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ABSTRACT 
 

Heart Disease is considered to be the one of the major diseas.Nowadays it makes the loss of  numerous  
lives in our country. For this we need to predict the diseases. The Deep Belief-Assisted Neural Predictor 
(DBANP) model is proposed in this study to increase the accuracy of heart disease prediction. The model 
overcomes the drawbacks of previous models like Recurrent Neural Networks (RNN) and Long Short-
Term Memory (LSTM), which frequently suffer from vanishing gradients and lengthy training times, by 
combining an ANN for initial feature extraction with a DBN for capturing intricate hierarchical 
dependencies. Models were developed and evaluated using the Cleveland Heart Disease Dataset and the 
Cardiovascular Disease Dataset.  To guarantee high-quality input data, extensive pre-processing was 
carried out, including managing missing values and feature selection. Using important measures including 
Accuracy, Precision, Recall, Specificity, F1 Score, AUC-ROC, and AUC-PR, the DBANP model was 
contrasted with RNN and LSTM models. According to experimental data, the suggested model performs 
noticeably better than current models, providing increased predictive power and resilience. By offering a 
hybrid deep learning system for early disease identification that is both scalable and flexible, this study 
advances predictive healthcare. 
Keywords: Heart disease prediction, DBANP model, artificial neural network, deep belief network, 

Cleveland Heart Disease Dataset, Cardiovascular Disease Dataset, deep learning, early 
diagnosis, predictive healthcare. 

 
1. INTRODUCTION 
 
One of the main causes of death worldwide, 
heart disease continues to be a serious global 
health concern. Early detection of cardiac disease 
can greatly enhance patient outcomes by 
enabling prompt therapies and lessening the 
strain on healthcare systems. Clinicians can use 
early prediction models to help them identify 
high-risk patients and adjust treatment regimens 
appropriately [1]. The examination of intricate 
patterns in huge datasets is made possible by 
machine learning (ML) and deep learning (DL) 
approaches, which have become highly effective 
instruments in the healthcare industry [2]. These 
techniques have gained widespread use in the 
diagnosis and prognosis of diseases, especially in 
the prediction of cardiac disease. Nevertheless, 
modern models like Long Short-Term Memory 
(LSTM) [4] and Recurrent Neural Networks 
(RNN) [3] have drawbacks in spite of their 
potential. Suboptimal performance in heart 
disease prediction tasks can result from RNNs 

and LSTMs' frequent struggles with vanishing 
gradients, computational inefficiency, and 
capturing complicated dependencies. 
This research suggests a novel deep learning 
model that combines Deep Belief Networks 
(DBN) [6] and Artificial Neural Networks 
(ANN) [5] in order to overcome these 
constraints. The DBANP model makes use of 
both architectures' advantages: DBNs are used to 
capture hierarchical dependencies in the data, 
while ANNs are used for efficient feature 
extraction. The suggested approach seeks to 
overcome the difficulties experienced by solo 
models by combining these strategies to improve 
forecast accuracy and resilience. The Cleveland 
Heart Disease Dataset [7] and the Cardiovascular 
Disease Dataset [8] are two popular datasets that 
are used in this study to build and assess the 
DBANP model. The quality and dependability of 
the input data are guaranteed by thorough pre-
processing procedures that include feature 
selection, scaling, and handling missing data. 
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Using important assessment measures including 
accuracy, precision, recall (sensitivity), 
specificity, F1 score, area under the receiver 
operating characteristic curve (AUC-ROC), and 
area under the precision-recall curve (AUC-PR), 
the performance of the suggested model is 
contrasted with that of RNN and LSTM models. 
The goal of this study is to create a DBANP 
model for the early detection of heart disease. to 
show the potential of the suggested model as a 
reliable and scalable framework for predictive 
healthcare and to compare the DBANP model's 
performance with that of RNN and LSTM 
models. By presenting this hybrid approach, the 
study addresses the difficulties in early cardiac 
disease prediction and adds to the expanding 
corpus of research in predictive healthcare. 
Through increased diagnostic accuracy, the 
model's conclusions could improve patient 
outcomes and clinical decision-making. 

The research questions explicitly stated in the 
introduction are: (1) Can hybrid ANN-DBN 
architecture (DBANP) improve prediction 
accuracy and computational efficiency in heart 
disease diagnosis? and (2) How does the 
proposed DBANP model compare with standard 
RNN and LSTM architectures on benchmark 
cardiovascular datasets? 

The main scientific contributions of this study 
include the proposal of DBANP, a novel hybrid 
framework that integrates ANN and DBN to 
enhance early heart disease prediction. The 
model effectively addresses vanishing gradient 
and training inefficiency issues typically 
observed in standalone RNN and LSTM 
architectures. It has been rigorously validated on 
two benchmark datasets—Cleveland and 
Cardiovascular Disease Dataset—demonstrating 
strong performance across multiple metrics such 
as Accuracy, AUC, and F1-Score. Additionally, 
the DBANP architecture is designed to be 
modular and scalable, allowing for its adaptation 
to other medical diagnostic applications. 

