
 Journal of Theoretical and Applied Information Technology 
15th July 2025. Vol.103. No.13 

©   Little Lion Scientific  
 

ISSN: 1992-8645                                                                    www.jatit.org                                                     E-ISSN: 1817-3195 

 
4803 

LEARNED DICOM IMAGE COMPRESSION VIA SUPER-
RESOLUTION WITH DILATED RESIDUAL BLOCKS AND 

PIXEL ATTENTION 
 

OBADA OTHMAN AGHA1, YAHIA FAREED2, LOUAY CHACHATI3 

1 PhD Candidate, Department of Communication Engineering, Faculty of Electrical & Electronic 
Engineering, University of Aleppo, Aleppo, Syria; 

2 Professor, Department of Communication Engineering, Faculty of Electrical & Electronic Engineering, 
University of Aleppo, Aleppo, Syria; 

3 Professor, Department of Electronic Engineering, Faculty of Electrical & Electronic Engineering, 
University of Aleppo, Aleppo, Syria. 

E-mail: 1Obada_othman_agha@alepuniv.edu.sy,  2Prof.yahia.fareed@alepuniv.edu.sy, 
3louay.chachati@alepuniv.edu.sy 

 
 

 
 

 
 
 

ABSTRACT 

The digital imaging and communications in medicine (DICOM) standard leads global efforts to advance 
medical imaging. With the growing interest in this field, especially given the rapid developments in 
telemedicine applications, achieving efficient compression without losing diagnostic accuracy is critical. 
Therefore, there is an imperative need to employ an advanced hybrid deep-learning model, specifically 
designed for these medical images, to outperform current methods. The proposed method tests the 
development of a non-autoregressive model for parallel pixel prediction, avoiding sequential processing. 
This scheme uses dilated residual blocks (DRBs) to capture long-range dependencies using fewer blocks. 
It combines depthwise separable convolution (DSC) layers with the pixel attention mechanism to reduce 
computational complexity while preserving the diagnostic details in the reconstruction task. The method 
also leverages a discretized mean and scale Gaussian distribution mixture model to achieve efficiency 
across various DICOM image types. The results demonstrate that the method achieves higher compression 
ratios, and improves the bpsp metric by 19.26%, 22.89%, and 23.94%, compared to the best competing 
methods, for each of magnetic resonance imaging (MRI), computed radiography (CR), and computed 
tomography (CT) images, respectively. Compared to the leading learning-based methods, the system 
reduces the mean compression time by [16.96 - 19.02] %. At the same time, the high values of PSNR and 
SSIM metrics demonstrate the ability to ensure high quality. This approach balances compression 
efficiency, speed, and diagnostic reliability, enhancing DICOM image processing for telemedicine. 

Keywords: DICOM images, Deep learning, Super-Resolution, Images Compression, DSC layers.  

1. INTRODUCTION 

Medical imaging is an essential part of 
telemedicine, especially using the digital imaging 
and communications in medicine (DICOM) 
standard, which is widely regarded as the most used 
and effective standard worldwide. This standard is 
the foundation through which accurate diagnoses 
are made, treatment protocols are developed, and 
patient monitoring is performed [1]. Therefore, 
achieving effective compression of high-quality 
DICOM images is essential when processing and 
exchanging these images between healthcare 
centers. The importance of using deep neural 
networks (DNNs) in the context of image 

compression has recently emerged, divided 
concerning structure into four categories: innovative, 
autoencoders, recurrent neural network (RNN) 
based, and convolutional neural network (CNN) 
based, where the last structure, in particular, has 
high-efficiency advantages that have drawn the focus 
of researchers on development [2]. The usual 
procedure followed in image compression literature 
is to assume that the symbol streams are independent 
and identically distributed (IID) and then revert to 
parametric models to fit the distribution of such 
symbols. 
 Recently, several end-to-end learned schemes 
using DNNs for image compression have been 
introduced assuming all symbols are IID. However, 
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due to the insufficient accuracy in establishing the 
entropy models, these recent methods still have 
limited performances [3]. 
 DICOM images generally don't conform to the 
IID assumption. This is primarily due to the inherent 
correlations among pixels that arise from the 
anatomical features they depict. Furthermore, 
DICOM images are characterized by intricate 
distributions that encompass a variety of structures 
and textures [1]. By neglecting interdependencies 
among pixels, some relevant details of primary 
importance when making an exact diagnosis in 
medical treatments may be missed. Therefore, the 
compression algorithms based on this assumption 
may yield inaccurate representations, which reduce 
the compression efficiency and introduce artifacts in 
the reconstructed images. As a result, we evaluate a 
learnable super-resolution near-lossless compression 
method, including three parallel scales, that employs 
hybrid deep learning (DL) models in the feature 
extraction and prediction tasks while reducing the 
computational complexity, where a varied dataset 
comprising magnetic resonance imaging (MRI), 
computed radiography (CR), and computed 
tomography (CT) images is utilized. 
 While previous studies have focused on 
developing and testing non-learning-based 
compression algorithms to improve some criteria, 
such as compression ratio and image quality testing 
criteria, we aim to build a fast non-autoregressive 
learning-based compression algorithm to compress 
various types of medical DICOM images, including 
their varying bit depth and image dimensions, by 
achieving a balance that ensures the improvement of 
the all different criteria simultaneously. 
 Related studies in the following section can be 
classified into works that have contributed to the 
development of learning-based natural image 
compression algorithms and efforts that have sought 
to improve DICOM image compression using non-
learned methods. 
 
