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ABSTRACT 
 
CPUs with soft cores represent a category of microprocessors whose architecture and functionality can be 
delineated entirely utilizing languages used to describe hardware, such as Verilog or VHDL. These 
processors offer a high degree of customization tailored to specific applications and are deployable on 
platforms for reconfigurable hardware, including Field Programmable Gate Arrays (FPGAs). After the 
design is successfully implemented, the potential exists for developing Application Specific Integrated 
Circuits (ASICs) for large-scale production. This study entails designing, simulating, and validating an 8-
bit processor utilizing VHDL. The envisaged processors are intended for application in control systems 
characterized by modest to moderate complexity. Moreover, the 8-bit soft processor design lays the 
groundwork for potential ASIC development. The simulation outcomes, facilitated by a commercial 
software (ModelSim), are comprehensively illustrated via timing diagrams. Additionally, the practical 
outcomes of this design's execution on the VIRTEX-5 are meticulously presented through laboratory 
experimentation. The primary contribution of this study is the development of a compact, application-
focused soft-core processor architecture that emphasizes predictable execution, minimal response time, and 
efficient use of hardware resources—features that are crucial for embedded control system applications. 
The simulation and practical implementation results offer insights into the performance and feasibility of 
deploying such processors in real-world scenarios, paving the way for potential ASIC development and 
broader industrial application. 

Keywords: Soft-core processor, FPGA, VHDL, Verilog, Hardware description language, ASIC, 
customization, Reconfigurable hardware, Control applications, Simulation 
software(ModelSim), implementation, Xilinx Spartan-3, Laboratory experimentation 

 
 
1. INTRODUCTION  
 

The development of soft-core processors can be 
traced back to the early 1990s when researchers 
began exploring synthesizable processor cores for 
FPGA platforms. Please complete the modifications 
and submit the updated document as soon as 
possible forms. Initially conceived as educational 
tools, soft-core processors have evolved 
significantly to support complex introduction sets, 
multithreading, and hardware accelerators. The 
need for specialized processing units tailored to 
specific requirements has become increasingly 
apparent in control applications. Eight-bit 
processors remain highly relevant in embedded 
systems and industrial control applications due to 
their simplicity, low power consumption, and cost-
effectiveness. While general-purpose processors 
can handle various tasks, they may offer a lower 
level of performance or customization needed for 

control-oriented applications. As a result, there has 
been a growing interest in developing dedicated 
CPUs optimized for control tasks, leveraging the 
flexibility and configurability offered by soft-core 
processors on FPGA platforms. The utilization of 
soft-core Central Processing Units (CPUs) as 
Intellectual Property (IP) cores compatible with 
Field Programmable Gate Array (FPGA) devices 
[1-8] has garnered significant attention. These 
processors offer various advantages, including 
accelerated time to market, seamless integration 
with FPGA fabric, reduced obsolescence, and 
customizable performance and pricing [9]. Modern 
FPGA architectures integrate hard-core and soft-
core processing units onto a single chip, providing 
extensive configurability for application developers 
[10]. Researchers have explored applying a 
dataflow-based design technique to develop soft-
core processors for FPGA platforms, mainly 
focusing on picture manipulation applications [10-
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15]. Tong et al. compared offerings from open-
source and commercial manufacturers in CPU 
processor design for embedded systems 
applications [11]. Intellectual Property (IP) cores, 
also known as soft-core processors, find utility in 
Field Programmable Gate Array (FPGA) systems 
[8]. These processors offer benefits such as 
accelerated time to market, seamless integration 
with FPGA fabric, reduced obsolescence, and 
customizable performance and pricing. Modern 
FPGA designs consolidate hard-core and soft-core 
processors onto a single chip, providing extensive 
configurability for application developers [9]. Amiri 
et al. utilized a dataflow-based design technique to 
develop CPUs on FPGA devices for image 
processing applications [10]. Tong et al. conducted 
a survey comparing soft-core processor offerings 
from open-source and commercial suppliers for 
embedded applications [11]. Moreover, a detailed 
implementation experience with the Xilinx 
Integrated Software Environment for a soft-core 
processor is documented in [16]. The research 
delves into designing an eight-bit CPU tailored for 
control applications characterized by simple to 
moderate complexity. The processor's VHDL code 
is developed entirely using the Xilinx ISE tool and 
subjected to simulation using the 
software(ModelSim). The resulting simulation 
outcomes are meticulously presented and analyzed. 
Additionally, a summary of digital logic 
requirements and resource utilization for the target 
FPGA IC is provided, advocating the efficient 
implementation of the proposed soft-core processor 
for control applications. The design of an eight-bit 
CPU tailored for control applications involves 
several key considerations, including system 
architecture, instruction set design, memory 
hierarchy, and interface compatibility. This section 
delves into the design methodologies employed in 
developing the proposed soft-core processor, 
highlighting the design choices, optimization 
strategies, and trade-offs made throughout the 
design process[17-19]. Although extensive research 
has been conducted on soft-core processor design 
for image processing [10–15] and general-purpose 
embedded systems [11], there is a notable lack of 
focus in existing literature on developing soft-core 
CPUs specifically optimized for control 
applications with limited complexity and stringent 
efficiency demands. Much of the current work 
prioritizes performance improvements for data-
heavy applications, often overlooking the unique 
requirements of control systems, which rely heavily 
on simplified architectures, predictable execution, 
and minimal hardware resource usage. One of the 

