
 Journal of Theoretical and Applied Information Technology
15th July 2025. Vol.103. No.13

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4734

PERFORMANCE CHARACTERIZATION OF CACHE
REPLACEMENT STRATEGIES FOR MANAGING SHARED
LLC OVER HETEROGENEOUS INTEGRATED CPU-GPU

ARCHITECTURE USING MULTI-THREADED WORKLOAD

PRATAP KESHARI PANDA1, BANCHHANIDHI DASH2*, PRASANT KUMAR PATTNAIK3*

123Kalinga Institute of Industrial Technology, India

E-mail: 1pratap.panda@gmail.com, 2banchhanidhi.dashfcs@kiit.ac.in, 3patnaikprasantfcs@kiit.ac.in

*Corresponding author

ABSTRACT

The CPU is mostly designed for sequential and complex decision-making. it propagates with its instruction
processing in a few pipeline stages, including steps for data and instruction fetching from memory. With
time, the GPU, with its parallel processing capabilities, came into existence to assist the CPU, mainly for
graphics processing. Because of parallel processing and a huge number of thread executions, its data access
pattern is quite different from that of CPUs. In its rendering pipelines, the GPU may access varied data
streams. The access may vary in semantics in different access patterns. Due to commercial requirements and
to minimize data sharing latency between CPU and GPU, integrated processor designs are emerging. these
designs accommodate both CPU and GPU in a single chip, sharing common resources. On many occasions,
sharing these resources becomes a bottleneck for the whole system, deteriorating overall performance. Last
Level Cache sharing among CPU and GPU is a bigger challenge in this design approach. A suitable cache
eviction strategy is highly essential to utilize the shared LLC space effectively. Optimized cache with better
clock speed can also be considered along with a higher configuration for CPU and GPU to improve the
overall performance. Here in our work, we have designed an integrated heterogeneous CPU-GPU model with
upgraded configurations to boost performance. Further, we have compared the performance with Alder Lake
and Raptor Lake processors, taking them as baselines. We have achieved a speedup improvement of 59.8%
and 22.12% compared to Alder Lake and Raptor Lake processors, respectively, taking the geometric mean
of eight different sets of workloads. Eight different cache replacement schemes have been configured in
MacSim simulator, and the workload from different benchmark suites has been given. Through simulation
results, we found an average read miss count improvement of 29.41% and 15.38% over Alder Lake and
Raptor Lake, respectively. This may help to IT infrastructure in terms of actuarial science, real time systems
etc

Keywords: Multi-Core, Graphics Processing Unit, Multi-Threading, Benchmark, Cache Replacement
Policy, Shared Last Level Cache, Heterogeneous Architecture

1. INTRODUCTION

The CPU is the primary processor, and the GPU
has evolved to assist it. This configuration may need
by the researcher or industry professional for
financial modelling, AI and 3D systems, and for
virtualization task scheduling in cloud computing
environment. The CPU and GPU connect to the
same motherboard, and the CPU shares its load with
the GPU using the PCIe interconnect. This design

has some data transfer latency associated. But now,
gradually, the trend is changing. Manufacturers are
trying to minimize the distance between the CPU
and the GPU. They are trying to reduce the data
transfer latency. Hence, a few of the new generation
microprocessor chips are accommodating the CPU
as well as its accelerator inside a single die. They
coexist and live inside the same apartment and share
some common system resources like DRAM,
interconnect network (Known as NOC, abbreviated

 Journal of Theoretical and Applied Information Technology
15th July 2025. Vol.103. No.13