2. RELATED WORK: 

Effective efforts have been made in this field, a 
parallel hierarchical probabilistic framework known 
as L3C was introduced in [4], which employed a 
non-autoregressive probability model to achieve 
lossless compression for natural images, based on an 
enhanced deep super-resolution (EDSR) model for 
feature extraction and prediction coupled with an 
efficient sub-pixel convolutional neural network 
(ESPCN) model for reconstruction. The work 
recommended further enhancements by handling 
specialized image types. SReC [5] introduced an 
autoregressive super-resolution network to achieve a 

lossless compression method for natural images. The 
proposed scheme in [6] introduced a three-tier 
hierarchical structure derived from L3C model, 
where a self-supervised clustering module was 
integrated to proficiently detect and characterize the 
long-term dependencies inherent in the image. To 
address the redundancies found within the image 
pixels, the research [7] proposed an autoregressive 
model for raw images, utilizing an end-to-end 
architecture in conjunction with channel-
conditioning models. The results of the deep learning 
techniques comparison conducted by the research [8] 
showed that both enhanced deep residual neural 
network (EDRN) and super-resolution generative 
adversarial network (SRGAN) outperformed the 
ESPCN model in the field of improving micro-CT 
images according to several evaluation criteria, 
where all these models use 16 residual blocks within 
their structure to achieve a wide receptive field. To 
improve the spatial resolution in remote sensing 
image reconstruction, the work [9] employed each of 
ESPCN and enhanced SRGAN (ESRGAN), an 
improved version of SRGAN, where the batch 
normalization layers are removed from residual 
blocks. 

On the other hand, researchers continue their 
efforts to develop an effective mechanism for 
compressing DICOM images using methods that 
don't rely on deep learning. The work [10] developed 
a mechanism to reduce the redundant information in 
DICOM images through wavelet compression, 
achieving an overall compression ratio of 60%. In 
[11], the researchers tested the results of applying 
each of the discrete wavelet transform (DWT), 
discrete cosine transform (DCT), fractal 
compression algorithm (FCA), and vector 
quantization algorithm (VQA) only to the non-
regions of interest (NROI) in DICOM images, where 
the DWT algorithm achieved the best results. 
Emphasizing the need for future employment of 
artificial intelligence algorithms in this field. The 
research [12] proposed a transmission system for 
exchanging DICOM images depending on Golomb-
Rice coding and Run-Length Encoding (RLE). The 
work [13] tested a new compression methodology, 
attempting to leverage spatial features and pixel 
concentration patterns for adaptive processing to 
improve the storage of monochrome DICOM 
medical files. It demonstrated a 37% increase in 
compression ratios compared to JP2, which is 
considered the primary DICOM industry standard. 
The authors in [14] presented a lossless compression 
method for medical images using a hybrid of 
Huffman coding, linear predictive coding, and 
discrete wavelet. The work [15] introduced a CNN-
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based compression approach for general medical 
images and showed relative improvement compared 
to JPEG. It depended on a systematic iteration of 
design space exploration (DSE) to reduce the 
computational complexity. 

However, the previous compression methods are 
limited to testing only a few criteria, such as 
compression ratio or bpsp. At the same time, other 
research has focused on testing image quality criteria 
without comparing compression time or simplifying 
the structure without affecting the quality of the 
reconstructed image. Furthermore, reference studies 
have avoided developing a learning-based 
compression algorithm for DICOM images due to its 
high computational complexity. This is what we seek 
to achieve in this research by balancing the various 
testing criteria and simplifying the proposed 
algorithm structure to the simplest possible level. 

Therefore, the review of recent research indicates 
an urgent need to develop a learnable compression 
algorithm specifically designed for the different 
types of medical images according to the DICOM 
standard, one of the most important and widely used 
standards worldwide, where the modern 
compression methods struggle to balance achieving 
a high compression ratio, fast execution, and 
preserving sensitive image data to prevent 
misdiagnosis, which is achieved by ensuring high 
image quality test standards. 

3. METHOD: 

3.1 Features Extraction: 
One of the most important blocks of modern deep 

learning architecture is the residual block (RB). It 
avoids problems like vanishing gradients since it 
allows the network to learn the residual functions 
indicating the discrepancies between the input and 
output. The residual architecture was enhanced by 
eliminating batch normalization layers, resulting in 
superior performance compared to SRResNet 
architecture in the context of image super-resolution 
[16]. Alongside these developments, residual CNN 
models have been effectively utilized across several 
computer vision applications. 
 The work [17] introduced a concatenated 
residual block (CRB) within the encoding/decoding 
framework, which involves the sequential linkage of 
several residual blocks, augmented by 
supplementary shortcut connections to enhance the 
network's learning capacity. To perform the feature 
extraction and prediction tasks, the research [4] used 
the EDSR model based on residual blocks, utilizing 
the suggestion to delete the batch normalization 
layer. 