fundamental design considerations is selecting the 
instruction set architecture (ISA) tailored to the 
requirements of control applications. The ISA 
defines the set of instructions the CPU supports and 
determines its capabilities and performance 
characteristics. In the context of control 
applications, the ISA should prioritize efficiency, 
simplicity, and determinism, enabling the CPU to 
execute control algorithms with minimal overhead. 
Another critical aspect of CPU design is the 
organization of the register array, which serves as 
the primary storage for intermediate data and 
operands during computation. The register file 
architecture significantly impacts the CPU's 
performance and efficiency, including the number 
of registers, their width, and the addressing modes 
supported. In control applications, where real-time 
responsiveness is crucial, optimizing the register 
file design to minimize access latency and 
maximize throughput is essential. 

Furthermore, the design of the control unit, which 
is responsible for sequencing the execution of 
instructions and coordinating data movement within 
the CPU, plays a vital role in determining the 
overall performance and functionality of the 
processor. The control unit design involves defining 
the instruction fetch, decode, execute, and write-
back stages and implementing control logic for 
handling interrupts, exceptions, and other system-
level events. In control applications, where precise 
timing and synchronization are critical, designing a 
robust and efficient control unit is paramount to 
ensuring the reliable operation of the CPU. 
Additionally, the design of specialized functional 
units, such as comparators and shifters, tailored to 
the requirements of control algorithms further 
enhances the CPU's performance and efficiency. 
These units are optimized for specific operations 
commonly used in control applications, such as 
comparison, shifting, and bit manipulation, 
enabling the CPU to execute control algorithms 
with higher throughput and lower latency. 
Moreover, the design and implementation of the 
Arithmetic Logic Unit (ALU), which is responsible 
for performing arithmetic and logical operations, 
are crucial in determining the CPU's computational 
capabilities. In control applications, where 
mathematical operations are prevalent, optimizing 
the ALU design to support a wide range of 
operations with minimal latency and area overhead 
is essential. 
 
1.1 FPGA Implementation 

Once the design of the soft-core CPU is 
finalized, the next step is to implement it on an 
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FPGA platform and evaluate its performance and 
functionality. This section discusses the FPGA 
implementation process, including hardware 
synthesis, place-and-route, timing analysis, and 
simulation and verification techniques used to 
validate the design's correctness and robustness. 
Implementing the soft-core CPU begins with 
synthesizing the hardware description written in 
VHDL or Verilog into a netlist of logical gates and 
interconnections. The synthesis process optimizes 
the design for area, speed, and power consumption, 
translating the CPU's high-level description into a 
low-level representation suitable for FPGA 
implementation. Following synthesis, the netlist is 
mapped onto the FPGA fabric using place-and-
route tools, determining the physical placement of 
logic elements and routing resources on the FPGA 
chip. The place-and-route process aims to minimize 
signal delays and routing congestion while meeting 
timing constraints specified by the design. Once the 
design is mapped onto the FPGA fabric, timing 
analysis ensures that the critical paths meet the 
required timing constraints and that the design 
operates reliably at the target clock frequency. 
Timing closure, achieved through iterative 
optimization and refinement, is essential to 
guarantee the performance and reliability of the 
CPU in real-world applications. In parallel with 
hardware implementation, functional verification is 
conducted using simulation tools to verify the 
correctness and functionality of the CPU design. 
Simulation tests, including unit tests, integration 
tests, and system-level tests, validate the behavior 
of the CPU under different operating conditions and 
input stimuli, ensuring that it operates as expected 
according to the design specifications. Furthermore, 
FPGA-based prototyping allows for rapid iteration 
and testing of the CPU design in a real-world 
environment, enabling designers to validate 
performance, functionality, and compatibility with 
target applications. By leveraging FPGA platforms, 
designers can quickly identify and address design 
issues, refine implementation strategies, and 
optimize the performance of the CPU for specific 
application requirements. 
 
1.2 Performance Evaluation 

Once the soft-core CPU is implemented on the 
FPGA platform, performance evaluation is 
conducted to assess its suitability for control 
applications. This section discusses the performance 
metrics used to evaluate the CPU, including 
throughput, latency, power consumption, resource 
utilization, and benchmarking techniques used to 
compare the CPU against alternative solutions. 

