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ABSTRACT 

In the Drip Irrigation system, Water scarcity and inefficient irrigation practices are major challenges that are 
faced in smart agriculture. To overcome these issues lot of Deep Learning (DL) methods are processed for 
prediction. Though there are lot of inefficiency and inaccurate in evaluation, an effective prediction is 
required in modern agriculture. To attain higher accuracy and robust prediction, this work presents an 
advanced sequence of Generative Adversarial Networks (SeqGAN) to generate and predict agricultural data 
that is specifically used to optimize irrigation practices and manage water resources effectively. The proposed 
seqGAN architecture consists of a generator and a discriminator.  The generator involves a DL method of 
Long Short-Term Memory (LSTM) networks to create realistic agricultural text sequences by learning from 
previous data and it also has controlled variability through noise injection. The discriminator includes a Gated 
Recurrent Unit (GRU) and a CatBoost classifier to differentiate between real and generated sequences. The 
CatBoost integration enhances the model's ability to handle categorical data efficiently which enhances the 
accuracy and robustness of sequence classification. This proposed method is particularly beneficial for 
agricultural datasets augmenting and effective predictive sequences in agricultural fields. This proposed work 
not only improves data availability but also supports innovative solutions in agricultural research that 
ultimately contribute to more sustainable and efficient farming tasks than conventional methods. 

Keywords: Agricultural data, SeqGAN, LSTM Generator, GRU Discriminator, CatBoost classifier, Error 
Rate Analysis. 

INTRODUCTION 

India is mainly an agrarian economy that 
heavily depends on efficient irrigation methods to 
optimize water usage and ensure sustainable 
agricultural activities [1]. Drip irrigation has 
gained importance due to its numerous benefits 
like overcoming severe water scarcity. Drip 
irrigation delivers water directly to the plant roots 
through a network of valves, pipes and emitters 
that minimize water wastage enhance soil 
moisture retention and boost crop yields [2]. In 
spite of its benefits, the implementation of drip 
irrigation systems must be coupled with accurate 
prediction models to address water scarcity issues 
effectively.  

Water scarcity is a main concern all over the 
world, especially in India and affects both rural 
and urban populations [3]. Factors like erratic 
rainfall patterns, groundwater over-extraction and 
inefficient water management are worsening the 
situation of irrigation. As agriculture consumes 
approximately 80% of the country's freshwater 
resources enhancing irrigation practices is crucial 
[4]. Drip irrigation with its potential to save up to 
50-70% of water offers a viable solution. 
However, its precise water usage prediction 
effectiveness can be significantly enhanced 
through advanced technologies like the Internet of 
Things (IoT) and DL methods [5]. 
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Usually, farmers depend on methods like 
flood irrigation which is highly inefficient and 
leads to significant water wastage and soil erosion 
[6]. Also, furrow and basin irrigation is slightly 
better than flood but still falls short in terms of 
water use efficiency. To overcome these 
limitations, the Internet of Thighs (IoT) 
integration in agriculture has arisen as a game-
changer. IoT devices include soil moisture 
sensors, weather stations and aerial imagery from 
drones that make real-time data on various 
environmental parameters [7]. These data are used 
to analyze and provide an effective real-time 
prediction. So that advanced DL techniques are 
processed to achieve accurate predictions of water 
requirements and irrigation schedules. 

Some of the popular DL methods used in 
agricultural fields [8] such as Convolutional 
Neural Networks (CNN) are used to extract 
spatial features that can help to estimate crop 
health and soil moisture levels. Recurrent Neural 
Networks (RNN) and LSTM networks are 
employed to capture temporal dependencies in 
time-series data namely weather forecasts and 
historical irrigation patterns. GRU is a variant of 
LSTMs that offers computational efficiency and 
is particularly useful for training sequential data. 
Additionally, GAN can be utilized to generate 
synthetic data for training to attain a robust model 
performance even with limited real-world data 
[9]. 

Most existing irrigation prediction models 
based  on conventional DL techniques like LSTM 
and CNN, which face challenges in handling 
limited or imbalanced agricultural data. This 
models  failed to achieve  data augmentation and 
robust sequence learning. To address this gap, our 
research introduces a SeqGAN-based model that 
generates realistic data and increases  prediction 
accuracy through a combined LSTM generator 
and GRU-CatBoost discriminator. The Generator 
uses LSTM layers to process input sequences and 
introduce noise for variability, creating new, 
reasonable agricultural data sequences [11]. The 
Discriminator employs GRU and dense layers to 
differentiate between real and generated 
sequences using a CatBoost classifier to evaluate 
their robust prediction among all the traditional 
methods.  