3.1.1 Receptive field increasing: 
 Receptive field size is a very important factor 
while building any DNN architecture since, as this 
size increases, the input data will have more 
contextual information. This needed increase may be 
accomplished in several ways. One might opt for a 
deeper network with more convolution layers where 
the receptive field grows linearly. Inevitably, this 
closely relates to the size of the convolution kernel 
applied in the network. Although the 3×3 kernel size 
has been widely regarded as the most efficient filter 
size in CNNs [18], it contributes only a factor of two 
in the increase of the receptive field per additional 
layer. Larger kernel sizes would thus be needed, but 
adding this can have complications because it would 
increase the number of parameters involved and 
needlessly overcomplicate the model [19]. 
 Because they can learn complex mappings better, 
neural network architectures that are bigger and 
more complex tend to do better at image 
reconstruction tasks [20, 21]. Nevertheless, 
contemporary deep networks, such as EDSR, which 
are used in L3C and other recent studies [19], may 
not be optimal, since the reliance on numerous 
conventional convolution layers not only leads to 
significant computational expenses but also 
increases the risk of overfitting, while many medical 
applications related to the DICOM standard require 
tasks to be performed in real-time. Sub-sampling 
techniques and the addition of pooling layers achieve 
this. However, this decreases contextual information, 
losing spatial accuracy, which makes this method 
suboptimal for image restoration tasks. Since we 
want to obtain an output of the same size as the 
original input, the following layers will use transpose 
convolution layers for further processing [22]. 

Dilated convolution (DConv), also called Atrous 
convolution, refers to a class of convolution layers 
developed in deep learning that insert gaps between 
kernel weights. Most especially, for example, a 3x3 
filter kernel, when set to a dilation rate of 2, results 
in a receptive field similar to a kernel of size 5x5, but 
it uses only 9 parameters. This approach facilitates 
an expanded field of view while maintaining the 
same computational cost, eliminating the necessity 
for multiple convolutional layers or an increase in 
filter size [23, 24]. Therefore, the dilated convolution 
layers maintain the size of feature maps and work 
efficiently in applications that are interested in 
integrating contextual information according to a 
larger receptive field at a lower cost [25]. These 
layers can also be used to remove downsampling 
layers, thus developing the fields of human motion 
prediction and semantic segmentation, as in [26].  
3.1.2 Dilated residual blocks (DRBs): 
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 When the previous concepts are integrated, a 
dilated residual block (DRB) employs dilated 
convolutions within the framework of a residual 
block. This mechanism enables the network to 
effectively learn long-range dependencies while 
preserving the advantages of residual connections, 
which expands the receptive field, allowing the 
network to gather contextual information from larger 
sections of the images. This capability is essential for 
the compression of images using super-resolution 
(SR) techniques, where capturing fine details and 
interrelationships across extensive areas is vital, as in 
the case of DICOM image compression applications. 
Moreover, dilated convolutions may provide 
effective mitigation of blurriness, which are artifacts 
often introduced by mainstream compression 

methods. Additionally, the ability to learn efficiently 
with a reduced number of parameters may facilitate 
higher compression ratios while preserving superior 
reconstruction quality. 
 In terms of architecture, Figure 1a depicts the 
original residual block utilized in the L3C scheme, 
which depends on the EDSR model [4]. Figure 1b 
illustrates the suggested architecture of the fixed-rate 
dilated residual blocks used in [18], which presented 
a method for restoring infrared images that reduces 
the number of RBs from 16, as employed in EDSR 
and SRResNet architectures [19], to 8. Where 
PReLU denotes parametric ReLU and D represents 
the dilation rate, considering that k, Cf, and s denote 
the parameters of kernel size, channels, and stride, 
respectively. This increased number of the used 
layers led to an improvement in the peak signal-to-
noise ratio (PSNR) and the structural similarity index 
measure (SSIM) evaluation criteria, but it caused the 
number of the total parameters to be similar to the 
comparison models [18]. 
 The first part of our proposed model framework 
aims to reduce the number of used RBs from 16 to 8, 

utilizing edited DRBs, as shown in Figure 1c. Thus, 
this approach is used to decrease the computational 
cost while also increasing the analysis area without 
losing any information critical to diagnosis, as we 
apply progressively larger dilation rates (1, 2, 4, 8, 
and 16) to extract features at different visual scales. 
Compared to the other activation functions, we 
choose Leaky ReLU for many reasons. Its capability 
of alleviating the dying ReLU problem and 
enhancing the gradient flow can preserve important 
information and capture intricate feature interactions 
to achieve more accurate reconstructions [27], 
especially in the scope of complex data types such as 
DICOM images. 
 

3.2 Reconstruction and Upsampling: 

 SR mechanisms have been a major and ongoing 
challenge in the field of image-processing, where the 
main goal is to obtain a high-resolution (HR) image 
by merging its low-resolution (LR) version. 
Researchers in academia use similar phrases for SR, 
such as image upsampling and image upscaling [28]. 
Advanced deep-learning models with millions of 
parameters have contributed to many such image 
processing applications, including SR. These more 
complicated models indeed tend to be better at high-
resolution image reconstructions and perform better 
concerning objective Image Quality Assessment 
(IQA) measures. However, such a complex model is 
very complicated to deploy for real-time applications 
[29]. Most of the previous network designs for super-
resolution have their limits that inhibit their general 
performance. Generally, these networks take an 
upsampled coarse estimate obtained by an 
interpolation-based method, where we refer to such 
a strategy as the early upsampling scheme. It is 
computationally expensive to process such high-

 
 

