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ABSTRACT 
 

The operation of the Networked Control Systems underpins modern-automated industries including cyber-
physical systems, large-scale infrastructure and process applications. However, classical methods of 
Distributed Model Predictive Control and Event-Triggered Distributed Estimation suffers from 
inefficiencies such as communication overhead, poor state estimation, slow adaptation to system variations, 
and short predicting horizons. The methods currently in use fail to capture the spatial and temporal 
dependencies within the networked subsystems, resulting in suboptimal control decisions and excessive 
computational. To address this, the proposed Integrated Model for DMPC and ETDE includes the 
following five enhanced methodologies: (1) Graph Neural Network-Based Predictive Control; (2) 
Attention-driven Event-Triggered Estimation; (3) Transformer-Based Predictive Observer; (4) Meta-
Learning-Based Adaptive Control; and (5) Variational Autoencoder-Based Communication-Efficient 
Control (VAE-CEC). GNN-PC allows for an efficient approach to modeling interdependencies between 
subsystems, thus strengthening decentralized control decisions. AET-E employs attention mechanisms to 
focus on updates from relevant subsystems, therefore preventing unnecessary transmissions. TPO utilizes 
transformers for accurate predictions of long-range states to adopt resilience against data losses. MLAC 
guarantees the required robustness under non-stationary conditions by promoting quick adaptation to 
changing environments through meta-learning. VAE-CEC realizes effective communication by 
compressing high-dimensional state information at a low cost, which does not affect control performance. 
The integrated model reported communication overhead saving of 50%, better control adaptive capacity by 
40%, improvement in accuracy of state prediction by 35%, and control error reduction by 30%.  This 
proves that the proposed work significantly enhances the efficiency and reliability of DMPC and ETDE 
methods, thereby making real-time distributed control technology more scalable, adaptive, and resource 
efficient. 
Keywords: Graph Neural Networks, Event-Triggered Estimation, Distributed Model Predictive Control, 

Transformer-Based Observer, Communication-Efficient Control, Process control.  
 
1. INTRODUCTION  

NCS are at the core of modern cyber-
physical systems, enabling distributed decision-
making in large-scale infrastructures such as smart 
grids, industrial automation, and autonomous 
vehicle networks. The growing complexity of such 
systems has prompted extensive research in DMPC 
[1, 2, 3] and ETDE. Together, these aim to optimize 
system performance while ensuring the 
minimization of communication overhead. 
Nevertheless, the traditional approaches have 

suffered their fair share of challenges due to preset 
communication thresholds, centralized estimation, 
and inadequate representation of inter-subsystem 
dependencies. These drawbacks result in poor 
control decisions at excessive resource costs and 
low adaptability into dynamic environments. 
Traditional DMPC frameworks are generally non-
scalable, being the iterative optimization steps that 
become too computer-intensive to be executed for 
large networks in relation to unreasonable control 
efficiencies. In a similar view, conventional event-
triggered estimation methods work with preset 
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static thresholds [4, 5, 6], resulting in violent 
oscillations of too much data exchange, 
unnecessarily resource consumption, and ultimately 
zero control efficiency. Moreover, contemporary 
state estimation techniques, predominantly relying 
on recurrent structures, are incapable of sufficiently 
capturing long-range temporal dependencies needed 
for resilient control across data losses. 

In addition, there are slow adaptation 
mechanisms in traditional DMPC frameworks 
across non-stationary environments, thus rendering 
such frameworks inappropriate for real-time 
applications. Finally, in a control scenario, the high 
dimensions of networked system states serve as a 
substantial challenge for communication-efficient 
control [7, 8, 9] and result in excessive bandwidth 
consumption and latency concern processes.  
In view of such disadvantages, the work under 
consideration provides an integrated overall 
framework that expounds on the synergism arising 
between advanced learning-based techniques and 
the DMPC and ETDE in another attempt to 
improve their performances in control, state 
estimation accuracy, and communication efficiency. 
The proposed five methodologies consist of GNN-
PC, AET-E, TPO, MLAC, and VAE-CEC. GNN-
PC makes use of graph structures to efficiently 
capture inter-dependencies among subsystems, 
improving decentralized control performance. 
AET-E employs an attention mechanism to 
prioritize critical updates, significantly reducing 
unnecessary communication. TPO enhances state 
prediction through transformer-based modelling, 
ensuring robust estimation under packet loss 
conditions. MLAC enables rapid adaptation to 
changing environments through meta-learning, and 
VAE-CEC compresses high-dimensional state 
information, reducing bandwidth usage while 
preserving control accuracy. By integrating these 
methods, the proposed approach results in a 50% 
reduction in communication overhead, a 40% 
improvement in control adaptability, a 35% 
enhancement in state prediction accuracy, and a 
30% reduction in control error. The results validate 
the usefulness of advanced learning paradigms in 
DMPC and ETDE, making this framework 
preferable for applications in real-world NCS, 
where scalability, adaptability, and efficiency are 
instrumental. 

1.1 Highlights 

 Modern NCS are more complex, demanding 
new control and estimation strategies that would 
strike a balance between performance and 

communication efficiency. Traditional DMPC 
methods require computationally intensive 
iterative optimizations that hinder their 
application in real time over large decentralized 
areas. Similarly, Event-Triggered Distributed 
Estimation methods are usually developed 
based on a static transmission threshold, leading 
to inefficient use of bandwidth and delays in 
sending updates about the state.  
 

 The prevailing observers for the state within the 
existing NCS architectures largely rely on 
RNNs.  RNNs, on the one hand, can capture 
sequential dependencies, but they are 
susceptible to vanishing gradient problems and 
do not provide very good long-term predictions.  
Most of the time, such adaptive control 
techniques require frequent retraining from 
scratch and, therefore, are not suitable for fast-
changing environments. This challenge is 
further compounded by communication 
overhead, as real-time transmission of system 
states leads to higher bandwidth overheads. 
Therefore, an urgent need arises to form a new 
framework coupling control and estimation 
techniques with predictive modelling and 
communication-efficient data processing within 
the NCS.  

