presented through laboratory
experimentation. The primary contribution of this study is the development of a compact, application-
focused soft-core processor architecture that emphasizes predictable execution, minimal response time, and
efficient use of hardware resources—features that are crucial for embedded control system applications.
The simulation and practical implementation results offer insights into the performance and feasibility of
deploying such processors in real-world scenarios, paving the way for potential ASIC development and
broader industrial application.

Keywords: Soft-core processor, FPGA, VHDL, Verilog, Hardware description language, ASIC,
customization, Reconfigurable hardware, Control applications, Simulation
software(ModelSim), implementation, Xilinx Spartan-3, Laboratory experimentation

1. INTRODUCTION

The development of soft-core processors can be
traced back to the early 1990s when researchers
began exploring synthesizable processor cores for
FPGA platforms. Please complete the modifications
and submit the updated document as soon as
possible forms. Initially conceived as educational
tools, soft-core processors have evolved
significantly to support complex introduction sets,
multithreading, and hardware accelerators. The
need for specialized processing units tailored to
specific requirements has become increasingly
apparent in control applications. Eight-bit
processors remain highly relevant in embedded
systems and industrial control applications due to
their simplicity, low power consumption, and cost-
effectiveness. While general-purpose processors
can handle various tasks, they may offer a lower
level of performance or customization needed for

control-oriented applications. As a result, there has
been a growing interest in developing dedicated
CPUs optimized for control tasks, leveraging the
flexibility and configurability offered by soft-core
processors on FPGA platforms. The utilization of
soft-core Central Processing Units (CPUs) as
Intellectual Property (IP) cores compatible with
Field Programmable Gate Array (FPGA) devices
[1-8] has garnered significant attention. These
processors offer various advantages, including
accelerated time to market, seamless integration
with FPGA fabric, reduced obsolescence, and
customizable performance and pricing [9]. Modern
FPGA architectures integrate hard-core and soft-
core processing units onto a single chip, providing
extensive configurability for application developers
[10]. Researchers have explored applying a
dataflow-based design technique to develop soft-
core processors for FPGA platforms, mainly
focusing on picture manipulation applications [10-

 Journal of Theoretical and Applied Information Technology
15th July 2025. Vol.103. No.13

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4694

15]. Tong et al. compared offerings from open-
source and commercial manufacturers in CPU
processor design for embedded systems
applications [11]. Intellectual Property (IP) cores,
also known as soft-core processors, find utility in
Field Programmable Gate Array (FPGA) systems
[8]. These processors offer benefits such as
accelerated time to market, seamless integration
with FPGA fabric, reduced obsolescence, and
customizable performance and pricing. Modern
FPGA designs consolidate hard-core and soft-core
processors onto a single chip, providing extensive
configurability for application developers [9]. Amiri
et al. utilized a dataflow-based design technique to
develop CPUs on FPGA devices for image
processing applications [10]. Tong et al. conducted
a survey comparing soft-core processor offerings
from open-source and commercial suppliers for
embedded applications [11]. Moreover, a detailed
implementation experience with the Xilinx
Integrated Software Environment for a soft-core
processor is documented in [16]. The research
delves into designing an eight-bit CPU tailored for
control applications characterized by simple to
moderate complexity. The processor's VHDL code
is developed entirely using the Xilinx ISE tool and
subjected to simulation using the
software(ModelSim). The resulting simulation
outcomes are meticulously presented and analyzed.
Additionally, a summary of digital logic
requirements and resource utilization for the target
FPGA IC is provided, advocating the efficient
implementation of the proposed soft-core processor
for control applications. The design of an eight-bit
CPU tailored for control applications involves
several key considerations, including system
architecture, instruction set design, memory
hierarchy, and interface compatibility. This section
delves into the design methodologies employed in
developing the proposed soft-core processor,
highlighting the design choices, optimization
strategies, and trade-offs made throughout the
design process[17-19]. Although extensive research
has been conducted on soft-core processor design
for image processing [10–15] and general-purpose
embedded systems [11], there is a notable lack of
focus in existing literature on developing soft-core
CPUs specifically optimized for control
applications with limited complexity and stringent
efficiency demands. Much of the current work
prioritizes performance improvements for data-
heavy applications, often overlooking the unique
requirements of control systems, which rely heavily
on simplified architectures, predictable execution,
and minimal hardware resource usage. One of the

fundamental design considerations is selecting the
instruction set architecture (ISA) tailored to the
requirements of control applications. The ISA
defines the set of instructions the CPU supports and
determines its capabilities and performance
characteristics. In the context of control
applications, the ISA should prioritize efficiency,
simplicity, and determinism, enabling the CPU to
execute control algorithms with minimal overhead.
Another critical aspect of CPU design is the
organization of the register array, which serves as
the primary storage for intermediate data and
operands during computation. The register file
architecture significantly impacts the CPU's
performance and efficiency, including the number
of registers, their width, and the addressing modes
supported. In control applications, where real-time
responsiveness is crucial, optimizing the register
file design to minimize access latency and
maximize throughput is essential.

