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ABSTRACT 
 

The purpose of this research is to create a holistic methodology for detecting and classifying brain tumors 
using up to date image processing, feature extraction and machine learning methods. To improve the 
diagnostic accuracy, this research evaluated the model performance of various classifiers as well as expanding 
feature representation to select the best available model for Brain tumor classification. Techniques: Such 
process includes developing techniques of image enhancement using TV-L1 norm and MRI segmentation 
algorithms etc. Preparation: Using sophisticated MRI segmentation techniques, the areas of tumors were 
precisely identified and improved image quality by implementing the TV-L1 standard for efficient image 
augmentation. For robust feature extraction and feature richness, Multi Scale Local Binary Pattern (MSLBP) 
for texture analysis was integrated with the multi-dimensional feature representation feature through the use 
of Quaternion Wavelet Transform (QWT). The Histogram of Oriented Gradients (HOG) is leveraged to 
quickly capture edge and shape data. Selecting Features Effectively: the dimensionality is reduced and hence 
increased classification effectiveness by selecting and prioritizing the most useful features via the Minimum 
Redundancy Maximum Relevance (MRMR) technique. Different Classification Techniques: Random Forest 
has great accuracy and is robust, so a number of classifiers were constructed. When it comes to modeling 
complex data distributions, Support Vector Machines (SVMs) prove effective. The K-Nearest Neighbors 
(KNN) is utilized for local patterns because it is user friendly and good. Results: The dataset from China's 
Nanfang Hospital and General Hospital was used to evaluate the techniques and is available on Kaggle. With 
low error rate (0.0147), high sensitivity (98.53%), and specificity (99.51%), Random Forest (RF) had the 
highest accuracy of 98.53%. In the end, Naive Bayes (NB) performed the worst at 96.67% while SVM and 
KNN produced slightly lower accuracies at 97.22% and 97.50% respectively. More sophisticated processing, 
feature extraction, and selection procedures used as part of the suite of preprocessing operations contributed 
significantly to the increased classification accuracy. RF revealed great promise for clinical use in identifying 
brain tumors, achieving high sensitivity and specificity while decreasing false positives to an accuracy rate 
of 98.53%. Even though RF consistently outperformed the others like SVM and KNN on all measures, they 
did very well on their own as well. 

Keywords: Histogram of Oriented Gradients, K-Nearest Neighbors, Multi-Scale Local Binary Pattern, 
Naïve Bayes Classifier, Quaternion Wavelet Transform, Random Forest Classifier, Support 
Vector Machine, TV-L1 norm 
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1. INTRODUCTION  
 

Early detection and accurate classification of brain 
tumor is of vital importance for improving patient 
outcomes and surgery plan. Medical imaging has 
come a long way but the anatomy of brain tumors in 
MRIs remain difficult to interpret because they 
appear so complex and variable. To overcome these 
challenges, this study develops an advanced 
methodology using image processing, feature 
extraction, and machine learning techniques that can 
improve brain tumor classification accuracy. The 
research aims to automate this process in order to 
deliver more dependable and efficient diagnostic 
tools, helping healthcare professionals establish 
better educated decisions. 

The development of treatment regimens and 
patient care both depend on the early diagnosis of 
brain tumors. Radiologists may find it difficult to 
analyze brain tumor pictures, which might cause 
delays in treatment planning and even endanger the 
health of patients. Brain tumors originate from 
abnormal development of cells, proliferating 
uncontrollably and potentially damaging brain cells 
by exerting pressure within the skull. They can arise 
from brain cells surrounding the membranes 
(meninges), glands, or nerves. Malignant tumors, 
particularly Glioblastoma Multiforme (GBM), pose 
a significant threat, causing approximately fourteen 
thousand deaths annually with an overall survival 
rate of only fifteen months despite extensive research 
efforts. The severity of brain tumors is categorized 
into different grades [1]: 

 Grade 1: Least dangerous tumors associated 
with prolonged survival, growing slowly and 
exhibiting a typical appearance under a 
microscope. Surgical treatment can often be 
successful for this grade, with examples 
including Pilocytic astrocytoma, 
ganglioglioma, and gangliocytoma. 

 Grade 2: Tumors that grow slowly but appear 
anomalous under microscopic examination. 
Some may spread into neighboring tissues 
and progress to higher grades. 

 Grade 3: Malignant tumors with a tendency to 
recur as grade 4. While there may not be a 
significant contrast compared to grade 2 
tumors, they are generally more aggressive. 

 Grade 4: The most malignant tumors, 
characterized by rapid growth, abnormal 
appearance under the microscope, invasion 
into neighboring tissues, and the formation of 

new blood vessels. GBM is a notable 
example. 

Problem Statement: Detection and accurate 
classification of brain tumors early are important 
factors in planning and treating for successful 
treatment and improved survival rate of patients. 
Diagnosing brain tumors from medical images is still 
a difficult task because tumor characteristics are 
quite complex and brain structures are variable. In 
particular, heterogeneous texture and variations in 
tumor appearance makes the problem difficult, 
especially when several kinds of tumors are 
overlapped together in one scan or the appearance of 
tumors resembles normal brain tissue. Moreover, a 
limitation of the current diagnostic tools is their 
dependence on radiologists’ subjective visual 
interpretation which leads to a chance of human 
error. Another obstacle to overcome in treating such 
highly heterogeneous cancers is the lack of 
standardized ways to classify brain tumors using 
different imaging modalities. In addition, the 
complexity of MRI images along with the demands 
for highly specialized expertise to pinpoint accurate 
diagnosis has proven tough enough for even 
clinicians in non-specialized medical settings to 
deliver decisions with the appropriate speed and 
accuracy. This is an issue that healthcare 
professionals face major challenge in giving accurate 
and time effective diagnoses. But these limitations 
delay or incorrect diagnosis of patients may result in 
suboptimal treatment decisions for patients that may 
worsen their prognosis and make their treatment 
plans ineffective. In addition, tumor classification 
from MRI scans is slow and difficult to perform 
reliably, unnecessarily burdening healthcare systems 
with long wait times before critical treatment can be 
commenced. This urgency calls for advanced and 
automated solutions which may improve diagnostic 
accuracy and assist clinicians to take early informed 
decisions. 

Image processing methods, particularly 
segmentation, play a crucial role in tumor detection. 
Segmentation aims to partition an image into 
homogeneous regions to identify tumor shapes. 
Brain anatomy is frequently examined using 
computed tomography (CT) scans or magnetic 
resonance imaging (MRI), with MRI being safer and 
more effective because it doesn't involve radiation. 
However, since tumors consist of various biological 
tissues, a single type of MRI may not provide 
complete information. Therefore, integrating 
different complementary information, such as 
weighted MRI images (T2, T1, and Proton Density), 
enhances tumor segmentation accuracy. 
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Segmentation strategies have been highly effective, 
especially in detecting and characterizing diseased 
tissues during the developmental stages [2]. 
Computer-assisted automated diagnostic approaches 
have gained popularity as a solution to this issue, 
especially those that use machine learning 
techniques to classify brain tumors. Robust machine 
learning systems improve the accuracy of diagnoses, 
which helps medical practitioners make decisions. 

Rationale of the Study: The main objective of this 
work is the development of an advanced and accurate 
solution for detecting and classifying brain tumors 
using the state of art image processing methods and 
the machine learning algorithms. The motivation 
behind this approach is that conventional diagnostic 
techniques based on obtaining frequently subjective 
expert opinion is usually time consuming, subjective 
and prone to human error. Second, the brain tumors 
are complex with various appearances across 
different MRI scans and so require sophisticated 
automated and more accurate diagnosis. State-of-
the-art image enhancement techniques, robust 
feature extraction methods, and powerful machine 
learning classifiers, are integrated in the proposed 
methodology to bring about a multi-dimensional 
solution to the problem of tumor heterogeneity, high 
dimensionality of MRI data, and inter-subject 
variability in brain structures. Utilizing Quaternion 
Wavelet Transform (QWT) and Multi Scale Local 
Binary Pattern (MSLBP), they guarantee effective 
capture detail of both texture and structural 
information at different scales, improving feature 
richness needed for more reliable classification. 
Additionally, the Histogram of Oriented Gradients 
(HOG) contains rich information about both edge 
and shape, which is necessary for differentiating 
between multiple tumor types and normal brain. 
Reason for using MRMR for feature selection is to 
reduce dimensionality of feature set, hence make 
learning faster and more efficient without decoding 
relevancy of the processed features. Using MRMR, 
this study seeks to select the most informative 
features retaining as little redundant information as 
possible in order to ensure the classification problem 
is computationally feasible and highly accurate. Due 
to this desire to utilize the strengths of each 
algorithm, we use multiple classification algorithms 
such as Random Forest, Support Vector Machines, K 
Nearest Neighbors and Naïve Bayes. For instance, 
RF achieves high accuracy for dealing with complex 
data distributions while SVM and KNN excel in high 
dimensional spaces, a characteristic of medical 
image analysis. Because a wide variety of classifiers 
is used, the system is robust and adaptable to 
different types of input data and for different tumor 

classifications. Finally, this paper seeks to offer a 
better and quicker resolution to the classification of 
brain tumors that can serve as support to help 
clinicians make well informed decisions leading to 
patient outcomes. It is justifiable to choose the 
proposed approach because it combines the latest 
computational techniques with domain knowledge, 
thus a reasonable and feasible solution for real world 
applications of medical imaging and diagnosis. 