 
 This research suggests Hybrid Learning 

Approach for Distributed Model Predictive 
Control and Event-Triggered Estimation aiming 
to solve these challenges through collaboration 
of five advanced learning-driven methods: 
GNN-PC for decentralized control applications, 
built on top of graph representations of the 
system. The AET-E minimizes unnecessary 
updates to minimize the communication 
required for state estimation. TPO increases the 
robustness of state prediction in packet loss 
scenarios. MLAC offers a fast adaptation 
mechanism necessary for real-time control 
updates in rapidly changing environments. 
Finally, VAE-CEC compresses state information 
into latent representations to greatly reduce 
transmission overhead. Together, these methods 
lower communication costs by 50%, improve 
control adaptability by 40%, increase state 
prediction accuracy by 35%, and reduce control 
errors by 30%, thus demonstrating their 
transformative potential for emerging next-
generation networked control applications. 
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2.  LITERATURE REVIEW 

 

The field of NCS has gained great deal of 
attention and development over time, with 
subsequent research dealing with issues in control 
stability, communication efficiency, adaptive 
learning, and security in distributed environments. 
The earlier contributors such as Yang et al. [1], and 
Tan et al. [2], have laid the groundwork for event-
triggered control mechanisms and model-free 
adaptive predictive control while confronting some 
major challenges: time delays, disturbances, and 
cloud coordination in multi-agent settings. These 
exponents provided insight into the implications of 
delayed feedback of the system in predictive control 
performance and presented issues of control using 
cloud-based distributed coordination, thus 
providing a working ground for advanced 
methodologies in networked predictive control. Liu 
et al. [3] expanded this area into discrete-event 
systems by introducing an online supervisory 
control framework incorporating the issues of 
control delays, whereas Fioravanti et al. [4] directed 
their enthusiasm toward integrating zero-knowledge 
proof schemes for securing networked control 
applications, thus accentuating why cybersecurity 
emerged during the control automation boom. As 
the applications of NCS further complicated, Cao et 
al. [5] organized event-based adaptive neural 
network control meant to counter nonconstant 
control gains and unknown measurement 
sensitivity, a critical trait for large-scale systems. 
Conversely, Liu et al. [6] applied reinforcement 
learning for event-triggered tracking control, 
maintaining the bounding of system response in the 
presence of external disturbances.  

 

In parallel to all of this, Pang et al. [7] 
advanced a finite-time convergence guarantee on 
predictive networked control systems, augmenting 
the potential for real-time decision making. These 
innovations were thus set to spearhead future 
adaptive dynamic programming-based event-
triggered optimal parallel tracking control 
development by Lu et al. [8] for trajectory stability 
enhancement of discrete-time nonlinear systems. 
The merger of cloud computing and edge 
intelligence on network control was an attention-
grabber by Liu [9,10], which provided synchronized 
control strategies based on distributed clouded-up 
prediction models. With this also came multi-step 
state predictors as well as variable horizon learning 
that would allow multi-agent systems to efficiently 

function under network-induced delays. Following 
this, Huang et al. [11] formulated such concepts to 
data-driven distributed predictive tracking for 
controlling heterogeneous nonlinear multi-agent 
systems under constraints of communication delays. 

  

Further, Li and Zhao [12] propagated 
neural network-based adaptive sliding mode control 
with previous integration of T-S fuzzy fractional-
order system modeling features, which promised 
better stability for nonlinear control systems. 
Addressing the inherent challenges of network-
induced uncertainties began with adaptive time-
delay systems control mechanisms by Steinberger et 
al. [13], whereas Maity et al. [14] studied the area 
of optimal LQG control strategies in the presence of 
stochastically lost packets and network traffic 
dependencies. In this manner, those studies 
provided inpatient control strategies based on fault 
tolerance for NCS. Wang et al. [15] further 
improved these models to fixture GD-BB 
optimization with neural networks intended for 
nonlinear tracking control in totally unknown 
system environments. Fault tolerance was expanded 
on however with robust LQR-based architectures 
with mechanisms for fault handling in the case of 
networked control introduced by Benevides et al. 
[16], while El Abbadi et al. [17] presented active 
fault tolerant strategies for packet loss mitigation 
within industrial control applications. The first was 
Yang et al. [18], which proposes fuzzy-logic-based 
control frameworks for fractional-order networked 
control systems, designing adaptive fuzzy 
controllers to counter data loss and input delays. On 
the other hand, Lee et al. [19] provided H∞-based 
input-dependent event-triggered control with stored 
input sequences to enhance stability retention. 
Meanwhile, Liu et al. [20] included inference 
methods based upon deep learning for resilience 
and enabled anticipation and recovery of 
disruptions brought about by cyber-physical 
disruptions at the networked system process. 

 

The further advancements beyond that 
seen in Sakthivel et al. [21] is an anti-disturbance 
fuzzy control systems developed to withstand multi-
source uncertainties. Zeng et al [22], meanwhile, 
developed frameworks for finite-time fault 
detection founded on interval type-2 T-S fuzzy 
models to further enhance the general robustness of 
the system performance under unpredictable 
stochastic behaviour phenomena. A breakthrough in 
network-related security was made by Yang et al. 
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[23], who designed an enhanced decision tree-based 
asset identification system that allowed the 
detection of unauthorized intrusions into the control 
systems. At the same time, Wang et al. [24] studied 
the feedback control strategies of redox-enabled 
battery hierarchical biological systems, thus 
showing the applicability of NCS to biomedical 
engineering. Wang et al. [25] presented intelligent 
sampling control in T-S fuzzy NCS under DoS 
attacks, thus voicing resilience in storage networks 
centralized in the cloud, whereas Zheng et al. [26] 
present strong improvements on the secure 
consensus mechanisms of mechanical systems 
under DoS attacks, which underlines even more the 
need for an event-triggered control model aware of 
security issues. 

 

The investigation of the dynamic behaviors 
of complex systems integrated with networks 
continued with Wang et al. [27], who reconstructed 
the history of network evolution by leveraging data-
driven learning methodologies, while meticulously 
reviewing networked microgrids as promising 
entities in the emerging power systems by Mutluri 
and Saxena [28]. Dahake et al. [29] extended their 
analysis on integer-order and fractional-order PID 
controllers used in NCS and demonstrated 
performance using dynamic stability metrics. On 
the other hand, Yang et al. [30] developed fault-
tolerant controllers based on iterative learning, 
emphasizing sampling approaches in the control of 
system perturbations. Zheng et al. [31] further 
pushed impetus onto energy-efficient control where 
they employed distributed consensus control for 
flexible-joint manipulators, ensuring that energy is 
optimized in these robotic systems. Further 
improvements to networking control tuning 
algorithms were subsequently achieved by Pal et al. 
[32], realizing even higher accuracy on adaptive 
response calibrations. Sliding mode control for 
discrete networked cascade systems was introduced 
by Du et al. [33], depicting advanced delay 
compensation strategies. Meanwhile, Guo et al. [34] 
proposed predictive controlling this for large-scale 
T-S fuzzy NCS, extending MPC frameworks for 
nonlinear networked environments. 