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4735

to Network-on-Chip), and last-level cache [1]. Both
CPU and GPU rush in the race to acquire and use
these shared resources. The high level of thread
parallelism in GPUs makes it more powerful to use
these shared resources, mainly the Last-Level-Cache
(LLC). As this cache is shared, we denote it as
Shared LLC. GPU spawns thousands of threads in
parallel to process data, makes very frequent calls to
Shared LLC, and almost keeps it captured. In the
race to use Shared LLC, mostly GPU wins. Most of
the data requests for the CPU to the Shared LLC
misses. This generates a high contention. Shared
LLC has to be managed well to facilitate the smooth
work of both CPU and GPU. Many manufacturers
are now researching and focusing heavily on CPU-
GPU integrated chip designs. Different generations
of Intel’s iGPU (Integrated GPU) [2], with their
varied architectures, are currently quite popular in
the market. iGPU is the integrated GPU that resides
alongside the CPU in the same chip. AMD has also
released many heterogeneous integrated chips,
terming them APU (Accelerated Processing Unit),
which was previously known as Fusion. They have
released several generations of APUs thus far. Llano,
Trinity, and Kaveri are among these different
generations. The CPU and GPU residing inside the
chip are tightly coupled and share common
resources, including LLC. The CPU processes
instructions sequentially in a pipeline with limited
threads, making very few memory access calls. In
contrast, the GPU spawns a vast number of threads
to achieve faster and more parallel execution. These
threads can be executed within a warp. Although
each warp can execute a single instruction set, each
thread makes a significant number of memory access
calls. They can access different streams of data in
various access patterns. In the case of 3D rendering,
it accesses different data streams primarily for
vertices, vertex indices, and depth buffers. As the
GPU continuously accesses the LLC, it often hijacks
the entire LLC. Ultimately, the overall performance
of the system suffers. Not only CPU performance but
also GPU performance, like 3D rendering,
deteriorates to a great extent. Therefore, the LLC
should be distributed optimally to maximize the
CPU and GPU performance. The configuration of
CPU and GPU, along with caches and mainly LLC,
can be enhanced and optimized to get a better
performance output. In the enhanced configurations,
tuning the caches with an optimal replacement
algorithm can give a better result. In studying this

further, in this paper, we have configured an
integrated heterogeneous CPU-GPU model and
compared some of the parameters with 2 baseline
models Alder Lake and Raptor Lake processors, to
achieve some significant performance improvement.
More ever it has been observed that this type
integration causes software bugs in graphic
solutions, speculative executions in real time system
and miss-configuration in cloud virtual system.The
programmer should plan carefully while using the
system.

2. LLC MANAGEMENT POLICIES
EXPLORED

Many LLC management policies have been
explored and identified. We have gone through
many cache management policies that mainly fall
under partition-based or insertion-based techniques.
This section contains a few policies related to LLC
management implemented on CPU, GPU, and
heterogeneous integrated chips. These policies have
greatly motivated my work.

2.1 UCP
Different applications have different levels of

cache sensitivity and cache usage. Many of the
applications may not need the whole shared cache.
In a 16-way shared cache, an application may
survive only with 8 ways of the cache. Hence,
assigning only 8 ways of the shared cache to the
application would be sufficient. Increasing the
number of ways may not decrease the number of
cache misses or may not improve its performance.
UCP (Utility-based Cache Partitioning) [3] policy
partitions the cache depending upon the utility of the
cache by any particular application. Different
applications run on different cores in the CPU. As
per the policy, a UMON (Utility Monitor) circuit is
been assigned to each core. UMON count equals the
number of cores in the CPU. This UMON circuit
monitors and records the cache way utility
information for its attached core, and ultimately, that
shows the cache way utility information for the
application running on that core. Based on the
information collected by the UMON circuit, the
cache partitioning decision is made by the
partitioning algorithm. Though the UMON circuit
eats up some space from the baseline cache of the
core, the amount is quite low and can be ignored.

2.2 TAP

 Journal of Theoretical and Applied Information Technology
15th July 2025. Vol.103. No.13

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4736

Because of a very high level of TLP (thread-
level parallelism) of the GPU, the memory access
latency cannot affect the performance of the GPGPU
applications. TAP (TLP-Aware cache management
Policy) [4] uses core sampling and cache block
lifetime normalization as 2 components to decide on
cache management in CPU-GPU heterogeneous
architecture. Assuming the GPGPU applications
behave in the same way, this mechanism assigns
different policies to each core and takes samples of
a specific period. The CSC (Core Sampling
Controller) collects the performance table, compares
it, and finally decides on appropriate cache
management. That could be a cache insertion or a
cache partition. The policy determined by the CSC
will be taken off by all the cores. The same sampling
process goes on at regular intervals. Little space
overhead is there. However, this policy is extended
to TAP-UCP and TAP-RRIP, who already have their
monitoring mechanism in-built. Hence, the overhead
can be ignored. There is a huge difference in cache
access by CPU and GPU. With its very high number
of threads, the GPU keeps on accessing the cache
very frequently. However, the CPU cannot make that
many calls to cache because of its limited number of
threads. This results in a cache capture by the GPU.
To overcome this, this policy periodically calculates
the ratio at which the applications are accessing the
cache. One threshold value is decided. If the access
ratio exceeds the threshold value, GPU memory
request calls cannot evict CPU cache blocks.