The following sections comprise the rest of the 
paper. Section 2 provides a comprehensive review of 
relevant literature, exploring previous studies on 
brain tumor classification methods, feature 
extraction methods, and classification algorithms. 
The materials and techniques used are described in 
Section 3. Section 4 presents the suggested 
methodology, explaining the various feature 
extraction techniques as well as the MRMR-based 
feature selection procedure. The use of several 
classifiers to classify brain tumors is also covered in 
this section. Section 5, which also assesses the 
effectiveness of the proposed method in terms of 
classification accuracy and other pertinent metrics, 
presents the findings and comments. The major 
conclusions, their implications, and suggestions for 
more research are summarized in Section 6. 

2. LITERATURE REVIEW 

Since image classification [1] also requires the 
rigorous feature and classifier selection to get the 
best results, brain tumor classification is no different. 
For the purpose of their proposed framework to 
categorize brain tumors, the authors in [3] considered 
the effectiveness of three separate feature extraction 
methods. The density histogram, gradients of locally 
contrasted magnitudes (GLCM), and the bag of 
words (BoW) model. For their work, they used 
classifiers Support Vector Machine (SVMs), K-
nearest neighbor (K-NN) and K-means algorithm. 
When combined with the SVM classifier, the Bow 
properties collected delivered a remarkable 91.14% 
accuracy. Their strategy is hindered, however, by the 
bag of words model’s computational complexity 
when working with large datasets. 

The authors of [4] presented a novel brain tumor 
categorization model that uses statistical data 
together with neural network categorization of MRI 
images. They successfully differentiated among 
three different brain cancer types (pituitary, glioma, 
and meningioma) employing a backpropagation 
neural network classifier which formed a 
combination of 2D DWT and 2D Gabor filter 
techniques with an impressive characterization 
accuracy of 95.66%. The however, one flaw they 
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might have is they need to tweak extensive 
parameters such as the architecture of the neural 
network, which is a problem in terms of complexity 
of the model and processing requirements. Just like 
above, the authors of the work presented in [5] 
proposed a brain tumor classification hybrid feature 
extraction technique based on a regularized extreme 
learning machine (RELM). They achieved 94.233% 
success rate when they used L2 normalization and 
combined both PCA with GIST identification to use 
with RELM classifier. However, the reliance of their 
strategy on the RELM algorithm's sensitivity to 
hyperparameter selection could be limiting, 
requiring careful hyperparameter tuning to guarantee 
good performance on a mix of datasets. The authors 
studied in [6] categorized T1-weighted MR images 
that gave different sorts of brain tumor such as 
astrocytoma (AS), glioblastoma multiform (GBM), 
childhood tumor-medulloblastoma (MED), 
meningioma (MEN), secondary tumor-metastatic 
(MET) and normal regions (NR). Their strategy 
extracted features of texture and density, which were 
then selected by feature selection using PCA, with an 
astounding 91% success rate using ensemble 
learning. Their approach, however, is not without its 
disadvantages, including the possible 
uninterpretability of the resulting features, which 
may hurt the resulting biological importance of the 
selected traits. Before categorizing brain tumors, the 
authors of [7] utilized kernel based SVM technique 
for segmentation. They were able to classify with a 
success rate of 91.4% by obtaining first and second 
order statistical characteristics for regions segmented 
using the SVM technique. A potential drawback of 
their method may be its susceptibility to tuning of the 
SVM algorithm's parameters, requiring either 
domain expertise or extensive testing to achieve 
good performance over a spectrum of different 
datasets. As in the study referenced in [8], 
background reduction, feature extraction, and 
classification with a multi-layer perceptual neural 
network are used in the authors' multi-phase brain 
tumor classification. A sophisticated whale 
optimization technique was used to provide an 
optimal feature selection etc. Their dependence on 
heuristic optimization approach, e.g. whale 
optimization algorithm, depends on parameter 
change and cannot guarantee the convergence on 
global optimum is one possible drawback to this 
approach. Finally, kernel extreme learning machine 
(KELM) was used to classify convolutional neural 
network (CNN) features extracted from different 
brain MR images. Authors of [9] used the KELM 
CNN structure to get a 93.68% success rate. The 
reason their approach may be flawed is because they 

would need a lot of annotated data to properly train 
the CNN model; they will have issues with datasets 
having fewer labeled instances. The study in [10] 
tackled preprocessing, tumor classification using 
extreme learning machine local receptive field (ELM 
LRF), and image processing to extract tumor area for 
tumor segmentation using morphological operators. 
While their technique is effective, their reliance on 
manually generated features and stages of 
preprocessing may be disadvantageous since it could 
potentially sacrifice the ability to scale and apply it 
to other datasets. The study in [11] provides a 
semiautomatic mutli-step classification. The tumor 
area recognition process was first performed by a 
content based active contour technique so that the 
ROI can be manually defined by the radiologist. 
Then 71 texture and intensity characteristics are 
extracted from the segmented ROI, the best of which 
are chosen using a Genetic Algorithm (GA). Finally, 
the comparison of selected characteristics were 
classified using SVM and ANN classifiers. To 
evaluate this method, two datasets with 428 and 260 
MR image datasets, each for six tumor categories 
were tested. A potential disadvantage of their method 
is that they need help with user participation for ROI 
selection. Because of this, categorizing the dataset 
may prove to be more subjective, and could 
potentially be more unpredictable between different 
radiologists or datasets. In this case, the discussed 
studies show that the feature extraction methods and 
the classifier chosen play a significant role in the 
classification of brain tumours, based on the stated 
advancements in the research taken place in the 
literature. Of special interest in this work, several of 
the feature extraction methods are specifically 
designed for use in the classification of common 
types of brain tumors, including gliomas, 
meningiomas, or pituitary tumors, in particular – 
Quaternion Wavelet Transform (QWT) [12] 
combined with Multi-Scale Local Binary Patterns 
(MSLBP) [13], Speeded-Up Robust Features 
(SURF) [14], and HOG features [15]. Machine 
learning methods including Random Forest 
Classifier, SVM, KNN, and Naïve Bayes are used by 
the study to assess feature matrices generated from 
using QWT-MSLBP, HOG, and SURF techniques. 
Different feature extraction techniques should be 
able to extract the texture and spatial difference 
among the different kinds of brain tumors by 
concentrating on the peculiar features of these 
images. Each of these various approaches might 
show discriminative aspects overlooked by 
traditional approaches. In addition to the MRMR 
(Minimum Redundancy Maximum Relevance) 
based feature selection, the study used a number of 
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feature extraction methods to ascertain from the 
extracted sets which characteristics have the most 
information [16]. In order to achieve appropriate 
classification of brain tumors, MRMR yields a brief, 
highly discriminative feature set by measuring 
relevance to the target variable and minimizing 
feature redundancy. The strategy offers a mechanical 
method to boost the performance of the subsequent 
categorical schemes. The study also examines a 
range of powerful classification algorithms intended 
to be able to work with the selected feature sets. The 
Random Forest Classifier is one that uses an 
ensemble learning technology that creates a potent 
decision model that can handle sophisticated 
interaction among features. The SVM method is also 
used, which is known for highly effective 
performance in high-dimensional feature fields and 
for the ability to build non-linear decision 
boundaries. Along with the KNN algorithm 
presented, the paper also includes a straightforward 
but effective instance based learning algorithm that 
groups the samples based on their proximity to 
neighboring samples. Finally, given its effectiveness 
and scalability to manage large feature set, Naïve 
Bayes classifier founded on the ideas of Bayesian 
probability is used. By combining a diverse 
ensemble of classification algorithms with the 
MRMR based feature selection, this research work 
develops a comprehensive framework for accurate 
and effective brain tumor classification.  This 
method ultimately uses the unique benefits of each 
algorithm and reduces the inherent deficits of any 
single methodology to arrive at a diagnosis and 
treatment to patients with brain tumors. 

3. MATERIALS AND METHODS 

3.1 Quaternion Wavelet Transform (QWT) 

A mathematical tool for processing signals and 
images is called QWT. It is a kind of wavelet 
transform that works with signals that are 
represented in the complex number system's 
extension, the quaternion number system. QWT 
works with quaternion signals, which may represent 
signals with many orientation components, as 
opposed to real or complex signals, which are the 
domain of standard wavelet transformations. For 
processing signals and pictures with directional 
information, such texture or shape, QWT is hence 
especially well-suited. QWT may be applied to 
image processing applications as texture analysis, 
feature extraction, denoising, and image 
compression. 