Figure 1. The Architectures Of The Different RB And DRB: (A) Original RB Architecture; (B) DRB Architecture 
With Fixed Dilation Rate; (C) Our Used DRB Architecture Using Increased Dilation Rate. 
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dimensional input, and multiply-accumulate 
operations (MACs) increase drastically when the 
resolution of the input image increases. This is 
because most of the operations are actually operated 
on high-dimensional feature maps [19]. 
 The idea was then further refined, allowing for 
upsampling to be a learnable part of the process, 
which is normally referred to as late upsampling 
schemes, where all the computations are done on 
low-resolution feature maps. It relied on the 
transposed convolution layers, also called 
deconvolution layers, as used in the Fast Super-
Resolution Convolutional Neural Network 
(FSRCNN) model [19], where the number and size 
of filters have been cut down from the super-
resolution CNN (SRCNN) model. However, it has a 
major problem typified by checkerboarding artifacts 
[28]. 
 This was addressed by incorporating a sub-pixel 
convolution layer, which was proposed based on an 
ESPCN model. The first implementation of the 
model was done with the ReLU activation function. 
It has been modified further to accommodate tanh as 
the activation function instead [21]. The ESPCN has 
also been widely adopted in various super-resolution 
methodologies, like L3C [4], SSNet, SSNet-M [30], 
and LWSR8 [31] models, which are considered to be 
pivotal in the domain of super-resolution image 
reconstruction and have recently demonstrated 
remarkable success in various applications. 
However, these models suffer from some limitations, 
which this research aims to overcome. ESPCN, 
SSNet-M, and SSNet use the tanh activation 
function, which suffers from the vanishing gradient 
and effectively hinders the training process [28]. 
Besides, the traditional convolution layers are used 
in the architectures of ESPCN, SRCNN, and 
FSRCNN, which raises the computational 
complexity of the networks [29]. For instance, the 
three-layer ESPCN requires about 18.46 thousand 
parameters in its second layer only, which is over 
75% of the model's total number of parameters. In 
turn, the U-Net architecture was used in [31]. 
However, the small depth wasn't allowed to model 
its ability in each of the feature extraction and image 
reconstruction stages effectively . 
 Based on the above, we will use the Leaky ReLU 
activation function and replace the traditional 
convolution layers with the depthwise separable 
convolutions (DSC) layers in the upsampling phase. 
3.2.1 Depthwise separable convolutions (DSC) 
layers: 
 DSCs efficiently capture spatial features while 
jointly learning channel dependencies [30]. This is 
particularly important for DICOM images, where 

local features such as edges and textures, as well as 
global contextual information such as anatomical 
structures, must be preserved to provide a precise 
reconstruction. DSCs enhance the model's 
generalization capability and drastically reduce the 
number of parameters [32]. This reduction is 
especially vital in the field of medical imaging since 
often processing power may be limited, and 
efficiency becomes key. The streamlined 
architecture of DSCs allows them to enable faster 
inference times, which becomes a significant 
criterion for all those applications that require rapid 
analysis of the images in DICOM format [1]. In the 
standard convolution layer, the cost of operations is 
calculated using the Eq. (1), assuming that Cᵢₙ 
denotes the input channels and Cₒᵤₜ signifies the 
output channels [30]. 

Std conv (Cᵢₙ, Cₒᵤₜ, K) = H × W × Cᵢₙ × Cₒᵤₜ × K2   (1) 

 Where k2 denotes kernel size, and H*W denotes 
width and height of the feature map. DSCs have two 
layers; the first layer is a depthwise convolution in 
which every input layer has one filter, while the 
second layer is a pointwise convolution using the 1*1 
convolution operation to merge the output of the first 
layer, as in Eqs. (2) and (3) [30, 32]: 

DSC depthwise (Cᵢₙ, Cₒᵤₜ, K) = H×W×Cᵢₙ×K2        (2) 

DSC pointwise (Cᵢₙ, Cₒᵤₜ, K) = H×W×Cᵢₙ×Cₒᵤₜ      (3) 

 To realize the effect of applying the DSC layer, 
let’s assume that the DICOM image size is 512*512. 
Since this is a greyscale image, the input channels Cᵢₙ 
= 1 while the output  channels Cₒᵤₜ = 32 at a kernel 
size K = 3. While in the case of a standard 
convolution, the total operations sum to 75.497.728, 
for DSC, this is much lower, where the depthwise 
operations are 2.359.296 and the pointwise 
operations are 8.388.608. Thus, overall operations 
for DSC are 10.747.904. Therefore, using DSC 
instead of standard convolution reduces the number 
of operations by about 85.75%. 
3.2.2 Pixel attention (PA): 

Recently, the process of integrating attention 
mechanisms into the models has effectively 
contributed to their improved performances. The 
work [33] introduced a model for improving network 
representational capacity through dynamic feature 
recalibration in the channel-spatial dimensions. This 
model could be applied for image compression since 
it can be considered the first proposal that takes 
advantage of channel attention mechanisms to reach 
strong contrast features. The researchers in [34] 
developed a model that employs PA to extract the 
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informative features, aiming to improve the accuracy 
of tomato plant disease classification. The results 
show that PA's performance is better than that of the 
other alternative mechanisms. While other attention 
methods rely on building complex attention modules 
to improve their effectiveness, PA has the potential 
to enable efficient pixel-wise attention learning with 
lower computational costs [35]. 