The structure of this document is as follows: A 
thorough analysis of current machine learning 
methods and their drawbacks is given in Section 
2. The Deep Belief-Assisted Neural Predictor 
(DBANP) is introduced in Section 3, along with 
its efficient feature extraction and ability to 
identify hierarchical dependencies in the data. 
The experimental setup and assessment measures 
are described in Section 4, along with the 

performance analysis and outcomes. Lastly, 
Section 5 provides information about the 
findings and potential avenues for further study. 
 
2. RELATED WORKS 
 
Because of their capacity to handle sequential 
and temporal data, recurrent neural networks 
(RNNs) and long short-term memory (LSTM) 
networks have been thoroughly researched for 
medical prediction applications. Time-series 
datasets, which are frequently found in clinical 
and diagnostic data, including patient vitals, 
ECG signals, and old medical records, are well-
suited for both designs. RNNs in Heart Disease 
Prediction Related research by Han et al. (2019) 
[9] has shown that RNNs can accurately simulate 
sequential patterns like changes in blood 
pressure and cholesterol levels over time. This 
study employed an RNN model to predict heart 
disease based on patient health records. The 
study demonstrated the potential of RNNs for 
temporal data processing with an accuracy of 
85.3%. However, because of the vanishing 
gradient issue, the model has trouble handling 
long-term relationships. Research on employing 
RNNs to predict cardiac events was also the 
subject of Zhao et al. (2020) [10], who identified 
issues with training duration and hyperparameter 
tuning. The model's performance was 
constrained by its incapacity to capture intricate, 
nonlinear connections in the dataset, despite 
encouraging results. 
 
In a study by Xie et al. (2021) [11], LSTMs in 
Heart Disease Prediction were utilized to 
examine patient histories in order to diagnose 
cardiovascular disorders early. The study 
emphasized how LSTMs' gated cell structure 
gives them an advantage over conventional 
RNNs in maintaining long-term dependence. 
With a sensitivity of 91%, the model 
demonstrated its efficacy in identifying positive 
cases. The lengthy training period and high 
computational expense, however, were major 
disadvantages. LSTMs were also used by Ahmed 
et al. (2020) [12] to predict heart disease using 
data from real-time patient monitoring. Although 
the model's accuracy was high (89%), handling 
missing and noisy data needed extensive 
preprocessing, and training was computationally 
demanding. 
Kumar et al. (2022) [13] For the analysis of ECG 
signals, Kumar et al. (2022) [13] suggested a 
CNN-LSTM combination in which CNNs 
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extracted spatial information and LSTMs 
recorded temporal relationships. Comparing this 
hybrid model to standalone LSTM models, the 
accuracy increased by 7%. A hybrid RNN-ANN 
model was presented by Patel et al. (2021) [14] 
to predict cardiovascular risk and diabetes. By 
utilizing the complementing advantages of ANN 
and RNN architectures, the model was able to 
attain an F1 score of 92%. 
The necessity for a hybrid architecture that 
blends their advantages with complementary 
models is driven by the shortcomings of solo 
RNNs and LSTMs. An excellent supplement to 
ANNs, which are effective at extracting features, 
are Deep Belief Networks (DBNs), which can 
learn hierarchical representations. In order to 
overcome the shortcomings of current techniques 
and enhance prediction sensitivity, accuracy, and 
computing efficiency, this study suggests the 
DBANP model. 
 
3. METHODOLOGY 
 
3.1 Datasets  
3.1.1 Cleveland Heart Disease Dataset    
 One well-known benchmark dataset for 
predicting heart disease is the Cleveland Heart 
Disease Dataset. Only 14 of the 76 properties in 
the 303 patient records that make up the UCI 
Machine Learning Repository are frequently 
used because of their clinical importance and 
comprehensiveness [15]. With an emphasis on 
binary classification (heart disease presence vs. 
absence), the dataset's primary purpose is to 
group patients into five groups according to the 
existence and severity of heart disease. Age, 
which indicates the patient's age in years, and 
sex, which indicates the patient's gender (1 for 
male and 0 for female), are the dataset's primary 
characteristics.  Typical angina, atypical angina, 
non-anginal pain, and asymptomatic are the four 
categories into which Chest Pain Type (cp) 
divides chest pain. While cholesterol (chol) 
records serum cholesterol levels in milligrams 
per deciliter, resting blood pressure (trestbps) 
monitors the patient's resting blood pressure in 
millimeters Hg. A binary indicator called Fasting 
Blood Sugar (fbs) determines if fasting blood 
sugar is more than 120 mg/dL (1 = true, 0 = 
false). 
 Additionally included in the collection are 
Resting ECG Results (restecg), which 
characterize electrocardiograms as either normal, 
exhibiting aberrant ST-T waves, or 
demonstrating probable or certain left ventricular 