The primary benefit of QWT above conventional 
wavelet transforms is its ability to record an image's 

orientation and magnitude information, enabling a 
more thorough depiction of the picture. The QWT is 
superior to the DWT because it examines 2D signals 
in more detail. Like the Fourier transform, its 
coefficients are expressed in terms of amplitude and 
phase, and unlike the DWT, it maintains translational 
invariance. The quaternion adds three imaginary 
portions (𝑖, 𝑗, and 𝑘) to complex numbers. It may be 
expressed in polar notation as q = |q|e୧e୨e୩ந and 
in Cartesian form, which is similar to complex 
exponential notation, as q = a + bi + cj + dk. It is 
differentiated by an argument with three angles as 
well as a modulus. The phase of 2D signals may be 
determined using the quaternionic argument. 

The Local Phase of the Signal: Bülow [17] 
provided an example of how to use the Hilbert 
transform (HT) and the argument of complex 
numbers to recover the local phase of a one-
dimensional signal. Thus, the quaternionic phase 
associated with a two-dimensional function is 
obtained, which is characterized by partial Hilbert 
transforms (ℋଵ, ℋଶ) and total Hilbert transforms 
(ℋ), which together comprise the analytical 
quaternionic signal [17]: 

𝑓(𝑥, 𝑦) = 𝑓(𝑥, 𝑦) + 𝑖ℋଵ𝑓(𝑥, 𝑦) + 𝑗ℋଶ𝑓(𝑥, 𝑦)
+ 𝑘ℋ்𝑓(𝑥, 𝑦) 

(1) 

This signal's quaternionic argument reflects the 
quaternionic phase of 𝑓, defining its local structures 
at each point in time. 

Wavelet Integration: Phase is incorporated into 
the wavelet decomposition process in the QWT 
context. This entails the generation of quaternionic 
coefficients using an analytical quaternionic mother 
wavelet, which use phase information to precisely 
describe the encoded structures. The phase 
information further refines the image's features, 
which are already powerfully described by the 
breakdown into sub-bands. The one-dimensional 
analytical signal's "local amplitude" (module) and 
"local phase" (argument) will remain unchanged. 
The presence of a component in each frequency sub-
band at each spatial position is measured by the 
amplitude of a QWT coefficient |𝑞|, which is 
independent of picture translation. In the meanwhile, 
the three angles (φ,θ, and 𝜓) that define the phase 
give a thorough explanation of the structure of these 
elements. In the conversation that follows, this point 
will be clarified further. 

Establishment: According to the operational 
principle, two-dimensional Hilbert Transforms 
(HTs) mirror one-dimensional HTs along the image's 
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rows and columns if the principal wavelet is 
divisible, as in this case, 𝜓(𝑥, 𝑦) = 𝜓(𝑥)𝜓(𝑦). 
Therefore, by looking at the Hilbert pairs ൫𝜓, 𝜓 =

ℋ𝜓൯ (for wavelets) and ൫𝜙, 𝜙 = ℋ𝜙൯ (for 
scaling functions), the analytical two-dimensional 
wavelet may be represented by independent 
products. 

𝜓 = 𝜓(𝑥)𝜓(𝑦) + 𝑖𝜓(𝑥)𝜓(𝑦)

+ 𝑗𝜓(𝑥)𝜓(𝑦) + 𝑘𝜓(𝑥)𝜓(𝑦) 

𝜓 = 𝜙(𝑥)𝜓(𝑦) + 𝑖𝜙(𝑥)𝜓(𝑦)

+ 𝑗𝜙(𝑥)𝜓(𝑦) + 𝑘𝜙(𝑥)𝜓(𝑦) 

𝜓ு  =  𝜓(𝑥)𝜙(𝑦) + 𝑖𝜓(𝑥)𝜙(𝑦)

+ 𝑗𝜓(𝑥)𝜙(𝑦) + 𝑘𝜓(𝑥)𝜙(𝑦) 

𝜙 = 𝜙(𝑥)𝜙(𝑦) + 𝑖𝜙(𝑥)𝜙(𝑦) + 𝑗𝜙(𝑥)𝜙(𝑦)

+ 𝑘𝜙(𝑥)𝜙(𝑦) 

(2) 

This suggests that such a decomposition produces 
a non-isotropic wavelet and is significantly 
dependent on the image's orientation in the frame 
(𝑥, 𝑦) (rotation variance). By using distinct filter 
banks and introducing the concept of phase, the 
QWT overcomes this limitation. 

3.2 Multi-Scale Local Binary Pattern (MSLBP) 

As a development of the Local Binary Pattern 
(LBP) method, MSLBP provides a multi-scale 
depiction of the subtleties of texture in brain MRI 
data. By using varying neighborhood sizes around 
the center pixel, MSLBP calculates texture 
properties over many scales, acting as a multi-scale 
extension of the traditional LBP process. A thorough 
multi-scale texture representation of the brain MRI 
picture is subsequently created by combining these 

texture elements from each scale. By employing a 
variety of scales, MSLBP effectively captures 
texture information at various granularities, 
increasing its usefulness for brain tumor 
classification tasks. MSLBP has proven to be 
effective in a variety of image processing 
applications, including character identification, face 
recognition, and texture analysis. Its ability to offer 
a thorough and reliable depiction of textural 
differences within brain MRI images emphasizes its 
significance in brain tumor categorization. 
Researchers have investigated the use of several LBP 
extractions inside an image in order to overcome the 
drawbacks of standard LBP technique, which 
confines the operator's calculations to a narrow area 
(usually a 3×3 zone). Changes in the number of 
samples (P) or the size of the regions (R) are possible 
with this modification. The necessity for more 
robustness in managing local texture variations 
brought on by things like rotation or illumination 
changes is what drives this kind of approach. In order 
to increase its applicability and flexibility to the 
many picture properties seen in brain tumor 
classification tasks, the classic LBP approach has 
been expanded into a multiscalar variant that differs 
in the radius size (R) in each extraction. 

𝐿𝐵𝑃ோ =  𝑠(𝑔 − 𝑔) × 2

ିଵ

ୀ

 

(3) 

Where P is the number of samples (pixels 
g, gଵ, … , gିଵ) that are evenly distributed inside the 
neighborhood of the center pixel gୡ, contained in its 
neighborhood. Figure 1 shows some regions across 
this data variation. 

 

Figure 1: Circular region for three diverse values of P and R 

The authors of [22] presented two variations of the 
Multiscale Local Binary Patterns (MSLBP) method. 
The first case, called MSLBP1, uses LBP by 
extracting 8 samples from different regions of the 
image, after Gaussian filtering, defined by a radius 

R୬, where n is the respective scale and is denoted by 
LBP଼ ,ୖ

 . The second type, called MSLBP2, is an 
alternative way to the first in which a set of average 
filters is applied in the region before the extraction 
of the LBP଼ ,ଵ pattern. The method used here is 
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entirely based on MSLBP, in which a Gaussian filter 
of size G୬ is applied to each scale, with the evolution 
of the scales given by changing the values of the 
radii. This change occurs respecting the optimal 
distribution in relation to the application of Gaussian 
filters. The objective of using low-pass Gaussian 
filters is so that in each sample in the neighborhood 
a larger amount of information can be collected than 
the one with a single pixel. The circles represent the 
area for extraction of the LBP standard around each 
sample after filtering. The outer radius of the “useful 
area”, r୬, is used to calculate the radius R୬ for 
extracting the LBP,ୖ

 and is specified by: 

𝑟 = 𝑟ିଵ ∙ ቌ
2

1 − 𝑠𝑖𝑛 ቀ
𝜋
𝑃

ቁ
− 1ቍ ,   𝑛 ∈ {2, … , 𝑁} 

(4) 

Where P୬, which in the instance of the MSLBP 
was thought to be P୬ = 8 ∀n ∈ N, is the sampling of 
each scale and N is the number of scales. The radius 
r୬ establishes the distance between the pixel and the 
edge of a neighborhood, so rଵ is defined as 1.5, 
which is the smallest distance between the pixel and 
the edge of a 3×3 region. Consequently, the radius of 
operator LBP଼ ,ୖ

is defined on scale n(n ≥ 2), as the 
midpoint between r୬ andr୬ିଵ, like this: 

𝑅 =
𝑟 + 𝑟ିଵ

2
,   𝑛 ∈ {2, … , 𝑁} 

(5) 

𝑅ଵ is specified as 1 since it is the lowest distance 
between the central pixel and the pixels in its 
neighborhood (3×3). This is similar to the situation 
of 𝑟, where the radii R୬ of the operators indicate the 
distance between the central pixel and the pixels in 
its neighborhood. The r୬ are used to calculate the 
window size of Gaussian filters, G୬, on the n scale as 
shown in Equation (6): 

𝐺 = 2. 𝑟𝑜𝑢𝑛𝑑 ቀ
𝑟 − 𝑟ିଵ

2
ቁ + 1 

(6) 

In which the function round: ℝ → ℕା assigns the 
smallest non-negative integer greater than it to a 
value. At each level, the 𝛿 value needed to apply the 
Gaussian filter is given by: 

𝛿 =
𝐺

ඥ−2 𝑙𝑛(1 − 𝑝)
 

(7) 

Where 𝑝 was set to 0.95. 