Furthermore, the design of the control unit, which
is responsible for sequencing the execution of
instructions and coordinating data movement within
the CPU, plays a vital role in determining the
overall performance and functionality of the
processor. The control unit design involves defining
the instruction fetch, decode, execute, and write-
back stages and implementing control logic for
handling interrupts, exceptions, and other system-
level events. In control applications, where precise
timing and synchronization are critical, designing a
robust and efficient control unit is paramount to
ensuring the reliable operation of the CPU.
Additionally, the design of specialized functional
units, such as comparators and shifters, tailored to
the requirements of control algorithms further
enhances the CPU's performance and efficiency.
These units are optimized for specific operations
commonly used in control applications, such as
comparison, shifting, and bit manipulation,
enabling the CPU to execute control algorithms
with higher throughput and lower latency.
Moreover, the design and implementation of the
Arithmetic Logic Unit (ALU), which is responsible
for performing arithmetic and logical operations,
are crucial in determining the CPU's computational
capabilities. In control applications, where
mathematical operations are prevalent, optimizing
the ALU design to support a wide range of
operations with minimal latency and area overhead
is essential.

1.1 FPGA Implementation

Once the design of the soft-core CPU is
finalized, the next step is to implement it on an

 Journal of Theoretical and Applied Information Technology
15th July 2025. Vol.103. No.13

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4695

FPGA platform and evaluate its performance and
functionality. This section discusses the FPGA
implementation process, including hardware
synthesis, place-and-route, timing analysis, and
simulation and verification techniques used to
validate the design's correctness and robustness.
Implementing the soft-core CPU begins with
synthesizing the hardware description written in
VHDL or Verilog into a netlist of logical gates and
interconnections. The synthesis process optimizes
the design for area, speed, and power consumption,
translating the CPU's high-level description into a
low-level representation suitable for FPGA
implementation. Following synthesis, the netlist is
mapped onto the FPGA fabric using place-and-
route tools, determining the physical placement of
logic elements and routing resources on the FPGA
chip. The place-and-route process aims to minimize
signal delays and routing congestion while meeting
timing constraints specified by the design. Once the
design is mapped onto the FPGA fabric, timing
analysis ensures that the critical paths meet the
required timing constraints and that the design
operates reliably at the target clock frequency.
Timing closure, achieved through iterative
optimization and refinement, is essential to
guarantee the performance and reliability of the
CPU in real-world applications. In parallel with
hardware implementation, functional verification is
conducted using simulation tools to verify the
correctness and functionality of the CPU design.
Simulation tests, including unit tests, integration
tests, and system-level tests, validate the behavior
of the CPU under different operating conditions and
input stimuli, ensuring that it operates as expected
according to the design specifications. Furthermore,
FPGA-based prototyping allows for rapid iteration
and testing of the CPU design in a real-world
environment, enabling designers to validate
performance, functionality, and compatibility with
target applications. By leveraging FPGA platforms,
designers can quickly identify and address design
issues, refine implementation strategies, and
optimize the performance of the CPU for specific
application requirements.

1.2 Performance Evaluation

Once the soft-core CPU is implemented on the
FPGA platform, performance evaluation is
conducted to assess its suitability for control
applications. This section discusses the performance
metrics used to evaluate the CPU, including
throughput, latency, power consumption, resource
utilization, and benchmarking techniques used to
compare the CPU against alternative solutions.

Throughput measures the rate at which the CPU
executes instructions or processes data, indicating
its processing capacity and efficiency in handling
control tasks. Latency quantifies the time taken for
the CPU to complete a single operation or task,
reflecting its responsiveness and real-time
performance in control applications. Power
consumption is critical in embedded systems, where
energy efficiency is paramount. By measuring the
power consumption of the CPU under different
operating conditions and workloads, designers can
optimize power usage and extend the battery life of
battery-powered devices. Resource utilization
assesses the hardware resources consumed by the
CPU, including logic elements, memory blocks, and
routing resources on the FPGA chip. Optimizing
resource utilization is essential to maximizing the
scalability and cost-effectiveness of the CPU
design, particularly in resource-constrained
embedded systems. Benchmarking involves running
standardized test programs or algorithms on the
CPU. The subsequent sections of the paper are
organized as follows: Methods/Experimental
outline the system considerations employed in the
design process. A succinct overview of the register
array and its simulation is provided. It also
thoroughly examines the Arithmetic Logic Unit
(ALU) functionality alongside its implementation.
Design methodologies for the Comparator and
Shifter, accompanied by timing simulations, are
elaborated. The control unit design process is
elucidated to validate its functionality. The results
section discusses the FPGA implementation
outcomes in detail, while the conclusions section
presents the final remarks. This paper contributes to
soft-core processor design by introducing a
meticulously crafted eight-bit processor tailored for
control applications. Leveraging VHDL and FPGA
platforms, along with comprehensive simulation
and implementation results, underscores the
efficacy and viability of the proposed design.