2.3 LSP
Few policies argue that latency-sensitivity is

more vital than utility. Latency-insensitive
applications may give way to latency-sensitive
applications for off-chip accesses. This can increase
cache hits for latency-sensitive applications and
ultimately increase overall performance. LSP
(Latency Sensitivity-based cache Partitioning) [5]
considers cache access latency as the vital
parameter. This policy periodically takes samples in
a particular interval and takes different performance
metrics using system event counters. Using the
information gathered, it evaluates a cost function. At
the next interval, based on the cost function result,
the partitioning decision is made. A few other
parameters that are considered for this decision are
the latency to access memory and last-level cache.

2.4 HeLM
Throttling LLC access for GPU is another

approach taken up by a few policies. HeLM
(Heterogeneous LLC Management) [6] uses this
technique to bypass some of the memory calls by the
GPU. This policy uses the latency tolerance
behaviour of the GPU to steal cache for the cache-
sensitive CPU without impacting the GPU’s
performance. This selective memory bypassing
decision is mainly based on 2 conditions. Firstly, if
that GPU core has enough thread-level parallelism to
tolerate memory access delays. Secondly, if the
application running on it is mostly getting streaming
data. Hardware performance monitor measures the
wavefront count that is ready to be scheduled at any
particular time. This says something about the TLP
availability. To know about the cache sensitivity,
individual methods are used for CPU and GPU. In
the case of the GPU, 2 thresholds are identified, one
low and one high. The high threshold bypasses more
LLC calls than the low threshold. During sampling,
core1 is assigned the low threshold while core2 is
assigned the high threshold. If the performance
difference between core1 and core2 is more than a
predetermined threshold value, it can be concluded
that the GPU is cache-sensitive.

2.5 WAP
Prefetching is a technique that enables SM to

fetch the data required from memory to cache in
advance. This improves memory access
performance as well as increases the cache hit rate.
Mostly in GPGPU, prefetching is a doable
mechanism. To achieve this, the future data has to be
predicted in advance. The thread ID has to be known
to predict the next memory address that needs to be
accessed. Though it improves the performance of the
GPU, it may become an overhead for the memory
controller. In many cases, the memory control gets
busy serving continuous memory access requests.
Prefetching may jam the bandwidth with extra
memory calls. Hence, we can say that the size of the
data and the time it takes to fetch may be crucial to
improve the overall performance of the GPU. WAP
(Warp feature Aware Prefetching) [7] policy takes
advantage of prefetching to ease cache management.
WAP attaches 3 hardware components to SM. Warp
detector maintains the details of all active warps. The
prefetching controller issues a prefetching signal and
prefetching address if it decides to fetch data. The
prefetching issuing/receiving unit issues prefetching
requests and receives feedback as PC, PI, and PPC.

 Journal of Theoretical and Applied Information Technology
15th July 2025. Vol.103. No.13

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4737

2.6 Buffer-Filter
Another cache management policy, Buffer-

Filter [8][9], considers adding another buffer parallel
to the LLC. Any data request raised by GPGPU first
looks in LLC, if not found, then looks in the extra
buffer. For a general data request, if the data is found
in the LLC, then simply read it. If it cannot find the
data block in LLC but finds it in the buffer, then it is
considered a reuse, and the block gets copied to LLC
and removed from the buffer. When the data is not
found in both the LLC and buffer, then a memory
read happens and the data gets copied to the buffer,
without disturbing the LLC. Once the data is re-
referenced and found in the buffer then only it gets
shifted to the LLC.