3.3 SURF 

The Speeded-Up Robust Features (SURF) 
algorithm is designed for efficient detection of 
distinctive points within images, focusing on 
optimizing both computational speed and robustness 
against transformations like scaling, rotation, and 
varying lighting conditions. SURF achieves these 
improvements by using approximations for 
operations that would otherwise be computationally 
heavy. 

To begin, SURF constructs a scale space using an 
approach where Gaussian filters are approximated 
with box filters. This simplification allows 
convolutions to be performed rapidly using integral 
images, where each pixel at coordinates (𝑥, 𝑦) 
represents the cumulative sum of all pixel values up 
to that point: 

𝐼 (𝑥, 𝑦) =   𝐼(𝑖, 𝑗)

ஸ௬ஸ௫

 

(8) 

Where Iஊ is the integral image of the original 
image 𝐼. The advantage of integral images is that 
they allow the algorithm to compute sum values over 
any rectangular region in the image using only a few 
operations, regardless of the region's size, enabling 
efficient handling of large images. 

To locate potential feature points, SURF relies on 
the Hessian matrix, which provides an indication of 
intensity variations around a point. For a point (𝑥, 𝑦) 
at scale 𝑠, the Hessian matrix 𝐻(𝑥, 𝑦, 𝑠) is defined 
by: 

𝐻(𝑥, 𝑦, 𝑠) = ቈ
𝐿௫௫(𝑥, 𝑦, 𝑠) 𝐿௫௬(𝑥, 𝑦, 𝑠)

𝐿௫௬(𝑥, 𝑦, 𝑠) 𝐿௬௬(𝑥, 𝑦, 𝑠)
 

(9) 

Where 𝐿௫௫, 𝐿௬௬, and 𝐿௫௬ denote the second-order 
partial derivatives of the image's intensity at that 
point, calculated with approximated Gaussian 
derivatives (using box filters). The determinant of 
this Hessian matrix approximates the likelihood that 
a point is a feature, and for computational efficiency, 
SURF defines it as: 

 

𝑑𝑒𝑡൫𝐻௫൯ = 𝐷௫௫𝐷௬௬ − ൫𝑤 ⋅ 𝐷௫௬൯
ଶ
 

     (10) 

Where D୶୶, D୷୷, and D୶୷ are responses from the 
box filters approximating the Gaussian second 
derivatives, and w is a constant weighting factor, 
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often set around 0.9. Filter sizes are incrementally 
increased in "octaves" to detect features across 
multiple scales, where each octave expands the filter 
size to capture larger structures within the image. 

Following feature point detection, SURF applies 
non-maximum suppression within a neighborhood to 
refine the selection to the strongest candidates. Once 
these key points are established, SURF calculates 
Haar-wavelet responses in the 𝑥 and 𝑦 directions 
within a circular area centered at each point. These 
Haar responses are sampled within a radius 
proportional to the scale, and each is weighted by a 
Gaussian function centered on the feature point, 
enhancing orientation robustness. 

To assign an orientation, SURF computes the 
summed responses in sliding angular sections around 
the feature point. The section with the largest sum 
determines the primary orientation. With this 
orientation established, the algorithm aligns a square 
window around the feature point, which is 
subdivided into smaller regions (e.g., 4×4 cells). 
Within each cell, SURF calculates the sum and 
absolute sum of Haar-wavelet responses along x and 
y directions: 

𝑣 = ቀ 𝑑௫ ,  𝑑௬ , |𝑑௫| , ห𝑑௬หቁ 

(11) 

Where d୶ and d୷ represent the directional wavelet 
responses within each cell. Concatenating the 
vectors from all cells yields a descriptor of 64 
dimensions, which is robust to variations in 
geometry and illumination due to the weighted 
responses and consistent orientation alignment. 

Feature matching between images is then 
performed using a nearest-neighbor approach, where 
descriptors with the smallest Euclidean distances are 
paired. A threshold, typically set around 0.7, screens 
out matches that may not be reliable, thereby 
prioritizing the closest, most accurate feature 
correspondences. 

4. PROPOSED METHODOLOGY 
Figure 2 shows the block diagram for the proposed 

approach and its detailed description is described in 
the following headings. 

4.1 Preprocessing 

4.1.1 Image Enhancement with TV-L1 
Regularization 

For improved visualization and analysis in 
complex imaging data, TV-L1 regularization serves 
as an effective technique for image enhancement. By 
combining Total Variation (TV) with L1 norm 
constraints, this method refines image quality, 
reducing noise while retaining essential edges and 
features, which is essential for accurate analysis and 
classification. 

Total Variation measures the intensity variation 
across an image, with the TV-L1 model applying this 
concept to control noise levels without blurring 
critical details. Constraining the L1 norm of the 
image gradient encourages a balance, where regions 
with little variation appear smooth while preserving 
edge definition, allowing for the extraction of 
meaningful features even from noisy data [20]. 

Suppose an image 𝐼 of dimensions M × N (height 
M and width N). TV-L1 regularization enhances this 
image by minimizing the following function [20]: 

E(Iᇱ) = ‖Iᇱ − I‖ଶ + λ‖∇Iᇱ‖ଵ 

               (12) 

Where: 

 ‖Iᇱ − I‖ଶ enforces similarity between the 
enhanced image Iᇱ and the original I, 

 ‖∇Iᇱ‖ଵ denotes the L1 norm of the 
gradient, preserving sharp transitions, 

 and λ controls the trade-off between 
noise reduction and fidelity to the 
original. 

Adjusting λ allows the technique to balance detail 
retention and noise suppression, making TV-L1 
regularization ideal for producing clearer, analysis-
ready images. 

The pre-processing stages of the brain tumor 
detection methodology proposed are depicted in 
Figure 3. 
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Figure 2: Block diagram for proposed brain tumor detection and classification 
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Figure 3: Pre-processing stage for proposed brain tumor detection 

4.2 MRI Segmentation Algorithm Using Hybrid 
PSO-GWO 

A crucial stage in medical image processing is 
MRI segmentation, which aims to precisely locate 
and isolate areas of interest in brain images. Using a 
hybrid method that combines Particle Swarm 
Optimization (PSO) and Gray Wolf Optimization 
(GWO), this work improves segmentation quality 
and convergence speed by utilizing the advantages 
of both optimization approaches. By iteratively 
optimizing parameters, the hybrid PSO-GWO 
technique improves clustering-based segmentation 
and makes it possible to handle the intricate intensity 
distributions of MRI. 

Particle Swarm Optimization (PSO): The social 
behavior of fish schools and avian flocks served as 
inspiration for this evolutionary algorithm. 
Particles—a "swarm" of potential solutions—
explore the solution space in PSO. Converging 
toward an ideal solution, each particle modifies its 
location in response to its own experience as well as 
the experience of nearby particles. The PSO 
algorithm's location and velocity updates for each 
particle 𝑖 are explained mathematically as follows: 

 

Velocity Update: 

v୧(t + 1) = ωv୧(t) + cଵrଵ൫p୧ − x୧(t)൯

+ cଶrଶ൫g − x୧(t)൯ 

(13) 

Where: 

 v୧(t) is the velocity of particle i at iteration 
t, 

 ω is the inertia weight, controlling 
exploration, 

 cଵ and cଶ are cognitive and social 
coefficients, respectively, that determine 
the influence of individual and global best 
positions, 

 rଵ and rଶ are random values in [0,1], 

 p୧ is the particle’s personal best position, 
and 

 g is the global best position in the swarm. 

Position Update: 

x୧(t + 1) = x୧(t) + v୧(t + 1)      (14) 
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Where x୧(t) symbolizes the existing location of 
particle i at iteration t. 

PSO is an effective optimizer because it can 
balance exploration and exploitation through 
velocity and position updates. However, it 
occasionally experiences premature convergence, 
especially in complicated problem environments like 
MRI segmentation. 

Gray Wolf Optimization (GWO): It mimics gray 
wolves' social structure and hunting tactics, 
especially their method. Alpha (α), beta (β), delta (δ), 
and omega (ω) are the four groups into which GWO 
divides the population; each group has a unique 
function in directing the optimization. The ω wolves 
trail after the α, β, and δ wolves, which stand for the 
finest answers and guide the investigation. In GWO, 
the main mathematical expressions are: 

 Position Update: Each wolf adjusts its 
position toward the leading wolves α, β, and 
δ by calculating the distances as follows: 

D = |Cଵ ⋅ α − X|, Dஒ = |Cଶ ⋅ β − X|, Dஔ

= |Cଷ ⋅ δ − X| 

(15) 

Where Cଵ, Cଶ, and Cଷ are coefficient vectors 
to control exploration and exploitation. 

 New Position Calculation: 

X(t + 1) =
X + Xஒ + Xஔ

3
 

(16) 

Where X, Xஒ, and Xஔ are positions updated 
based on the respective distances from the 
α, β, and δ wolves. 