Throughput measures the rate at which the CPU 
executes instructions or processes data, indicating 
its processing capacity and efficiency in handling 
control tasks. Latency quantifies the time taken for 
the CPU to complete a single operation or task, 
reflecting its responsiveness and real-time 
performance in control applications. Power 
consumption is critical in embedded systems, where 
energy efficiency is paramount. By measuring the 
power consumption of the CPU under different 
operating conditions and workloads, designers can 
optimize power usage and extend the battery life of 
battery-powered devices. Resource utilization 
assesses the hardware resources consumed by the 
CPU, including logic elements, memory blocks, and 
routing resources on the FPGA chip. Optimizing 
resource utilization is essential to maximizing the 
scalability and cost-effectiveness of the CPU 
design, particularly in resource-constrained 
embedded systems. Benchmarking involves running 
standardized test programs or algorithms on the 
CPU. The subsequent sections of the paper are 
organized as follows: Methods/Experimental 
outline the system considerations employed in the 
design process. A succinct overview of the register 
array and its simulation is provided. It also 
thoroughly examines the Arithmetic Logic Unit 
(ALU) functionality alongside its implementation. 
Design methodologies for the Comparator and 
Shifter, accompanied by timing simulations, are 
elaborated. The control unit design process is 
elucidated to validate its functionality. The results 
section discusses the FPGA implementation 
outcomes in detail, while the conclusions section 
presents the final remarks. This paper contributes to 
soft-core processor design by introducing a 
meticulously crafted eight-bit processor tailored for 
control applications. Leveraging VHDL and FPGA 
platforms, along with comprehensive simulation 
and implementation results, underscores the 
efficacy and viability of the proposed design. 

 

2. METHODS AND EXPERIMENTAL 

 
2.1 System Architecture 

Sections The system architecture is portrayed in 
Figure 1, illustrating the hierarchical arrangement 
of the microprocessor being developed. At the 
topmost level, the system encompasses two core 
constituents: external memory and the Central 
Processing Unit (CPU). External memory assumes 
a critical role as it acts as a pivotal repository for 
storing both program instructions and data. The 
chosen external memory chip must demonstrate 
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operational speeds compatible with the envisaged 
FPGA-based CPU. Numerous commercially 
available memory chips meet this criterion 
satisfactorily. Within the CPU, several internal 
components play pivotal roles in facilitating 
computation and control. These components 
encompass the register array, Arithmetic Logic Unit 
(ALU), comparator, shifter, and control unit. The 
register array is a collection of storage elements 
capable of temporarily holding data during 
processing operations. The ALU executes 
arithmetic and logical operations on the data stored 
in registers. The comparator enables comparison 
operations, which is essential for decision-making 
processes within the processor. Conversely, the 
shifter facilitates the manipulation of data bits, a 
necessity for various computational tasks. Lastly, 
the control unit governs the overall operation of the 
CPU and orchestrates the execution of instructions. 
Further granularity within the control unit is 
achieved through its subdivision into three distinct 
components: the Instruction Register (IR), 
controller, and Program Counter (PC). The 
Instruction Register (IR) is a temporary storage unit 
that executes the current instruction. The controller 
interprets the instruction fetched from memory and 
issues appropriate control signals to coordinate the 
execution flow. Meanwhile, the Program Counter 
(PC) keeps tabs on the memory address of the 
subsequent instruction to be fetched, thereby 
ensuring the sequential execution of program 
instructions. 

  

 
Figure 1: Hierarchical design of the microprocessor 

This hierarchical arrangement delineates the 
essential components and their interconnections 
within the microprocessor design, laying the 
foundation for subsequent detailed discussions and 
implementations. 
 

2.2 Register Array 
The register array is a critical CPU component 

that provides temporary data storage during 
processing operations. It comprises a collection of 
registers, each capable of holding a fixed number of 
bits. These registers serve various purposes, 
including holding operands for arithmetic and 
logical operations, storing intermediate results, and 
facilitating data movement within the processor. 
The register array facilitates data manipulation and 
computation in the designed microprocessor. By 
providing a set of storage elements directly 
accessible by the CPU, the register array enables 
efficient instruction execution. Moreover, the 
availability of multiple registers allows for parallel 
data processing, thereby enhancing the 
microprocessor's overall throughput. The register 
array balances capacity and speed to ensure optimal 
performance and resource utilization. Careful 
consideration is given to the number of registers, 
their width, and the access latency to meet the 
requirements of the target application. Additionally, 
techniques such as register renaming and pipelining 
may be employed to enhance the efficiency of the 
register array further. The design incorporates an 
array of eight 8-bit registers denoted as R0 through 
R7. These registers serve as temporary storage units 
during program execution. The VHDL model 
representing the register array is depicted in Figure 
2, illustrating a block diagram representation.  