The rest of the work is followed by the related 
works given in section 2 and the preliminaries of 
this work are presented in section 3. Section 4 
contributes the materials and methods that have 

details of dataset samples and proposed 
methodology. Section 5 describes the result 
evaluation and finally, section 6 concludes the 
work.  

2. RELATED WORKS 

Several recent studies have explored the 
application of DL techniques in agricultural fields 
that enhance irrigation management and crop 
yield estimation. Abioye et al [12] presented a 
review based on DL methods to facilitate 
sustainable irrigation management among 
farmers. It emphasizes digital farming integration 
such as mobile and web frameworks to enable 
smart irrigation processes. These technologies 
offer remote monitoring and control capabilities 
that alleviate the challenges of farmers and 
researchers in managing irrigation efficiently.  

Katimbo et al [13] evaluated the DL method to 
estimate Crop Water Stress Index (CWSI) and 
Crop Evapotranspiration (ETc). The CatBoost 
and Stacked Regression are used to perform 
predictions effectively and suggest their potential 
use to enhance its decision support systems in 
water management. 

Sinwar et al [14] addressed issues of crop 
productivity and overcame them using a DL 
method. It is used to transform traditional farming 
activity into more innovative and eco-friendly 
methods with IoT and DL technologies. This 
method is used to enhance precision farming 
techniques for real-time purposes. 

Baswaraju et al [15] introduced a Dense 
Convolutional Network (DenseNet) with LSTM 
to analyse production. It optimizes the LSTM 
weight using Arithmetic and Rider Optimization 
Algorithms (AOA and ROA) to estimate its 
potential to attain an accurate data analysis in 
agricultural activities. 

Kadu et al [16] applied LSTM and CNN with a 
comparison of traditional methods to attain a 
prediction effectively. It supports small-scale 
farmers to make an informed decision about crop 
yield by using a CNN showing superior 
performance in their evaluations. 

Godara et al [17] presented multi-DL methods 
like Support Vector Regression, Multi-layer 
Perceptron (MLP), LSTM and GRU to provide an 
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automated system linked with agricultural data 
servers. 

Godara et al [18] conducted a regional analysis to 
identify key wheat yield across different zones in 
India. Using DL models of XGBoost, MLP, GRU 
and 1-D CNN, the estimated wheat yield 
variations successfully achieve a superior 
importance of precise agricultural prediction. 

Meghraoui et al [19] explored an LSTM and CNN 
to focus on cereals like wheat and corn 
production. This study achieves an efficient crop 
yield to emphasize accurate input data and model 
selection. 

Suebsombut et al [20] developed an LSTM model 
to predict soil moisture based on sensor data. 
Their sensor-based real dataset in Thailand 
validates the model's effectiveness in predicting 
soil moisture levels placing the groundwork for 
future applications in precision agriculture. 

Krishna et al [21] presented a crop prediction with 
the support of DL methods like Attention with 
Bidirectional LSTM and the MayFly method for a 
higher prediction. It focuses on major Indian 
crops like rice, sugarcane, wheat and maize that 
showcase the DL potential in agricultural 
optimization. 

Devi et al [22] discussed weather forecasting 
systems by using a DL-based RNN method. This 
method is used to automate agricultural 
management and also enhances soil quality and 
weather monitoring. This work achieves higher 
accuracy in weather prediction than all other 
conventional methods and is also validated as 
highly advancing smart agriculture practices. 
 

Water scarcity and inefficient irrigation 
practices remain critical challenges in modern 
agriculture, especially in regions heavily 
dependent on farming. Existing deep learning 
models often fail to provide accurate and robust 
predictions due to limited data, lack of 
augmentation, and inadequate handling of 
sequential patterns. There is a pressing need for an 
advanced predictive model that can generate 
realistic agricultural data and optimize irrigation 
practices for sustainable water management. 

 

Preliminaries  
GRU Model 
 The GRU architecture (Figure 1) 
comprises the Update Gate (zt), Reset Gate (rt), 
Current Memory Content (h’t) and Hidden State 
Update (ht). These elements work has zt 
determines the relevance of past information for 
the present data while the rt controls the forgetting 
of historical data. The h’t participates new 
sequence data into the h’t and ht where Update 
combines both old and new data to update the ht. 
This design enables the GRU to long-term 
dependencies in sequential data effectively to 
make it highly suitable to achieve a time-series 
analysis and natural language processing. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: GRU Architecture 