GWO is useful for fine-tuning solutions because 
of its architecture, which enables it to dynamically 
balance exploration and exploitation. However, in 
the early phases, GWO could show slower 
convergence than PSO. 

PSO-GWO hybrid algorithm: This technique 
improves segmentation accuracy by combining the 
robust local search capabilities of GWO with the 
quick convergence of PSO in the early stages. 
Particles and wolves that update locations using both 
PSO and GWO techniques are used to initiate the 
algorithm. The following is a summary of the 
procedure: 

1. Initialization: Randomly initialize positions 
and velocities for each particle (solution) 

and assign initial ranks for GWO 
components. 

2. Position and Velocity Update: 

a. Perform PSO updates to rapidly 
explore the solution space. 

b. Use GWO principles to refine 
solutions, focusing on the leading 
particles (analogous to alpha, beta, 
delta wolves). 

3. Fitness Evaluation: Calculate a fitness 
function based on segmentation accuracy 
metrics, such as intensity homogeneity 
within segmented regions. 

4. Convergence Check: Iterate until 
convergence criteria (such as a predefined 
maximum number of iterations or minimal 
change in fitness value) are met. 

Mathematical Formulation of Fitness Function: 
For MRI segmentation, the objective function 
typically minimizes inter-region similarity while 
maximizing intra-region similarity, defined as: 

Fitness =  |I(j) − μ୧|

୨∈ஐ



୧ୀଵ

+ λ   |μ୩ − μ୪|



୪ୀ୩ାଵ

ିଵ

୩ୀଵ

 

(17) 

Where, 

 I(j) is the intensity of pixel j, 

 μ୧ is the mean intensity of segment i, 

 N is the total number of segments, 

 Ω୧ is the set of pixels in segment i, 

 and λ is a balancing parameter between 
intra-region and inter-region similarity. 

This fitness function encourages segmentation 
outcomes that are both compact (homogeneous 
within segments) and distinct from other segments. 

Figure 4 illustrates a flow diagram outlining the 
proposed segmentation method. It begins with the 
Input RGB Image, which undergoes Gray 
Conversion to simplify subsequent processing. The 
image then enters the FCM/PSO-GWO stage, 
representing the application of fuzzy c-means 
clustering or PSO combined with GWO for 
segmentation. The resulting segmentation is 
converted to binary format for clarity in 
distinguishing object boundaries. Morphological 
operations are applied to refine the segmentation by 
adjusting object shapes and sizes. Small objects are 
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removed using the BWAREOPEN operation to 
eliminate noise or irrelevant features. The Masked 
XOR original operation is performed to compare the 
segmented result with the original image, 

highlighting areas of interest. Finally, the output of 
the segmentation process is achieved, providing a 
clear delineation of objects within the MRI image.

 

Figure 4: Flow diagram for proposed segmentation method 

4.3 Post Processing 

Post-processing procedures are essential for 
improving and fine-tuning the segmented MRI data 
after hybrid PSO-GWO segmentation, guaranteeing 
precision in locating regions of interest. By 
thresholding intensity levels, the segmentation mask 
created during the post-processing step aids in 
separating the foreground (area of interest) from the 
background. 

 Initial Mask Creation: An initial binary 
mask is created, setting pixels to 1 for the 
targeted regions and 0 for the background, 

in order to isolate the regions of interest. 
Based on intensity and clustering results, 
this mask enables effective region 
extraction. 

 Morphological Operations: The segmented 
areas are refined using morphological 
techniques like "area opening" and 
"closing," especially to get rid of tiny noisy 
patches that might not make a significant 
contribution. Only regions that are larger 
than a predetermined threshold (such as 400 
pixels or more) are kept. 
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 Feature Calculation: To validate and 
improve the segmentation, variables such as 
area and mean intensity are used to compute 
area and pixel intensity statistics for each 
detected region. 

 Logical Operations: When applied to binary 
and grayscale pictures, logical XOR 
operations help to clearly emphasize the 
segmented region of interest and guarantee 
a clear distinction from the backdrop. 

Jୱୣ(U, V) =   μ୧୩
୫ ⋅ dଶ(x୧, v୩)



୧ୀଵ



୩ୀଵ

 

(18) 

Where, 

 For fuzzy clustering, 𝑈 stands for 
membership degrees, 𝑉 for cluster 
centroids, and 𝑚 for the fuzzifier parameter 
governing cluster softness. 

 d(x୧, v୩) is the distance between data point 
x୧ and cluster center v୩, 

 K and N are the total number of clusters and 
data points, respectively. 

By integrating morphological and logical 
operations, combined with PSO-GWO’s parameter-
tuned segmentation, the proposed process reliably 
isolates and refines brain regions, ensuring robust 
segmentation even in the presence of noise or 
variable MRI attributes. 

4.4 Feature Extraction 

The technique of collecting important and 
pertinent information from digital images is known 
as feature extraction, and it is an essential step in 
image editing. Its primary objective is to convert 
unprocessed image data into a collection of attributes 
that may be applied to classification or additional 
research. The SURF, DCT, and MSLBP 
methodologies are combined in this study's hybrid 
methodology. 

4.4.1 SURF with K-means 
The following are the descriptions of the proposed 

SURF algorithm (Figure 5): 

A well-received clustering approach known as the 
k-means algorithm proves effective in grouping 
SURF features, obtained from images, into a 
predetermined quantity of representative clusters. 
The mathematical expression outlining the k-means 
algorithm is articulated as follows: 

1. Initialization: From the SURF feature 
space, select K cluster centers at random. 

2. Assignment: Assign each SURF feature to 
the cluster center that is closest to it. 

3. Update: Determine the mean of all SURF 
characteristics assigned to each distinct 
cluster in order to reevaluate the cluster 
centers. 

4. Continue repeatedly through stages 2 and 3 
until convergence is reached, which can be 
found by hitting the maximum iteration 
threshold or by stationary cluster centers. 

 

Figure 5: Block diagram for proposed SURF-K-Means 
approach 

Following the clustering of SURF features into K 
representative clusters, the histogram depicting 
cluster assignments for each image serves as a 
feature vector for both training and testing the KNN 
classifier. Specifically, for each image, the histogram 
is constructed by tabulating the occurrences of SURF 
features assigned to individual clusters. The resulting 
histogram may be normalized to produce a feature 
vector and guarantee independence from the number 
of SURF features that were taken from the picture. 
Once the feature vectors for each picture in the 
training and testing datasets have been calculated, 
they are used as inputs for the KNN classifier, which 
is trained using standard machine learning methods. 
The k-means clustering method stands as a prevalent 
approach for grouping features in computer vision 
applications, including the clustering of SURF or 
SURF features. Below presents the mathematical 
formulation for k-means clustering:  

In clustering problems, a set of data points is 
separated into several groups, each of which 
possesses similar characteristics. K-means clustering 
divides a set of 𝑁 data points, {𝑥ଵ, 𝑥ଶ, . . . , 𝑥ே}, each 
represented by a 𝑑-dimensional feature vector, into 
𝐾 clusters with the goal of minimizing the dispersion 
of data points inside each cluster. The method does 
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this by reducing the variance between the data points 
and the center of their assigned clusters. 

Throughout the optimization process, 𝐾 centroids, 
{𝑐ଵ, 𝑐ଶ, . . . , 𝑐}—which represent the centers of each 
cluster—are selected. These centroids are regularly 
adjusted to lower the total squared divergence of 
each data point from its assigned centroid. The 
following is one way to express the optimization 
goal: 

Minimize: ฮx୧ – c୨(୧)ฮ
ଶ



୧ୀଵ

 

(19) 

Where ฮx୧ – c୨(୧)ฮ denotes the Euclidean distance 
between the data point and its corresponding 
centroid, and c୨(୧) is the centroid given to the data 
point x୧. 

The method takes two main stages at each 
iteration: 

 Step of Assignment: Using the Euclidean 
distance, each data point is paired with the 
closest centroid. Each data point is assigned 
to the cluster whose centroid is closest to it 
after the data is divided into K clusters in 
this stage. 

 Update Step: After the assignment is 
finished, the mean of the data points in each 
cluster is used to recalculate the centroids. 
For every cluster C୨, the updated centroid is 
provided by: 

c =
1

หC୨ห
 x୧

୶∈େౠ

 

(20) 

When the total is calculated across all of the data 
points in cluster C୨, and หC୨ห indicates the number of 
data points in that cluster. 

Until convergence—that is, when there are no 
appreciable changes in the assignment of data points 
or when a predetermined stopping condition is 
satisfied—this method repeatedly repeats the 
assignment and update phases. There are several 
variations of the conventional k-means algorithm 
that are intended to handle particular data properties 
and increase efficiency. While hierarchical k-means 
constructs clusters in a hierarchical form, which 
might be helpful in some applications, mini-batch k-
means minimizes computing time by using tiny 
random samples of the data for centroid updates. 