 

 
Figure 2: VHDL representation of a Register Array 

A 3:8 decoder selects one of the eight registers 
for read or write operations [10-12]. The logic 
values at the SEL input determine which register is 
being operated upon. If the RD signal is asserted 
(RD = 1), the content of the selected register is 
loaded onto the data bus. Similarly, if the WR 
signal is asserted (WR = 1), the content present on 
the data bus is written into the selected register. 
Simulation results of the register array, depicted as 
a timing diagram, are obtained using the software, 
(ModelSim XE-III) as shown in Figure 3. During 
the first clock period, register R0 is selected for 
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write and read operations (SL = 000, WR = 1, and 
RD = 1). As illustrated in Figure 3, the input data 
(data in = 11111111) is written into R0, and 
subsequently, the same data is read from R0. R1 is 
exclusively selected for a read operation in the 
subsequent clock period. Since no data is written 
into R1, an undefined value is read. Only a write 
operation is permitted for R0 in the third clock 
period. However, since RD = 0, the output enters a 
high impedance state (indicated by dataout = 
tristate output). The data stored in R0 during the 
third clock period (equal to 11110000) is read 
during the ninth, highlighting that modifying the 
stored data within a specific register without the 
asserted WR control signal is impossible. 
 

 
Figure 3: Simulation Outcome of the Register Array 

 
2.3 ALU Functionality and Implementation 

The Arithmetic Logic Unit (ALU) serves as the 
computational heart of the microprocessor and is 
responsible for performing arithmetic, logical, and 
comparison operations on data operands. It accepts 
input data from the register array, processes them 
according to the operation specified in the 
instruction, and produces the resulting output. The 
ALU supports various arithmetic and logical 
operations, including addition, subtraction, 
multiplication, division, bitwise AND, OR, XOR, 
and shift operations. Depending on the application's 
specific requirements, the ALU may incorporate 
specialized hardware to accelerate certain 
operations or support custom instructions. 

In implementing the ALU, careful 
attention is paid to optimizing performance, area 
utilization, and power efficiency. Various design 
techniques, such as parallelism, pipelining, and 
hardware optimization, achieve the desired balance 
between these factors. Moreover, the ALU is 
thoroughly verified through simulation and 
functional testing to ensure correct operation under 
all scenarios. The ALU (Arithmetic Logic Unit) 
comprises eight distinct operations, with the first 
four categorized as arithmetic and the subsequent 
four as logical. Given the selection of eight 
operations, three bits are assigned to signify them. 
Table 1 provides a comprehensive overview of the 

ALU operations alongside their corresponding bit 
assignments: 
 

Table 1: Bit Assignments for ALU Operations. 

Sl. No  Arithmetic Logic Unit Operations | Task Allocations (SEL) 
1 Add 0 0 0 
2 Sub 0 0 1 
3 Inc 0 1 0 
4 Dec 0 1 1 
5 AND 1 0 0 
6 OR 1 0 1 
7 XOR 1 1 0 
8 NOT 1 1 1 

 
 
The first column enumerates the serial number of 
each operation within the ALU, while the second 
column denotes the specific operation. The third 
column illustrates the corresponding bit 
assignments, denoted as SEL(2), SEL(1), and 
SEL(0). For instance, for addition, the bit 
assignments are 0 0 0, whereas for subtraction, they 
are 0 0 1.The Arithmetic Logic Unit comprises two 
8-bit registers, A and B, at its input. Both registers 
are utilized for operations necessitating two 
operands, whereas only register A is employed for 
single-operand operations. The outcome of an 
operation is conveyed to another 8-bit register, C. 
Additionally, the ALU incorporates three flags—
Carry (CY), Zero (ZF), and Sign (SF)—to indicate 
the data state resulting from an arithmetic logic 
operation. When the ALU is not selected for 
operation, it remains in a high-impedance 
state.Simulation results of the ALU, presented in 
the form of a timing diagram (Figure 4), 
comprehensively depict all eight operations with 
typical data input alongside their corresponding 
output. Table 2 elucidates the simulation results in 
further detail. 
 

Table 2: Simulation Results in Further Detail. 

S
n 

Arithmetic 
Logic Unit 

E
N SEL 

In Output 
A B C CY ZF SF 

1 Add 1 0 0 0 F0 11 01 1 0 0 
2 Sub 1 0 0 1 40 28 18 0 0 0 
3 Inc 1 0 1 0 10 67 11 0 0 0 
4 Dec 1 0 1 1 F0 40 FF 0 0 1 
5 ANDing 1 1 0 0 10 0F 00 0 1 0 
6 ORing 1 1 0 1 20 0F FF 0 1 1 
7 X-OR 1 1 1 0 F3 28 FB 1 0 1 
8 Inverting 1 1 1 1 FF 03 00 0 1 0 
9 - 0 z zz zz zz z z z 
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Figure 4: Arithmetic Logic Unit (ALU) Simulation 

Outcome. 
 