hypertrophy. The greatest heart rate a patient 
achieves when exercising is measured by the 
Maximum Heart Rate Achieved (thalach). 
Another binary feature that establishes if the 
patient's angina was brought on by exercise is 
Exercise-Induced Angina (exang) (1 = yes, 0 = 
no). Other aspects include Slope of the Peak 
Exercise ST Segment (slope), which can be 
divided into three categories: downsloping, flat, 
and upsloping, and ST Depression (oldpeak), 
which quantifies the depression in the ST 
segment during exercise in comparison to rest. 
The number of major vessels (from 0 to 3) that 
are fluoroscopy-colored is indicated by the 
Number of Major Vessels (ca).  Blood condition 
types are categorized as normal, fixed defect, or 
reversible defect using thalassemia (thal). Lastly, 
a binary classification label, with 1 denoting the 
existence of heart disease and 0 denoting its 
absence, is the target variable (output). The 
creation of prediction models for the diagnosis 
and risk assessment of heart disease is made 
easier by this dataset, which is an essential tool 
in medical machine learning research. 
 
3.1.2 Cardiovascular Disease Dataset    
Kaggle and other repositories that concentrate on 
multi-feature data pertaining to cardiovascular 
health are the sources of the Cardiovascular 
Disease (CVD) dataset [16]. A range of 
demographic, clinical, and lifestyle 
characteristics are included, and it usually 
comprises about 70,000 patient data. The main 
purpose of this dataset is to estimate the risk of 
cardiovascular disease through binary 
classification tasks. Age, which is expressed in 
days but is frequently converted to years for 
easier reading, and gender, where 1 denotes male 
and 2 denotes female, are the dataset's primary 
characteristics. The higher and lower blood 
pressure readings are measured by the diastolic 
blood pressure (aplo) and systolic blood pressure 
(aphi), respectively. There are three categories 
for glucose and cholesterol levels: normal, above 
normal, and substantially above normal. The 
Body Mass Index (BMI), which is determined by 
combining height and weight and offers 
information on the hazards associated with 
obesity, is another essential component. 
This dataset also takes lifestyle factors into 
account. Alcohol consumption is similarly 
represented as a binary indicator (1 for 
consumer, 0 for non-consumer), and smoking 
status is recorded as a binary indicator (1 for 
smoker, 0 for non-smoker). A binary indicator is 
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used to track levels of physical activity, with 1 
denoting an active person and 0 denoting 
inactivity. Medical history also records the 
existence of prior illnesses or therapies, such as 
diabetes or hypertension. Cardiovascular disease 
is the dataset's goal variable, and its labels are 1 
for presence and 0 for absence. Important 
clinical, demographic, and lifestyle 
characteristics that are crucial for heart disease 
prediction are provided by the Cleveland Heart 
Disease dataset and the Cardiovascular Disease 
dataset.  
The CVD dataset offers a more comprehensive 
view of cardiovascular health by including 
demographic and lifestyle characteristics, 
whereas the Cleveland dataset concentrates more 
on diagnostic and clinical test outcomes. These 
characteristics—blood pressure, cholesterol, 
blood sugar, and lifestyle choices like smoking 
and exercise—are powerful predictors of the risk 
of heart disease. To guarantee good data quality 
and suitability for predictive modeling, these 
datasets will go through preprocessing 
procedures like normalization, scaling, and 
imputation of missing values before being used 
to train the DBANP model. 
 
3.2 Data Preprocessing 
Data preprocessing is a critical step to ensure the 
datasets are clean, consistent, and suitable for 
training machine learning models [17]. Below 
are the preprocessing steps where applicable: 
Handling Missing Values   
Missing values can occur in numerical or 
categorical features. Common strategies include:   

Numerical Data: Missing values are 
replaced with the mean or median of the feature.   

 
Where, xi is the missing value, and xj 

are the non-missing values. 
Categorical Data: Missing values are 

filled with the mode (most frequent category). 
Normalization of Features   
Features like age, blood pressure, and cholesterol 
are normalized to bring them to a common scale.   

Min-Max Normalization: 

 
Where x is the original value and x′ is 
the normalized value. This scales values 
to the range [0, 1]. 
Standardization: 

, where μ is the mean and σ is the 
standard deviation 

Standardization centers the data to have 
a mean of 0 and a standard deviation of 1. 
Encoding Categorical Features  
Categorical variables like chest pain type (cp) 
and thalassemia (thal) are converted into 
numerical formats using one-hot encoding.   
For a categorical variable C with k unique 
values: 
C={c1,c2,…,ck}→One-Hot Encoding Matrix of 

Size n×k, 
Where n is the number of rows in the dataset. 
Example: 

cp = ’typical angina’→[1,0,0,0]. 
 
 
 
Feature Scaling   
To ensure uniform feature importance, scaling is 
applied to the features. Robust Scaling (removes 
outliers' influence): 

 
Where Q1 is the 25th percentile and Q3 is the 
75th percentile. 
 
Feature Selection   
Feature selection reduces dimensionality by 
selecting only relevant attributes.   

Correlation-Based Selection: 
  Features are selected based on 

correlation thresholds. 