2. METHODS AND EXPERIMENTAL

2.1 System Architecture

Sections The system architecture is portrayed in
Figure 1, illustrating the hierarchical arrangement
of the microprocessor being developed. At the
topmost level, the system encompasses two core
constituents: external memory and the Central
Processing Unit (CPU). External memory assumes
a critical role as it acts as a pivotal repository for
storing both program instructions and data. The
chosen external memory chip must demonstrate

 Journal of Theoretical and Applied Information Technology
15th July 2025. Vol.103. No.13

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4696

operational speeds compatible with the envisaged
FPGA-based CPU. Numerous commercially
available memory chips meet this criterion
satisfactorily. Within the CPU, several internal
components play pivotal roles in facilitating
computation and control. These components
encompass the register array, Arithmetic Logic Unit
(ALU), comparator, shifter, and control unit. The
register array is a collection of storage elements
capable of temporarily holding data during
processing operations. The ALU executes
arithmetic and logical operations on the data stored
in registers. The comparator enables comparison
operations, which is essential for decision-making
processes within the processor. Conversely, the
shifter facilitates the manipulation of data bits, a
necessity for various computational tasks. Lastly,
the control unit governs the overall operation of the
CPU and orchestrates the execution of instructions.
Further granularity within the control unit is
achieved through its subdivision into three distinct
components: the Instruction Register (IR),
controller, and Program Counter (PC). The
Instruction Register (IR) is a temporary storage unit
that executes the current instruction. The controller
interprets the instruction fetched from memory and
issues appropriate control signals to coordinate the
execution flow. Meanwhile, the Program Counter
(PC) keeps tabs on the memory address of the
subsequent instruction to be fetched, thereby
ensuring the sequential execution of program
instructions.

Figure 1: Hierarchical design of the microprocessor

This hierarchical arrangement delineates the
essential components and their interconnections
within the microprocessor design, laying the
foundation for subsequent detailed discussions and
implementations.

2.2 Register Array
The register array is a critical CPU component

that provides temporary data storage during
processing operations. It comprises a collection of
registers, each capable of holding a fixed number of
bits. These registers serve various purposes,
including holding operands for arithmetic and
logical operations, storing intermediate results, and
facilitating data movement within the processor.
The register array facilitates data manipulation and
computation in the designed microprocessor. By
providing a set of storage elements directly
accessible by the CPU, the register array enables
efficient instruction execution. Moreover, the
availability of multiple registers allows for parallel
data processing, thereby enhancing the
microprocessor's overall throughput. The register
array balances capacity and speed to ensure optimal
performance and resource utilization. Careful
consideration is given to the number of registers,
their width, and the access latency to meet the
requirements of the target application. Additionally,
techniques such as register renaming and pipelining
may be employed to enhance the efficiency of the
register array further. The design incorporates an
array of eight 8-bit registers denoted as R0 through
R7. These registers serve as temporary storage units
during program execution. The VHDL model
representing the register array is depicted in Figure
2, illustrating a block diagram representation.

Figure 2: VHDL representation of a Register Array

A 3:8 decoder selects one of the eight registers
for read or write operations [10-12]. The logic
values at the SEL input determine which register is
being operated upon. If the RD signal is asserted
(RD = 1), the content of the selected register is
loaded onto the data bus. Similarly, if the WR
signal is asserted (WR = 1), the content present on
the data bus is written into the selected register.
Simulation results of the register array, depicted as
a timing diagram, are obtained using the software,
(ModelSim XE-III) as shown in Figure 3. During
the first clock period, register R0 is selected for

 Journal of Theoretical and Applied Information Technology
15th July 2025. Vol.103. No.13

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4697

write and read operations (SL = 000, WR = 1, and
RD = 1). As illustrated in Figure 3, the input data
(data in = 11111111) is written into R0, and
subsequently, the same data is read from R0. R1 is
exclusively selected for a read operation in the
subsequent clock period. Since no data is written
into R1, an undefined value is read. Only a write
operation is permitted for R0 in the third clock
period. However, since RD = 0, the output enters a
high impedance state (indicated by dataout =
tristate output). The data stored in R0 during the
third clock period (equal to 11110000) is read
during the ninth, highlighting that modifying the
stored data within a specific register without the
asserted WR control signal is impossible.

Figure 3: Simulation Outcome of the Register Array

2.3 ALU Functionality and Implementation

The Arithmetic Logic Unit (ALU) serves as the
computational heart of the microprocessor and is
responsible for performing arithmetic, logical, and
comparison operations on data operands. It accepts
input data from the register array, processes them
according to the operation specified in the
instruction, and produces the resulting output. The
ALU supports various arithmetic and logical
operations, including addition, subtraction,
multiplication, division, bitwise AND, OR, XOR,
and shift operations. Depending on the application's
specific requirements, the ALU may incorporate
specialized hardware to accelerate certain
operations or support custom instructions.

In implementing the ALU, careful
attention is paid to optimizing performance, area
utilization, and power efficiency. Various design
techniques, such as parallelism, pipelining, and
hardware optimization, achieve the desired balance
between these factors. Moreover, the ALU is
thoroughly verified through simulation and
functional testing to ensure correct operation under
all scenarios. The ALU (Arithmetic Logic Unit)
comprises eight distinct operations, with the first
four categorized as arithmetic and the subsequent
four as logical. Given the selection of eight
operations, three bits are assigned to signify them.
Table 1 provides a comprehensive overview of the

ALU operations alongside their corresponding bit
assignments:

Table 1: Bit Assignments for ALU Operations.

