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ABSTRACT 
 

Flying Ad Hoc Networks (FANETs) are vital for various applications, relying on unmanned aerial vehicles 
(UAVs) for communication in dynamic and challenging environments. Seamless connectivity within 
FANETs is crucial for uninterrupted data exchange and mission success. However, interference from 
terrain obstacles, weather conditions, and other UAVs poses significant challenges to routing efficiency. 
The proposed “Dragonfly-Inspired OLSR Protocol (DO-OLSR)” introduces a novel approach by 
integrating dragonfly-inspired optimization techniques into the OLSR protocol. This integration minimizes 
control overhead and route discovery latency, optimizing network performance. The protocol incorporates 
interference-aware mechanisms that dynamically adapt routing decisions based on real-time environmental 
conditions, mitigating interference effects. Through simulation-based evaluations, the protocol 
demonstrates improved network performance, reduced packet loss, and enhanced throughput compared to 
traditional routing protocols. By dynamically adapting to real-time environmental conditions, the DO-
OLSR maintains seamless connectivity while mitigating interference effects, showcasing its potential to 
enhance overall network reliability and performance in FANETs. 
Keywords: FANET, UAV, Seamless Connectivity, Interference Mitigation, Dragonfly Optimization, OLSR Protocol 

 
1. INTRODUCTION 

 
Flying ad hoc networks (FANETs) are a 

specialized form of mobile ad hoc networks 
(MANETs) designed to facilitate communication 
and coordination among unmanned aerial vehicles 
(UAVs) in dynamic aerial environments. Unlike 
traditional terrestrial networks, FANETs operate 
without needing fixed infrastructure, allowing 
UAVs to communicate and collaborate 
autonomously[1]. This decentralized approach 
enables FANETs to be deployed rapidly in various 
scenarios, including surveillance, reconnaissance, 
environmental monitoring, and disaster response. 
By leveraging the mobility and agility of UAVs, 
FANETs offer unique capabilities such as aerial 
surveillance, remote sensing, and real-time data 
collection over large and often inaccessible 
areas[2], [3]. Integrating FANETs with the 
Sophisticated Rapid Response System (SRRS) 
enhances their effectiveness in scenarios requiring 
proactive threat detection and rapid response 
coordination. Overall, FANETs represent a 

versatile and adaptable communication platform for 
UAVs, with applications across various 
domains[4]. 

 
Seamless connectivity is paramount in 

FANETs and UAVs, serving as the linchpin for 
uninterrupted data transmission and enabling 
seamless interaction between UAVs and ground 
stations. Beyond mere convenience, it is essential 
for enhancing operational efficiency and 
effectiveness across myriad applications, from 
aerial surveillance and reconnaissance to disaster 
response and environmental monitoring[5]. 
Moreover, seamless connectivity is pivotal for 
enabling emerging UAV technologies like 
autonomous navigation, collaborative sensing, and 
swarm coordination, which rely on constant and 
reliable communication for effective operation. 
From precision agriculture to infrastructure 
inspection, seamless connectivity underpins 
mission-critical UAV applications, enabling real-
time data collection, situational awareness, and 
decision-making[6]. As the demand for UAV-
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based solutions continues to soar, ensuring 
seamless connectivity remains a top priority, 
driving innovation and unlocking the full potential 
of FANETs and UAVs in various domains[7]. The 
difference between UAV and FANET is provided 
in Table 1. 

 
Routing is a linchpin within the 

Sophisticated SRRS, pivotal in orchestrating an 
agile and efficient response to security challenges. 
As the backbone of communication and resource 
allocation, routing algorithms within the SRRS 
ensure that information flows seamlessly between 
various components, optimizing the deployment of 
unmanned vehicles, sensors, and response 
teams[8]. This dynamic routing capability allows 
the SRRS to adapt swiftly to evolving threats, 
directing resources to critical areas with 
precision[9]. Furthermore, the efficiency of routing 
mechanisms directly impacts the system’s ability to 
harness real-time data, enabling rapid decision-
making and coordination. The significance of 
routing within the SRRS lies in its capacity to 
transform raw data into actionable intelligence, 
ensuring a proactive and well-coordinated response 
to safeguard borders and respond effectively to 
emergencies[10], [11]. 
 