 

The study of dual-mode model predictive 
control got a very strong propagation from Qiu et 
al. [35], who developed resilient DoS-aware MPC 
for constrained linear systems. Zhang et al. [36] 
also introduced dynamic event-triggered delay 
compensation models enhancing further predictive 

control accuracy with random delays. On the other 
hand, Li et al. [37] studied Ρth moment asymptotic 
stability in stochastic complex NCS with Levy 
noise compensation sets. The latest efforts 
regarding heterogeneous networked systems by 
Yang et al. [38] also underscored the controllability 
of sampled-data NCS, whereas Cai Fu [39] treated 
input-to-state stability in NCS with gain 
computation models. Finally, Zhang and Liu [40] 
proposed predictive sliding-mode control for high-
order fully actuated systems to reduce the impact of 
random deception attacks. The literature surveyed 
by these papers suggests a noteworthy presence in 
event-triggered control, predictive modelling, 
adaptive learning, cybersecurity, and fault tolerance 
in networked control systems. Integration of 
reinforcement learning, neural networks, deep 
resilience models in deep learning, and advanced 
fuzzy logic approaches has made networked control 
systems a highly adaptable, secure, and scalable 
paradigm. Similar advances are expected regarding 
distributed control using federated learning, 
quantum inspired cyber physical security models, 
and energy efficient real-time decision frameworks 
for next-generation autonomous and industrial 
networked systems. 

2.1  Problem Area and Research Questions: 
 
One of the main limitations of 

conventional Distributed Model Predictive Control 
(DMPC) and Event-Triggered Distributed 
Estimation (ETDE) methods applied in large-scale 
Networked Control Systems (NCS) are considered. 
The important constraints include communication 
overhead, weak adaptation to dynamic 
environments, low estimation given data loss, and 
failure to capture spatiotemporal dependencies 
across subsystems. The considered avenues stem 
from the following research questions: (i) How can 
decentralized control decisions be enhanced 
through graph-based learning of subsystem 
interactions? (ii) How can the attention mechanism 
trigger less communication while preserving the 
state estimation? (iii) What will be the efficacy of 
transformer models in long-horizon predictive 
estimation under partial data? (iv) What 
mechanisms will allow the fast adaptation of 
control under the influence of dynamically 
changing systems? (v) How can the high-
dimensional state information be compressed 
efficiently without deteriorating on the control 
performance? 
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2.2 Need For The Study With Literature 
Connection: 

 
Recent literature has shown some 

incremental advances in NCS via such approaches 
like adaptive predictive control, neural network-
based event triggering, and deep learning-based 
state observers. More often than not, however, 
these works consider control or estimation 
problems in isolation without an integrated 
framework. Regarding the scaling, static threshold 
models and RNN-based estimators exhibit their 
own vulnerability, while the long-term accuracy is 
still in question. Timely in the current state of 
affairs, the proposed study attempts to assemble 
graph neural networks, attention mechanism, meta-
learning, transformers, and variational autoencoders 
into a working prototype. In so doing, it directly 
leverages from recent developments on adaptive 
event-triggered control [Liu et al., 2023] and finite-
time convergence strategies [Pang et al., 2023] to 
further develop the multi-agent coordination with 
respect to network-induced delays under 
investigation by [Tan et al., 2022] to advance a 
single, cohesive, learning-driven solution 
addressing control optimization, estimation 
robustness, and communication efficiency. 
 
2.3 Scientific Contribution Of The Work: 

 
This investigation sets forth a unified 

hybrid learning paradigm providing five synergetic 
building blocks - GNN-based control, attention-
triggered estimation, transformer-based state 
forecasting, meta-learned adaptation, and 
variational compression - to simultaneously tackle 
the control scalability, estimation accurateness, and 
bandwidth efficiency problems in networked 
systems. The scientific contribution of this work is 
the establishment of novel architecture on the well-
defined grounds of the integration of these learning-
driven methods, providing an opportunity for 
adaptive, resilient, and communication-aware 
decision-making under dynamic, distributed 
conditions. Through experimental validation in the 
power grid, autonomous vehicles, and smart 
building control settings, improvements over 
existing methods assure a significant step in the 
development of intelligent distributed control 
framework designs. 
 
2.4 Practical Implications and Industry Benefits 

 
Its obvious consequence for industries 

operating these vast decentralized infrastructures, 

including power transmission networks, 
autonomous transportation fleets, and smart 
building systems, would be attractively 
implemented by the proposed framework. With 
bandwidth-aggressive communication cues, the 
model advance real-time control decisions, down to 
50% of the needed bandwidth consumption, while 
adapting to fast time dynamics. Industries shall 
accrue marginal to high operational efficiency, fault 
resilience, and maintenance cost savings, given that 
through better state estimation and proactive 
control responses. Furthermore, modularity allows 
seamless integration into existing control setups 
with minimal structural modifications, necessitating 
the accelerated uptake of the framework in practical 
deployment scenarios. 

 
2.5 Open Issues and Results Achieved 

 
The framework yields notable 

improvements in adaptive control (40% max), 
estimation accuracy (35%), and communication 
reduction (50.2%) across a wide range of 
benchmarks. Nonetheless, some of the challenges 
have still not received their complete due in the 
process. The first challenge concerns scalability to 
super large networks with thousands of nodes, 
which requires more thorough investigation, 
especially with respect to latency bottlenecks 
caused by deep model components. The second 
challenge in adaptive learning concerns fast-
evolving adversarial conditions, such as cyber-
attacks or severe data loss. The model does perform 
reasonably well in simulation scenarios; however, 
real-time, embedded deployment energy 
optimization needs to be validated in hardware in 
the loop testing. Future work may wish to extend 
concepts for federated learning across privacy-
preserving distributed estimation and control 
without centralized data aggregations. 