Once the clustering process is finished, the 
centroids that are produced may be utilized to create 
a representation of a histogram, with each cluster's 
centroid corresponding to a histogram dimension. 
The histogram is filled in using the frequency of data 
points corresponding to each centroid. In image 
processing, this histogram is sometimes referred to 
as a "bag-of-visual-words." It functions as a reliable 
feature vector for machine learning classifiers like k-
Nearest Neighbors (KNN). Since the centroids' 
initialization has a significant impact on k-means' 
performance, other initialization strategies, like k-
means++, can be used to increase the likelihood of 
discovering a global minimum. Because the number 
of clusters, or K, affects how well k-means works, 
experimenting with different hyperparameters is 
crucial to tailoring the algorithm to a certain job. 

4.4.2 MSLBP Features Extraction of QWT 
Coefficients 

When local binary pattern (LBP) and quaternion 
wavelet transform are used together, both techniques 
are used to extract features from pictures. This 
combination is expressed mathematically as 
decomposing the picture into frequency subbands 
using the quaternion wavelet transform, then 
computing LBP features on each subband. This is a 
high-level summary of the procedure: 

 Quaternion Wavelet Transform: The QWT 
extends the traditional wavelet transform to 
handle quaternion-valued signals or images. 
It decomposes the image into different 
frequency subbands in multiple dimensions 
(e.g., spatial and scale) using quaternion 
wavelet filters. 

 Local Binary Pattern (LBP): By comparing 
pixel intensities with those of nearby pixels, 
this method acts as a texture descriptor, 
making it easier to extract image 
information. By thresholding the intensity 
levels of nearby pixels in relation to the 
center pixel, it encodes local texture 
patterns in images. 

 Combination: After obtaining the 
quaternion wavelet coefficients, LBP 
features are computed independently on 
each subband. These LBP features capture 
texture information at different frequency 
scales and orientations. 

Here's a more detailed mathematical formulation: 

Let I be the input image. 
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1. Quaternion Wavelet Transform: 
 Perform quaternion wavelet 

decomposition on the input image I to 
obtain quaternion wavelet coefficients 
at different scales and orientations. 

 Denote the resulting coefficients as 

൛W୨,୩
ୢ (I)ൟ

ୢୀଵ

ସ
, where d represents the 

quaternion dimension (real, i, j, k), j 
denotes the scale, and k represents the 
orientation. 

2. Local Binary Pattern (LBP): 
 For each quaternion wavelet coefficient 

W୨,୩
ୢ (I), compute LBP features. 

 Define a local neighborhood N୰(p) 
around each pixel p within the 
coefficient image, where r denotes the 
radius of the neighborhood. 

 Compute the LBP value for each pixel 
p within the neighborhood N୰(p) based 
on intensity comparisons. 

 Concatenate the LBP histograms 
computed for all pixels within the 
coefficient image to form the LBP 
feature vector for that coefficient. 

3. Combine Features: 
 Concatenate the LBP feature vectors 

obtained from all quaternion wavelet 

coefficients ൛W୨,୩
ୢ (I)ൟ

ୢୀଵ

ସ
 to construct 

the ultimate feature vector depicting the 
input image. 

The specific implementation details, such as the 
choice of wavelet filters, LBP parameters (radius, 
neighborhood size, etc.), and feature vector 
concatenation method, may vary depending on the 
application and desired performance. 

4.4.3 HOG Features 
HOG features are a powerful method for 

identifying subtle local gradients in MRI images, 
which is useful for brain tumor detection. Because 
these characteristics capture unique patterns and 
configurations linked to tumor zones, they are crucial 
for precisely detecting and categorizing brain 
malignancies. To analyze MRI pictures, the feature 
extraction process's steps are meticulously planned: 

 Gradient Calculation: To capture 
variations in intensity and edge orientations 
suggestive of tumor areas, compute the size 
and direction of gradients at each pixel 
across the MRI picture. Calculate the 
gradient magnitude M and direction θ at 
each pixel in an MRI picture I using 

gradient operators designed specifically for 
MRI images: 

M(i, j) = ට൫G୶(i, j)൯
ଶ

+ ቀG୷(i, j)ቁ
ଶ

       (21) 

θ(i, j) = arctan ቀ
ୋ౯(୧,୨)

ୋ౮(୧,୨)
ቁ           (22) 

Where G୶ and G୷ stand for the gradients in 
the x and y directions, respectively. 

 Orientation Binning: Highlight 
characteristics pertinent to tumor borders 
and structures by dividing the MRI image 
into cells and accumulating gradient 
orientations into histograms inside each 
cell: 

Hୡୣ୪୪(k) =  M. δ(θ − θ୩)
୮୧୶ୣ୪ୱ ୧୬ ୡୣ୪୪

 

(23) 

Where θ୩ is the center orientation of the k୲୦ 
bin, δ is the Dirac delta function, and 
Hୡୣ୪୪(k) is the k୲୦ bin of the cell's histogram. 

 Block Normalization: To improve 
resilience against noise and fluctuations in 
MRI intensity, normalize the histograms 
inside each block. This ensures that features 
are represented consistently across various 
MRI scans. 

v =
v

ඥ‖v‖ଶ
ଶ + ϵ

 

      (24) 

Where ϵ is a minute constant that prevents 
division by zero, and v is the histogram 
vector inside a block. 

 Descriptor Formation: The normalized 
histograms from each cell in each block are 
concatenated to generate the final feature 
vector, which captures the distinct gradient 
patterns associated with the sites of brain 
tumors. 

4.4.4 Feature Set  
The feature vectors derived from SURF using the 

K-means, MSLBP, and HOG approaches are 
denoted by the letters Fୗୖ, Fୗ, and Fୌୋ, 
respectively. Next, the following formula is used to 
create the combined feature set  
Fୡ୭୫ୠ୧୬ୣୢ = [Fୗୖ, Fୗ, Fୌୋ]: 

Fୡ୭୫ୠ୧୬ୣୢ = [Fୗୖ, Fୗ, Fୌୋ]        (25) 
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A thorough representation of MRI images tailored 
for accurate brain tumor diagnosis and classification 
is provided by the combined feature set Fୡ୭୫ୠ୧୬ୣୢ, 
which combines the unique information obtained by 
SURF, MSLBP, and HOG approaches. 

4.5 MRMR Based Feature Selection 

In tasks like classification and clustering, where 
dimensionality can greatly affect the system's 
accuracy and efficiency, feature selection is essential 
to enhancing the performance of machine learning 
models. A popular feature selection technique in this 
regard is Minimum Redundancy Maximum 
Relevance (MRMR), which seeks to choose a subset 
of characteristics that are minimum redundant and 
highly informative. Finding a feature subset that 
minimizes duplication between chosen features 
while preserving the most pertinent information 
about the target variable is the aim of MRMR. 

The MRMR criteria seeks to concurrently 
optimize two goals: 

 Maximum Relevance: Maximizing the 
relevance between each feature and the 
class label. 

 Minimum Redundancy: Minimizing the 
redundancy between the features selected. 

The MRMR feature selection approach can be 
formulated mathematically as follows: 

1. Maximum Relevance 

Mutual information is commonly used to assess a 
feature's relevance to the target variable, in this 
instance the class label. The degree to which the 
feature and the target variable share information is 
measured by mutual information. The mutual 
information between a feature f୧ and the target 
variable Y is provided by: 

I(f୧, Y) = H(Y) − H(Y|f୧)    (26) 

Where: 

 I(f୧, Y) is the mutual information between 
feature f୧ and the target variable Y, 

 H(Y) is the entropy of the target variable, 

 H(Y|f୧) is the conditional entropy of Y given 
f୧. 

Maximizing the importance of each chosen 
feature is the aim. Therefore, the following is a 
definition of the MRMR criteria for maximum 
relevance for a feature set S: 

R(S) =  I(f୧, Y)

∈ୗ

 

(27) 

This guarantees that as much information as 
feasible about the class label Y is contained in the 
characteristics in the collection S. 

2. Minimum Redundancy 

MRMR seeks to reduce the mutual information 
between any two features in the subset in order to 
prevent repetition between the features that were 
chosen. The following provides the redundancy 
between two features, f୧ and f୨: 

I൫f୧, f୨൯ = H(f୧) − H൫f୧หf୨൯     (28) 

Where: 

 I൫f୧, f୨൯ represents the mutual information 
between features f୧ and f୨, 

 H(f୧) is the entropy of feature f୧, 

 H൫f୧หf୨൯ is the conditional entropy of feature 
f୧ given feature f୨. 

The redundancy of a feature set S can be defined 
as: 

A feature set S's redundancy may be described as 
follows: 

Redundancy(S) =
1

|S|ଶ
 I൫f୧, f୨൯

,ౠ∈ୗ

 

(29) 

Where the summation covers every pair of 
features in the set, and |S| is the number of features 
in the set S. 

