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ABSTRACT 
 

Threat detection in Cyber-Physical Systems (CPS) is essential to safeguarding the reliability  and 
security of these integrated systems, which interface digital components with the physical world. CPS 
platforms, common in healthcare, industrial automation, smart cities, and transportation, face vulnerability 
to various cyber threats. Effective threat detection in CPS involves identifying and mitigating cybersecurity 
risks, which can otherwise disrupt physical operations, compromise data integrity, and jeopardize safety. 
Machine Learning (ML) and Deep Learning (DL) techniques are increasingly leveraged for detecting 
anomalies by modeling the CPS’s normal behaviour and recognizing deviations. This study presents an 
Automated Threat Detection using the Flamingo Search Algorithm with Optimal Deep Learning (ATD-
FSAODL) in CPS environments. Initially, the ATD-FSAODL technique applies Flamingo Search 
Algorithm (FSA)-based feature subset selection to identify optimal feature sets. The ATD-FSAODL 
approach utilizes a modified Elman Spike Neural Network (MESNN) for threat recognition and 
classification, with the Slime Mold Algorithm (SMA) optimizing the MESNN parameters to enhance 
detection accuracy. Simulation experiments on benchmark databases demonstrate the effectiveness of the 
ATD-FSAODL technique, achieving a maximum accuracy of 99.58%, precision of 99.58%, recall of 
99.58%, F-score of 99.58%, and MCC of 99.16%. 

Keywords: Cyber-physical system, Threat analysis, Industry 4.0, Deep learning, Feature selection 
 
1. INTRODUCTION  
 

Cyber-Physical Systems (CPS) represent a 
convergence of physical processes with 
computational capabilities, where embedded 
devices and communication networks enable 
seamless monitoring, control, and automation. 

Found in diverse applications like healthcare, 
industrial automation, smart cities, and 
transportation, CPS environments are fundamental 
to the efficiency and safety of modern 
infrastructure. However, the interconnected nature 
of CPS introduces substantial cybersecurity 
challenges. Cyber threats targeting CPS can 
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compromise data integrity, disrupt physical 
operations, and, in critical sectors, pose direct 
threats to safety and human lives [1], [2]. The 
detection of cyber threats in CPS is inherently 
complex. Unlike traditional IT systems, where 
security threats often manifest in the digital domain 
alone, CPS environments involve an interplay 
between the cyber and physical realms. Attacks on 
CPS systems can produce cascading effects, where 
a digital intrusion triggers undesirable physical 
behaviors, causing substantial disruption or 
damage. Thus, there is an urgent need for reliable 
and efficient threat detection frameworks tailored to 
CPS that can anticipate, detect, and mitigate these 
multifaceted threats in real time [3], [4]. Machine 
Learning (ML) and Deep Learning (DL) models are 
increasingly popular for anomaly detection in CPS 
due to their ability to model complex, nonlinear 
relationships. By learning the normal operational 
patterns of CPS, ML and DL models can identify 
deviations that may indicate security threats. 
Despite their potential, existing ML and DL 
techniques often face challenges with high-
dimensional data, variable network dynamics, and 
the requirement for rapid, responsive analysis. 
Addressing these issues requires a comprehensive 
approach that integrates advanced feature selection 
and parameter optimization to maximize model 
efficiency and accuracy [5]. 

This study introduces a novel Automated Threat 
Detection using the Flamingo Search Algorithm 
with Optimal Deep Learning (ATD-FSAODL) 
framework, designed specifically for CPS 
environments [6]. The ATD-FSAODL model 
incorporates three primary components to achieve 
high-performance threat detection: Flamingo Search 
Algorithm (FSA) for Feature Selection: The FSA is 
used for selecting relevant features from high-
dimensional CPS data. Inspired by flamingo 
foraging behavior, FSA offers a balanced approach 
to exploration and exploitation, identifying feature 
subsets that maximize detection accuracy [7]. 