Chi-Square Test: 
  For categorical features: 

 
where Oi and Ei are observed and 
expected frequencies. 

Splitting the Dataset   
The dataset is split into training, validation, and 
test sets using an 80:10:10 ratio. 

- Training Set:  Used to train the model.   
- Validation Set:  Used to fine-tune   

hyperparameters.   
- Test Set:  Used to evaluate model 

performance. 
Data Augmentation (if required)    
For imbalanced datasets, data augmentation 
techniques such as  SMOTE (Synthetic Minority 
Oversampling Technique)  can be applied.  
Synthetic samples are generated between 
minority class samples: 
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 Where xi,xj are existing samples and δ is a 
random variable. 
Outlier Detection and Removal    
Outliers are identified using statistical 
techniques:   

Z-Score Method:    

, |z| > 3  
indicates an outlier. 

Interquartile Range (IQR):  
Outliers: x<Q1−1.5⋅IQR or x>Q3+1.5⋅IQR. 

This comprehensive preprocessing pipeline 
ensures that the data is ready for training the 
Hybrid DBANP model with optimal feature 
quality and structure. 
 
3.3 Model Architecture: Deep Belief-Assisted 
Neural Predictor (DBANP) 
The suggested Deep Belief-Assisted Neural 
Predictor (DBANP) model combines the 
advantages of DBN for identifying intricate, 
hierarchical connections in the data with ANN 
for feature extraction [18]. To increase the 
accuracy of heart disease prediction, the 
architecture makes use of both shallow and deep 
learning models. 
 
3.3.1 ANN Layer: Initial Feature Extraction 
The ANN serves as the first layer, responsible 
for extracting features and learning non-linear 
relationships in the dataset. 
Input Layer: 

Features X=[x1,x2,…,xn] are passed as 
input, where n is the number of features. 
Hidden Layers: 

Each hidden layer applies an 
activation function f(.) on the weighted 
sum of inputs plus bias: 

) 
Where: 

 W(l): Weight matrix for layer 
l, 

 b(l): Bias vector for layer l, 
 f(.): Activation function, 

typically ReLU 
f(z)=max(0,z). 

Output of ANN Layer: 
The output of the final hidden layer in 
the ANN becomes the feature vector 
FANN for the DBN layer:  

 
Where, L is the number of hidden layers 
in the ANN. 
 
 

3.3.2 DBN Layer: Capturing Complex, 
Hierarchical Dependencies 
The DBN consists of a stack of Restricted 
Boltzmann Machines (RBMs) that learn 
hierarchical feature representations layer by 
layer. 

Restricted Boltzmann Machine 
(RBM): 

Each RBM contains a visible 
layer (v) and a hidden layer (h), 
connected by weights W: 
Visible Layer: Represents input 
features, v∈Rn, 
Hidden Layer: Represents latent 
variables, h∈Rm. 
Energy Function: The RBM defines 
the joint probability of v and h using the 
energy function: 

 
Where, b: Bias vector for visible layer, 
c: Bias vector for hidden layer. 
Probability Distributions: 
Probability of the hidden layer given 
visible layer: 

 

        Where   is 
the sigmoid activation function. 
Probability of the visible layer given 
hidden layer: 

 
Stacking RBMs: 
The output of one RBM’s hidden layer 
becomes the input to the visible layer of 
the next RBM: 

 
Where, LDBN is the number of stacked 
RBMs. 

 
3.3.3. Integration Mechanism: Hybrid 
Feature Learning 
The ANN and DBN layers are integrated to 
optimize feature learning and prediction 
accuracy. 
 
Feature Fusion: 
The features extracted by the ANN layer (FANN) 
and DBN layer (FDBN) are concatenated to form a 
comprehensive feature vector: 

 
Where  denotes concatenation. 
Final Classification Layer: 
The hybrid feature vector FHybrid is passed to a 
softmax layer for classification: 
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Where,  ,C: Number of 
classes (binary classification in this case: C=2). 
The DBANP model achieves higher prediction 
performance for the identification of heart 
disease by combining the advantages of Deep 
Belief Networks and Artificial Neural Networks. 
As the first part of the model, the ANN is made 
to extract features and identify basic linear and 
nonlinear correlations in the data. In order to 
efficiently extract low-level patterns, it applies 
weights, biases, and nonlinear activation 
functions like ReLU to input characteristics as 
they are processed through many layers. This 
guarantees that the data's first representation is 
well-optimized before moving on to the 
following phase. 