Sl. No Arithmetic Logic Unit Operations | Task Allocations (SEL)
1 Add 0 0 0
2 Sub 0 0 1
3 Inc 0 1 0
4 Dec 0 1 1
5 AND 1 0 0
6 OR 1 0 1
7 XOR 1 1 0
8 NOT 1 1 1

The first column enumerates the serial number of
each operation within the ALU, while the second
column denotes the specific operation. The third
column illustrates the corresponding bit
assignments, denoted as SEL(2), SEL(1), and
SEL(0). For instance, for addition, the bit
assignments are 0 0 0, whereas for subtraction, they
are 0 0 1.The Arithmetic Logic Unit comprises two
8-bit registers, A and B, at its input. Both registers
are utilized for operations necessitating two
operands, whereas only register A is employed for
single-operand operations. The outcome of an
operation is conveyed to another 8-bit register, C.
Additionally, the ALU incorporates three flags—
Carry (CY), Zero (ZF), and Sign (SF)—to indicate
the data state resulting from an arithmetic logic
operation. When the ALU is not selected for
operation, it remains in a high-impedance
state.Simulation results of the ALU, presented in
the form of a timing diagram (Figure 4),
comprehensively depict all eight operations with
typical data input alongside their corresponding
output. Table 2 elucidates the simulation results in
further detail.

Table 2: Simulation Results in Further Detail.

S
n

Arithmetic
Logic Unit

E
N SEL

In Output
A B C CY ZF SF

1 Add 1 0 0 0 F0 11 01 1 0 0
2 Sub 1 0 0 1 40 28 18 0 0 0
3 Inc 1 0 1 0 10 67 11 0 0 0
4 Dec 1 0 1 1 F0 40 FF 0 0 1
5 ANDing 1 1 0 0 10 0F 00 0 1 0
6 ORing 1 1 0 1 20 0F FF 0 1 1
7 X-OR 1 1 1 0 F3 28 FB 1 0 1
8 Inverting 1 1 1 1 FF 03 00 0 1 0
9 - 0 z zz zz zz z z z

 Journal of Theoretical and Applied Information Technology
15th July 2025. Vol.103. No.13

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4698

Figure 4: Arithmetic Logic Unit (ALU) Simulation

Outcome.

2.4 Comparator and Shifter Design

The comparator and shifter are indispensable
components within the microprocessor, playing
pivotal roles in comparing and manipulating data
bits. These functionalities facilitate conditional
branching, decision-making, and various
computational tasks within the processor
architecture. In the ensuing discourse, we embark
on a comprehensive exploration of the design and
implementation of these crucial components, with a
keen focus on efficiency, speed, accuracy, and
robustness.

2.4.1 Comparator Design and Functionality
The comparator circuit forms the cornerstone of the
microprocessor's decision-making capabilities,
enabling the comparison of two input values and
the generation of output signals indicative of the
comparison result. Based on the comparison
outcome, the comparator evaluates the relative
magnitudes of the provided numbers and produces
output signals, such as Carry Flag (CF) and Zero
Flag (ZF). These flags are pivotal in conditional
branching and program execution flow control
within the processor.

2.4.2 Comparator Operation
The operation of the comparator revolves around
analyzing two input values, denoted as A and B,
and determining their relationship. Table 3
elucidates the correspondence between the input
values and the resultant states of the CF and ZF
flags. It is noteworthy that the compare operation
does not alter the contents of the source registers,
ensuring data integrity during comparison
operations. Moreover, the outputs CF and ZF
maintain a high-impedance state when the
comparator is not actively selected, mitigating
unintended effects on the system.

2.4.3 Simulation Results and Analysis
Figure 5 provides insights into the simulation
results of the comparator circuit, offering a glimpse
into its operational characteristics under varying
input scenarios. During the initial three operations,
the enable input (EN) remains asserted (high),
while it assumes a de-asserted state (low) during
the fourth operation. Consequently, the outputs CF
and ZF remain in a high-impedance state,
underscoring the passive behavior of the
comparator when not actively engaged. Notably,
specific input combinations lead to distinct flag
configurations, reflecting the outcome of the
comparison operation. For instance, when A equals
10H, and B equals 00H, CF and ZF assume a
logical low state (0), indicating equality between
the input values. Conversely, in scenarios where A
and B are both FFH, CF assumes a low state (0). At
the same time, ZF is asserted (high), signifying A
being more significant than B. Lastly, when A
equals 10H and B equals 3FH, CF is asserted
(high), and ZF assumes a low state (0), denoting A
being less than B.

2.4.4 Shifter Design and Functionality
Complementing the comparator, the shifter plays a
pivotal role in facilitating the manipulation and
reorganization of data bits within the
microprocessor. Through the shifter's capabilities,
the microprocessor can execute various operations,
including arithmetic shifts, logical shifts, and
rotations, essential for multiplication, division, and
data formatting.

2.4.5 Shifter Operation
The shifter operates by shifting the bits of a given
data word left or right within a register or between
registers, as dictated by the specific instruction
being executed. This operation enables various data
manipulation tasks, including shifting bits into or
out of position, rotating bits cyclically, and filling
vacated bit positions with designated values. The
shifter's versatility and flexibility empower the
microprocessor to execute complex computational
tasks precisely and efficiently.