Modified Elman Spike Neural Network 
(MESNN) for Threat Classification: The MESNN is 
a modified neural network designed to capture 
temporal data patterns in CPS environments. By 
integrating spike neurons, MESNN improves 
sensitivity to subtle anomalies, enhancing 
classification accuracy for different types of threats 
[8]. Slime Mold Algorithm (SMA) for Parameter 
Optimization: The SMA optimizes the MESNN's 
parameters to further enhance its accuracy. By 
mimicking the adaptive foraging behavior of slime 
molds, SMA achieves optimal parameter settings, 

ensuring the MESNN model is finely tuned to 
detect even low-signal threats effectively [9]. The 
ATD-FSAODL framework was evaluated on 
benchmark CPS datasets to validate its 
performance. Experimental results indicate that the 
proposed approach offers substantial improvements 
in threat detection accuracy, achieving an accuracy 
of 99.58%, with equally high precision, recall, and 
F-scores. These results demonstrate the model's 
capability in efficiently identifying threats and 
reducing false positives, making it well-suited for 
real-time applications in CPS environments [10]. 

In recent years, significant research has focused 
on developing effective threat detection 
mechanisms for Cyber-Physical Systems (CPS). 
Traditional cybersecurity methods are often 
insufficient for CPS, given the unique 
characteristics of these systems that require 
integration between digital and physical domains. 
This section provides a review of notable machine 
learning (ML), deep learning (DL), and 
optimization techniques applied in CPS threat 
detection, highlighting their strengths and 
limitations [11], [12]. Machine learning methods, 
including Support Vector Machines (SVM), 
Decision Trees (DT), and Random Forests (RF), are 
widely used in anomaly detection for CPS. For 
example, SVM has shown effectiveness in detecting 
boundary anomalies in complex CPS data, as it 
handles non-linearly separable data and performs 
well in high-dimensional spaces. However, SVM 
struggles with large datasets typical of CPS, leading 
to scalability issues and increased computational 
costs [13]. Other ML approaches, such as Random 
Forests and k-Nearest Neighbors (k-NN), are 
commonly applied in CPS environments due to 
their simplicity and interpretability. Nevertheless, 
these models lack the adaptability needed for 
rapidly evolving threat profiles. As a result, 
traditional ML models are frequently enhanced with 
feature selection techniques or combined with 
ensemble methods to improve performance, though 
this often comes at the cost of increased complexity 
and computational demand [14], [15]. 

Deep learning models, particularly Convolutional 
Neural Networks (CNN) and Recurrent Neural 
Networks (RNN), have gained popularity in CPS 
threat detection due to their ability to capture 
complex patterns and temporal dependencies within 
data. CNNs are typically employed to detect spatial 
patterns, while RNNs and Long Short-Term 
Memory (LSTM) networks are favored for 
sequence-based data, such as time-series data in 
CPS environments [16], [17]. While DL models 
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like LSTM and CNN offer high accuracy, their 
application in CPS is constrained by the high 
dimensionality of CPS data and the computational 
expense of training deep networks. This limitation 
can be critical in real-time environments, where fast 
detection and response are essential. Recent efforts 
have incorporated hybrid approaches that combine 
CNN and LSTM layers for enhanced feature 
extraction, yet these architectures can be difficult to 
train and fine-tune [18]. To improve the efficiency 
of ML and DL models in CPS threat detection, 
feature selection and parameter optimization have 
become important areas of research. Metaheuristic 
algorithms, such as Particle Swarm Optimization 
(PSO), Genetic Algorithms (GA), and Ant Colony 
Optimization (ACO), have been employed to select 
the most relevant features and optimize model 
parameters [19]. PSO and GA are frequently used 
for parameter optimization, where they help reduce 
overfitting and improve model accuracy by 
optimizing hyperparameters. However, these 
algorithms can become trapped in local optima, 
particularly in high-dimensional spaces, limiting 
their effectiveness. Additionally, the convergence 
speed of PSO and GA can be slow, especially when 
dealing with the complex and dynamic threat 
profiles encountered in CPS environments [20]. 
Nature-inspired algorithms, such as the Flamingo 
Search Algorithm (FSA) and Slime Mold 
Algorithm (SMA), have emerged as promising 
alternatives for feature selection and optimization in 
CPS threat detection. FSA, inspired by the foraging 
behavior of flamingos, has demonstrated high 
efficiency in exploration and exploitation balance, 
making it suitable for selecting optimal feature 
subsets in high-dimensional data. FSA’s lightweight 
computational nature enables it to identify key 
features that contribute to threat detection, 
enhancing model accuracy without excessive 
computational cost [21]. Similarly, the Slime Mold 
Algorithm (SMA) has shown potential for 
parameter optimization due to its adaptability and 
robustness. Unlike traditional algorithms, SMA 
dynamically adjusts its search behavior based on 
environmental conditions, allowing it to avoid local 
optima and improve convergence speed. The 
adaptive properties of SMA make it well-suited for 
CPS environments where threat patterns can shift 
unpredictably [22]. While significant progress has 
been made in applying ML, DL, and optimization 
algorithms for CPS threat detection, several gaps 
remain. First, the high-dimensional nature of CPS 
data often leads to computational inefficiencies and 
reduced detection accuracy. Many existing models 
struggle to balance detection performance with 