3. MRMR Criterion 

Finding a feature subset that optimizes relevance 
and reduces duplication is the goal of the MRMR 
objective function. Thus, the MRMR criteria may be 
expressed as follows: 

MRMR(S) = R(S) − λ ⋅ Redundancy(S)    (30) 

Where the trade-off between relevance and 
redundancy is controlled by the regularization 
parameter λ. One can balance the significance of 
redundancy and relevance to meet the particular 
requirements of the work by varying λ. 

Iteratively choosing characteristics that optimize 
the MRMR criteria is how the MRMR algorithm 
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works. Usually, the algorithm does the following 
actions: 

1. Start with feature set S empty. 

2. Choose the feature f୧ that, when added to the 
current feature set, maximizes the MRMR 
criteria in each iteration. 

3. Until a certain number of features are 
chosen or convergence is achieved, update 
the feature set and repeat the procedure. 

Feature Selection for 𝑭𝒄𝒐𝒎𝒃𝒊𝒏𝒆𝒅 

The MRMR approach would assess each feature's 
relevance to the target variable from these three sets 
(SURF, MSLBP, and HOG) in the case of the 
combined feature set Fୡ୭୫ୠ୧୬ୣୢ. Additionally, it 
would assess the redundancy of characteristics both 
inside and between sets. In order to minimize 
repetition across the three feature sets and increase 
the total relevance, the MRMR algorithm chooses a 
subset of features. 

Improved classification performance results from 
MRMR's selection of the most pertinent and non-
redundant features from these several sources, which 
guarantees that the final feature set F୧୬ୟ୪ is compact 
and informative. The classification algorithm then 
uses the chosen characteristics as input, increasing 
efficiency and accuracy. 

5. Final Feature Set 

A subset of the initial combined feature set 
Fୡ୭୫ୠ୧୬ୣୢ that has been optimized using MRMR is 
the final set of features chosen, represented by the 
symbol F୧୬ୟ୪. The most pertinent and unique 
characteristics from this set can be applied to further 
machine learning tasks, such classifier training. 

An efficient method of reducing dimensionality 
while guaranteeing that the features chosen preserve 
the most information and show the least amount of 
redundancy is MRMR-based feature selection. A 
feature set is produced that improves the brain tumor 
classification model's performance by using this 
method on the combined feature set derived from 
SURF, MSLBP, and HOG. 

4.6 Classification Algorithms 

Multiple classification algorithms are used to 
precisely assign tumor areas based on the 
characteristics chosen from the extraction and 
selection processes in order to detect brain tumors in 
MRI images. These algorithms, which are applied to 
the features derived from techniques like SURF, 
MSLBP, and HOG, provide unique ways for 

classification jobs, each with unique benefits. The 
main classifiers utilized in this study are described 
below: 

4.6.1 Random Forest Classifier 
During the training phase, the Random Forest 

Classifier, an ensemble learning approach, generates 
a large number of decision trees. Random feature 
subsets are used to construct each tree, and the sum 
of all the trees' forecasts yields the final prediction. 
Voting is usually used for this aggregation in 
classification tasks, with the predicted class being the 
one that obtains the most votes throughout the trees. 

Algorithm Overview: 

 A random subset of features is chosen from 
the entire feature set. 

 Decision trees are constructed by 
recursively splitting the data based on 
feature thresholds. 

 Repeat steps 1-2 to create multiple decision 
trees (forest). 

 When making predictions, each tree within 
the forest offers its classification for the 
input data, and the ultimate prediction is 
ascertained through either a collective 
voting process for classification tasks or an 
averaging technique for regression tasks 
across all trees. 

Mathematical Formulation: Let X be the feature 
vector input, Y be the assigned class label, and T be 
the number of decision trees in the forest. The 
following formula can be used to calculate the 
expected class, represented by Y, for a given input X: 

Y = modeൣ൛f୧(X)୧ୀଵ
 ൟ൧   (31) 

Here, the 𝑖௧ decision tree's prediction is denoted 
by f୧(X). 

4.6.2 SVM 
The Support Vector Machine (SVM) is a popular 

supervised learning method for categorization. SVM 
looks for the feature space hyperplane that 
maximizes the margin between different classes. 
When the data cannot be separated linearly, SVM 
employs a kernel approach that converts the data into 
a higher-dimensional space where a linear separation 
is possible. 

Method: 

1. The procedure maximizes the margin 
between the classes to determine which 
hyperplane best separates them. 
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2. The kernel function converts the data into a 
higher-dimensional space so that a separating 
hyperplane can be found if linear separation 
is not possible. 

3. SVM uses the location of a new data point in 
relation to the hyperplane to classify it for 
prediction. 

Given an input vector X, a weight vector w, and a 
bias term b, the SVM classification decision function 
is written as follows: 

Y = sign(w ⋅ X + b)    (32) 

Where X is the feature vector to be classified. 

4.6.3 KNN 
A new data point is classified using the K-Nearest 

Neighbors (KNN) algorithm, which is an easy-to-
understand classification technique that uses the 
majority class of its closest neighbors in the feature 
space. A user-defined parameter is the value of k, 
which is the number of neighbors to take into 
account. 

Procedure: 

1. All training data is stored by KNN 
together with the class labels that 
correspond to it. 

2. Using a selected distance metric (such as 
the Euclidean distance), it predicts a new 
point in the feature space by identifying 
its k-nearest neighbors. 

3. The predicted class is the most prevalent 
class among the k-nearest neighbors. 

The predicted class Y may be calculated 
mathematically given an input feature vector X and a 
training set {X୧, Y୧}, where X୧ are the feature vectors 
and Y୧ are the corresponding class labels. 

Y = mode[{Y୧|X୧ ∈ nearest neighbors of X}] 

(33) 

4.6.4 Naïve Bayes 
Based on the provided input characteristics, the 

Naïve Bayes classifier calculates the posterior 
probability of each class using Bayes' Theorem. In 
order to simplify the computation of probabilities, 
Naïve Bayes relies on the fundamental premise that 
the characteristics are conditionally independent 
given the class. 

Method: 

1. Based on Bayes' Theorem, Naïve Bayes 
determines the posterior probability for 

each class given the training data, which 
consists of feature vectors and their 
matching class labels. 

2. The result for the input data is then 
projected to be the class with the highest 
posterior probability. 

Assuming a class label Y and an input feature 
vector X = {xଵ, xଶ, . . . , x୬}, the predicted class Y is 
the one that maximizes the posterior probability, 
according to mathematics: 

Y = arg max
୷∈(ଵ,ଶ,…େ)

{P(Y = y|X)}            (34) 

Where P(Y = y|X) is the posterior probability of 
class y given the input characteristics X, and 𝐶 is the 
number of classes. 

Based on the retrieved feature sets, each of these 
classification methods has special advantages for 
locating and categorizing tumor areas in MRI 
images. The kind of data, the available computing 
power, and the required level of accuracy for the task 
all influence the classifier selection. 

5. RESULTS AND ANALYSIS 

5.1 Dataset Description 

This dataset, which includes a cohort of 233 
individuals with brain tumors [21], was thoroughly 
compiled from medical imaging data from Nanfang 
Hospital and General Hospital in China [26]. The 
dataset highlights three different tumor 
classifications among these patients: meningioma, 
pituitary, and glioma tumors, each of which has a 
distinct clinical appearance. The photos in this 
dataset are all of the same size, measuring 512×512 
pixels. The dataset includes a comprehensive 
collection of 3064 picture slices, each of which 
provides a window into the complex terrain of brain 
disease. With 708 cases of meningioma, 1426 cases 
of gliomas, and 930 cases of pituitary tumors, the 
tumor distribution among these slices is varied, 
providing a multidimensional view of the range of 
brain tumor pathologies [21]. 

5.2 Results and Analysis 

The results of the developed approach for 
detecting and categorizing brain tumors are 
displayed in Figure 6. 
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Figure 6: Different operations of proposed brain tumor 
detection 

 

Table 1: Performance Evaluation for Different Feature Extraction Methods 

Parameters Surf-K-Means QWT+MSLBP HOG Hybrid Features 

Accuracy 94.44% 96.43% 94.64% 98.53% 
Error Rate 5.56% 3.57% 5.36% 1.47% 
Sensitivity 94.44% 96.43% 94.64% 98.53% 
Specificity 98.15% 98.81% 98.21% 99.51% 
Precision 95.45% 96.43% 95.21% 98.61% 

False Positive Rate 1.85% 1.19% 1.79% 0.49% 
F-Score 94.56% 96.43% 94.47% 98.53% 
MCC 93.05% 95.24% 93.09% 98.08% 

Kappa Statistics 85.19% 90.48% 85.71% 96.08% 

The results of the investigation of several feature 
extraction techniques are shown in Table 1, which 
shows notable variations in performance metrics. 
Among the methods evaluated, Hybrid Features 
demonstrate the highest accuracy at 98.53%, closely 
followed by QWT+MSLBP at 96.43%. While Surf-
Kmeans and HOG techniques exhibit respectable 
accuracies at 94.44% and 94.64% respectively, the 
Hybrid Features approach outperforms them by a 
notable margin. In terms of error rates, Hybrid 
Features again display the lowest value at 1.47%, 
indicating its robustness in classification tasks. The 

specificity scores further emphasize the dominance 
of Hybrid Features, attaining the peak score of 
99.51%, showcasing its proficiency in precisely 
recognizing true negatives. Precision metrics across 
all methodologies are notably elevated, with Hybrid 
Features marginally surpassing the rest. 
Furthermore, diverse matrices bolster the 
exceptional efficacy of the Hybrid Features 
methodology, consistently exhibiting superior 
metrics in contrast to the alternative techniques 
assessed. 
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Figure 7: Comparative Assessment of Accuracy on Dataset Trained and Tested with Different Classifiers Using 
Different Features 

Fig. 7 displays a range of classification algorithms 
utilized in the categorization of brain tumors using 
various feature extraction techniques, displays the 
accuracy performance metrics. According to the 
visualization, the Naïve Bayes (NB) classifier with 

HOG features gets the lowest accuracy level of 
92.02%, while the hybrid feature set combined with 
the Random Forest (RF) classifier obtains the 
greatest accuracy rate of 98.53%. 