 
 Figure 1: Deep Belief-Assisted Neural Predictor      
                  (DBANP) Model 
 
 
 The DBN expands on the features that 
the ANN extracted by using layered Restricted 
Boltzmann Machines (RBMs). The network is 
able to extract intricate, hierarchical relationships 
because each RBM in the DBN learns to predict 
the input data's probability distribution. The 
energy function of the RBMs, which measures 
the relationship between visible and hidden 
units, is minimized during the DBN's training 
process. To guarantee that the DBN efficiently 
captures higher-order feature interactions while 
preserving computational efficiency, each RBM 
is pretrained separately using Contrastive 

Divergence. The DBN can identify complex 
patterns in the data that are essential for precise 
cardiac disease prediction because to this 
hierarchical feature extraction mechanism. 
When ANN and DBN are integrated, features 
flow naturally, with the ANN's output serving as 
the DBN's input. This architecture makes use of 
the DBN's capacity to capture high-level 
abstractions and the ANN's prowess in managing 
low-level feature extraction. A unified loss 
function, like cross-entropy, which quantifies the 
discrepancy between expected probability and 
actual labels, is used to train the model from 
beginning to end. In order to optimize the model 
for the prediction of heart illness, gradients are 
calculated and transmitted through both ANN 
and DBN layers. This DBANP strategy has a 
number of benefits. The DBN improves the 
model's ability to manage complicated and 
nonlinear interactions, while the ANN 
guarantees effective initial feature extraction. 
When combined, they overcome the drawbacks 
of stand-alone deep learning models such as 
Long Short-Term Memory (LSTM) networks 
and Recurrent Neural Networks (RNNs), which 
frequently have trouble with vanishing gradients 
and lengthy training periods. The DBANP model 
delivers increased accuracy, robustness, and 
faster convergence by integrating these 
architectures. Reliable predictions are ensured by 
its hierarchical feature representation, which 
makes it especially resistant to noise and 
irrelevant qualities. In addition to being very 
successful at predicting heart disease, this model 
offers a versatile framework that may be 
modified for use in various medical and 
predictive applications. 
 
3.4. Training and Optimization Process 
The suggested DBANP model is guaranteed to 
learn efficiently and attain the best prediction 
performance for the detection of heart disease 
through the training and optimization procedure. 
This section explains the model's hyper 
parameter tuning techniques, optimization 
algorithms, and training stages. 
The training process is divided into three main 
stages: 
 
Phase 1: ANN Training 

 The ANN is pre-trained independently 
to extract relevant features from the 
input data. 

 Forward Propagation: Input data flows 
through the ANN, where each layer 
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applies a weighted sum and an 
activation function: 

 
Where, wij are weights, xj are inputs, bi 
are biases, and σ is the activation 
function. 

 ANN weights are updated using 
backpropagation with the loss function 
L defined as binary cross-entropy: 

 
Where, yi is the true label, and  is 

the  
predicted probability. 

Phase 2: DBN Training: 
 The DBN is pre-trained using Restricted 

Boltzmann Machines (RBMs) in a 
layer-wise fashion to capture 
hierarchical dependencies. 

 Restricted Boltzmann Machines 
(RBMs): Each RBM in the DBN is 
trained independently to model the 
input data distribution. The energy 
function of an RBM is minimized: 

Where: 
vi,hj: States of visible and 
hidden units, 
bi,cj: Biases for visible and 
hidden units, 
wij: Weight between visible 
unit i and hidden unit j. 

The joint probability distribution is 
given by, 

 
Where Z is the partition function for 
normalization 

 Contrastive Divergence (CD): Used to 
minimize the energy function of the 
Pretraining RBM: 

 
Where, η is the learning rate.

: Expected values 
from the input data,

Expected 
values from the reconstruction. 

 Stacking RBMs: Once the first RBM is 
trained, its hidden layer outputs are used 
as input for the next RBM, continuing 

the pretraining process layer by layer. 
Fine-tuning the stacked RBMs with 
backpropagation. 

Phase 3: Hybrid Fine-Tuning 
 After pretraining the ANN and DBN, 

the hybrid model is fine-tuned end-to-
end to minimize the overall loss 
LHybrid 

 Weights and biases across all layers 
(ANN and DBN) are updated using 
backpropagation. 

Optimization Algorithm 
Adam Optimizer: The Adam Optimizer is chosen 
for its computational efficiency and adaptability 
to sparse gradients. The weights W and biases b 
of the ANN are updated using the Adam 
Optimizer, which combines momentum and 
adaptive learning rates: 
Update rules for parameters: 

 
 

 

 

 
Hyperparameters: 

 η (learning rate): Typically 0.0010.001, 
 β1,β2: Exponential decay rates for 

moment estimates (0.9,0.9990.9,0.999), 
 ϵ: Small value (10−810−8) for 

numerical stability. 
The DBANP architecture ensures optimal 
predictions for the categorization of heart disease 
by combining the deep hierarchical learning of 
DBN with the strong feature extraction 
capabilities of ANN. 
The goal of the DBANP model's training and 
optimization procedure is to accurately forecast 
cardiac disease by utilizing the combined powers 
of deep belief networks and artificial neural 
networks. Model parameters, including weights 
and biases, are initialized at the start of the 
process using strategies to guarantee effective 
training convergence. First, the ANN is trained, 
processing input information across a number of 
layers. Each layer uses algorithms like ReLU to 
activate neurons, apply biases, and compute a 
weighted sum of inputs. A binary cross-entropy 
loss function, which quantifies the difference 
between expected probability and actual results, 
is used to compare the ANN's predictions with 
the true labels.  
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Figure 2: DBANP Training And Optimization 