3. PROPOSED MODEL 

This section describes the design of GNN-
PC, which was created to effectively overcome the 
previously established drawbacks of low efficiency 
and high complexity in current techniques by being 
able to efficiently reflect the interdependencies 
among subsystems in NCS. Next, the system is 
represented as a graph where ; V is the 
set of subsystems (nodes), and E is the definition of 
their inter-relation in terms of the process flow in a 
process layout. The adjacency matrix "A" encodes 
the interconnections, while the state matrix holds 
the states of the individual subsystems. The goal of 
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GNN-PC propagates information on over all 
network and computes decentralized control actions 
optimizing the sets from the DMPC framework. 
The node embeddings at layer  are calculated 
utilizing a GCN via equation 1:   

                    (1) 

Where,  is the node representation at 
layer ,   depicts the learnable weight matrix, 
and  is the diagonal degree matrix in the 
process. The activation function  introduces 
non-linearity into the model process. The last 
representation   is used to develop the 
optimal control actions. Given a cost function  in 
DMPC through the mathematical formulation via 
equation 2.                                        

  

Where,  and ‘R’ are weight matrices, 
the optimal control action is determined by 
minimizing J subject to system constraints 
represented via equation 3, 

 

 
Where,  indicates the local system 
dynamics, and  encodes inter-subsystem 
interactions in the process. The gradient descent 
algorithm essentially solves for , ensuring that 
the control actions will adapt according to learned 
spatial dependencies. Iterate Next, as per figure1; 
AET-E optimizes the communication-efficiency 
trade-off in the context of estimation accuracy. The 
classical event-triggered models use static 
threshold, which results in unnecessary 
transmissions or delayed updates. AET-E adds an 
adaptive event-triggering mechanism with respect 
to state update significance using attention weights 
αt via equation 4, 

                        

Where,  is computed via equation 5, 

          

Where, ’ and   are learnable weight 
matrices, and  is the previous hidden state 
in the process. The event-triggering function is then 
defined via equation 6, 

               

    Where, is dynamically adjusted based on 
estimation uncertainty via equation 7, 
                   

            

    
Figure 1: Model Architecture of the Proposed Analysis 

Process 

Only if , the state  is transmitted in the 
process. The updated estimate is then computed 
using a Kalman filter update process via equation 8, 
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Where,  is the Kalman gain, under which the 
minimum error covariance sets shall be attained. 
Adaptive attention mechanism thus achieves 
substantial reduction in communication overhead, 
preserving concurrently high estimation accuracy 
sets. figure 2, shows an iterative basis, TPO 
enhances the capabilities for state yielding by 
applying the self-attention mechanism to ensure 
strong performance predictive statements in packet 
drop scenarios. Having an input history of prior 
states as , the attention 
models compute a weighted output via equations 9, 
10, 11 & 12. 
 

 
 

                                                          
  

                                                           
 

 
The output is then passed through a feedforward 
network via equation 13, 
 

 
 
Where,  and  are learnable parameters for the 
process. The final predicted trajectory is computed 
recursively via equation 14, 
 

 
 
Where,  is the learned system dynamics. The 
forecasting error is minimized using the loss 
function via equation 15, 
 

 
 
Thus, ensuring optimal long-term state predictions.  
The final output of the TPO process, incorporating 
all past state dependencies and control actions, is 
given via equation 16, 
 

 
 
This model formulation guarantees robust 
predictive estimation under dynamic environments 
and true seamlessly into DMPC and event-triggered 
estimation for real-time applicability in networked 
control systems. MLAC aims to solve such a 
problem that would involve adapting control laws 

according to the dynamic uncertain description of 
the environment in which they would be used in the 
future. Old-timer adaptive methods required large 
retraining when the system dynamics changed; 
therefore, it is not suitable for real-time 
applications. MLAC attempts at efficient design 
through usage of meta-learning, providing a quick 
adaptation using gradient-based approaches. This is 
done by stating the system governed by nonlinear 
dynamics via equation 17, 
 
               
 
Where,  represents the system state,  is the 
control input, wt is process noise, and θ represents 
unknown parameters that evolve over temporal 
instance sets. The goal is learning an adaptive 
control law as expressed via equation 18, 
 
                  
Where, ϕ represents the parameterized policy sets. 
The meta-learning framework optimizes a loss 
function L over multiple episodes via equation 19, 
        

 
 
Where,  is the reference trajectory, and  is a 
regularization parameter for this process. The 
adaptation step in MLAC is performed using 
gradient descent via equation 20, 
 
                    
Where,  is the learning rate for this process. The 
meta-update ensures fast adaptation by optimizing 
the parameters represented via equation 21, 
           
                
Where,  represents the adapted parameters for 
each of the subsystems. To ensure stability, the 
Lyapunov function is defined via equation 22, 
 
                        
Where ‘P’ is a positive definite matrix for this 
process. The control policy is updated to minimize 
the gradients represented via equation 23, 
 
 

          
 
Where,  is a positive scalar ensuring stability for 
the process. The final adaptive control law is given 
via equation 24, 
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Where,  is the meta-learned feedback gain 
formed for this data. This line of formulation allows 
for rapid adaptation in the changing dynamics of 
the system while ensuring strong stability control 
sets. Next, as per figure 2, VAE-CEC solves the 
problem of excessive communication overhead in 
high-dimensional NCS. Traditional means for state 
transmission need to use complete updates of the 
state of the system. Thus, increases in bandwidth 
saturation are incurred. VAE-CEC compresses state 
information into a low-dimensional latent space, 
transmitting only essential information sets, Via 
equation 25. The encoder network turns system 
state  into a latent variable , 
            

 
 
Where,  and represent the mean and 
standard deviation of the latent distributions. The 
decoder reconstructs the original state via equation 
26, 

             
 
Where,  is a neural network parameterized by θ 
sets. The loss function is composed of a 
reconstruction term and a Kullback-Leibler (KL) 
divergence term via equation 27, 
 

 
 
Where,  is a weighting factor for thee process. 
The optimal latent representation minimizes the 
process via equation 28, 
 

 
To ensure control accuracy, the compressed 
representation is used in the DMPC framework via 
equation 29,     
                                                                                                         
              
 
Where,  models the reduced-order system 
dynamics. The final control input is computed by 
solving the identity represented via equation 30, 
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Figure 2: Overall Flow of the Proposed Analysis Process 
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Subject to communication constraints. The final 
output of the VAE-CEC process is the 
reconstructed state estimate via equation 31, 
 

 
Where, H is the prediction horizon sets. This 
compressed representation significantly reduces 
communication costs while preserving control 
accuracy, making it a crucial component of the 
integrated NCS framework process. Next, we 
discuss efficiency of the proposed model in terms 
of different metrics and compare it with existing 
models under different scenarios. 
 
4. COMPARATIVE RESULT ANALYSIS  
 

In a large-scale NCS, the experimental 
setup for evaluating the proposed Integrated Model 
for DMPC and ETDE promises to subject the 
proposed framework to a rigorous test. A simulated 
industrial process control environment is 
constructed such that it contains 100 connected 
subsystems that represent nodes in a directed 
communication graph. Each subsystem adheres to  

 

 
 

certain standard forms of nonlinear dynamic 
process state-space representations. 
Interconnections between these subsystems are 
included in an adjacency matrix with weighted 
connections characterized by physical coupling 
constraints, and the system matrix is updated 
dynamically at every control step in process. The 
objective of this control is regulating the states of 
the system while keeping communication overhead 
low and ensuring that states adapt to real-time sets. 
The sampling time is established to be 50 ms, 
allowing guarantees of feasibility for real-time 
processing, while the predictive horizon for DMPC 
would range to ten steps to allow one forward-
looking view of optimizing performance. Control 
constraints are imposed as −5≤ut≤5, imitating 
saturation actuator limit behavior. The 
communication network introduces random packet 
loss (5-10%), requiring robust state estimation and 
predictive control for coping with missing data. 
  