Table 1. Difference Between UAV and FANET 
Aspect UAV FANET 

Definition Single 
unmanned 
aircraft 
capable of 
autonomous 
flight without 
an onboard 
pilot. 

A network of 
interconnected 
UAVs that 
communicate 
with each other 
to achieve 
common goals. 

Purpose Various 
applications 
such as 
surveillance, 
reconnaissance
, aerial 
photography, 
package 
delivery, 
agriculture, 
search and 
rescue, and 
environmental 
monitoring. 

Enable 
communication 
and coordination 
between 
multiple UAVs 
to form a 
network. 

Communicat
ion 

Point-to-point 
with ground 
station. 

Multi-hop 
between UAVs 
in the network. 

Coordination Limited but 
operates in an 
independent 
manner 

Decentralization 
enabled 
collaboration. 

Scalability Limited to 
individual 
UAV 
capabilities. 

Scalable with 
the addition of 
more UAVs. 

Redundancy Relies on 
backup 
systems for 
failures. 

Inherent 
redundancy with 
multiple UAVs. 

Collaboratio
n 

Minimal, each 
UAV operates 
solo. 

Facilitates 
cooperative task-
sharing. 

Application 
Diversity 

Various 
industries, 
diverse tasks. 

Suited for 
collective tasks 
like SAR. 

Network 
Infrastructur
e 

Relies on 
existing or 
dedicated 
ground 
stations. 

Requires 
specialized 
multi-hop 
protocols. 

 
The study presumes that all UAVs are 

equipped with uniform communication hardware 
and operational capabilities, promoting consistent 
behavior across the network. It assumes that 
environmental conditions simulated within the 
study mirror a range of realistic scenarios, although 
they simplify the inherent unpredictability of actual 
environments. Moreover, it is presumed that all 
UAVs operate in compliance with existing 
regulatory frameworks without interference from 
non-cooperative entities. 
 

The research primarily focuses on 
simulated environments, which may not encompass 
all the complexities of real-world operations. 
Energy consumption metrics are based on 
theoretical calculations, which may not accurately 
represent the actual energy use due to unforeseen 
operational inefficiencies. Additionally, the 
protocol’s adaptability to scenarios involving 
extremely high UAV densities or significant 
heterogeneity in UAV capabilities remains 
untested, which could affect its applicability in 
diverse operational contexts. 
 
1.1. Problem Statement 

FANETs have become integral to a wide 
range of applications, including environmental 
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monitoring, disaster response, and strategic 
surveillance. Despite significant advancements, 
these networks continue to grapple with challenges 
such as high mobility dynamics, interference from 
complex terrains, and stringent energy constraints. 
These factors critically impact the operational 
longevity and efficiency of unmanned aerial 
vehicles (UAVs). Existing routing protocols often 
fail to simultaneously address the demands for 
dynamic adaptability, energy efficiency, and 
minimized control overhead in environments 
characterized by high mobility and significant 
interference. This deficiency highlights the urgent 
need for a routing protocol that enhances 
communication reliability, improves network 
throughput, and extends the operational capabilities 
of UAVs by reducing energy consumption and 
adapting in real-time to changing environmental 
conditions. 

 
1.2. Motivation 

The motivation for tackling the energy 
consumption issue in interference-aware routing for 
FANETs lies in the critical role that UAVs play in 
various applications, including surveillance, 
disaster response, and environmental monitoring. 
Optimizing energy consumption through efficient 
routing protocols enhances UAV operational 
endurance, enabling longer-duration missions and 
broader application coverage. Reducing energy 
consumption can prolong UAV operational 
lifespan, improve mission reliability, and enhance 
responsiveness to dynamic airspace conditions. 
Moreover, efficient energy utilization contributes to 
environmental sustainability by minimizing the 
need for frequent recharging or battery 
replacements. Addressing this challenge not only 
advances the capabilities and reliability of FANETs 
but also facilitates the widespread adoption and 
deployment of UAV technologies, ultimately 
benefiting society through improved safety, 
efficiency, and effectiveness in critical operations. 
 