2.4 Comparator and Shifter Design 

The comparator and shifter are indispensable 
components within the microprocessor, playing 
pivotal roles in comparing and manipulating data 
bits. These functionalities facilitate conditional 
branching, decision-making, and various 
computational tasks within the processor 
architecture. In the ensuing discourse, we embark 
on a comprehensive exploration of the design and 
implementation of these crucial components, with a 
keen focus on efficiency, speed, accuracy, and 
robustness. 

 
2.4.1 Comparator Design and Functionality 
The comparator circuit forms the cornerstone of the 
microprocessor's decision-making capabilities, 
enabling the comparison of two input values and 
the generation of output signals indicative of the 
comparison result. Based on the comparison 
outcome, the comparator evaluates the relative 
magnitudes of the provided numbers and produces 
output signals, such as Carry Flag (CF) and Zero 
Flag (ZF). These flags are pivotal in conditional 
branching and program execution flow control 
within the processor. 
 
2.4.2 Comparator Operation 
The operation of the comparator revolves around 
analyzing two input values, denoted as A and B, 
and determining their relationship. Table 3 
elucidates the correspondence between the input 
values and the resultant states of the CF and ZF 
flags. It is noteworthy that the compare operation 
does not alter the contents of the source registers, 
ensuring data integrity during comparison 
operations. Moreover, the outputs CF and ZF 
maintain a high-impedance state when the 
comparator is not actively selected, mitigating 
unintended effects on the system. 
 
 
 

2.4.3 Simulation Results and Analysis 
Figure 5 provides insights into the simulation 
results of the comparator circuit, offering a glimpse 
into its operational characteristics under varying 
input scenarios. During the initial three operations, 
the enable input (EN) remains asserted (high), 
while it assumes a de-asserted state (low) during 
the fourth operation. Consequently, the outputs CF 
and ZF remain in a high-impedance state, 
underscoring the passive behavior of the 
comparator when not actively engaged. Notably, 
specific input combinations lead to distinct flag 
configurations, reflecting the outcome of the 
comparison operation. For instance, when A equals 
10H, and B equals 00H, CF and ZF assume a 
logical low state (0), indicating equality between 
the input values. Conversely, in scenarios where A 
and B are both FFH, CF assumes a low state (0). At 
the same time, ZF is asserted (high), signifying A 
being more significant than B. Lastly, when A 
equals 10H and B equals 3FH, CF is asserted 
(high), and ZF assumes a low state (0), denoting A 
being less than B. 
 
2.4.4 Shifter Design and Functionality 
Complementing the comparator, the shifter plays a 
pivotal role in facilitating the manipulation and 
reorganization of data bits within the 
microprocessor. Through the shifter's capabilities, 
the microprocessor can execute various operations, 
including arithmetic shifts, logical shifts, and 
rotations, essential for multiplication, division, and 
data formatting. 
 
2.4.5 Shifter Operation 
The shifter operates by shifting the bits of a given 
data word left or right within a register or between 
registers, as dictated by the specific instruction 
being executed. This operation enables various data 
manipulation tasks, including shifting bits into or 
out of position, rotating bits cyclically, and filling 
vacated bit positions with designated values. The 
shifter's versatility and flexibility empower the 
microprocessor to execute complex computational 
tasks precisely and efficiently. 
 
2.4.6 Hardware Optimizations 
Various hardware optimizations, including parallel 
comparison and bit-level shifting techniques, 
underpin efforts to enhance the shifter's efficiency 
and performance. By exploiting parallelism in the 
shifter's design, multiple bits can be shifted 
simultaneously, minimizing latency and 
maximizing throughput. Additionally, bit-level 
shifting optimizations streamline the data 
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manipulation process, ensuring rapid and efficient 
execution of shift operations. 
 
2.4.7 Comprehensive Testing and Validation 
The rigorous testing and validation regimen to 
ensure correct operation across all possible input 
scenarios are central to the comparator and shifter's 
design and implementation. Testbenches, 
comprising diverse test cases and stimuli sets, are 
meticulously crafted to validate the functionality of 
individual components and the overall system. 
Comprehensive testing encompasses functional 
verification, performance analysis, and corner-case 
testing to uncover potential anomalies or 
discrepancies. 
 
2.4.8 Functional Verification 
Functional verification encompasses tests for the 
comparator and shifter's correct operation under 
various input conditions. Test cases are devised to 
evaluate edge cases, boundary conditions, and 
exceptional scenarios, ensuring that the components 
behave as expected across the entire spectrum of 
possible inputs. Through exhaustive functional 
verification, designers gain confidence in the 
reliability and accuracy of the comparator and 
shifter implementations. 
 
2.4.9 Performance Analysis 
Performance analysis delves into assessing the 
efficiency, speed, and resource utilization of the 
comparator and shifter designs under different 
operating conditions. Key performance metrics, 
including throughput, latency, and resource 
utilization, are quantified and analyzed to identify 
potential bottlenecks and areas for optimization. By 
scrutinizing performance metrics, designers can 
iteratively refine the designs to achieve optimal 
efficiency and throughput while minimizing 
resource overhead. Essentially, the comparator and 
shifter are linchpins of the microprocessor's 
functionality, embodying efficient data comparison 
and manipulation principles. These components 
emerge as stalwarts of computational efficiency 
through meticulous design, optimization, and 
validation efforts, empowering the microprocessor 
to execute various tasks with precision and 
reliability. 
 