GNNs with 5 layers, each containing 128 
hidden units, and trained with the Adam optimizer 
with a learning rate of 0.001 are used; the TPO on 

Figure 3: Model’s Overall Result Analysis 
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the other hand employs 8 attention heads with 256-
dimensional hidden layers to extract long-range 
dependencies in state evolution. The event-
triggering thresholds in AET-E are initialized on 
the basis of a dynamic uncertainty margin, which 
reduces the frequency of transmission but maintains 
accuracy in state. The MLAC framework is built 
with MAML  training with 5 adaptation steps for 
fine-tuning control policies quickly because the 
control policies shift along with the dynamics. 
VAE-CEC would be based on a two-layer encoder-
decoder architecture whose latent space is fixed at 
16 dimensions for state compression with minimal 
reconstruction loss. Three benchmark datasets have 
been used in testing the performance of the 
Integrated Model for DMPC   and ETDE  in a 
variety of scenarios concerning networked control.  

 
The IEEE 30-Bus Power System Dataset, 

a benchmark resource in the power system stability 
research, is taken as a standard to test distributed 
frequency control strategies. It models the power 
flow dynamics of a 30-bus transmission network, 
where node states include voltage magnitudes, 
phase angles, and active/reactive power injections, 
thereby providing an image of the fluctuations in 
power grids under different loading conditions. The 
second dataset, termed as NGSIM  Vehicle 
Trajectory Dataset, captures quantitative data about 
highway vehicle trajectories from high-precision 
sensors, making it suitable for evaluating the 
platooning control of autonomous vehicles. The 
recorded dataset contains information on vehicle 
positions, velocities, lane changes, and 
throttle/brake inputs, giving the needed information 
for comprehensive analysis on DMPC AND ETE   
in a high-speed, multi-agent driving environment. 
Finally, the last dataset is ASHRAE Great Energy 
Predictor III Dataset, obtained from a large-scale 
energy efficiency competition, which the model is 
set to test for smart building HVAC control sets. 
This dataset contains sensor readings of 
temperature, humidity, airflow rates, and energy 
consumption patterns across multiple buildings, 
thereby enabling evaluating control strategies for 
improving energy management and climate control 
sets. These datasets duly give a comprehensive and 
diverse cross-validation framework in capturing 
reality of such aspects as packet loss, sensor noise 
and dynamic uncertainties in networked control 
systems. 

With a performance validation of the 
integrated approach, extensive simulations were 
carried out on datasets strictly modelling real-world 

industry process dynamics. The first dataset is 
mode over a power grid frequency control governed 
by a network of nodal states with frequency 
deviations, phase angles, and power injections over 
the synthetic 30-bus network constructed upon the 
IEEE 30-bus benchmark system. The second 
dataset originates from autonomous vehicle 
platooning: each node is an individual vehicle, 
states include velocity, acceleration, relative 
distance, and throttle control inputs. The third 
dataset is HVAC control in smart buildings, where 
thermal zones correspond to subsystems, and 
temperature, humidity, and airflow rates 
accompany disturbances according to the variability 
patterns introduced by certain weather changes. 
Indices included as performance measures are 
control error reduction, state estimation accuracy, 
communication overhead, and computational 
efficiency. The proposed model achieves 50% and 
40% better adaptive control responsiveness, 35% 
better state prediction accuracy, and 30% less 
control error than baseline DMPC and ETE 
methods, respectively, with computation times 
analyzed.  

The proposed approach converges 20% 
faster than standard iterative DMPC, further 
validating machine learning-enhanced predictive 
control applications for real-time distributed 
control. The Integrated Model for DMPC and 
ETDE is evaluated through three datasets: IEEE 30-
Bus Power System Dataset, NGSIM Vehicle 
Trajectory Dataset, and ASHRAE Great Energy 
Predictor III Dataset. The proposed model is 
compared with three baseline methods, namely 
Method [5], Method [8], and Method [25] in 
process. The evaluation will largely be based on all 
the major performance indicators such as 
improvement in control action possible due to 
reduction of control error, enhancement in both 
accuracy and precision with which estimators can 
provide estimates of parameters or states, 
improvement in communication overhead, 
improvement in efficiency and computational 
speed, and adaptive response delays. 

The first type of experimentation would 
measure the frequency regulation performance of 
the proposed model compared to other methods. 
The objective in such cases is to try and minimize 
the frequency deviations over the buses network, 
while at the same time reduce control effort and 
communication load. Table 1 refers to the 
performance of electrical frequency deviation 
reduction under the IEEE 30-Bus power grid 
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dataset, wherein the proposed model is compared 
against three reference models. The results indicate 
that the proposed model outperforms all other types 
of models in mean frequency deviation (0.0082 Hz) 
and peak deviation (0.0154 Hz) performance, 
exhibiting the maintained superiority of stability in 
power-grids operations. Control effort hence 
required (2.1 MW) is less than 38% from Method 
[5], thus underlining the efficiency of optimized 
control actions. Besides, 50.2% communication 
overhead saved indicates that an Attention-Driven 
Event-Triggered Estimation (AET-E) module 
successfully prioritizes critical updates but dumps 
redundant transmissions. The great improvement is 
observed in frequency stabilization, proving the 
power of Graph Neural Network-Based Predictive 
Control (GNN-PC) in capturing subsystem 
interdependencies resulting in yet decentralized 
controlled but coordinated control actions. 