3. RE-REFERENCE PREDICTION
ALGORITHMS

Cache can be managed very well if the re-
usability of cache blocks can be predicted. Based on
re-usability, cache replacement policies can be
designed. There are many traditional policies like
LRU, FIFO, LFU, etc. Researchers have proposed
many other replacement policies that have helped us
predict when the cache lines might be referred to
again. NRU (Not Recently Used) replacement policy
predicts 2 re-reference values. Those are near-
immediate with value 0. It signifies that the cache
line will be accessed soon. The distant with value 1
means it will take a long interval to access the cache
line again. In each cache block, one bit is used to
store this prediction value. In case of a cache miss, it
victimizes the cache block with value 1. These
binary prediction values cannot be unique for each
cache block. Another policy named RRIP [9][10]
takes N bits to store the prediction values called Re-
Reference Prediction Values (RRPV). Here again,
near-immediate is 0, but distant is 2N-1. RRIP is
equivalent NRU if N is 1. The prediction value can
be any number between 0 to 2N-1. While inserting
any new cache block into the cache, the RRPV
assigned to it is of value long (2N-2), so that RRIP
can get some time to learn its re-reference interval
value. When a cache miss happens, the highest
RRPV block, considering from left, becomes
victimized. In case of a cache hit, either the hit block
gets promoted to near-immediate following the Hit-
Priority prediction policy, or the RRPV value gets
decremented by one following Frequency-Priority
prediction policy. As all these values are calculated
statically, this simple RRIP is commonly called as

Static-RRIP (SRRIP). This policy can’t be thrash-
resistant if the application’s working set is bigger
than the cache size. But it addresses the scan-
resistance problem. Hence, Bimodal RRIP (BRRIP)
evolved with some minor modifications to SRRIP.
In this policy, not all but most of the cache blocks
are inserted with RRPV distant (2N-1), and
occasionally, cache blocks with RRPV long (2N-2).
Dynamic RRIP (DRRIP) is another variant of RRIP
that dynamically decides on which RRIP policy to
use among SRRIP and BRRIP based on a set-
duelling mechanism. But one limitation can be seen
here. The cache access pattern differs for different
types of operations. Hence, using the same reference
prediction logic in all the cases may not be a wise
attempt. SHiP (Signature-based Hit Predictor) [11]
policy tried solving this by associating a different
signature to each cache access. This access
segmentation improved the re-reference prediction
to another level. This says that the re-reference
prediction for cache access with a similar signature
will be the same. To achieve this, 2 extra fields are
added to each cache line. One for the signature and
another for the outcome of the cache insertion. With
an initial value of 0, the outcome becomes 1 if the
cache line gets a re-reference. It maintains a
Signature History Counter Table (SHCT) array
indexed with signatures to record and monitor the
behaviour of the signatures. On a cache hit, the
associated SHCT value indexed with that particular

 Journal of Theoretical and Applied Information Technology
15th July 2025. Vol.103. No.13

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4738

signature gets incremented. On a cache line eviction,
if it is never re-referenced since the time of insertion,
the associated SHCT value indexed with that
particular signature gets decremented. A 0 SHCT
value indexed with signature indicates distant for

that signature, whereas a positive number indicates
reuse of the cache lines for that signature and
considers an intermediate interval value. Though it
cannot predict the exact re-referential interval, it can
say if the cache line can be re-referenced. This
interval prediction happens based on the SHCT
value for any signature. If we talk about the RRPV
value for a read miss, it returns 3 (distant) if the
corresponding SHCT value for that signature is 0,
otherwise it returns 2 (intermediate). In case of a
replacement, the victim selection happens the same
way as SRRIP. The basic signatures for SHiP are
memory region signature (SHiP-Mem), program
counter signature (SHiP-PC), instruction sequence
trace signature (SHiP-ISeq). In SHiP-Mem, the
cache references are grouped on memory location
being accessed. The first few bits from the memory
locations are taken and created the signature by
hashing them. In SHiP-PC, the cache references are

bunched on instructions that access the said
locations. PC bits are hashed to form this signature.
In SHiP-ISeq, the cache references are grouped
based on the instruction history for a memory access.
This sequence can be represented in a binary string

corresponding to the instruction decode sequence

before the memory access. For heterogeneous
CMPs another proposal SHiP-Hybrid [12] has also
come that has extended SHiP. In this policy, it
internally uses 2 different flavour of SHiP named
SHiP-PC and SHiP-mem, respectively for CPU and
GPU for read operations. It is similar to the older one
for write operation.