 
Figure 5a): simulation outcomes of the Comparator 

 
Figure 5b): simulation outcomes of the Shifter 

Figure 5 a) and b) illustrate the simulation 
outcomes of the Comparator and the Shifter, 
respectively. 
 
Table 3: Comparison Results of the Comparator Circuit.  

A B CF ZF 
10H 00H 0 0 
FFH FFH 0 1 
20H 2FH 1 0 

 
The shifter circuit within the CPU is tasked with 
altering the contents of register A by shifting or 
rotating them by one-bit position to the left or right. 
Subsequently, the resulting output is directed to 
register C, an 8-bit register. The shifter is designed 
to accommodate four distinct operations, as 
outlined in Table 4. Additionally, Table 4 
delineates the corresponding actions undertaken by 
the shifter for each operation. 
 

Table 4: Bit assignments for shifter operations. 

Sl. 
No 

Shift 
Operation SL Shifter Action 

1  left 0 0 A(0) → 0; A(7:1) → A'(6:0) 
2  right 0 1 0 → A(7); A'(7:1)→A(6:0) 

3  Left_R 
1 0 

CF ← A'(7); A(0) ← A'(7); 
A(7:1) ← A'(6:0) 

4 Right_R 
1 1 

A'(0) → A(7) ; A'(0) → CF; 
A'(7:1)→ A(6:0) 

Note: A' and A stand for register A's contents 
before and after the operation, respectively. 
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Table 5 interprets the shifter's simulation results, 
shown in Figure 6. The four procedures are tested 
using standard data inputs, and the appropriate 
outputs are shown. It is crucial to remember that 
when the shifter is not selected (enable= 0), it 
enters a high-impedance state. 
 

Table 5: Interpretation of Shifter Simulation Results.  

Sl. No Shift 
Operation SL In A Op C CF 

1 left 00 10101011 01010101 - 
2 right 01 11110001 11111000 - 
3 left-rotate 10 11010101 10101011 0 
4 right rotate 11 11111110 01111111 1 

 
These results offer insights into the functionality 
and behavior of the shifter circuit, showcasing its 
ability to perform shifting and rotating operations 
on the input data stored in register A while 
producing the corresponding output in register C 
along with the state of the Carry Flag (CF). 
 
2.5 Control Unit Design and Functionality 
 

The control unit represents the nucleus of the 
microprocessor, orchestrating the execution of 
instructions and regulating the data flow within the 
system. Its primary function entails deciphering the 
instructions retrieved from memory, generating 
control signals to synchronize the operation of other 
components, and ensuring the accurate sequencing 
of instruction execution. 
Masticating the control unit's design requires 
meticulous attention to instruction decoding, 
adherence to timing constraints, and generating 
requisite control signals. Finite State Machine 
(FSM) design methodologies emerge as pivotal 
tools for modeling the intricate control logic, 
affording precise command over the 
microprocessor's behavior. Furthermore, the design 
ethos emphasizes the creation of a control unit 
characterized by flexibility and extensibility, 
thereby facilitating the seamless integration of new 
instructions or modifications to existing ones. The 
control unit's validation process entails rigorous 
simulation and verification exercises to ascertain its 
functionality and correctness comprehensively. 
Testbenches are meticulously crafted to simulate 
diverse instruction sequences and edge cases, 
ensuring the control unit operates reliably under all 
conceivable conditions. Additionally, exhaustive 
timing analysis is conducted to verify that the 
microprocessor aligns with the stipulated 
performance specifications, assuring optimal 
operational efficiency. Let us delve deeper into 

each aspect of the control unit design and 
validation: 
 
2.5.1 Instruction Decoding: 
Instruction decoding constitutes a pivotal aspect of 
the control unit's functionality. It involves parsing 
the fetched instructions and discerning their 
intended operations. Various decoding techniques 
are employed, ranging from simple lookup tables to 
more sophisticated FSM-based approaches. The 
goal is to translate each instruction into a series of 
control signals that govern the behavior of the 
microprocessor's functional units. 
 
2.5.2 Timing Constraints: 
Adherence to timing constraints is paramount to 
ensuring the microprocessor's reliable operation. 
Timing analysis is conducted to ascertain that 
critical paths within the control unit and associated 
components meet the specified timing 
requirements. This involves evaluating signal 
propagation delays, setup and hold times, and clock 
skew across the system. By meticulously 
optimizing timing parameters, the design can 
achieve the desired performance metrics while 
mitigating the risk of timing violations. 
 