Table 1: Frequency Deviation Reduction Performance 
(IEEE 30-Bus Dataset) 

Meth-
od 

Mean 
Freque-

ncy 
Deviati-
on (Hz) 

Peak 
Devia-

tion 
(Hz) 

Control 
Effort 
(MW) 

Commu-
nication 

Overhead 
(%) 

Propos
-ed 

Model 

0.0082 0.015
4 

2.1 50.2 

Metho
d [5] 

0.0123 0.021
7 

3.4 78.1 

Metho
d [8] 

0.0108 0.019
5 

2.9 66.4 

Metho
d [25] 

0.0095 0.017
6 

2.5 58.9 

 

 
 
 

 
 
 

 
 
 

 
 

4(a): Mean Frequency Deviation (Hz) 

4(b): Communication Overhead (%)  

4(c): Velocity Tracking Error (m/s)  

4(d): Latency (ms)  
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The figure 4 compares the proposed model 
with baseline methods across eight metrics, 
demonstrating its performance with lower 
frequency deviation, communication overhead, 
latency, and tracking error. The proposed model 
also shows faster convergence, reduced estimation 
variance, and higher overall communication 
reduction. The proposed model records 33% mean 
frequency deviation lower than Method [5] and also 
a 29% lower peak deviation, thus ensuring better 
stability in the power grid. Control effort is reduced 
by 38%, representing an energy gain for stabilizing 
grid operations. More strikingly, the 
communication overhead is cut by 50.2%, 
exemplifying effectiveness by event-triggered 
estimations. For vehicle platooning control, results 
from the framework would be examined based on 
velocity tracking accuracy, error in separation 
between vehicles, and communication efficiency. 
There is indeed a strong parameter regarding the 
aspect of maintaining wherever possible the desired 
vehicle separation by reducing communication. The 
autonomous vehicle platooning performance is 
given in Table 2 using the NGSIM dataset and 
compared using the parameters of velocity tracking 
error, inter-vehicle spacing error, control latency, 
and most importantly, communication efficiency. 
The proposed model shows a decrease of 48% in 
velocity tracking error (0.14 m/s) and 39% in inter- 
vehicle spacing error (0.53 m) compared to Method 
[5], thus still ensuring precise vehicle coordination. 

 

 

Method Velocity 
Tracking 

Error 
(m/s)  

Inter-
Vehicle 
Spacing 

Error 
(m)  

Laten-
cy 

(ms)  

Communica-
tion 

Reduction 
(%)  

Proposed 
Model 

0.14 0.53 18.2 52.5 

Method 
[5] 

0.27 0.87 29.5 21.4 

Method 
[8] 

0.22 0.74 25.1 34.7 

Method 
[25] 

0.18 0.61 21.6 45.8 

4(f):  Estimation Variance (%) 

4(g):  Convergence Time (s) 

4(e): Mean Absolute Error (IEEE 30-Bus)  

4(h):  Over all Communication Reduction (%) 

Figure 4: Model Integrated Result Analysis 

Table 2 : Vehicle Platooning Control Performance 
(NGSIM Dataset) 
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Additionally, the proposed model achieves a 
reduction in latency by 38% (18.2 ms) rendering it 
well-suited for real-time vehicular control 
applications. Of all these measurable advances, the 
most remarkable of improvements would be the 
reduction of the communication load by 52.5%, 
which came directly from the Variational 
Autoencoder-Based Communication-Efficient 
Control (VAE-CEC) module compressing high-
dimensional vehicular state information, ensuring 
low-bandwidth operation with adequate control 
performance sets. Thus, creating an improved safe 
and efficient networked autonomous vehicle control 
systems. 

 

At present, the proposed model 
demonstrates a 48% reduction in velocity tracking 
errors and a 39% reduction in inter-vehicle spacing 
errors compared to Method [5], ensuring a higher 
level of stability in the platooning operations. The 
reduction of latency by 38% thus opens the door 
toward real-time decision-making in high-speed 
scenarios. The model is able to cut down the 
communication load by 52.5%, thus maintaining 
transmission priorities for necessary 
communication and avoiding redundant data 
transfers. The accuracies of the event-triggered 
state estimation have been evaluated on three 
datasets: IEEE 30-Bus, NGSIM, and ASHRAE. 
The evaluation of performance is therefore based 
on Mean Absolute Error (MAE) and Estimation 
Variance, attempting to capture the reliability of 

predictions in a dynamic environment. A state-
estimation accuracy comparison among the three 
datasets (IEEE 30-Bus, NGSIM, and ASHRAE) is 
presented in Table 3. As suggested by the MAE 
values, the proposed model provides the least 
estimation error across all datasets, performing 
particularly well on the power grid dataset (0.0121 
MAE) and vehicle platooning (0.0342 MAE) which 
is an improvement of 37.9% over Method [5]. It 
also incurs 40.7% less estimation variance, 
guaranteeing stable and reliable system state 
predictions. This upgrade can be largely attributed 
to the Transformer-Based Predictive Observer 
(TPO), which is capable of capturing long-range 
temporal dependencies in dynamic system states 
and compensating for the effect of lost or delayed 
data due to packet loss. Predicting future states with 
TPO bolsters control stability and the precision of 
decision-making process. 

The proposed model consistently achieves 
the lowest MAE across all datasets, with state 
estimation variance reduced by another 40.7% as 
against Method [5]. This factor ensures greater 
accuracy and stability of the results under varying 
environmental conditions. The comparative study 
of computational efficiency between each method 
was made on model convergence time, iterations to 
stability, and execution latency per control process. 
Table 4 analyzes the models computational 
efficiency in relation to convergence time, 
iterations toward stability, and execution latency 
within control steps. The suggested model reaches 
convergence after 2.51 seconds, clarifying its 
superiority over the other by being 40% faster than 

Method MAE 
(IEEE 

30-Bus) 

MAE 
(NGS-

IM) 

MAE 
(ASHR-

AE) 

Estimat-
ion 

Variance 
(%) 

Propos-
ed 

Model 

0.0121 0.0342 0.0425 25.6 

Method 
[5] 

0.0195 0.0478 0.0594 43.2 

Method 
[8] 

0.0164 0.0421 0.0538 37.5 

Method 
[25] 

0.0143 0.0385 0.0482 30.9 

Method Convergence 
Time (s) 

Iterations to 
Stability 

Execution 
Latency per 
Step (ms) 

Proposed 
Model 

2.51 58 14.2 

Method 
[5] 

4.17 102 27.3 

Method 
[8] 

3.85 89 22.8 

Method 
[25] 

3.12 74 18.9 

Table 3:  State Estimation Accuracy Across 
Datasets 

Table 4:  Computational Performance Metrics 
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that of Method [5]; it reached stability after 
undergoing about 58 iterations, which is a further 
43% less as compared to conventional approaches. 
The execution latency per control step is reduced 
by the action of 48%, which gives confidence that 
the model is able to work in real-time control. This 
shines light onto the computational advantage 
gained by harnessing the Meta-Learning-Based 
Adaptive Control (MLAC), allowing the fast 
adaptation of the control framework to a changing 
system condition without immense retraining. The 
reduction in convergence time and burden on 
computational resources underwrites the scalability 
of the model for large NCS applications. 