4. INTEL ALDER LAKE ARCHITECTURE

Intel launched the Alder Lake processor in
October 2021 as part of its 12th-generation core
processors. This processor introduced a hybrid
architecture consisting of 2 different types of cores.
P-Cores is designed and used for high-performance
tasks like gaming. E-Cores are designed and used to
maintain efficiency by handling background tasks
and lightweight threads. It can have a maximum of

Table 1: Configuration Comparison For Alder Lake, Raptor Lake And Configured CPU-GPU Architecture

 Journal of Theoretical and Applied Information Technology
15th July 2025. Vol.103. No.13

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4739

16 cores that includes 8 P-Cores and 8 E-Cores. Intel
Thread Director is a hardware-based runtime

scheduling assistance that helps the OS to
schedule the tasks intelligently to the appropriate
cores. For configuration details, Table 1 can be
referred. supports PCIe 5.0, which is double the
bandwidth of PCIe 4.0. It also supports DDR5 RAM.
The L2 cache size is 80 KB for P-Core and 96 KB
for E-Core. L3 cache is shared among the cores with
a maximum size of 30 MB. Base clock speed for P-
core is up to 3.2 GHz, whereas max turbo frequency
is up to 5.2 GHz. Base clock speed for E-core is up
to 2.4 GHz, whereas max turbo frequency is up to

3.9 GHz. It has GPU with Intel Xe-LP architecture,
which has 32 EUs with a maximum frequency of
1.65 GHz.

5. INTEL RAPTOR LAKE
ARCHITECTURE

Intel launched the Raptor Lake processor in
October 2022 as part of its 13th-generation core
processor family. It is the refined version of the
Alder Lake processor. Same as Alder Lake, this
processor also comprises P-Cores and E-Cores. P-
cores are based on Raptor Cove architecture, which
is designed for high single-threaded performance
and latency-sensitive tasks. This architecture is the
advanced version of Alder Lake’s Golden Cove
architecture. E-cores are based on Gracemont
architecture, designed for parallel, background, and
multi-threaded tasks. E-core goes up to 24 cores and
32 threads. Higher L2 and L3 cache sizes improve
gaming and multi-threading application
performance and reduce latency. For more
configuration details, Table 1 can be referred.

6. CONFIGURED INTEGRATED
HETEROGENEOUS CPU-GPU
ARCHITECTURE

Among Intel’s iGPU processors, we chose to
study the processors Alder Lake and Raptor Lake.
Their architecture accumulates 2 different types of
cores and takes advantage of their performance
capabilities. Performance cores (P-Core) are for
higher performance and Execution cores (E-Core)
are to achieve efficiency improvements. This hybrid
architecture dynamically decides on en-routing the
workloads to P-Core or E-Core depending upon the
nature of the workload. Using these 2 processors as
a baseline, we have configured a heterogeneous
CPU-GPU architectural model. Figure 1 shows a
detailed block diagram of this heterogeneous
architecture outlining the arrangement of P-Cores,
E-Cores, Shared LLC, and Integrated GPU. This
model is comprised of 8 P-Cores and 8 E-Cores.
Each P-Core is responsible for performance-
intensive and demanding tasks like gaming, video
editing. In contrast, each E-core is responsible for
efficiency-based tasks like background operations
and multi-threaded executions. These tasks don’t
need high-performing processors. The P-cores are
larger cores and optimized for high performance.