1.3. Objective 

To develop and evaluate an energy-
efficient Dragonfly-inspired OLSR (Optimized 
Link State Routing) protocol tailored for 
interference-aware seamless connectivity in 
FANETs. This objective addresses the challenge of 
managing energy consumption in UAV operations 
within dynamic airspace environments while 
optimizing routing decisions to mitigate 
interference effects and enhance network 
performance. The research will focus on designing 
innovative routing algorithms that dynamically 

adapt to changing network conditions, optimize 
routing paths based on energy consumption metrics, 
and incorporate mechanisms for energy-efficient 
communication and resource management. Through 
this objective, the research aims to extend UAV 
operational lifespan, improve mission endurance, 
and facilitate the widespread adoption of UAV 
technologies for various critical applications, 
including surveillance, disaster response, and 
environmental monitoring. 
 
2. LITERATURE REVIEW 

 
“Dynamic AeroNet Routing”[12] adapts 

the virtual network structure based on real-time 
conditions, making optimal communication in 
dynamic airborne environments. It dynamically 
adjusts the connectivity between nodes, responding 
to changes in network parameters. It minimizes 
latency and maximizes resource utilization by 
enabling routing efficiency. The network’s 
resilience is focused on continuous optimization of 
the virtual topology. “ClusterFly Protocol”[13] 
operates on a cluster-based routing mechanism. 
Nodes dynamically form clusters, typically led by a 
designated cluster head. The clustering process 
considers factors like proximity and communication 
capabilities. Each cluster head manages intra-
cluster communication, reducing the need for direct 
communication between all nodes. Cluster heads 
handle inter-cluster communication, enhancing 
scalability and minimizing the impact of high 
mobility in FANETs. “3D GeoRoute Protocol”[1] 
dynamically determines their effective transmission 
ranges, accounting for the complexities of aerial 
communication. It progresses the routing by 
establishing optimized routes considering 
horizontal and vertical dimensions. Nodes 
strategically choose neighbours within their 
adjusted transmission range for forwarding, 
enhancing overall routing efficiency.  

 
“ICRA Protocol”[14] presents a 

sophisticated method for enhancing communication 
efficiency. The protocol employs intelligent 
clustering, where UAVs autonomously form 
clusters based on factors such as proximity and 
communication parameters. Within these clusters, 
intelligent routing mechanisms optimize 
communication paths. “Dyna-Posi-OLSR”[2] 
revolves around continuously exchanging real-time 
positional data among nodes. Nodes broadcast their 
current positions regularly, contributing to 
constructing a dynamic topology map. The protocol 
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utilizes a modified OLSR algorithm that leverages 
this spatial awareness to make informed decisions 
for optimizing routing paths. “ElasticFly 
Routing”[15] involves nodes continuously 
monitoring real-time conditions such as airspace 
congestion and node mobility. Each node adjusts its 
routing path elastically, optimizing for factors like 
available bandwidth and minimizing latency. It 
ensures the communication infrastructure in 
FANET remains responsive and efficient, 
overcoming the unpredictable nature of aerial 
environments. 

 
“QoS-RL VehiRoute”[16] utilizes 

intersections as decision points for route 
optimization. Through continuous reinforcement 
learning, nodes evaluate different routes based on 
QoS metrics such as latency and reliability. The 
protocol refines its decision-making process, 
learning to adapt routing paths dynamically. “FT-
AdHoc On-Demand”[17] employs an on-demand 
routing strategy with built-in fault tolerance 
mechanisms. Nodes initiate route discovery only 
when needed, conserving resources. In the event of 
a link or node failure, the protocol dynamically 
triggers route recalculations, ensuring continuous 
communication. By integrating fault tolerance 
directly into the on-demand routing process, the 
protocol enhances the resilience of Mobile Ad Hoc 
Networks (MANET). “FD-VANET End-to-End 
Delay”[18] meticulously minimizes 
communication delays through simultaneous 
transmission and reception capabilities. The nodes, 
equipped with full-duplex radios, engage in 
dynamic optimization of communication paths by 
actively assessing real-time traffic conditions and 
mitigating signal interference. This intricate 
working mechanism ensures an agile adaptation of 
routes, continually optimizing to minimize end-to-
end delays.  
 