 

The Proposed Model converged 40% 
faster than Method [5] and required 43% fewer 
iterations to ensure stability, which can be 
expediting adaptability and reducing computational 
burden. Execution latency per control step is found 
to be 48% lesser, showcasing feasibility for real-
time application. The meta-learning mechanism 
comes in very handy to estimate the adaptive 
controller efficiency over the following criteria: 
changing system conditions, time taken for 
adaptation to new dynamics, and control accuracy 
post-adaptation. Table 5 measures the hyper-
adaptive control performance under system 
variations and features measuring time taken for 
adaptation, post-adaptation control accuracy, and 
stability retention over time. The proposed model 
adapts in 3.42 seconds, Owing to its rapid 
adaptation, the model is 49.7% faster than Method 
[5], thereby responding quickly to the changed state 

of the system. After adaptation, the control 
accuracy is around 95.8%, substantially better than 
that of many others which have deteriorated to 
83.4% (Method due to [5]) and 88.2% (Method due 
to [8]). In addition, it achieves 98.1% in terms of 
stability retention, which guarantees that the 
performance of the system is strong even after 
disturbances in the environment. In bringing down 
this improvement, the credit goes to the meta-
learning-based adaptive control setting, whereby 
few-shot learning is utilized so as to dynamically 
change the control laws whenever uncertainties are 
present, thus minimizing enormous retraining of the 
controllers. This confirms that the suggested model 
is very capable of tackling environments requiring 
adaptability and which are non-stationary and 
dynamic with respect to control process. 

 

The proposed model is 49.7% faster than 
Method [5] in terms of adaptation and maintains 
98.1% stability post-adaptation, thus reinforcing the 
efficacy of the MLAC in dynamic environments. 
Control accuracy remained above 95%, 
outperforming conventional adaptive strategies. 
Final analysis begins with communication 
efficiency-here, the percentage of reductions in 
state transmission is quantified with respect to 
various datasets and samples. Communication 
efficiency of the proposed model across the three 
datasets is presented in Table 6, where the 
percentage reduction of state transmissions is 
compared against control accuracy. The proposed 
model is estimated at an average of about 50.2% 
reduction in communication, a significant 
improvement from the baseline methods. The most 

Method Adaptation 
Time (s) 

Control Accuracy 
Post-Adaptation 

(%) 

Stability 
Retention 

(%) 

Proposed 
Model 

3.42 95.8 98.1 

Method 
[5] 

6.81 83.4 87.6 

Method 
[8] 

5.74 88.2 91.9 

Method 
[25] 

4.29 92.1 94.5 

Method IEEE 
30-Bus 

(%) 

NGSIM 
(%) 

ASHRAE 
(%) 

Overall 
Reduction 

(%) 

Proposed 
Model 

52.1 48.7 51.4 50.2 

Method 
[5] 

22.8 19.5 25.1 21.4 

Method 
[8] 

35.4 31.7 38.2 34.7 

Method 
[25] 

45.1 43.3 47.6 45.3 

Table 5:  Adaptive Control Performance Under 
System Variations 

Table 6:   Communication Reduction Across 
Datasets 
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pronounced reduction appears in the IEEE 30-Bus 
dataset (52.1%), whereas ASHRAE and NGSIM 
follow with reductions of 51.4% and 48.7%, 
respectively, which indicates how efficiently the 
VAE-CEC module has compressed state 
information and provided relevant state 
transmission. This communication overhead loss 
indicates that the proposed model perfectly fits 
control systems with bandwidth limitations, thus 
ensuring its scalability and efficiency in further 
real-life process implementation sets. 

 

Among the results obtained, the proposed 
model effectively reduces on the average 50.2% in 
communication, which represents a significant 
bandwidth saving, with accurate state estimation 
and control performance being upheld. This 
demonstrates the superiority of the proposed 
integrated model in validating its application in the 
real-time domain of distributed control and 
estimation. The experimental results, in general, 
suggest that the Integrated Model for Distributed 
Model Predictive Control and Event-Triggered 
Distributed Estimation performs better than any 
conventional method in terms of control accuracy, 
computational efficiency, reliability of estimation, 
ad hoc control, and communication efficiency. 
These enhancements provide strong evidence for 
the successful design of integrating graph-based 
predictive control, attention-driven event-
triggering, transformer-based observers, meta-
learning adaptation, and variational autoencoder-
based compression into a unified architecture for 

coordinated control systems, justifying this 
architecture as a prospect among the next 
generation of cyber-physical systems. The 
discussion now focuses on the Iterative Validation 
Use Case for the Proposed Model, facilitating a 
deeper understanding of the entire process for the 
readers. 

 

The GNN-PC module gives the best 
solution for predicting optimal control action ‘ ’ 
accompanied by consideration over graph-based 
interdependencies in process as outlined in table 7. 

The quantification of impact on control actions is 
evaluated by the factor of influencing among 
neighbours. The reduction error in predictive 
control is found significantly between 25 and 36%, 
thereby validating the contribution of graph-based 
spatiotemporal information propagation in 
improving distributed control efficiency sets. 

Respective priority pertaining to the 
estimation ensures that only high-priority 
measurements are sent, while keeping redundant 
communication at bay, never letting estimation 
error rise. The model outlined provided in table 8 is 
a communication overhead reduction of as much as 
65.7%, ensuring bandwidth-efficient state 
estimation, with an estimation error never 
exceeding 6.3% in the current process. 

No-
de  
ID 

Inp-
ut 

Stat
e 

(  

Predi-
cted 
State 

( ) 

Control 
Action 

( ) 

Error 
Reduct

-ion 
(%) 

Neigh-
bour 

Influence 
(%) 

1 0.22 0.18 -0.04 25.3 12.5 

5 0.35 0.28 -0.07 31.8 15.2 

10 0.41 0.33 -0.08 29.6 14.8 

15 0.51 0.39 -0.12 36.5 18.3 

20 0.29 0.23 -0.06 27.9 13.7 

Sens-
or ID 

Obs-
erved 
State 
( ) 

Atten-
tion 

Score 
( ) 

Transmi-
ssion  

Decision 

Esti-
mat-
ion 

Error 
(%) 

Comm-
unicati-

on 
Saving 

(%) 

3 1.15 0.84 Transmit 3.1 47.5 

7 0.92 0.41 Skip 
Transmiss-

ion 

5.6 62.3 

12 1.34 0.91 Transmit 2.8 45.2 

18 0.78 0.32 Skip 
Transmissi-

on 

6.3 65.7 

25 1.01 0.67 Transmit 3.9 52.8 

Table 7:  GNN-PC Control Actions Based on 
Graph Representations 

Table 8: Event-Triggered Transmission Analysis 
Using AET-E    
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The TPO module guarantees a very 
accurate multi-step state forecast up to t+5 sets, 
with prediction errors lower than 9% and 
forecasting confidence over 90% as shown in table 
9. This proves the ability of the model to foresee 
some future state evolution and hence be robust for 
the on-time decision-making process in control 
process. 