Figure 1: Block Diagram Of The Proposed
Heterogeneous Integrated CPU-GPU Model

Figure 2(A): Expanded Diagram Of The P-Core Used
In The Proposed Heterogeneous Integrated CPU And

GPU Model

 Journal of Theoretical and Applied Information Technology
15th July 2025. Vol.103. No.13

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4740

Their complex designs help in handling the tasks
efficiently. Figure 2(a) describes a detailed block
diagram of P-Core. P-core has a dedicated L1 (128
KB), which is further divided into instruction-cache
and data-cache. It also has a dedicated L2 cache of
size 8 MB. 3.75 GHz is set as the base frequency
with a maximum turbo frequency of 5.5 GHz. E-
Cores are quite similar in size then P-Cores and
hence are less powerful than P-Cores. They only
handle efficiency-based workloads, which don’t
require much processing power. Also, they have L1
(96 KB) and L2 (4 MB). It has a base frequency of
2.75 with a maximum turbo frequency of 4.5 GHz.
Figure 2(b) shows the block diagram of E-Core. The

last-level cache is common for the P-Cores and E-

Cores. The GPU is integrated inside the chip. This
Integrated GPU is divided into 4 slices. Each slice is
further divided into 2 sub-slices. The detailed block
diagram of the said integrated GPU design is
presented in Figure 3. In this figure, Slice 1 is
divided into 2 sub-slices, Sub-slice 1.0 and Sub-slice
1.1. Each sub-slice consists of 8 Execution Units
(EU). The EUs inside a sub-slice share a common L1
(64 KB) and a common L2 (2 MB). All the slices in
the GPU share the common L3 cache of size 64 MB.
Table 1 can be referred for configuration details.

7. HARDWARE SIMULATION

To simulate our configured integrated CPU-
GPU heterogeneous environment, we have used the
MacSim (Many-core Architecture Computer
Simulator) [13] simulator. It is a cycle-level
simulation tool. We chose to use this tool for our
simulation environment as it is designed for the
performance analysis of heterogeneous computing
systems comprising both CPU and GPU
components. Its modular design allows for flexible
configuration of architectural components such as
cache hierarchies, memory subsystems, and
interconnect networks.

8. SIMULATION RESULTS

To validate our model, we have taken existing Intel
Alder Lake and Raptor Lake processors as our
baseline to compare the results. We have conducted
separate studies for these baselines and analysed the
reports. For this study, we have identified 8 different
workloads and named them in a sequence starting
from HWMix1 to HWMix8. HWMix stands for
Heterogeneous Workload Mix. To justify our
configured integrated CPU-GPU heterogeneous
model, we have taken a mix of different workloads
that comprise CPU and GPU-specific loads, 4 from
each. We have a piece of detailed information about
the workload mix in Table 2. After trying out with
all the workloads, we have calculated the Geometric
mean of the outcomes and taken it as a separate
parameter. The detailed report of the study on
speedup comparison of our configured integrated
CPU-GPU model over Alder Lake processor is
presented here in Figure 4 as a chart. Here we can
see that, for most of the workloads, our proposed
model is performing better than the Alder Lake
processor. Considering all the workloads, the
geometric mean calculated over the outcomes

Figure 2(b): Expanded diagram of the E-Core used in the
Proposed Heterogeneous Integrated CPU and GPU model

Figure 3: Block diagram Integrated GPU
configuration in the Proposed Heterogeneous model

 Journal of Theoretical and Applied Information Technology
15th July 2025. Vol.103. No.13

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4741

indicates a 59.8% speedup improvement achieved by
our configured integrated CPU-GPU model over 1st
baseline processor Alder Lake.

The same study of speedup comparison is performed
between our configured integrated CPU-GPU
heterogeneous model and the Raptor Lake processor,
taking the same set of workloads. The detailed report
for the comparison is presented here in Figure 5. In
this study, we can see that for a few of the workloads,
the speedup result has surpassed the same of Raptor
Lake. The geometric mean calculated on the
outcomes by different workloads shows that our
configured integrated CPU-GPU model gets a spike
in speedup by 22.12% over Raptor Lake.

Figure 4: Speedup Comparison Of The Configured
Integrated CPU-GPU Model Over The Baseline Alder

Lake

We have considered a few of the traditional and
well-performing cache management algorithms to
validate our configured heterogeneous model. The
algorithms included are DRRIP, SHiP with bypass,
SHiP Hybrid, LRU, PLRU, TADRRIP, SHiP_PC,
and Optimal with bypass. Again, we have taken the
earlier considered processors as the baseline here.