computational feasibility, particularly for real-time 
applications [23]. Moreover, few studies have 
explored hybrid approaches that integrate advanced 
feature selection, deep learning, and parameter 
optimization specifically tailored for CPS. While 
FSA and SMA offer promising solutions, they have 
not been widely tested in CPS environments. 
Furthermore, existing studies seldom focus on 
models capable of detecting a broad range of threat 
profiles while adapting to the dynamic nature of 
CPS [24]. 

To address these gaps, the proposed Automated 
Threat Detection using Flamingo Search Algorithm 
with Optimal Deep Learning (ATD-FSAODL) 
combines FSA for feature selection, a Modified 
Elman Spike Neural Network (MESNN) for threat 
detection, and SMA for parameter optimization. 
This hybrid approach leverages the strengths of 
each component to achieve a high-performance, 
computationally efficient solution suitable for CPS. 
By integrating FSA and SMA with MESNN, the 
ATD-FSAODL framework aims to provide a 
comprehensive and adaptable solution for 
automated threat detection in CPS environments 
[25]. In summary, while existing methods have laid 
a strong foundation for CPS threat detection, they 
often fall short in scalability, adaptability, and real-
time performance. The ATD-FSAODL approach 
seeks to overcome these limitations, offering an 
efficient, accurate, and responsive solution tailored 
to the unique challenges of CPS threat detection. 
The following sections elaborate on the 
methodology, experimental setup, and performance 
evaluation of the proposed approach. 

2. STYLE OF PAPER 

The proposed Automated Threat Detection 
using Flamingo Search Algorithm with Optimal 
Deep Learning (ATD-FSAODL) methodology is 
designed to detect and classify threats in Cyber-
Physical Systems (CPS) by effectively integrating 
feature selection, optimized deep learning, and 
parameter tuning. The methodology consists of 
three main components: feature subset selection 
using the Flamingo Search Algorithm (FSA), threat 
classification with the Modified Elman Spike 
Neural Network (MESNN), and parameter 
optimization using the Slime Mold Algorithm 
(SMA). Figure 1 illustrates the complete process of 
the ATD-FSAODL method [26]. 

Feature selection is critical in CPS 
environments due to the high dimensionality and 
variability of data generated by interconnected 
devices. The Flamingo Search Algorithm (FSA) is 
employed to reduce the data dimensionality by 
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selecting the most relevant features, thereby 
enhancing computational efficiency and model 
accuracy [27]. The Flamingo Search Algorithm 
(FSA) is an optimization technique inspired by the 
social behavior and foraging patterns of flamingos, 
particularly in their search for food in complex 
environments. FSA has emerged as a promising 
tool in optimization, and one of its practical 
applications is in feature selection in machine 
learning and data mining. Feature selection aims to 
identify the most informative subset of features that 
contribute to the performance of predictive models, 
reducing dimensionality, computational costs, and 
overfitting [28]. FSA operates on the principles of 
flamingo behavior, such as flocking, prey tracking, 
and food searching, which help flamingos find food 
in wetlands efficiently. The algorithm typically 
includes phases that simulate: 
Foraging Behavior: Flamingos assess their 
environment to identify the areas with higher food 
density. 
Tracking Prey: By observing other flamingos' 
positions, they refine their search to maximize food 
intake. 
Decision-Making and Communication: Flamingos 
move in response to their surroundings and the 
actions of others, balancing exploration and 
exploitation. 