2.5.3 Control Signal Generation 
The generation of control signals is central to the 
control unit's role in coordinating the operation of 
other components within the microprocessor. 
Different control signals are activated depending on 
the instruction to enable specific functions within 
the ALU, register array, memory interface, and 
other units. The control signal generation logic 
must be robust, responsive, and dynamically 
adapted to changing operational requirements. 
 
2.5.4 Finite State Machine (FSM) Design 
Finite State Machine (FSM) design techniques are 
widely employed in modeling the microprocessor's 
control logic. FSMs offer a systematic framework 
for representing the control unit's sequential 
behavior, delineating distinct states and transitions 
based on input conditions and internal state 
variables. By leveraging FSMs, designers can 
achieve granular control over the microprocessor's 
operation while maintaining modularity and 
scalability in the design. 
 
2.5.5 Flexibility and Extensibility 
The control unit's design prioritizes flexibility and 
extensibility, allowing for seamless integration of 
new instructions or modifications to existing ones. 
This involves modularly designing the control unit 
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architecture with well-defined interfaces facilitating 
easy expansion and customization. Additionally, 
provisions are made to accommodate enhancements 
or updates without necessitating extensive redesign 
or reconfiguration of the control unit. 
 
2.5.6 Simulation and Verification 
Simulation and verification serve as indispensable 
phases in validating the functionality and 
correctness of the control unit design. A 
comprehensive suite of testbenches is developed to 
simulate various instruction sequences, corner 
cases, and error conditions. Simulation results are 
meticulously analyzed to ensure the control unit 
behaves as expected under diverse scenarios. 
Moreover, formal verification techniques may be 
employed to rigorously verify the correctness of the 
control unit's operation, providing mathematical 
certainty of its functionality. 
 
2.5.7 Timing Analysis 
Timing analysis is conducted to verify that the 
microprocessor meets the required performance 
specifications regarding clock frequency, 
throughput, and latency. This involves analyzing 
critical paths within the control unit and associated 
components to identify potential timing bottlenecks 
and optimize timing parameters accordingly. By 
meticulously scrutinizing timing margins and 
addressing any timing violations, designers can 
ensure that the microprocessor operates reliably 
within its specified performance envelope. Through 
a meticulous synthesis of these design principles 
and validation methodologies, the control unit 
emerges as a robust and reliable component within 
the microprocessor, effectively steering its 
operation and enabling seamless execution of 
instructions across a diverse range of applications. 
 
 

 
Figure 6: simulation outcome of the Control Unit (CU) 

3. TRESILTS AND DISCUSSION 
The design journey culminates as the 

microprocessor transitions into practical realization 
through its implementation on an FPGA platform. 

The FPGA, or Field Programmable Gate Array, is 
an eminently flexible hardware substrate that 
facilitates rapid prototyping and validation of the 
designed microprocessor in a real-world context. 
The process of FPGA implementation entails a 
series of intricate steps aimed at translating the 
synthesized Register Transfer Level (RTL) design 
into a tangible, executable form on the target FPGA 
architecture. This endeavor encompasses 
optimizing performance, area utilization, and power 
efficiency, ensuring that the resultant 
implementation aligns seamlessly with the intended 
design objectives. 

 
3.1 Mapping to FPGA Architecture 
At the outset of FPGA implementation, the 
synthesized RTL design undergoes a transformative 
process wherein it is mapped to the intricate 
architecture of the target FPGA. This entails 
allocating logic elements, routing resources, and 
memory blocks within the FPGA to accommodate 
the functional units and interconnections specified 
by the design. The mapping process is guided by 
resource availability, placement constraints, and 
routing feasibility, aiming to optimize the 
utilization of FPGA resources while adhering to 
design constraints. 
3.2 Optimization for Performance and Area 

Utilization 
Optimization lies at the heart of FPGA 
implementation, encompassing endeavors to 
enhance performance and area utilization. 
Techniques such as logic restructuring, pipelining, 
and parallelization are employed to maximize the 
throughput and minimize the latency of the 
microprocessor design. Concurrently, efforts are 
directed towards efficiently utilizing the available 
FPGA resources, striking a delicate balance 
between functionality and resource constraints. 
Through meticulous optimization, designers strive 
to extract the optimal performance from the FPGA-
based implementation while economizing on 
hardware resources. 
 
3.3 Power Efficiency Considerations 
Power efficiency is critical in FPGA 
implementation, particularly in embedded systems 
where energy consumption is paramount. 
Techniques such as clock gating, power gating, and 
voltage scaling are employed to mitigate power 
dissipation and enhance energy efficiency. By 
dynamically controlling the power consumption of 
different functional units within the 
microprocessor, designers seek to strike a judicious 
balance between performance and power 
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consumption, extending the battery life of battery-
powered devices and minimizing environmental 
impact. 
 