The average LLC read miss count of the configured
integrated CPU-GPU model and Alder Lake
processor, considering all the workloads, is been
normalized and shown in Figure 6. Alder Lake uses

LRU for cache management. In our configured
heterogeneous model, we have tried all the
considered policies and collected the statistics. The
bars in the graph convey 2 different values
concatenated in 2 different colours, as mentioned in
the graph. We can see a good read miss count
improvement concerning our configured model.
Among the cache management policies, SHiP with
bypass shows an improvement of 34.33%, whereas
many other policies have shown improvements of
more than 30%.

Figure 5: Speedup Comparison Of The Configured
Integrated CPU-GPU Model Over The Baseline Raptor

Lake

The average LLC read miss count of the
configured integrated CPU-GPU model and Raptor
Lake processor, considering all the workloads, is
been normalized and shown in Figure 7. Raptor Lake
uses PLRU for cache management. Again, in our
configured heterogeneous model, we have tried all

Table 2: Heterogeneous Workload Mixes

 Journal of Theoretical and Applied Information Technology
15th July 2025. Vol.103. No.13

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4742

the considered policies mentioned earlier and
collected the statistics. The bars in the graph convey
2 different values concatenated in 2 different colour,
as mentioned in the graph. We can see a good read
miss count improvement concerning our configured
model. Among the cache management policies,
SHiP_Hybrid shows an improvement of 37.29%.
Some other policies in the list have also shown
improvements of more than 30%.

Figure 6: Comparison Of Read Miss Between The
Configured Integrated CPU-GPU Model With Respect
To Different Algorithms Compared With Alder Lake In

Normalized Form

Figure 7: Comparison Of Read Miss Between The
Configured Integrated CPU-GPU Model With Respect

To Different Algorithms Compared With Raptor Lake In
Normalized Form

9. CONCLUSION

Integrated(heterogeneous) CPU with GPU system

represent a fundamental development in computing,
Associating the capability of Central Processing
Units (CPUs) and Graphics Processing Units
(GPUs) in a single chip. This to enhances
performance,high pay loads efficiency in energy,
and cost cut, However, Our integrated Architecture ,
allotment the same memory sub-scheme. This

technology may provide where memory oriented
jobs on the CPU may come up with GPU
transaction, with the side effects performance
degradation,soft implementation Complexity and
Privacy threats.

We Concludes the paper with followings:

 In our experiments, we have done
speedup comparison between our
configured integrated heterogeneous
model with Alder Lake processor, as well
as Raptor Lake processor separately. The
results say our configured model has
gained a good speedup improvement.
Even the normalized LLC read miss count
comparison, taking 8 different cache
management algorithms into account,
shows a better result for the configured
heterogeneous model, while comparing
the same with Alder Lake and Raptor
Lake separately.

 A processor similar to our configured
integrated heterogeneous CPU-GPU
model can give better performance over
Alder Lake in Raptor Lake in the majority
of the workloads. We have seen that our
configured heterogeneous model can give
better performance results. But as the
frequencies for P-Core, E-Core and also
for GPU frequency, the values are quite
high, they consume more power to match
that. It gets heated very quickly.

 The strength of or system over Raptor
lake and Alder Lake in terms of clock
speed,core counts.All the system support
next-generation technology and our
system supports same stability level in
comparison to existing two base model.

 Considering applying the bypass technique to LLC
to optimally use it and get better outcomes will be
used as a future scope of the paper.

 Journal of Theoretical and Applied Information Technology
15th July 2025. Vol.103. No.13

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4743

REFERENCES:

[1] H. Wen and W. Zhang, "Reducing Inter-
Application Interferences in Integrated CPU-
GPU Heterogeneous Architecture," 2018
IEEE 36th International Conference on
Computer Design (ICCD), Orlando, FL,
USA, 2018, pp. 278-281, doi:
10.1109/ICCD.2018.00050.

[2] P. Gera, H. Kim, H. Kim, S. Hong, V. George
and C. -K. Luk, "Performance
Characterisation and Simulation of Intel's
Integrated GPU Architecture," 2018 IEEE
International Symposium on Performance
Analysis of Systems and Software (ISPASS),
Belfast, UK, 2018, pp. 139-148, doi:
10.1109/ISPASS.2018.00027.