This process can be adapted to 
optimization problems, where each "flamingo" 
represents a potential solution, and its position in 
the search space corresponds to a set of selected 
features. Steps of Feature Selection Using FSA 
Initialization: Initialize a population of flamingos, 
where each flamingo is a candidate subset of 
features from the dataset. The quality of each subset 
is evaluated based on a fitness function, often 
accuracy or a performance metric of a classifier 
trained on the subset. 
Fitness Evaluation: For each candidate solution, 
evaluate its fitness using a predictive model (e.g., a 
machine learning classifier) and cross-validation to 
estimate the subset’s effectiveness. This step 
ensures that only relevant and non-redundant 
features are selected. 
Flocking and Updating Positions: Based on their 
respective fitness values, each flamingo adjusts its 
position in the search space. This phase represents 
the exploration of different feature subsets by 
following the flock’s best solutions while 
maintaining some randomness to escape local 
optima. 
Tracking Best Solutions: Flamingos assess other 
high-fitness candidates and adjust their position 
accordingly, allowing the algorithm to converge 

towards an optimal or near-optimal subset of 
features. 
Termination: The process repeats for a predefined 
number of iterations or until convergence, resulting 
in a final subset of selected features that maximize 
the model’s performance. 

The Flamingo Search Algorithm, with its 
robust searching mechanism inspired by natural 
behaviors, holds potential for feature selection tasks 
across numerous domains, particularly those 
requiring high-dimensional data reduction for 
efficient and effective machine learning model 
performance. Once the optimal feature subset is 
selected, the Modified Elman Spike Neural 
Network (MESNN) is used to classify threats. The 
MESNN is a variation of the traditional Elman 
neural network designed to detect temporal and 
spatial patterns in CPS data. By incorporating 
spiking neurons, MESNN improves the sensitivity 
of the model to changes in CPS data, which is 
essential for detecting anomalies associated with 
cyber threats. 
 
 

 
 

Figure 1. ATD-FSAODL System Workflow 
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Architecture of MESNN: The MESNN 
consists of an input layer, a hidden layer with 
spiking neurons, a recurrent context layer for 
temporal information retention, and an output layer. 
The spiking neurons in the hidden layer enable the 
network to capture transient signals, while the 
recurrent connections in the context layer maintain 
a memory of previous states. This architecture 
allows the MESNN to capture both short-term and 
long-term dependencies in CPS data. 

Threat Detection Process: During training, 
the MESNN learns the normal behavior patterns of 
the CPS by adjusting its weights and biases 
according to the input data. Any deviation from 
these learned patterns, as detected in real-time data, 
triggers an anomaly, which is classified as a 
potential threat. This approach allows MESNN to 
adapt to the unique data patterns of different CPS 
applications, improving the accuracy and 
robustness of threat detection. 

The final component of the ATD-
FSAODL framework is the optimization of 
MESNN’s parameters using the Slime Mold 
Algorithm (SMA). Proper parameter settings are 
crucial to maximizing the MESNN’s accuracy and 
efficiency, especially given the variability of CPS 
environments. 

Slime Mold Algorithm Overview: SMA is 
inspired by the adaptive foraging behavior of slime 
molds, which navigate their environment in search 
of resources by dynamically adjusting their path. In 
the context of the ATD-FSAODL methodology, 
SMA is used to optimize hyperparameters such as 
learning rate, spike threshold, and weight decay, 
which are critical for MESNN’s performance. 

SMA Optimization Process: SMA begins 
by generating an initial population of random 
parameter values. The algorithm iteratively 
evaluates these values based on a fitness function, 
which in this case is the MESNN’s accuracy on the 
training data. Parameters that yield higher fitness 
scores are retained and adjusted in subsequent 
iterations. Through this adaptive search, SMA 
efficiently converges on the optimal parameters, 
ensuring that the MESNN is well-tuned to detect 
threats accurately with minimal false positives. 
Data Preprocessing: CPS data are collected and 
preprocessed to handle missing values, outliers, and 
noise. Standard normalization techniques are 
applied to ensure data consistency and 
compatibility with the MESNN model. 
Feature Selection with FSA: FSA is applied to the 
preprocessed data to identify the most informative 
features, reducing dimensionality and improving 
computational efficiency. 

Training the MESNN Model: The MESNN is 
trained on the optimized feature subset selected by 
FSA. During training, the MESNN learns the 
normal behavior patterns of the CPS environment. 
Parameter Optimization with SMA: SMA is 
employed to tune the MESNN’s parameters, 
ensuring that the model achieves optimal accuracy 
in threat detection. 
Threat Detection and Classification: In real-time 
application, the ATD-FSAODL model monitors 
incoming CPS data for anomalies. Detected 
deviations from normal behavior patterns are 
classified as potential threats, allowing for timely 
intervention and mitigation. 
Performance Evaluation: The performance of the 
ATD-FSAODL framework is evaluated on 
benchmark datasets, comparing it with other 
models based on metrics like accuracy, precision, 
recall, F-score, and MCC. 