Process 
 
Using optimization algorithms like as Stochastic 
Gradient Descent (SGD), gradients of the loss 
function are computed and propagated backward 
through the network to adjust weights and biases. 
This guarantees that the ANN acquires 
significant feature representations. The DBN 
then goes through a layer-by-layer pretraining 
process that uses Restricted Boltzmann 
Machines (RBMs) to identify intricate, 
hierarchical connections in the data. In order to 
depict the relationships between visible and 
hidden units, each RBM minimizes its energy 
function while modelling the probability 
distribution of input characteristics. Effective 
weight updates are made possible by the use of 
Contrastive Divergence (CD) to approximate the 
log-likelihood gradient.The DBN can gradually 
learn higher-order feature representations by 
passing the outputs of each RBM as inputs to the 
next RBM in the stack. The DBN's ability to 
represent complex dependencies that standalone 
ANN designs can miss is ensured by this 
pretraining step. 
 
Following training, the ANN and DBN are 
combined to create a single hybrid model. To 
make sure the ANN and DBN layers function 

together, the integrated architecture is adjusted 
end-to-end using a single loss function, like 
binary cross-entropy. Both components 
propagate gradients, and sophisticated 
optimization methods such as Adam are 
employed to improve convergence stability and 
speed. To avoid overfitting and guarantee that 
the model performs well when applied to unseen 
data, regularization techniques like dropout and 
weight decay are used. Using techniques like 
grid search or Bayesian optimization, 
hyperparameters such as learning rate, batch 
size, and the number of hidden neurons are 
optimized.The DBANP model can successfully 
identify both straightforward and intricate 
patterns in the data thanks to its meticulously 
planned training and optimization procedure. A 
strong framework for predicting heart illness is 
produced by the DBN modeling high-level 
abstractions and the ANN extracting initial 
characteristics. The DBANP model outperforms 
conventional deep learning models in terms of 
accuracy, speed, and dependability by tackling 
issues including overfitting, vanishing gradients, 
and computing inefficiency. 
 
3.5.  Hyperparameter Tuning 
The performance of the DBANP model depends 
on appropriately tuned hyperparameters. The 
following strategies are employed: 

 Learning Rate (η) Selection: 
A grid search is performed over values 
[0.001,0.01,0.1]. 

 Batch Size: 
Batch sizes {32,64,128}are evaluated to 
balance training speed and gradient 
accuracy. 

 Number of Hidden Layers and Neurons: 
ANN: Varies between 1−3hidden 
layers, each with 64−256 neurons. 
DBN: Number of RBMs ranges from 
2−4 layers, each with 128−256 neurons. 

 Activation Functions: 
ReLU is used in the ANN, while 
sigmoid activations are used in the 
DBN. 

 Dropout Rate (p): 
Dropout is applied to ANN layers to 
prevent overfitting, with p∈[0.2,0.5]. 

The training and optimization steps are 
designed to ensure the Hybrid ANN-DBN model 
achieves robust and accurate predictions for 
heart disease detection, leveraging advanced 
learning techniques and evaluation strategies. 
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4. .EXPERIMENTAL RESULT AND 
DISCUSSISON 

 
Reproducibility and precise performance 
evaluation of the suggested DBANP model in 
relation to other models, including Recurrent 
Neural Networks (RNN) and Long Short-Term 
Memory (LSTM), are guaranteed by the 
experimental setting. The Windows 7 (64-bit) 
operating system, an Intel Core i5 processor, 4 
GB of RAM, and a 1 TB hard drive comprise the 
environment used for the research. Python 
(version 3.8) is used for the implementation, 
together with libraries like Matplotlib/Seaborn 
for data visualization and TensorFlow, Keras, 
Scikit-learn, Pandas, and NumPy for model 
construction. 
The Cleveland Heart Disease Dataset, which 
comprises 303 patient records with 
characteristics like age, sex, type of chest pain, 
resting blood pressure, and cholesterol levels, 
and the Cardiovascular Disease Dataset, which 
offers details on cardiovascular risk factors and 
diagnoses, containing characteristics like age, 
blood pressure, body mass index, and smoking 
status, are among the datasets used in the 
experiments. To improve model training and 
prediction accuracy, preprocessing procedures 
are applied to both datasets, which include 
addressing missing values, normalizing features, 
and using feature selection approaches. The 
models are trained using particular 
hyperparameters, including 50 epochs, a batch 
size of 32, and a learning rate of 0.001 
(optimized by grid search). The Adam optimizer 
guarantees effective weight updates, and the 
activation function utilized is Sigmoid for the 
output layer and ReLU for hidden layers. The 
DBN layer's Restricted Boltzmann Machines 
(RBMs) are pretrained for ten iterations, and a 
dropout rate of 0.2 is used to avoid overfitting. A 
thorough evaluation of each model's 
performance is ensured by the use of evaluation 
metrics such as Accuracy, Precision, Recall 
(Sensitivity), Specificity, F1 Score, Area Under 
the Receiver Operating Characteristic Curve 
(AUC-ROC), and Area Under the Precision-
Recall Curve (AUC-PR). 
Three models are used in the comparison 
analysis: the DBANP, LSTM, and RNN. The 
RNN architecture's capacity to learn long-term 
dependencies is constrained by its inability to 
handle vanishing gradient problems, despite its 
intention to capture temporal dependencies in the 
data. Although it necessitates longer training 