[3] M. K. Qureshi and Y. N. Patt, "Utility-Based
Cache Partitioning: A Low-Overhead, High-
Performance, Runtime Mechanism to
Partition Shared Caches," 2006 39th Annual
IEEE/ACM International Symposium on
Microarchitecture (MICRO'06), Orlando, FL,
USA, 2006, pp. 423-432, doi:
10.1109/MICRO.2006.49.

[4] Lee, Jaekyu and Hyesoon Kim. “TAP: A
TLP-aware cache management policy for a
CPU-GPU heterogeneous architecture.” IEEE
International Symposium on High-
Performance Comp Architecture (2012): 1-
12.

[5] P. -H. Wang, C. -H. Li and C. -L. Yang,
"Latency sensitivity-based cache partitioning
for heterogeneous multi-core
architecture," 2016 53nd ACM/EDAC/IEEE
Design Automation Conference (DAC),
Austin, TX, USA, 2016, pp. 1-6, doi:
10.1145/2897937.2898036.

[6] V. Mekkat, A. Holey, P. -C. Yew and A. Zhai,
"Managing shared last-level cache in a
heterogeneous multicore processor,"
Proceedings of the 22nd International

Conference on Parallel Architectures and
Compilation Techniques, Edinburgh, UK,
2013, pp. 225-234, doi:
10.1109/PACT.2013.6618819.

[7] M. Wu, Y. Pei, L. Yu, T. Chen, X. Lou and T.
Zhang, "WAP: The Warp Feature Aware
Prefetching Method for LLC on CPU-GPU
Heterogeneous Architecture," 2016 IEEE
18th International Conference on High
Performance Computing and
Communications; IEEE 14th International
Conference on Smart City; IEEE 2nd
International Conference on Data Science
and Systems (HPCC/SmartCity/DSS),
Sydney, NSW, Australia, 2016, pp. 414-421,
doi: 10.1109/HPCC-SmartCity-
DSS.2016.0066.

[8] Li, S., Meng, J., Yu, L., Ma, J., Chen, T., &
Wu, M. 2015. Buffer filter: a last-level cache
management policy for CPU-GPGPU
heterogeneous system. In 2015 IEEE 17th
International Conference on High
Performance Computing and
Communications, 2015 IEEE 7th
International Symposium on Cyberspace
Safety and Security, and 2015 IEEE 12th
International Conference on Embedded
Software and Systems (pp. 266-271). IEEE.

[9] Sahu, N., Dash, B., Pattnaik, P. K., Sangam,
M., Moningi, V., Verma, A., & Jha, S. (2023,
December). An analysis on multi-level cache
eviction policies in multi-core processor using
GEM5 simulator. In AIP Conference
Proceedings (Vol. 2981, No. 1). AIP
Publishing.

[10] Aamer Jaleel, Kevin B. Theobald, Simon C.
Steely, and Joel Emer. 2010. “High
performance cache replacement using re-
reference interval prediction (RRIP).”
SIGARCH Comput. Archit. News 38, 3 (June
2010), 60–71.
https://doi.org/10.1145/1816038.1815971

[11] Wu, C. J., Jaleel, A., Hasenplaugh, W.,
Martonosi, M., Steely Jr, S. C., & Emer, J.
(2011, December). SHiP: Signature-based hit
predictor for high performance caching.
In Proceedings of the 44th Annual IEEE/ACM
International Symposium on
Microarchitecture (pp. 430-441).

[12] Rai, S., & Chaudhuri, M. (2016, June).
Exploiting Dynamic Reuse Probability to
Manage Shared Last-level Caches in CPU-

GPU Heterogeneous Processors.
In Proceedings of the 2016 International
Conference on Supercomputing (pp. 1-14).

[13] Kim, H., Lee, J., Lakshminarayana, N. B.,
Sim, J., Lim, J., & Pho, T. (2012). Macsim: A
cpu-gpu heterogeneous simulation framework
user guide. Georgia Institute of Technology,
1-57.