The GRU is considered by its gating mechanisms 
that control the data flow through the network that 
is given below equation (1-4).  
zt = σ(Wz ⋅ [ht − 1, xt])    (1) 
rt = σ(Wr ⋅ [ht − 1, xt])    (2) 
h′t = tanh(W ⋅ [rt ⊙ ht − 1, xt])   (3) 
ht = (1 − zt) ⊙ ht − 1 + zt ⊙ h′t  (4) 
 Unlike the more complex LSTM 

network, the GRU offers an efficient method that 
maintains effectiveness across sequential data 
processing. The equations (1-4) describe how the 
GRU processes sequential data to utilize weight 
matrices Wz, Wr, and W for gate process, sigmoid 
(σ) for activation and element-wise multiplication 
(⊙) to update hidden states. These mechanisms 
enhance the GRU's capability to capture and 
utilize relevant information over extended 
sequences that have practical advantages in 
modelling complex temporal dependencies. 
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LSTM Model 
 The LSTM model is based on the RNN 
model and that solves long-term dependencies 
capturing in sequential data. It processes data over 
extended sequences and enables an effective 
sequential data analysis. It has a memory cell that 
regulates data flow and also has a forget gate, an 
input gate and an output gate. The input gate 
manages the new data in the memory cell, the 
forget gate controls the data retention and an 
output gate is used to control the data selection to 
a memory cell. By managing the data flow using 
these gates, LSTM captures and remembers an 
intricate dependency within sequential data. This 
model has a capability to sequential pattern 
process that has proven valuable. It is used to 
enhance LSTM architectures and explore their 
potential in DL and data analysis in various areas. 

CatBoost Model 
It is also known as the Categorical 

Boosting model or gradient boosting method is 
designed to handle categorical features in learning 
activities specifically. It handles categorical 
features that are sorted in a numerical order in 
every category based on the target variable's 
statistics. It enables CatBoost to access 
categorical data effectively during the training 
process. It is also integrated with a decision tree 
for weak learners to create a stronger predictive 
model. It also builds a decision tree ensemble 
where every subsequent tree corrects the mistakes 
made by the previous trees. By using a gradient 
optimization method, the CatBoost ensures 
efficient and accurate model training. 

This method has the ability to handle missing 
values within the data automatically. It can handle 
missing data points effectively during the training 

phase without requiring explicit imputation or 
handling tactics. Also, it has the ability to handle 
categorical features with its high predictive 
accuracy and also makes a popular choice to 
tackle a real-world DL issue. 
Materials And Methods 
Dataset collection  

In 2023, a dataset consisting of 619 
samples exactly collected from a town of 
Batlagundu that is situated in the Nilakottai within 
the Dindigul district of Tamil Nadu, India (Figure 
2). This dataset is focused on jasmine crop 
cultivation from June to September which is 
collected to gather the factors that prompt jasmine 
growth in this specific region. The data is captured 
using an agricultural sensing or monitoring 
system, recording essential data related to jasmine 
cultivation. This dataset serves as a valuable 
resource to offer environmental conditions, 
agricultural practices and crop responses specific 
to jasmine cultivation during the specified period. 

3. PROPOSED METHODOLOGY 

The proposed SeqGAN architecture is 
designed to generate realistic agricultural 
sequences. Figure 3 shows both the Generator and 
the Discriminator where every component has a 
specific role in the GAN network and it works 
together to make and assess new data sequences.  

LSTM based Generator 

Parent Sequence:  

 

Figure 2: Dataset collected from this Jasmine 
Farming  
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The generator begins with a parent 
sequence that is an agricultural data series. Each 
element in this sequence (x0, x1, ..., xt) represents 
data such as crop names, farming techniques, 
weather conditions, etc. This sequence helps as 
the input that the generator will use to create a new 
sequence. It represents the real agricultural 
sequence patterns and structures the generator 
aims to learn and repeat. 

LSTM + Embedding Layers: 
This layer is used to process an input 

sequence. The embedding layer is used to transfer 
input data into dense vectors that provide a 
continuous vector space where semantically 
similar sequence words are closer together. It is 
capable of training a long-term dependency in 
sequential data and provides suitable data 
sequences. In this sequence, LSTMs can capture 
complex patterns like seasonal trends, common 
agriculture data sequences and related 
relationships between terms. 
Noise Injection: 

In the generator, a random noise vector 
is presented in the representation after encoding 

the input sequence. It is crucial to create a diverse 
sequence. The noise vector assures that the 
generator produces mixed outputs rather than 
duplicating an exact input sequence. In data 
generation, this variability can lead to providing a 
new sequence of data that is reasonable within the 
agricultural tasks but not in the training data. 
 