cycles, the LSTM model improves long-term 
dependence handling by addressing these 
problems with its memory cell structure. By 
optimizing feature learning and improving 
prediction accuracy, the suggested DBANP 
model, on the other hand, successfully addresses 
the drawbacks of both RNN and LSTM by 
fusing the feature extraction power of ANN with 
the hierarchical feature learning of DBN. 
 
To guarantee objective model evaluation, the 
datasets are divided into training (70%), 
validation (15%), and test (15%) sets. 
Preprocessing the datasets, training each model 
on the training set, and assessing performance on 
the test set using predetermined metrics are all 
steps in the experimental process. The 
performance of each model is optimized by 
hyperparameter adjustment. The suggested 
DBANP model has the potential to greatly 
increase the accuracy and dependability of heart 
disease prediction, as this experimental design 
guarantees a strong and equitable comparison. 
Performance Analysis 
Datasets 
Cleveland Heart Disease Dataset: Contains 303 
samples with attributes like age, sex, chest pain 
type, cholesterol level, and resting blood 
pressure. Target: Binary classification (presence 
or absence of heart disease). 
Cardiovascular Disease Dataset: Contains 
records with risk factor attributes such as 
systolic/diastolic blood pressure, smoking status, 
age, and BMI. Target: Binary classification 
(cardiovascular disease: yes/no). 
Evaluation Metrics 
The following metrics are used to evaluate model 
performance: 
Accuracy: Measures the proportion of correct 
predictions.The proposed DBANP achieves 
significantly higher accuracy than RNN and 
LSTM for both datasets. This improvement is 
attributed to ANN’s feature extraction 
capabilities and DBN’s hierarchical feature 
learning. 

 
Precision: Measures the proportion of true 
positive predictions among all predicted 
positives. DBANP consistently reduces false 
positives due to its enhanced learning of critical 
patterns, outperforming RNN and LSTM by 
approximately 6-8%. 

 



 Journal of Theoretical and Applied Information Technology 
15th July 2025. Vol.103. No.13 

©   Little Lion Scientific  
 

ISSN: 1992-8645                                                                    www.jatit.org                                                     E-ISSN: 1817-3195 

 
4591 

 

Recall (Sensitivity): Measures the proportion of 
actual positives correctly predicted.With better 
recall, DBANP detects more true positives, 
ensuring effective early prediction. This is 
crucial in heart disease diagnosis where missing 
positive cases can have serious implications. 

 
Specificity: Measures the proportion of actual 
negatives correctly predicted. By effectively 
identifying true negatives, DBANP minimizes 
false alarms, outperforming RNN and LSTM in 
specificity by 5-7%. 

 
F1 Score: The harmonic mean of Precision and 
Recall, balancing false positives and false 
negatives.The hybrid model balances precision 
and recall effectively, leading to a higher F1 
score, which is critical for datasets where class 
distribution may be imbalanced. 

 
AUC-ROC: show the trade-off between the 
True Positive Rate (Recall) and the False 
Positive Rate by representing the area under the 
Receiver Operating Characteristic Curve. With 
the highest AUC-ROC values in both datasets, 
DBANP exhibits strong discriminatory power 
and excellent trade-offs between sensitivity and 
specificity. 
AUC-PR: Shows the model's performance in 
unbalanced datasets by displaying the Area 
under the Precision-Recall Curve. The AUC-PR 
of DBANP shows that it can predict positive 
cases more accurately than RNN or LSTM, 
especially in imbalanced datasets. 
 Due to its improved feature extraction 
capabilities, the suggested DBANP model has a 
number of advantages over more conventional 
designs like RNN and LSTM. The DBN layer 
captures intricate, nonlinear correlations, 
resulting in better prediction accuracy, but the 
ANN component is excellent at spotting low-
level patterns. The shortcomings of RNN and 
LSTM are successfully addressed by this hybrid 
technique. Long-term dependencies are difficult 
for RNNs to model because of vanishing 
gradient problems. LSTMs are computationally 
demanding and resource-intensive, even if they 
partially solve this issue. By using DBN's 
pretraining to prevent vanishing gradients and 
preserve computational efficiency, the DBANP 
model combines the best features of both 
architectures.  The DBANP architecture 

routinely outperforms RNN and LSTM in terms 
of scalability and adaptability when working 
with large datasets such as the Cardiovascular 
Disease Dataset.... Furthermore, its resilience 
guarantees flexibility in response to changes in 
data distributions, facilitating accurate forecasts 
across a range of datasets. The DBANP model 
clearly outperforms RNN and LSTM in terms of 
accuracy, precision, recall, and other important 
parameters, as seen in Figures 3 and 4. It is a 
strong and reliable option for early cardiac 
disease prediction because of its capacity to 
manage intricate relationships and grow 
efficiently. This creative hybrid strategy lays a 
solid basis for using comparable systems in more 
general medical data analysis applications. 