 
Table 2: Hybrid Feature Extraction Performance Comparison Using Various Classifiers 

Parameters SVM KNN RF NB 

Accuracy 97.22% 97.50% 98.53% 96.67% 
Error Rate 2.78% 2.50% 1.47% 3.33% 
Sensitivity 97.22% 97.50% 98.53% 96.67% 
Specificity 99.07% 99.17% 99.51% 98.89% 
Precision 97.75% 97.53% 98.61% 96.82% 

False Positive Rate 0.93% 0.83% 0.49% 1.11% 
F-Score 97.21% 97.49% 98.53% 96.69% 
MCC 96.42% 96.68% 98.08% 95.62% 

Kappa Statistics 92.59% 93.33% 96.08% 91.11% 

Table 2 provides hybrid feature extraction 
performance comparison for different classifiers. A 
variety of metrics, including SVM, KNN, RF, and 
NB, are assessed for each classifier in the table. With 
the lowest error rate of 0.0147 and the highest 

accuracy rate of 98.53%, RF stands out as the most 
effective method for correctly classifying brain 
tumor data. Additionally, RF performs better on a 
variety of criteria, which confirms its efficacy in 
classification approaches. 
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Table 3: Comparative Visualization of Accuracy across Different Classifiers 
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Table 4: Comparison of the Proposed Method's Performance with Previous Methods 

Method Dataset Source Technique Used Accuracy 

Singh et al. (2023) 
[3] 

MICCAI Brain Tumor Segmentation 
(BRATS) Challenge 2020 

Convolutional neural network 92.50% 

Kaplan et al. 
(2020) 
[22] 

Kaggle Dataset nLBP + Knn 95.56% 
LBP + Knn 93.28% 

αLBP + Knn 90.57% 
Rinesh et al. 

(2022) 
[23] 

Open-access brain tumor dataset 
from Kaggle 

Multilayer feedforward 
neural network 

96.47% 

Ayadi et al. (2022) 
[24] 

Figshare dataset Hybrid features and SVM 
with LIN kernel 

90.27% 

Şahin et al. (2024) 
[25] 

Brain Tumor MRI Dataset from 
Kaggle 

Bayesian Multi-Objective 
(BMO) optimization 

96.61% 

Proposed 
Methodology 

Kaggle Dataset Naïve Bayes with Hybrid 
features  

96.67% 

SVM with Hybrid features  97.22% 
KNN with Hybrid Features  97.5% 

Random Forest with 
Hybrid features 

98.53% 

 

A thorough comparison of the suggested 
methodology with earlier methods for classifying 
brain tumors is shown in Table 4. Singh et al. (2023) 
[3] achieved a 92.50% accuracy rate using a 
convolution neural network (CNN) on the MICCAI 
Brain Tumor Segmentation (BRATS) Challenge 
2020 dataset. Using a Kaggle dataset, Kaplan et al. 
(2020) [22] tested several Local Binary Pattern 
(LBP) variations in conjunction with K-nearest 
neighbor (KNN) classifiers, achieving accuracy rates 
ranging from 90.57% to 95.56%. Using a multilayer 
feed forward neural network on an open-access brain 
tumor dataset from Kaggle, Rinesh et al. (2022) [23] 
achieved an accuracy of 96.47%. Using hybrid 
features and SVM with a linear kernel, Ayadi et al. 
(2022) [24] achieved an accuracy of 90.27% on a 
Figshare dataset. With a 96.61% accuracy rate, Şahin 
et al. (2024) [25] used Bayesian Multi-Objective 
(BMO) optimization on a Brain Tumor MRI Dataset 
from Kaggle. Comparatively, the suggested 
approach used Naïve Bayes, SVM, KNN, and 
Random Forest classifiers using Hybrid features on 
the Kaggle dataset, producing accuracy rates of 
96.67%, 97.22%, 97.5%, and 98.53%, respectively. 

Originality and Innovation of the Study: The 
technique presented here is a new approach of 
modeling brain tumor classes via a combination of 
sophisticated image processing and multiple 
machine learning classifiers in a hybrid scheme. 
Unique methods form a unique combination of the 
QWT and MSLBP for feature extraction and MRMR 

for feature selection, greatly improving classification 
accuracy. Not a widely explored use of these 
combined techniques within the context of brain 
tumor classification, this methodology is highly 
innovative. Furthermore, the study is distinguished 
for its use of multi-class classification, which 
implements ensemble of multiple classifiers to 
provide robust and reliable tumor classification for 
different MRI datasets. This method explicitly 
addresses the complicated nature of MRI scans, 
which often consist of multi type tumors and 
overlapping features. The research helps extend the 
literature on improving automated diagnostic tools in 
medical imaging by addressing both the challenge of 
high dimensional data and the problem of feature 
richness. 

6. CONCLUSION 

In order to improve the accuracy of diagnosis and 
treatment planning, this research addresses the 
significant issue of detecting and classifying brain 
tumors using medical imaging. By applying state-of-
the-art techniques in image processing and machine 
learning, this study provides a comprehensive 
methodology aimed at increasing the accuracy of 
brain tumor identification. A thorough examination 
of the corpus of recent literature has been done in 
order to identify the most relevant algorithms and 
techniques in this area. Important elements in the 
new process involve segmenting MRI scans using 
optimal algorithms and refining images using 
sophisticated regularization techniques. Quaternion 
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Wavelet Transform (QWT), Multi-Scale Local 
Binary Pattern (MSLBP), and Histogram of Oriented 
Gradients (HOG) are among the resilient techniques 
used in feature extraction, and they all provide 
important information for efficient tumor 
identification. Additionally, the most discriminative 
features are used for future classification tasks when 
features are selected using Minimum Redundancy 
Maximum Relevance (MRMR). A dataset from 
respectable Chinese hospitals was used to evaluate 
the suggested approach, and it performed well on a 
number of assessment measures. With an accuracy 
of 98.53%, the hybrid feature set in conjunction with 
Random Forest classification significantly 
outperformed the findings of earlier research. These 
findings imply that the suggested framework may 
improve brain tumor categorization efficiency and 
diagnostic accuracy. In order to further improve 
feature extraction and classification, future studies 
can investigate the integration of increasingly 
complex image processing methods, such as the 
application of deep learning models like 
Convolutional Neural Networks (CNNs). Better 
clinical decision-making in neuro-oncology may 
also result from the combination of multi-modal 
imaging data and methods like transfer learning, 
which may present new chances to enhance model 
generalization and interpretability in general. 

Gaps and Future Directions: Although 
promising, the results of the proposed approach 
reveal some gaps for further investigation. 

 Dataset Generalization: The use of a specific 
dataset used in the study causes the model to 
not be that generalizable. In future research, it 
would be exciting to test the model’s 
performance on datasets coming from other 
hospitals or regions so to see whether this 
model is applicable on a larger scale. 

 Multi-Modal Imaging: In the current study, a 
single modal MRI is considered. Additional 
tumor information and higher classification 
accuracy can be achieved by incorporating 
multi modal imaging data, e.g., CT or PET 
scans. 

 Deep Learning Models: While traditional 
machine learning algorithms are effective, 
deeper learning techniques including 
Convolutional Neural Networks (CNNs) may 
be able to demonstrate improved results 
through automatic extraction of higher level 
features from data. 

 Real-Time Processing: The methodology 
runs in a batch mode. Finally, future studies 
should investigate such classification in real 
time in order to help clinicians make 
immediate decisions. 

 Explainability: The model’s decisions have to 
be more transparent. Exploring explainable 
AI might allow researchers to both make the 
model more interpretable and supported by 
healthcare professionals. 

 Handling Imbalanced Data: It may be the 
case that many brain tumor datasets are 
imbalanced. Expanding on existing work, I 
investigate alternative methods such as data 
augmentation or specialized loss functions to 
improve performance on rare tumor types. 

In addition, these areas of future research could 
help to better develop the proposed approach and 
make it more applicable and effective in clinical 
settings. 
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