LSTM + Embedding Layers (Decoder): 

On the decoder side, the noisy encode is 
fed into an LSTM layer with embeddings. The 
decoder generates a new sequence from the 
encoded representation. It produces a new 
sequence of data that should logically follow from 
the input sequence which enriches a noise-
induced variability. 
Generated Sequence (Ŷ = {ŷ0, ŷ1, ..., ŷt}): 

The new output sequence of a generator 
(Ŷ) is used to resemble the real agricultural data. 
This generated sequence represents synthetic 
agricultural data which is indistinguishable from 
real data. The goal is to make sequences that could 
naturally occur in agricultural communication. 

 

 

 

 

 

 

Figure 3: Hybrid Sequence GAN Architecture 
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GRU based Discriminator 
Input Sequences (Real and Generated): 

The discriminator receives two types of 
input sequences namely real sequences (Y) from 
the agricultural data and generated sequences (Ŷ) 
from the generator. The discriminator's process is 
to distinguish between these two types of 
sequences. It serves as a binary classifier that 
learns to estimate the subtle differences between 
real and generated data. 
GRU + Dense Layers: 

The discriminator uses GRU layers 
followed by dense layers. It is computationally 
less intensive than LSTMs while still capable of 
processing temporal dependencies. The GRU 
layers process the input sequences to learn 
temporal dependencies much like the LSTM 
layers in the generator. The dense layers that used 
to transform the GRU outputs into a suitable form 
for classification. 
Encoding: 

Both the real and generated sequences 
are encoded through a set of encoding layers. This 
encoding is used to transform data sequences into 
a fixed-size vector that is necessary to classify a 
subsequent step. It also helps to abstract the data 
contained in the sequences into a compact form 
that validates an essential feature. 
CatBoost Classifier: 

The encoded sequences are fed into a 
CatBoost classifier. Then it handles categorical 
data from encoded sequences effectively and 
efficiently. The classifier determines whether a 
given sequence is real or generated. It evaluates 
the agricultural text sequences accurately and 
attains a high benefit from encoded data of GRU 
layers and that attains an accurate classification. 

Therefore, the proposed SeqGAN is effective 
and accurate in prediction. It has special features 
of Generator provides a new sequence of 
agricultural data and attains learning the patterns 
as real data. It also has special features of random 
noise to produce variability. This process involves 
multiple LSTM layers and embeddings to capture 
and generate complex sequences. The 

Discriminator evaluates both the real and 
generated sequences to classify them correctly by 
using CatBoost model. Therefore, the proposed 
method is highly capable of providing the best 
sequence data and attaining an effective 
prediction than conventional methods.  
Results And Discussion 

The evaluation of the proposed model has 
both training and testing on a dataset of 619 
jasmine samples with a 70% training and 30% 
testing split. After training, the model's 
performance is compared with an existing model 
using various metrics including Mean Absolute 
Error (MAE), Root Mean Square Error (RMSE), 
Mean Bias Error (MBE), Standard Deviation 
(SD), T-Statistic (Tstat), Uncertainty with 95% 
Confidence Level (U95) and Nash-Sutcliffe 
Efficiency (NSE). The formulation of all these 
metrics is given below in Equation (5-12): 

MAE =
ଵ

୬
∑ |O୧ − P୧|

୬
୧ୀଵ   (5) 

RMSE = ට
ଵ

୬
∑(P୧ − O୧)

ଶ  (6) 

MBE =
ଵ

୬
∑ (O୧ − P୧)

୬
୧ୀଵ   (7) 

SD =
ୖ୑ୗ୉

୓ഥ
    (8) 

Tstat = ට
(ଵି୬)୑୆୉మ

ୖ୑ୗ୉మି୑୆୉మ   (9) 

U95 = 1.96√SDଶ + RMSEଶ  (10) 

NSE = 1 −
∑(୔౟ି୓౟)మ

∑(୓ഠതതതି୓౟)మ 
   (11) 

Rଶ = ቎
∑ (୓౟ି୓ഥ)(୔౟ି୔ഥ)౤

౟సభ

ට(∑ (୓౟ି୓ഠതതത))^ଶ (∑ (౤
౟సభ ୔౟ି୔ഥ)^ଶ )౤

౟సభ

቏

ଶ

 (12) 

 Where n indicates the Total number of 
observations, Oi denotes the Observed (actual) 
value for the i-th data point,Pi denotes the 
Predicted value for the i-th data point and ∣x∣ 
indicates an Absolute value of x, Oഥ denotes Mean 
of the observed values. Pഥ indicates the Mean of 
the predicted values. The real versus predicted 
plot of the proposed model is shown in Figure 7. 
 