In the pixel attention mechanism, focusing on the 
important pixels guided by contextual information 
improves the quality of the image that is 
reconstructed. This is particularly useful in medical 
imaging, where some regions may require more 
attention because of their clinical significance. The 
ability to assign higher weights to certain pixels than 
others allows the model to emphasize the key regions 
in such a way that diagnostic features in those parts 
are preserved during upsampling. 
 This structure returns a features matrix of size 
(C*H*W) and calculates attention coefficients for 
every pixel in the feature map. However, it is 
dependent on computation from the contextual 
feature extraction. Each output corresponds to the 
full receptive field with respect to the input [36]. It 
then normalizes the output from the convolution 
layer in the interval of [0, 1] using a sigmoid 
activation function. Then, the weights, which we 
denote by F(X), are formed and used in an element-
wise multiplication with the input X to get a 
weighted output X̃, as shown in Figure 2, where the 
salient features are emphasized. Compared to the 
more traditional methods of layered techniques, the 
direct integration of features involves fewer 
parameters in an overall simpler architecture [35]. 

 
 

 

Figure 2. PA architecture. 

  

The benefits of PA were utilized towards the 
improvement of the model performance in [36] for 
super-resolution natural image reconstruction. For 
this purpose, a two-channel PA mechanism based on 
the ESPCN model was used with standard 
convolution layers and a tanh activation function. 
[37] proposed a fusion network that employs PA for 
combining semantic with shallow features, 
enhancing small object detectability against complex 
backgrounds, with multiple feature selections 
allowed. The upsampling part of our scheme will 
exploit the integration between DSC and pixel 
attention for better artifact reduction that may 
emanate from the process. This is of prime 
importance in the compression operation since any 
form of distortion introduced will surely affect the 
integrity of the DICOM image. Besides, this is a 
flexible solution that can be adapted with ease for the 
different kinds of medical images, considering the 
large variance of the contents and qualities of the 
DICOM images. Compared to the original ESPCN 
model shown in Figure 3a, our used architecture 
comprises a DSC layer of size (C, C, K), a pixel 
attention mechanism, and another DSC of size (C, 
D2, K), where C is the propagated channels, D is the 
desired upscale factor (the used value here is 2), and 
K = 3. Further, it is followed by a pixel shuffle 
operation to complete the upsampling block, as 
demonstrated in Figure 3b. In trying to explain how 
this sub-pixel convolution layer works within the 
upsampling framework, let's take the case of an input 
DICOM image of size 512 × 512 × 1; thereafter the 
layer changes that size from the previously received 

 
 
 

 
  (a)                       (b)  

Figure 3. Comparison Of Upsampling Architectures: (A) Upsampling Using ESPCN Model; (B) Upsampling Using 
PA And DSC Layers. 
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output of the DSC layer, namely 512 × 512 × D2, into 
((D × 512) × (D × 512) × 1). 

3.2.3 Eliminate the use of the Atrous spatial 
pyramid pooling (ASPP) model: 
 

Atrous spatial pyramid pooling (ASPP) model 
works through different dilation rates of dilated 
convolutions, allowing the finding of the receptive 
field while enabling the model to see the image at 
multiple detail levels. The previous output is then 
combined via a final convolution layer as 
demonstrated in Figure 4. In this way, this strategy 
effectively combines multiscale information to yield 
a more elaborated and detailed upsampling image 
description [38]. 

 

 
 

Figure 4. ASPP Model Architecture. 

The ASPP framework can be integrated at the tail 
of the reconstruction process to capture a better 
image context, similar to what has been suggested in 
[4] as a post-processing procedure after the ESPCN 
model. The dense ASPP model, which is an edited 
structure of ASPP, was employed to improve the 
dense prediction process for image compression in 
[38]. While Research [39] utilized the ASPP model 
to improve the glass bottle defect classification task 
to ensure product quality assurance. 

 In our scheme, the implementation of dilated 
convolutions with an increased rate during the 
feature extraction phase allows the acquisition of 
contextual information and the learning of multiscale 
features without the need of downsampling the input 
image. This approach is particularly important in 
medical DICOM imaging, where spatial detail 
preservation is essential for accurate reconstruction. 
Similarly, applying an increase rate in dilated 
convolutions during the initial reconstruction phase 
prior to the upsampling will facilitate the storage of 
high-resolution data and minimize the possibility of 
artifacts appearing during the upsampling, making it 
easier and more effective. Thus, unlike the approach 
in [4], Upsampling can be performed directly 
without necessarily incorporating ASPP afterward, 
freeing up more computation and reducing memory 
consumption to the barest minimum. 

3.3 Architecture:  
 Figure 5 shows the detailed architecture of the 
suggested scheme for a single scale, while Figure 6 
shows the overall architecture across the three 
needed scales. 

3.4 Mixture model: 

 In our scheme, we used adaptive arithmetic 
coding (AAC) and scalar quantization similar to [4, 
6]. As for the mixture model, prior investigations 
have exhibited diversity in its selection, with 
numerous studies evaluating various parameter 
distribution models [40]. For instance, the 
conventional PixelCNN employs a full 256-way 
softmax, resulting in significant memory 
consumption and impracticality for larger images. In 
contrast, PixelCNN++ introduced distinct logistic 
mixture probabilities to facilitate expedited training. 