2.4.6 Hardware Optimizations
Various hardware optimizations, including parallel
comparison and bit-level shifting techniques,
underpin efforts to enhance the shifter's efficiency
and performance. By exploiting parallelism in the
shifter's design, multiple bits can be shifted
simultaneously, minimizing latency and
maximizing throughput. Additionally, bit-level
shifting optimizations streamline the data

 Journal of Theoretical and Applied Information Technology
15th July 2025. Vol.103. No.13

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4699

manipulation process, ensuring rapid and efficient
execution of shift operations.

2.4.7 Comprehensive Testing and Validation
The rigorous testing and validation regimen to
ensure correct operation across all possible input
scenarios are central to the comparator and shifter's
design and implementation. Testbenches,
comprising diverse test cases and stimuli sets, are
meticulously crafted to validate the functionality of
individual components and the overall system.
Comprehensive testing encompasses functional
verification, performance analysis, and corner-case
testing to uncover potential anomalies or
discrepancies.

2.4.8 Functional Verification
Functional verification encompasses tests for the
comparator and shifter's correct operation under
various input conditions. Test cases are devised to
evaluate edge cases, boundary conditions, and
exceptional scenarios, ensuring that the components
behave as expected across the entire spectrum of
possible inputs. Through exhaustive functional
verification, designers gain confidence in the
reliability and accuracy of the comparator and
shifter implementations.

2.4.9 Performance Analysis
Performance analysis delves into assessing the
efficiency, speed, and resource utilization of the
comparator and shifter designs under different
operating conditions. Key performance metrics,
including throughput, latency, and resource
utilization, are quantified and analyzed to identify
potential bottlenecks and areas for optimization. By
scrutinizing performance metrics, designers can
iteratively refine the designs to achieve optimal
efficiency and throughput while minimizing
resource overhead. Essentially, the comparator and
shifter are linchpins of the microprocessor's
functionality, embodying efficient data comparison
and manipulation principles. These components
emerge as stalwarts of computational efficiency
through meticulous design, optimization, and
validation efforts, empowering the microprocessor
to execute various tasks with precision and
reliability.

Figure 5a): simulation outcomes of the Comparator

Figure 5b): simulation outcomes of the Shifter

Figure 5 a) and b) illustrate the simulation
outcomes of the Comparator and the Shifter,
respectively.

Table 3: Comparison Results of the Comparator Circuit.

A B CF ZF
10H 00H 0 0
FFH FFH 0 1
20H 2FH 1 0

The shifter circuit within the CPU is tasked with
altering the contents of register A by shifting or
rotating them by one-bit position to the left or right.
Subsequently, the resulting output is directed to
register C, an 8-bit register. The shifter is designed
to accommodate four distinct operations, as
outlined in Table 4. Additionally, Table 4
delineates the corresponding actions undertaken by
the shifter for each operation.

Table 4: Bit assignments for shifter operations.

Sl.
No

Shift
Operation SL Shifter Action

1 left 0 0 A(0) → 0; A(7:1) → A'(6:0)
2 right 0 1 0 → A(7); A'(7:1)→A(6:0)

3 Left_R
1 0

CF ← A'(7); A(0) ← A'(7);
A(7:1) ← A'(6:0)

4 Right_R
1 1

A'(0) → A(7) ; A'(0) → CF;
A'(7:1)→ A(6:0)

Note: A' and A stand for register A's contents
before and after the operation, respectively.

 Journal of Theoretical and Applied Information Technology
15th July 2025. Vol.103. No.13

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4700

Table 5 interprets the shifter's simulation results,
shown in Figure 6. The four procedures are tested
using standard data inputs, and the appropriate
outputs are shown. It is crucial to remember that
when the shifter is not selected (enable= 0), it
enters a high-impedance state.

Table 5: Interpretation of Shifter Simulation Results.

Sl. No Shift
Operation SL In A Op C CF

1 left 00 10101011 01010101 -
2 right 01 11110001 11111000 -
3 left-rotate 10 11010101 10101011 0
4 right rotate 11 11111110 01111111 1

These results offer insights into the functionality
and behavior of the shifter circuit, showcasing its
ability to perform shifting and rotating operations
on the input data stored in register A while
producing the corresponding output in register C
along with the state of the Carry Flag (CF).

2.5 Control Unit Design and Functionality

The control unit represents the nucleus of the
microprocessor, orchestrating the execution of
instructions and regulating the data flow within the
system. Its primary function entails deciphering the
instructions retrieved from memory, generating
control signals to synchronize the operation of other
components, and ensuring the accurate sequencing
of instruction execution.
Masticating the control unit's design requires
meticulous attention to instruction decoding,
adherence to timing constraints, and generating
requisite control signals. Finite State Machine
(FSM) design methodologies emerge as pivotal
tools for modeling the intricate control logic,
affording precise command over the
microprocessor's behavior. Furthermore, the design
ethos emphasizes the creation of a control unit
characterized by flexibility and extensibility,
thereby facilitating the seamless integration of new
instructions or modifications to existing ones. The
control unit's validation process entails rigorous
simulation and verification exercises to ascertain its
functionality and correctness comprehensively.
Testbenches are meticulously crafted to simulate
diverse instruction sequences and edge cases,
ensuring the control unit operates reliably under all
conceivable conditions. Additionally, exhaustive
timing analysis is conducted to verify that the
microprocessor aligns with the stipulated
performance specifications, assuring optimal
operational efficiency. Let us delve deeper into

each aspect of the control unit design and
validation:

2.5.1 Instruction Decoding:
Instruction decoding constitutes a pivotal aspect of
the control unit's functionality. It involves parsing
the fetched instructions and discerning their
intended operations. Various decoding techniques
are employed, ranging from simple lookup tables to
more sophisticated FSM-based approaches. The
goal is to translate each instruction into a series of
control signals that govern the behavior of the
microprocessor's functional units.