Table 1: Performance Analysis 

Model  MAE RMSE SD Tstat U95 NSE R2 

Proposed 3.70 5.90 1.92 1.90 4.65 0.65 0.60 
GAN 5.30 7.50 2.90 1.40 6.10 0.55 0.58 

CNN-
LSTM 

6.80 8.10 4.35 1.85 8.25 0.78 0.69 

Optimised 
GRU 

8.88 10.25 4.86 
 

1.26 9.83 0.68 0.69 
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GRU 9.73 11.15 5.65 1.35 9.35 0.72 0.65 
LSTM 10.55 12.85 6.25 0.85 10.22 0.65 0.60 

RNN 11.04 13.05 7.09 0.70 11.25 0.55 0.58 
 

 

 

(a) (b) 
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(c)               (d) 

 

 

 

 

 

 

(e)  
  

                 (f) 

 

(g) 
Figure 4: Performance Of Proposed And Traditional Models Based On Error Rate Analysis (A) MAE Analysis, (B) 

RMSE Analysis, (C) SD Analysis, (D) Tstat Analysis, (E) U95 Analysis, (F) NSE Analysis And (G) R2 Analysis 

 
In Figure 4 and Table 1, Among the 

models evaluated, the Proposed model stands out 
with superior performance across key metrics. It 
achieves the lowest MAE of 3.70 (figure 4a) and 
RMSE of 5.90 (figure 4b) indicating minimal 
prediction errors and high accuracy. The model 
also exhibits the lowest SD of 1.92 (Figure 4c) 
which has consistent and reliable predictions. 
With a T-stat of 1.90 (Figure 4d), the Proposed 
model shows statistically significant results. 
Additionally, it maintains a competitive U 95 of 
4.65 (Figure 4e), NSE of 0.65 (Figure 4f) and R² 

of 0.60 (Figure 4g) that attains robust predictive 
power and effective variability explanation. 
Overall, these findings highlight the Proposed 
model's effectiveness in bringing precise and 
reliable predictions compared to other models 
evaluated. 
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Table 2: Comparison With Other Models 

Model  METHOD  MAE RMSE SD Tstat U95 NSE R2 

Proposed SeqGAN 3.70 5.90 1.92 1.90 4.65 0.65 0.60 
Kadu et 
al [16] 

LSTM and 
CNN 4.10 6.70 2.20 1.75 5.20 0.58 0.55 

Godara 
et al [18]   

Ensmeble 
4.00 6.50 2.05 1.80 5.00 0.60 0.57 

Krishna 
et al [21] 
 

Bidirectional 
LSTM and 
the MayFly 
method 
 

3.95 6.20 2.00 1.85 4.85 0.63 0.59 

Devi et 
al [22] 

DL-based 
RNN 
 

4.20 6.80 2.25 1.70 5.30 0.55 0.52 

The comprsion with other models are 
given in Table 2. The proposed SeqGAN model 
outperforms all existing methods across key 
evaluation metrics such as MAE, RMSE, and 
NSE, indicating superior prediction accuracy and 
reliability. Compared to methods like LSTM-
CNN, Ensemble, Bi-LSTM with MayFly, and 
DL-based RNN, SeqGAN achieves the lowest 
error rates and the highest efficiency scores.  

4. CONCLUSION 

In this proposed work, the real-time dataset of 
jasmine samples is used which has 619 samples 
that is collected from June to September 2023. 
This dataset provides important factors of jasmine 
growth under specific regional and temporal 
conditions by using sensors for data collection. 
The proposed SeqGAN method is used to achieve 
an exact agricultural data prediction. This 
proposed work effectively generates realistic 
agricultural data sequences by using an LSTM 
and embedding layers that include noise injection 
for variability and also processed Discriminator 
features of GRU and CatBoost to classify a 
sequence. This method significantly advances 
agricultural data capabilities. The validation of the 
proposed  SeqGAN model carried a better and 
superior performance than all other methods 
where the proposed attains an MAE of 3.70, 
RMSE of 5.90, SD of 1.92, T-stat of 1.90, U95 of 
4.65, NSE of 0.65, and R² of 0.60 respectively. 
Therefore the proposed method demonstrated the 
model's precision, reliability and suitability and 
also enhanced agricultural decision-making and 
productivity. In the future, this work can be 
extended by integrating real-time IoT sensor data 
to further enhance the accuracy of irrigation 

predictions. Advanced hybrid models combining 
reinforcement learning with SeqGAN can be 
explored to optimize water usage dynamically. 
Additionally, deploying the model on edge 
devices can support on-field decision-making for 
smart and scalable agricultural systems. 
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