 
 

Figure 6. The Overall Architecture Using Three Scales. 
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Similarly, L3C adopted the logistic mixture model in 

alignment with the approach of PixelCNN++ [4]. 
 While some previous conventional coding 
techniques used the Cauchy distribution to model the 
coefficients, the subsequent test results in [41] 
showed poor performance. The work [41] tested a 
mean and scale Gaussian distribution, which showed 
superior empirical performance compared to the 
other methods, including zero-mean scalar Gaussian 
and Laplace distribution models. In addition, the 
Gaussian mixture model has demonstrated 
significant efficacy in medical image analysis 
characterized by indistinct boundaries, as evidenced 
by the segmentation algorithm introduced in [42], 
which relies on the probability distributions of both 
the object and the background present in the image. 
In accordance with [4], we employ a non-
autoregressive predictor D(s) to characterize the joint 
distribution of the image x alongside the auxiliary 
hierarchical feature representation after quantization 
p(x, 𝑧(ଵ), ..., 𝑧(௦)) for the scales (s > 0), assuming that 
z(0) = x. The prediction of p is derived from the 
features f (s) associated with the preceding scale. Let 
c represent the channel, while u and v indicate the 
spatial coordinates. For every scale, we postulate that 

the components of 𝑧௖௨௩
(௦)  are independent concerning 

u and v, given f (s+1). We define it using Eq. (4) [4].  

 𝑃൫𝑧(௦)| 𝑓(௦ାଵ)൯ = ∏ 𝑃௠ ⬚
௖,௨,௩ ൫𝑧௖௨௩

(௦)
 | 𝑓(௦ାଵ)൯          (4) 

 We model the conditional distributions p(z (s) | 

z(s+1), ..., z(s)) using the discretized mean and scale 
Gaussian distribution mixture introduced in the work 
[43]. The multivariate Gaussian model was utilized 
in our work instead of the logistic model 
implemented in L3C and PixelCNN++ as it 
demonstrated enhanced performance results [41, 43], 
since it can effectively capture the underlying 
distribution of pixel values, even in complex medical 
images with varying textures and structures. The 
mixture is indicated by 𝑃௠ and defined as in Eq. (5): 

 𝑃௠൫𝑧௖௨௩
(௦)

 |𝑓(௦ାଵ)൯ =

              ∑  𝜔௖௨௩
௞  𝑁 ൫𝑥௖௨௩

⬚  |𝜇௖௨௩
௞  , 𝜎௖௨௩

ଶ(௞)
൯௞

௞ୀଵ             (5) 

 
 

Figure 5. The Proposed Scheme For A Single Scale. 
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 Considering that w, μ, and σ represent weights, 
mean, and variance parameters, respectively, while 
N represents the Gaussian density function. In 
contrast to [41, 43], we opted not to employ a 
uniform noise distribution to approximate 
quantization during the training phase. Although that 
can enhance training stability in certain contexts, it is 
unsuitable to employ it alongside the used adaptive 
arithmetic coding because of the associated memory 
complexity [4]. Additionally, the risks of introducing 
artifacts, degradation, and adverse clinical 
implications surpass its advantages in the medical 
imaging field. Therefore, it is essential to prioritize 
the maintenance of image quality and clinical 
precision when handling DICOM images. Where the 
features extractors 𝐸(௦)  define the representations 

𝑧⬚
(௦) = 𝐹(௦)(x), and p(x, 𝑧(ଵ) , ..., 𝑧(௦) ) represents an 

outcome derived from the discretized Gaussian 
mixture model with parameters established using 
𝑓(௦) , which are calculated based on the predictor 
𝐷(௦), the loss of training N samples can be defined as 
the following Eq. (6): 

𝐿 ൫𝐸(ଵ), . . . , 𝐸(ௌ), 𝐷(ଵ), … , 𝐷(ௌ)൯ =

− ∑ 𝑙𝑜𝑔 𝑝 ൫𝑥௜
⬚|𝐹௜

(ଵ)
, … , 𝐹௜

(ௌ)
൯ +ே

௜ୀଵ

                 ∑ 𝑙𝑜𝑔 𝑝 ൫𝐹௜
(௦)

|𝐹௜
(௦ାଵ)

, … , 𝐹௜
(ௌ)

൯ௌ
ௌୀଵ           (6)            

4. EXPERIMENTS: 

 To understand the difference in the mechanisms 
of applying previous research, Table 1 compares the 
methods in terms of the dataset, evaluation measures, 
and implementation environment. These methods 

don't rely on DL techniques, except for research [15], 
which was trained on general medical images and 
isn't specific to the DICOM standard. 

The implementation in our research was done 
using Python 3.11 and the models were built via 
PyTorch 1.11.0, taking advantage of Pydicom 2.1.1 
library to extract the pixel matrix of the DICOM file. 
The experimental was done using Google-Colab 
(RAM: 13G, GPU: Nvidia-K80). This study utilized 
three open-source datasets with different dimensions 
and types, the first is siim_dicom_images dataset 
[44], which consists of 12089 computed radiography 
(CR) images, the second is Brain MRI dataset [45], 
which consists of 21000 MRI images, and the third 
is from The Cancer Imaging Archive (TCIA) [46], 
which includes 3954 CT scans. The datasets were 
split into 90% for training and 10% for testing. A 
padding process with zero values was utilized to 
handle the dimensions if needed. The patch size is 
128*128 and the used optimizer is Adam. 