2.5.2 Timing Constraints:
Adherence to timing constraints is paramount to
ensuring the microprocessor's reliable operation.
Timing analysis is conducted to ascertain that
critical paths within the control unit and associated
components meet the specified timing
requirements. This involves evaluating signal
propagation delays, setup and hold times, and clock
skew across the system. By meticulously
optimizing timing parameters, the design can
achieve the desired performance metrics while
mitigating the risk of timing violations.

2.5.3 Control Signal Generation
The generation of control signals is central to the
control unit's role in coordinating the operation of
other components within the microprocessor.
Different control signals are activated depending on
the instruction to enable specific functions within
the ALU, register array, memory interface, and
other units. The control signal generation logic
must be robust, responsive, and dynamically
adapted to changing operational requirements.

2.5.4 Finite State Machine (FSM) Design
Finite State Machine (FSM) design techniques are
widely employed in modeling the microprocessor's
control logic. FSMs offer a systematic framework
for representing the control unit's sequential
behavior, delineating distinct states and transitions
based on input conditions and internal state
variables. By leveraging FSMs, designers can
achieve granular control over the microprocessor's
operation while maintaining modularity and
scalability in the design.

2.5.5 Flexibility and Extensibility
The control unit's design prioritizes flexibility and
extensibility, allowing for seamless integration of
new instructions or modifications to existing ones.
This involves modularly designing the control unit

 Journal of Theoretical and Applied Information Technology
15th July 2025. Vol.103. No.13

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4701

architecture with well-defined interfaces facilitating
easy expansion and customization. Additionally,
provisions are made to accommodate enhancements
or updates without necessitating extensive redesign
or reconfiguration of the control unit.

2.5.6 Simulation and Verification
Simulation and verification serve as indispensable
phases in validating the functionality and
correctness of the control unit design. A
comprehensive suite of testbenches is developed to
simulate various instruction sequences, corner
cases, and error conditions. Simulation results are
meticulously analyzed to ensure the control unit
behaves as expected under diverse scenarios.
Moreover, formal verification techniques may be
employed to rigorously verify the correctness of the
control unit's operation, providing mathematical
certainty of its functionality.

2.5.7 Timing Analysis
Timing analysis is conducted to verify that the
microprocessor meets the required performance
specifications regarding clock frequency,
throughput, and latency. This involves analyzing
critical paths within the control unit and associated
components to identify potential timing bottlenecks
and optimize timing parameters accordingly. By
meticulously scrutinizing timing margins and
addressing any timing violations, designers can
ensure that the microprocessor operates reliably
within its specified performance envelope. Through
a meticulous synthesis of these design principles
and validation methodologies, the control unit
emerges as a robust and reliable component within
the microprocessor, effectively steering its
operation and enabling seamless execution of
instructions across a diverse range of applications.

Figure 6: simulation outcome of the Control Unit (CU)

3. TRESILTS AND DISCUSSION
The design journey culminates as the

microprocessor transitions into practical realization
through its implementation on an FPGA platform.

The FPGA, or Field Programmable Gate Array, is
an eminently flexible hardware substrate that
facilitates rapid prototyping and validation of the
designed microprocessor in a real-world context.
The process of FPGA implementation entails a
series of intricate steps aimed at translating the
synthesized Register Transfer Level (RTL) design
into a tangible, executable form on the target FPGA
architecture. This endeavor encompasses
optimizing performance, area utilization, and power
efficiency, ensuring that the resultant
implementation aligns seamlessly with the intended
design objectives.

3.1 Mapping to FPGA Architecture
At the outset of FPGA implementation, the
synthesized RTL design undergoes a transformative
process wherein it is mapped to the intricate
architecture of the target FPGA. This entails
allocating logic elements, routing resources, and
memory blocks within the FPGA to accommodate
the functional units and interconnections specified
by the design. The mapping process is guided by
resource availability, placement constraints, and
routing feasibility, aiming to optimize the
utilization of FPGA resources while adhering to
design constraints.
3.2 Optimization for Performance and Area

Utilization
Optimization lies at the heart of FPGA
implementation, encompassing endeavors to
enhance performance and area utilization.
Techniques such as logic restructuring, pipelining,
and parallelization are employed to maximize the
throughput and minimize the latency of the
microprocessor design. Concurrently, efforts are
directed towards efficiently utilizing the available
FPGA resources, striking a delicate balance
between functionality and resource constraints.
Through meticulous optimization, designers strive
to extract the optimal performance from the FPGA-
based implementation while economizing on
hardware resources.