The ATD-FSAODL framework combines 
advanced feature selection, an optimized deep 
learning model, and robust parameter tuning to 
deliver a highly accurate, efficient, and adaptable 
threat detection system for CPS environments. The 
following section details the experimental setup and 
performance evaluation conducted to validate the 
effectiveness of the proposed approach. 
 
3. RESULTS AND DISCUSSION 
 

The performance of the proposed 
Automated Threat Detection using Flamingo 
Search Algorithm with Optimal Deep Learning 
(ATD-FSAODL) was evaluated using the 
experimental setup. This section presents the 
quantitative results in terms of various evaluation 
metrics, compares the ATD-FSAODL model with 
state-of-the-art approaches, and discusses the 
implications of these findings in a Cyber-Physical 
System (CPS) environment. The ATD-FSAODL 
model was evaluated on the test set, and the results 
were measured using accuracy, precision, recall, 
F1-score, and Matthews Correlation Coefficient 
(MCC). Table 1 below summarizes the model's 
performance across these metrics. The results 
demonstrate that the ATD-FSAODL model 
outperforms other models in all metrics, achieving 
a detection accuracy of 99.58% with an equally 
high precision, recall, and F1-score. The high MCC 
of 99.16% further indicates a balanced and effective 
classification, even in the presence of imbalanced 
data. Figure 2 is a representation of the confusion 
matrices that are associated with the ATD-
FSAODL system.  
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Table 1 below summarizes the model's performance across these metrics 
Metric ATD-FSAODL Random Forest SVM LSTM CNN 

Accuracy 99.5% 96.4% 95.8% 97.2% 98.1% 
Precision 99.5% 96.3% 94.9% 97.4% 98.0% 

Recall 99.5% 96.6% 95.5% 97.1% 98.2% 
F1-Score 99.5% 96.4% 95.2% 97.2% 98.1% 

MCC 99.1% 93.2% 91.6% 95.6% 96.5% 
 
 

The results demonstrate that the ATD-
FSAODL methodology correctly classifies the 
instances that are considered normal and those that 
are considered anomalous. The overall threat 
detection outcome of the ATD-FSAODL approach 
is evaluated using the NSLKDD2015 database, as 
shown in Figure 3. The findings indicated that the 
ATD-FSAODL method achieves effective 
performance outcomes. 

The overall threat detection outcome of the 
ATD-FSAODL methodology is tested using the 
CICIDS2017 database, as shown in Figure 4. As a 
result of the outcome, it was concluded that the 
ATD-FSAODL strategy brings about successful 
outcomes. 

Figure 5 presents a comparative analysis 
of the ATD-FSAODL strategy against alternative 
methodologies. The simulation findings indicate 
that the OT and RF models performed inferiorly 
compared to the others. Additionally, the ATMMF-
TDS, DBN, LSTM, and RNN models have 
achieved comparable performance. Concurrently, 
the QDMO-EDLTD approach has demonstrated 
moderate efficacy. 

The analysis of computation time for the 
ATD-FSAODL system in comparison to existing 
approaches is presented in Figure 6. The results 
demonstrate that the ATD-FSAODL methodology 
achieves superior performance. The ATD-FSAODL 
technique demonstrates a reduction in training time 
(TRT), whereas the QDMO-EDLID, AIMMF-IDS, 
DBN, LSTM, RNN, DT, and RF models exhibit 
increased TRT values. Additionally, the ATD-
FSAODL method yields a reduction in TRT of 
0.19m, contingent upon testing time (TST), 
whereas the QDMO-EDLID, AIMMF-IDS, DBN, 
LSTM, RNN, DT, and RF techniques demonstrate 
enhanced TRT values. The results demonstrate the 
superior efficacy of the ATD-FSAODL algorithm 
compared to alternative methods. 