5. RESULTS AND DISCUSSION: 

 We tested compression ratio, compression time, 
and bits per sub-pixel (bpsp) metrics on GPU Nvidia-
K80 using 100 DICOM images each of 1024*1024 
CR [44], 512*512 MRI [45], and 512*512 CT [46] 
from the test set. 

5.1 Compression ratio: 

Figure 7 shows the mean compression ratio of 
different industry standards and third-party formats 
on the test set. Where JPEG2000-Lossless (JP2), 
Run Length Encoding (RLE), and ZIP Deflate are 

Table 1. Comprehensive analysis of  DICOM images compression Methods 

Paper year Method DICOM Dataset Performance measures ImplementaƟon 

[10] 2020 Wavelet compression. 12 DICOM images. 
Compression raƟo and PSNR 

= [24.74 – 28.04] dB. - 

[11] 2024 
DCT, DWT, FCA, and 

VQA. 
COVID19/Stanford 

University (CT images). 

Best NROI CR = [37.91 – 
68.91] and Best NROI PSNR = 

[101.93 – 127.29] dB. 

MATLAB 2018 (Core 
i7 3687U and 4 GB 

RAM) 

[12] 2023 
Golomb-Rice coding 

and Run-Length 
Encoding. 

Angio, X-ray, MR-1, CT and 
MR-2. 

Compression raƟo = [2.14 – 
4.46] 

- 

[13] 2023 
Fractal pixel traversal 

coupled with delta 
and entropy coding. 

TCIA - DICOM lung CT 
scans 

Compression raƟo = 2.42 Python 3.8 

[14] 2023 
Huffman coding, linear 
predicƟve coding and 

discrete wavelet. 

DICOM images 
(ultrasound, MRI, and CT). 

PSNR = [43.05, 44.03, and 
47.13] dB and SSIM = 

[0.9566, 0.9835, and 0.9859] 
respecƟvely. 

MATLAB (8 GB RAM 
and Intel i7 10th) 

[15] 2023 
CNN based 

architecture. 

General medical (not 
DICOM) datasets: CBIS-

DDSM and InBreast. 

PSNR = 29.44 dB and SSIM = 
0.9779 - 
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integrated compression formats in the DICOM 
standard [13]. The results of applying each of CCT, 
which refers to the open-source CompaCT method 
[13], CBPC2, which depends on Golomb-Rice and 
Run-Length Encoding [12], and lossy Wavelet 
compression [10], are also shown. The results 
weren't compared with the proposed algorithms in 
[11] despite their superior values, due to their 
implementation on NROI only. The results clearly 
show the proposed scheme's superiority over other 
methods, except for the lossy wavelet compression 
[10], which achieves low quality, as observed 
through the low PSNR values in Table 1.  

 
 
 

5.2. Compression time (CT): 

While many studies don't use compression time 
as an evaluation metric due to the variability in 
working mechanisms, Figure 8 compares the mean 
compression time for the different methods. We can 
observe that traditional methods outperform 
learning-based methods in terms of speed, especially 
the RLE algorithm. The proposed method reduces 
compression time compared to learning-based 
methods by lightening the number of residual blocks 
and using DSC layers. It improves compression time 
by 19.02%, 17.76%, and 16.96% on average for CR, 
CT, and MRI images, respectively, compared to the 
SReC algorithm, which outperforms L3C. 

 

Figure 7.  Mean compression ratio of the compression methods. 

 

Figure 9. Comparison of mean value of bpsp metric. 
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5.3 Bits per sub-pixel (BPSP): 

Bpsp is a state-of-the-art benchmark for 
evaluating image reconstruction mechanisms, 
especially in modern deep learning-based 
compression methods [4, 5, 6, 7]. Figure 9 compares 
this metric with the open-source learning-based L3C 
[4] and SReC [5] results. 

Similar to [4, 5, 6, 13], Figure 9 also 
demonstrates the results of the engineered codecs, 
including Webp, PNG, and FLIF as external 
benchmarks, which aren't commonly used with 
medical images. The results show that the proposed 
scheme outperforms its nearest competitor (SReC) 

by approximately 19.26% for CR images, while it 
outperforms CT and MRI images by an average of 
22.89% and 23.94%, respectively. 

In order to test the image quality metrics on a set 
of images with a variety of dimensions and bit 
depths, Figure 10 shows a set of DICOM images of 
different parts of the body. 

 
  

5.4 Peak signal-to-noise ratio (PSNR) and mean 
square error (MSE): 

 PNSR is the most preferred metric for measuring 
the image quality according to the computer vision 
tasks. It makes use of the maximum pixel value M, 

 
 

Figure 10.  DICOM Images With Different Types, Dimensions, And Bit Depth. 
 

 
 

Figure 8.  Mean compression time of the compression methods. 
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and MSE metric between the original image I and the 
compressed image Î [2], as the following Eqs. (7 - 8): 

           𝑃𝑆𝑁𝑅 =   10𝑙𝑜𝑔ଵ଴
⬚  (

ெ⬚
మ

ெௌா
)                          (7)   

         𝑀𝑆𝐸 =
ଵ

௧
  ∑  ൫𝐼(𝑖) −  Î(𝑖)൯௧

௜ୀଵ                        (8) 

 The results of testing DICOM images according 
to MSE and PSNR are included in Table 2. 