3.3 Power Efficiency Considerations
Power efficiency is critical in FPGA
implementation, particularly in embedded systems
where energy consumption is paramount.
Techniques such as clock gating, power gating, and
voltage scaling are employed to mitigate power
dissipation and enhance energy efficiency. By
dynamically controlling the power consumption of
different functional units within the
microprocessor, designers seek to strike a judicious
balance between performance and power

 Journal of Theoretical and Applied Information Technology
15th July 2025. Vol.103. No.13

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4702

consumption, extending the battery life of battery-
powered devices and minimizing environmental
impact.

3.4 Place-and-Route Algorithms
Central to FPGA implementation is the utilization
of place-and-route algorithms, which orchestrate
the allocation of physical resources and
establishment of interconnections within the FPGA
fabric. Place-and-route algorithms aim to optimize
the placement of logic elements and routing paths
to minimize signal propagation delays, routing
congestion, and timing violations. These algorithms
consider user-defined constraints, including timing
constraints, placement directives, and routing
preferences, to generate an optimized layout that
meets the specified design objectives.

3.5 Testing and Validation
Following FPGA implementation, the
microprocessor undergoes rigorous testing and
validation to ascertain its correct operation and
adherence to design specifications. Testbenches,
comprising comprehensive sets of test cases and
stimuli, are executed to verify the functionality of
individual components and the overall system.
Diagnostic programs may be employed to identify
and rectify any discrepancies or anomalies
encountered during testing. Moreover, performance
analysis tools measure key performance metrics
such as throughput, latency, and resource utilization
under varying operating conditions.

3.6 Performance Analysis:
Performance analysis is a critical aspect of FPGA-
based implementation, enabling designers to
evaluate the efficacy and efficiency of the
microprocessor design in real-world scenarios.
Through performance profiling and benchmarking,
designers gain insights into the microprocessor's
computational capabilities, memory bandwidth, and
responsiveness across different workloads. By
analyzing performance metrics such as throughput,
latency, and resource utilization, designers can
identify potential bottlenecks, optimize system
parameters, and refine the microprocessor design to
effectively meet the demands of target applications.
Having traversed the intricate terrain of FPGA
implementation, the 8-bit soft processor emerges as
a tangible entity, poised to unleash its
computational prowess within the laboratory
setting. The subsequent sections delineate the logic
resource requirements and utilization of FPGA
resources, providing a comprehensive overview of

the microprocessor's implementation on the Virtex-
5 FPGA platform.

| Overview of HDL Synthesis | Device Usage
In brief
 |
| Total Subtractors and Adders: 2
| Number of Slices: 76 out of 3584
| 16-bit adder: 1
| Total Registers: 10
| 8-bit addsub: 1
| Number of Slice Flip Flops: 56
| 9-bit addsub: 1
| Total Latches: 20
| Number of 4 input LUTs: 126
| Total Comparators: 2
| Number of bonded IOBs: 54 out of
| 141 (38.29%) |
| Total Multiplexers: 24 |
| Number of GCLKs: 1 out of 8 (12%)
| Total Decoders: 1
| Total Tristates: 14
| Total XORs: 1

These statistics provide a comprehensive overview
of the resource utilization of the FPGA, showcasing
the efficient allocation and utilization of various
logic elements to accommodate the functionality of
the soft processor design. A major distinction of
this work is its complete design and implementation
pipeline, which spans from VHDL-based hardware
description and functional simulation using
ModelSim to FPGA synthesis and hands-on
validation on a VIRTEX-5 platform. In contrast to
studies like Amiri et al. [10], which emphasize
dataflow architectures tailored for computationally
intensive applications, this research focuses on
developing a streamlined and predictable processor
architecture optimized for embedded control
systems, emphasizing minimal latency, efficient
resource usage, and architectural simplicity rather
than maximizing processing performance.

4. CONCLUSIONS

This paper presents a comprehensive overview
of designing and implemention of an eight-bit CPU
tailored for control applications. The design process
encompasses various stages, including system
considerations, register array design, design of the
control unit, comparator and shifter, ALU
functionality and implementation, FPGA
implementation results, and concluding remarks.
This research is based on the premise that current
soft-core processors, which are primarily designed
for general-purpose or high-performance tasks, fall

 Journal of Theoretical and Applied Information Technology
15th July 2025. Vol.103. No.13

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4703

short in meeting the unique performance and
efficiency requirements of control systems with low
to moderate complexity. Through meticulous
design and optimization, the proposed soft-core
processor demonstrates efficient performance and
versatility in handling control applications with
simple to moderate complexity. The results from
ModelSim simulations, along with the successful
implementation on FPGA hardware, confirm the
processor's capability to fulfill the requirements of
control systems that demand predictable behavior,
low response time, and efficient use of hardware
resources. In contrast to earlier studies centered on
high-performance or data-intensive processing, this
work demonstrates that a streamlined, application-
specific design approach can deliver effective and
adaptable solutions for real-time control scenarios.
VHDL and FPGA platforms enable rapid
prototyping and testing, facilitating the
development of custom microprocessor solutions
for various applications. Overall, the proposed
design does not incorporate advanced
functionalities like pipelining, interrupt
management, or built-in peripheral controllers,
which may be essential for handling more complex
or time-sensitive applications. This work advances
soft-core processor design methodologies and their
practical implementation in real-world applications.