3.4 Place-and-Route Algorithms 
Central to FPGA implementation is the utilization 
of place-and-route algorithms, which orchestrate 
the allocation of physical resources and 
establishment of interconnections within the FPGA 
fabric. Place-and-route algorithms aim to optimize 
the placement of logic elements and routing paths 
to minimize signal propagation delays, routing 
congestion, and timing violations. These algorithms 
consider user-defined constraints, including timing 
constraints, placement directives, and routing 
preferences, to generate an optimized layout that 
meets the specified design objectives. 
 
3.5 Testing and Validation 
Following FPGA implementation, the 
microprocessor undergoes rigorous testing and 
validation to ascertain its correct operation and 
adherence to design specifications. Testbenches, 
comprising comprehensive sets of test cases and 
stimuli, are executed to verify the functionality of 
individual components and the overall system. 
Diagnostic programs may be employed to identify 
and rectify any discrepancies or anomalies 
encountered during testing. Moreover, performance 
analysis tools measure key performance metrics 
such as throughput, latency, and resource utilization 
under varying operating conditions. 
 
3.6 Performance Analysis: 
Performance analysis is a critical aspect of FPGA-
based implementation, enabling designers to 
evaluate the efficacy and efficiency of the 
microprocessor design in real-world scenarios. 
Through performance profiling and benchmarking, 
designers gain insights into the microprocessor's 
computational capabilities, memory bandwidth, and 
responsiveness across different workloads. By 
analyzing performance metrics such as throughput, 
latency, and resource utilization, designers can 
identify potential bottlenecks, optimize system 
parameters, and refine the microprocessor design to 
effectively meet the demands of target applications. 
Having traversed the intricate terrain of FPGA 
implementation, the 8-bit soft processor emerges as 
a tangible entity, poised to unleash its 
computational prowess within the laboratory 
setting. The subsequent sections delineate the logic 
resource requirements and utilization of FPGA 
resources, providing a comprehensive overview of 

the microprocessor's implementation on the Virtex-
5 FPGA platform. 
 
| Overview of HDL Synthesis | Device Usage  
In brief  
 | 
| Total Subtractors and Adders: 2  
| Number of Slices: 76 out of 3584 
| 16-bit adder: 1  
| Total Registers: 10  
| 8-bit addsub: 1  
| Number of Slice Flip Flops: 56 
| 9-bit addsub: 1  
| Total Latches: 20  
| Number of 4 input LUTs: 126  
| Total Comparators: 2  
| Number of bonded IOBs: 54 out of  
| 141 (38.29%) | 
| Total Multiplexers: 24 | 
| Number of GCLKs: 1 out of 8 (12%) 
| Total Decoders: 1  
|  Total Tristates: 14  
| Total XORs: 1  
 
These statistics provide a comprehensive overview 
of the resource utilization of the FPGA, showcasing 
the efficient allocation and utilization of various 
logic elements to accommodate the functionality of 
the soft processor design. A major distinction of 
this work is its complete design and implementation 
pipeline, which spans from VHDL-based hardware 
description and functional simulation using 
ModelSim to FPGA synthesis and hands-on 
validation on a VIRTEX-5 platform. In contrast to 
studies like Amiri et al. [10], which emphasize 
dataflow architectures tailored for computationally 
intensive applications, this research focuses on 
developing a streamlined and predictable processor 
architecture optimized for embedded control 
systems, emphasizing minimal latency, efficient 
resource usage, and architectural simplicity rather 
than maximizing processing performance. 
 
4. CONCLUSIONS 

This paper presents a comprehensive overview 
of designing and implemention of an eight-bit CPU 
tailored for control applications. The design process 
encompasses various stages, including system 
considerations, register array design,  design of the 
control unit, comparator and shifter, ALU 
functionality and implementation, FPGA 
implementation results, and concluding remarks. 
This research is based on the premise that current 
soft-core processors, which are primarily designed 
for general-purpose or high-performance tasks, fall 
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short in meeting the unique performance and 
efficiency requirements of control systems with low 
to moderate complexity. Through meticulous 
design and optimization, the proposed soft-core 
processor demonstrates efficient performance and 
versatility in handling control applications with 
simple to moderate complexity. The results from 
ModelSim simulations, along with the successful 
implementation on FPGA hardware, confirm the 
processor's capability to fulfill the requirements of 
control systems that demand predictable behavior, 
low response time, and efficient use of hardware 
resources. In contrast to earlier studies centered on 
high-performance or data-intensive processing, this 
work demonstrates that a streamlined, application-
specific design approach can deliver effective and 
adaptable solutions for real-time control scenarios. 
VHDL and FPGA platforms enable rapid 
prototyping and testing, facilitating the 
development of custom microprocessor solutions 
for various applications. Overall, the proposed 
design does not incorporate advanced 
functionalities like pipelining, interrupt 
management, or built-in peripheral controllers, 
which may be essential for handling more complex 
or time-sensitive applications. This work advances 
soft-core processor design methodologies and their 
practical implementation in real-world applications. 
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