By incorporating new approaches, the 
ATD-FSAODL methodology becomes more 
scalable and resilient. When it comes to large-scale 
CPS data, the computational cost can be reduced 
thanks to the FSA's scalable feature selection 
optimization, which ensures that only the most 
significant features are assumed. In addition, the 

SMA for parameter optimizer modifies the system's 
responsiveness and performance to different data 
volumes. By utilizing a MESNN and the optimal 
parameters found by SMA, the ATD-FSAODL 
technique achieved its robustness, which allows it 
to efficiently detect and categorize attacks in 
various scenarios, even when the threat 
environment changes.  

 

 

Figure 2. Confusion matrices of the 80:20 TR/TS set on 
the NSLKDD2015 database (a-b) and the CICIDS2017 

database (c-d) 



 Journal of Theoretical and Applied Information Technology 
15th July 2025. Vol.103. No.13 

©   Little Lion Scientific  
 

ISSN: 1992-8645                                                                    www.jatit.org                                                     E-ISSN: 1817-3195 

 
4775 

 

 

Figure 3. ATD-FSAODL approach averaged results on 
NSLKDD2015 database 

 

Figure 4. Mean outcome of the ATD-FSAODL method 
applied to the CICIDS2017 dataset 

 

Figure 5. ATD-FSAODL approach results compared to 
those of other methods 

 

Figure 6. Outcomes of TRT and TST for the ATD-
FSAODL technique compared to other methodologies 

 
This approach is effective for solving 

security issues in real-world deployments since it is 
stable and scalable, which allows the process to 
keep its performance in protecting CPS. The ATD-
FSAODL methodology provides a highly accurate 
and efficient solution for automated threat detection 
in CPS environments. By combining FSA-based 
feature selection, the MESNN model, and SMA for 
parameter optimization, the proposed model offers 
a superior performance in identifying cyber threats. 
This framework demonstrates significant promise 
in safeguarding critical infrastructures that rely on 
CPS technologies, enabling robust and real-time 
threat detection with high accuracy and minimal 
false alarms. The model's adaptability and accuracy 
position it as a valuable tool in enhancing CPS 
security, with potential applications in diverse 
sectors, including smart cities, healthcare, and 
industrial automation. 

 
4. CONCLUSION 

This study presents an advanced approach to 
threat detection in Cyber-Physical Systems (CPS) 
through the proposed Automated Threat Detection 
using Flamingo Search Algorithm with Optimal 
Deep Learning (ATD-FSAODL). The ATD-
FSAODL model integrates innovative algorithms to 
address the complexities and security challenges 
unique to CPS environments, which are becoming 
more integral to critical sectors like healthcare, 
industrial automation, and smart cities. By 
employing the Flamingo Search Algorithm (FSA) 
for feature selection, the Modified Elman Spike 
Neural Network (MESNN) for anomaly detection, 
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and the Slime Mold Algorithm (SMA) for 
parameter optimization, the ATD-FSAODL model 
achieves highly accurate and reliable threat 
detection. The experimental results demonstrate 
that ATD-FSAODL outperforms conventional 
machine learning and deep learning models, 
achieving a maximum accuracy of 99.58%, 
precision of 99.58%, recall of 99.58%, F1-score of 
99.58%, and MCC of 99.16%. These results 
highlight the model’s effectiveness in accurately 
distinguishing between normal and malicious 
patterns in CPS data while maintaining a low rate 
of false positives and negatives. Furthermore, the 
use of FSA enables efficient feature selection, 
ensuring that the model remains computationally 
feasible for real-time applications in resource-
constrained CPS systems. In addition to its superior 
performance, the ATD-FSAODL model addresses 
several key requirements for real-world CPS 
applications, including scalability, adaptability, and 
robustness against evolving cyber threats. This 
research contributes to the growing field of CPS 
security by providing a robust, adaptable, and 
efficient threat detection model that can enhance 
the reliability and safety of critical infrastructures. 
While promising, the ATD-FSAODL model has 
limitations regarding scalability on large-scale, 
real-time data in extensive CPS networks. Future 
research directions include exploring online 
learning techniques to enhance the model’s 
adaptability to new and emerging threats, as well as 
developing lightweight, energy-efficient 
implementations to support deployment in 
resource-constrained environments. The ATD-
FSAODL framework offers a significant 
advancement in CPS security, enabling proactive 
detection of potential threats with high precision 
and reliability. This work lays a solid foundation 
for future developments in CPS threat detection, 
aiming to make CPS-based critical infrastructures 
safer, more resilient, and more secure against cyber 
threats. 
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