ACKNOWLEDGMENTS
This study was supported by Baekseok University
Research Fund.

REFERENCES
[1] Sharif S, Simbule M, Cabbil T, Kondamadugula

S, Xiao Z, and Scott A., “Optimization and
Implementation of a 32-Bit MIPS-Based
Softcore Processor to Run Statistical
Algorithms on FPGA”, In: Proceedings of
ICIPCN 2024. Springer; 2024. pp. 371–80.
doi:10.1007/978-981-97-5810-4_32

[2] Ribeiro V. M., Santos N. S. M., Kapisch E. B.,
Silva L. R. M., and Duque C. A., “Real-Time
Implementation of Stockwell Transform in
FPGA Platform Using Soft-core Processor
Applied to Novelty Detection in Power Quality
Signals”, J Control Autom Electr Syst., 2024,
Vol. 35, No. 3, pp. 509–521.
doi:10.1007/s40313-024-01083-

[3] Denisov, L., Galimberti, A., Cattaneo, D.,
Agosta, G., and Zoni, D., “Design-time
methodology for optimizing mixed-precision
CPU architectures on FPGA”, J Syst Archit.
2024, Vol. 155, p. 103257.

doi:10.1016/j.sysarc.2024.103257.
[4] Sriraman, H., & Ravikumar, A., “Customized

FPGA Design and Analysis of Soft-Core
Processor for DNN”, Procedia Computer
Science, 2023, Vol. 218, pp. 469-478.
doi:10.1016/j.procs.2023.01.029.

[5] Wegrzyn M., Jamro E., Dąbrowska-Boruch A.,
and Wiatr K., “Optimal Reduction in the
Number of Test Vectors for Soft Processor
Cores Implemented in FPGA”, Electronics.
2021, Vol. 10, No. 20, 2505.
doi:10.3390/electronics10202505

[6] Maheswari R., Pattabiraman V., and Sharmila P.,
“Reconfigurable FPGA-Based Soft-Core
Processor for SIMD Applications”, Asian J
Pharm Clin Res., 2017, Vol. 10, No. 1, pp. 217–
222.
doi:10.22159/ajpcr.2017.v10s1.19632

[7] Salim, M., et al., “Assembler design techniques
for a reconfigurable soft-core processor,”
Journal of Theoretical & Applied Information
Technology, 2014, Vol. 64, No. 2., pp. 461-469.

[8] Brown, S., & Rose, J., “FPGA and CPLD
Architectures: A Tutorial”, IEEE Design & Test
of Computers, 1996, pp. 42-57.
 doi:10.1109/54.500200

[9] Jayakrishnan, V., & Parikh, C., “Embedded
Processors on FPGA: Soft vs Hard”, In ASEE
North Central Section Conference, 2019, pp. 1-
9.

[10] Amiri, M., Siddiqui, F. M., Kelly, C., Woods,
R., Rafferty, K., & Bardak, B., “FPGA-Based
Soft-Core Processors for Image Processing
Applications”, Journal of Signal Processing
System, 87, 2017, pp. 139-156.

 doi:10.1007/s11265-016-1185-7
[11] Tong, J. G., Anderson, I. D. L., & Khalid, M. A.

S., “Soft-Core Processors for Embedded
Systems”, In 18th International Conference on
Microelectronics (ICM), 2006, pp. 170-173.
doi:10.1109/ICM.2006.373294

[12] Minev, P. B., & Kukenska, V. S.,
“Implementation of soft-core processors in
FPGAs”, In UNITECH'07 International
Sceintific Conference. 2007, November.

[13] Ball, J. “Designing soft-core processors for
FPGAs”, In Processor Design: System-on-Chip
Computing for ASICs and FPGAs, Dordrecht:
Springer Netherlands, 2007, pp. 229-256.

[14] Yiannacouras, P., Rose, J., & Steffan, J. G.,
“The microarchitecture of FPGA-based soft

 Journal of Theoretical and Applied Information Technology
15th July 2025. Vol.103. No.13

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4704

processors”, In Proceedings of the 2005
international conference on Compilers,
architectures and synthesis for embedded
systems, 2005, September, pp. 202-212.
doi:10.1145/1086297.1086325

[15] Makni, M., Baklouti, M., Niar, S., Jmal, M. W.,
& Abid, M., “A comparison and performance
evaluation of FPGA soft-cores for embedded
multi-core systems”, 11th International Design
& Test Symposium (IDT), 2016, December, pp.
154-159.
doi:10.1109/IDT.2016.7843032

[16] Elkateeb, A., “A Processor Design Course
Project: Creating Soft-Core MIPS Processor
Using Step-by-Step Components' Integration
Approach”, International Journal of
Information and Education Technology, Vol. 1,
No. 5, 2011, pp. 432-440.

[17] Mano, M. M., “Digital Logic and Computer
Design”, Prentice Hall of India, 2002.

[18] Leach, D. P., & Malvino, A. P., “Digital
Principles and Applications (5th ed.)”, Tata
McGraw-Hill, 2002.

[19] Hamacher, V. C., Vranesic, Z. G., Zaky, S. G.,
Vransic, Z., & Zakay, S., “Computer
organization”, New York: McGraw-Hill, 1984,
pp. 367-390.