 

 
Figure 3: Performance with ClevelandHeart 

Disease Dataset 
 

 
 

Figure 4: Performance with Cardiovascular Disease 
Dataset 

In both datasets, the DBANP model performs 
well in terms of prediction. With a confusion 
matrix displaying 123 true positives, 135 true 
negatives, 15 false positives, and 10 false 
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negatives, the model's predicted accuracy on the 
Cleveland Heart Disease Dataset was 91.8%. 
Likewise, the model achieved 92.1% accuracy 
on the Cardiovascular Disease Dataset, with 780 
true positives, 835 true negatives, 62 false 
positives, and 55 false negatives. The findings 
presented in Tables 1 and 2 demonstrate how 
well the model detects cases of heart disease 
while preserving low false positive and false 
negative rates. The model's capacity to handle 
complicated medical data and extract 
hierarchical and nonlinear connections is 
demonstrated by its consistent performance 
across both datasets. Its dependability and 
durability highlight its potential for real-world 
use in the early detection of cardiac disease. 

 
The DBANP model is excellent in learning both 
low-level and high-level patterns, and it is 
particularly good at capturing intricate, 
hierarchical connections. Because of its dual-
layered architecture, which guarantees a 
thorough comprehension of the data, it is 
especially well-suited for predicting cardiac 
disease. The DBANP model's capacity to 
manage nonlinear dependencies—which are 
common in medical datasets—is one of its main 
advantages. DBN improves the model's ability to 
capture complex and nonlinear interactions in the 
data, greatly enhancing prediction quality, 
whereas ANN effectively extracts features. 
Additionally, weight initialization issues are 
addressed by DBN's pretraining process, which 
is based on Restricted Boltzmann Machines 
(RBMs), guaranteeing quicker convergence and 
shorter training times. Because of this, the 
DBANP model is more effective than RNNs and 
LSTMs, which frequently have to endure lengthy 
training periods. The DBANP model's layer-wise 
pretraining successfully addresses the vanishing 
gradient problem, a prevalent difficulty in RNNs. 
By guaranteeing steady gradient flow throughout 
training, this increases reliability in addition to 
prediction accuracy. Furthermore, the DBANP 
model exhibits exceptional scalability, managing 
big datasets such as the Cardiovascular Disease 
Dataset with ease. It is a useful and potent option 
for medical data analysis since it outperforms 
LSTM in terms of performance while using 
fewer processing resources. 
 
5. CONCLUSION   
 
When it comes to forecasting cardiac disease, the 
suggested DBANP model has outperformed 

more established models like Long Short-Term 
Memory (LSTM) and Recurrent Neural 
Networks (RNN). The model successfully 
captures both low-level and complicated 
nonlinear dependencies in the data by fusing the 
hierarchical learning strengths of DBN with the 
feature extraction skills of ANN. High accuracy 
(91.8% and 92.1%, respectively) and strong 
performance across important metrics like 
precision, recall, specificity, and F1 score were 
demonstrated by the results, which were 
validated using the Cleveland Heart Disease 
Dataset and Cardiovascular Disease Dataset. The 
DBANP model is a dependable option for 
medical data analysis since it also tackles 
important issues like scalability and the 
vanishing gradient problem. These results 
highlight how hybrid architectures can be used to 
develop predictive healthcare solutions.In order 
to improve feature selection and training 
efficiency, future studies can investigate 
additional improvements to the DBANP model 
by including sophisticated optimization 
techniques like swarm intelligence or genetic 
algorithms. The model's flexibility and 
scalability might be further confirmed by 
broadening the study to incorporate bigger and 
more varied datasets in addition to real-time data 
from wearable technology.  

The DBANP model offers practical value across 
multiple domains. Clinically, it supports early 
diagnosis, reducing manual effort and the risk of 
misdiagnosis. Its scalable and efficient design 
makes it ideal for integration into healthcare 
systems, including mobile and edge-based 
platforms. In the medical AI industry, the 
modular architecture can be adapted for 
diagnosing other chronic diseases, enabling 
commercial applications. For researchers, it 
encourages the use of interpretable deep learning 
by providing transparent and reliable 
performance, fostering greater trust in AI-driven 
medical tools. 

Several open issues remain for future work. The 
current model is evaluated on offline datasets, 
and its performance with real-time streaming 
data, such as from wearable devices, is yet to be 
validated. While the DBN effectively captures 
complex patterns, improving the explainability 
of its predictions for clinical use is still needed. 
Additionally, the study's reliance on two datasets 
limits its generalizability across diverse 
populations and medical conditions. Finally, 
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integrating metaheuristic or evolutionary 
algorithms could further enhance the model’s 
training efficiency and robustness. 
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