 

Fast adaptation to changing system 
conditions enabled by the MLAC module leads to 
control error reduction of more than 50% in all 
cases. The retained stability stands over 96%, 

proving the resilience of the system even after 
disturbances as shown in table 10. 

 

The VAE-CEC module achieves 
compressing state information while 
reconstructions are guaranteed to be above 95% 
accurate. Table 11 shows that the model realizes a 
54.4% reduction of data transmitted and therefore 
assures bandwidth-efficient control executions. 

 

The proposed model in all performance 
metrics is outclassing the baseline methods as 

Time 
stamp 

Obser
-ved 
State 
( ) 

Predi-
cted 
State 

 

Predi-
ction 

Error (%) 

Foreca-
sting 

Confid-
ence (%) 

t+1 1.22 1.18 3.3 98.2 

t+2 1.45 1.37 5.5 96.8 

t+3 1.71 1.59 7.0 94.1 

t+4 1.93 1.78 7.8 92.6 

t+5 2.11 1.92 9.0 90.3 

Scena-
rio 

Initial 
Cont-

rol 
Error 
(%) 

Post-
Adapta-

tion 
Control 

Error (%) 

Adapta-
tion Time 

(s) 

Stability 
Retention 

(%) 

Case 1 14.2 6.1 3.2 98.5 

Case 2 18.7 7.3 4.1 96.8 

Case 3 12.9 5.8 3.7 99.1 

Syst-
em 

State 

Origin-
al Data 

Size 
(KB) 

Compre-
ssed 
Data 
Size 
(KB) 

Compr-
esion 
Ratio 
(%) 

Recons-
tructed 

Accuracy 
(%) 

Set 1 200 98 51.0 96.4 

Set 2 180 82 54.4 95.7 

Set 3 220 105 52.3 97.1 

Metric Proposed 
Model 

Improvement 
Over 

Baselines 
(%) 

Control Error 
Reduction 

30% 38.4 

Communication 
Overhead 
Reduction 

50.2% 45.1 

State 
Estimation 
Accuracy 

95.8% 40.7 

Adaptive 
Control 

Response 

3.42s 49.7 

Table 10: Adaptive Control Performance After 
Sudden System Disturbances    

Table 11: State Compression and Communication 
Savings Using VAE-CEC    

Table 12:   Overall System Performance Across All 
Modules 

Table 9:  Multi-Step Future State Prediction Using 
TPO    
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shown in table 12, consequently leading to 
efficient, adaptive, and real-time control decisions 
of networked systems. 

5. CONCLUSIONS & FUTURE SCOPES 

This work presents an Integrated Model 
for Distributed Model Predictive Control and 
Event-Triggered Distributed Estimation, aimed at 
solving the core NCSs problems such as excessive 
communication overhead, incorrect state 
estimation, sluggish adaptation to varying 
environments, and non-favourable predictive 
modelling. By integrating  GNN-PC,  AET-E, TPO,  
MLAC, and  VAE-CEC, the model hugely uplifted 
the controlling performance, estimation accuracy, 
and network efficiencies. Demonstrated 
experimental improvements through evaluations 
conducted on three distinct datasets: IEEE 30-Bus 
Power System, NGSIM Vehicle Trajectory, and 
ASHRAE Smart Building Energy Data Samples. 
The model brought about a 50.2% reduction in 
communication overhead, thus optimizing 
bandwidth utilization while safeguarding the 
control accuracy. A further reduced 30% of control 
error guarantees accuracy and stability over all 
operating conditions in the system. A 40.7% 
reduction in state estimation variance confirms the 
robustness of the event-triggered estimation 
mechanisms and predictive observer mechanisms. 
Control adaptability is enhanced by 40% under the 
proposed framework for meta-learning-based 
adaptive control, enabling agility in adapting to 
dynamic environments. A further 20% reduction in 
computation time secures real-time acceptability 
and 43% fewer iterations to achieve stability 
compared with standard DMPC methods. Together, 
these results further substantiate the proposed 
framework's effectiveness as a candidate solution 
for large-scale decentralized control applications 
targeting power grids, autonomous vehicular 
networks, and smart infrastructure systems.  

In the context provided above, the 
integrated framework for DMPC and ETDE 
embodies the ability to enhance substantially 
communication efficiency, control accuracy, 
adaptability, and real-time responsiveness—the 
transmission load can be reduced by as much as 
50%, control error by 30%, and adaptation delay by 
40%. Such performance is attributed to their joint 
engagement for the above-mentioned reasons 
between model-driven control structures and data-
driven learning mechanisms. However, model 
transfer across benchmarks might be constrained 

with the extensive requirement of pre-training in 
the meta-learning and transformer modules for edge 
environments of high resource constraint. Diverting 
the focus to the implementation in the long-term 
real world, a boost could be assured with cyber-
resilience modules for operation under adversarial 
network conditions. The findings validate the 
relevance of hybrid learning modes while 
suggesting more optimization efforts toward 
computation-communication tradeoffs and 
realization onto real-time hardware to bring about 
their full industrial applicability. 

In the future, this research roadmap 
unfolds several potential scopes towards attaining 
scalability, robustness, and generalizability of the 
proposed framework process. One promising scope 
is to instill reinforcement learning-based adaptation 
to further augment the controller's competence to 
self-learn optimal policies in intricate, high-
dimensional environments. The adoption of multi-
agent coordination arrangements would 
additionally ameliorate decentralized decision-
making towards ensuring robustness of control in 
large-scale heterogeneous networked systems. 
Among the next important directions lies the 
introduction of federated learning-based estimation 
mechanisms to aid distributed subsystems in co-
enhancing visibility without exchanging 
information centrally, thereby strengthening 
privacy and security. In quite a long run, the 
scheme would flourish into cyber-attack resilient 
control environments where anomaly detection 
systems based on deep learning would be integrated 
to detect, alleviate, and adapt to adversarial 
disturbances in real-time. Future work shall also 
include hardware-in-the-loop validation, where the 
proposed model shall be forwarded to embedded 
control platforms to verify industrial and vehicular 
real-life applicability. Lastly, the model will be 
exploited in newer domains like industrial 
automation, IoT-based smart cities, and energy-
efficient cloud computing infrastructure for 
kickstarting interesting insights about optimizing 
the communication-aware resource-efficient 
adaptive networked control framework for next-
generation cyber-physical systems. 
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