5.5 Structural similarity index measure (SSIM): 

 Another essential standard in this field is SSIM, 
which relies on the human visual system and the 
perceptual similarity of image structure. This metric 
quantifies how the image structure is similar to the 
original image [2] and can be calculated using Eq. 
(9):   

  𝑆𝑆𝐼𝑀൫𝐼 , Î൯ =  
ଶ µ಺

⬚µ
Î
⬚ା௞ଵ

 µ಺
మା µ

Î
మା௞ଵ

  .  
ଶఙ

಺ Î
⬚ ା ௞ଶ

ఙ಺ 
మା ఙ

 Î
మ ା ௞ଶ

                    (9) 

 Where µ and σ2 are the mean and variance of 
each of the original and compressed images, 
respectively, and 𝜎ூ Î 

⬚ is the covariance between these 
two images. Also, k1 and k2 are constants added to 
prevent instability when the denominator 
approaches zero. The SSIM values for the tested 
DICOM images are shown in Table 2. 

Table 2. The values of PSNR, MSE, and SSIM for 
various tested DICOM images. 

DICOM image Type PSNR (dB) MSE SSIM 

CT-lung1 CT 52.23 0.38 0.9963 

CT-lung2 CT 53.36 0.29 0.9946 

MRI-brain1 MRI 52.19 0.39 0.9897 

MRI-brain2 MRI 51.44 0.46 0.9891 

MRI-brain3 MRI 50.96 0.52 0.9874 

CR-chest1 CR 47.92 1.04 0.9837 

CR-chest2 CR 48.14 0.98 0.9841 

CT-MONO-brain CT 50.51 0.57 0.9891 

Except for [11], which achieved the highest 
PSNR values by applying the compression to NROI 
only, the results in Table 2 show the proposed 
method's superiority over the average values 
obtained by other existing techniques [10, 14, 15], 
which are shown in Table 1. Figure 11 demonstrates 
the advancement of the suggested scheme according 
to the PSNR/SSIM values of a test sample compared 
to the open-source compression methods. 

These results indicate that the proposed method 
achieves high efficiency in compressing DICOM 
images compared to the existing methods, as 
demonstrated by the compression ratio and bpsp 

values, while reducing compression time compared 
to the learning-based compression methods. Image 
quality metrics also demonstrate high image 
restoration accuracy across a wide and varied range 
of medical image types, ensuring accurate patient 
diagnosis. However, although the proposed 
algorithm achieves superiority in terms of 
compression efficiency and quality standards, non-
learned compression algorithms still relatively 
outperform in terms of compression time. Also, 
although the training process included the most 
important types of medical images according to the 
DICOM standard, other types can be included in the 
training process, as with the case of some low-
resolution images. 

6. CONCLUSION: 

 In this paper, we tested a proposed learned SR 
architecture for DICOM image compression. To 
learn the essential global structures as well as crucial 
details for medical diagnosis, we developed a non-
autoregressive predictor with a three scales parallel 
hierarchy for all pixels, aiming to characterize the 
joint distribution of the image alongside the auxiliary 
feature representation.  While current learning-based 
compression methods use the original residual 
blocks, we replaced them with edited dilated blocks, 
using increased dilation rates to capture long-term 
features. This reduced the number of these blocks by 
half, without affecting the feature extraction task, 
and significantly decreased the computational 
complexity and overall compression time. In 
addition, combining DSC layers with a pixel 
attention mechanism in the upsampling task, instead 
of the ESPCN model or other methods that rely on 
traditional convolutional layers, contributed to a 
significant 85.75% reduction in the number of 
operations per layer, while preserving critical 
diagnostic features in the image using PA. Also, 
using a discretized mean and scale Gaussian 
distribution mixture model instead of the logistic 
model utilized in the compared methods improved 
the SSIM and PSNR values across various DICOM 
images, in terms of dimensions, bit depth, and image 
type. All the above modifications made it possible to 
delete the ASPP model or its enhanced version 
(Dense ASPP) at the end of the image reconstruction 
task, which simplified the proposed scheme and 
accelerated its implementation. 
 The results demonstrated the effectiveness of the 
proposed system according to the quality and testing 
criteria, achieving higher compression ratios, and 
outperforming the best current techniques in terms of 
the bpsp metric, with improvement ratios of 19.26%, 
22.89%, and 23.94% for CR, CT, and MRI images, 
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respectively. Regarding the total compression time, 
while traditional methods generally outperform 
learning-based methods, the proposed system 
reduced the overall compression execution time by 
approximately 17% to 19% for various types of 
DICOM images, compared to the competing learned 
approaches. Related to PSNR and SSIM metrics, the 
results showed high-quality values across different 
image dimensions, types, and bit depths, 
demonstrating the ability to ensure accurate 
diagnosis. 
 In the future, it is possible to develop the 
proposed scheme by using low-cost multivariate 
mixture models for learned medical image 
compression or improving the upsampling task via 
employing another hybrid attention mechanisms, 
such as squeeze-and-excitation (SE) blocks and 
convolutional block attention module (CBAM). It is 
also possible to expand its use to include ultrasound 
DICOM images and explore the potential 
deployment of the proposed mechanism on medical 
IoT devices for telemedicine use. 
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