“UAV-OptiRoute Systematic 
Review”[19] employs a systematic review 
approach to discern the technical efficiency of 
various bio-inspired algorithms. It intricately 
involves the application of algorithms inspired by 
nature, such as swarm intelligence or genetic 
algorithms, for the dynamic adaptation of UAV 
routes contingent on environmental conditions. 
“Multi-Obj Packet Routing”[20] is tailored for 
aeronautical ad-hoc networks (AANETs). It 
orchestrates packet routing efficiency through a 
sophisticated working mechanism in real-time 
multi-objective optimization. It dynamically 

balances and optimizes conflicting objectives, 
minimizing latency, maximizing throughput, and 
ensuring energy efficiency. It showcases technical 
prowess by adapting routing decisions to the unique 
challenges posed by AANETs, where high mobility 
and variable link conditions demand constant and 
dynamic adjustments. “DRL-QoS CR-
MANETs”[21] integrate Deep Reinforcement 
Learning, empowering nodes to autonomously 
learn optimal routing decisions based on real-time 
interactions with the environment. Incorporating 
cross-layer design enriches the decision-making 
process by assimilating information from multiple 
protocol layers, resulting in a technically advanced 
and adaptive approach to changing network 
conditions.  
 

“Prediction-supported Adaptive Routing 
(PAR)”[22]is a sophisticated integration of 
prediction-supported adaptive routing and deep 
reinforcement learning (DRL) tailored for 
FANETs. Initially, the protocol employs predictive 
models that leverage historical data and network 
parameters to anticipate potential fluctuations in 
network conditions. These predictive models equip 
drones with the foresight to adjust their routing 
paths preemptively. Subsequently, drones utilize 
DRL algorithms to iteratively refine their routing 
decisions based on real-time feedback obtained 
from the environment. Drones optimize their 
routing strategies through continuous reinforcement 
learning, ensuring efficient data transmission 
amidst the dynamic aerial environment. 
PARouting’s adaptive and self-learning mechanism 
guarantees robust and reliable communication 
within FANETs, paving the way for enhanced 
performance and adaptability in various 
applications. 
 

“Eagle Optimized Energy Efficient 
Optimal Route-Finding Protocol (EOEEORFP)” 
[23]is proposed to enable data transmission within 
the dynamic environment of FANETs. Initially, the 
protocol assesses the network topology and the 
energy levels of participating drones to determine 
the most efficient routing paths. Utilizing 
optimization algorithms, EOEEORFP evaluates 
multiple potential routes based on distance and 
energy consumption criteria. Once the optimal 
routes are identified, EOEEORFP implements 
robust security measures to protect data during 
transmission. These security mechanisms may 
include encryption algorithms, authentication 
protocols, and intrusion detection systems to 
mitigate potential threats. By seamlessly integrating 
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optimization algorithms with stringent security 
protocols, EOEEORFP ensures reliable and secure 
data transmission in FANETs, enhancing aerial 
communication networks’ overall functionality and 
resilience. Many bio-inspired optimization 
algorithms are applied in ad-hoc networks for 
achieving the better results [24]-[62]. 

 
2.1. Critique 

Existing FANET protocols often excel in 
controlled simulations but struggle under the 
dynamic conditions typical of real-world UAV 
operations, raising concerns about their scalability 
and efficiency. Many claims of enhanced energy 
efficiency are based on idealized assumptions that 
rarely hold in operational scenarios, pointing to a 
gap between simulated results and actual 
performance. Furthermore, the reliance on outdated 
methods and the lack of innovative approaches in 
the literature highlight a significant disconnect 
between theoretical improvements and practical 
usability. This critique emphasizes the necessity for 
protocols like the DO-OLSR, designed to address 
these shortcomings by providing robust 
performance and real-time adaptability in the 
complex and unpredictable environments where 
FANETs operate. 
 
3. DRAGONFLY OPTIMIZATION-INSPIRED 

OLSR PROTOCOL (DO-OLSR) 
 
The Dragonfly Optimization-Inspired 

OLSR Protocol merges nature’s efficiency with 
modern networking. Drawing inspiration from the 
swift and adaptive flight of dragonflies, this 
protocol optimizes the performance of the OLSR 
algorithm. Like dragonflies efficiently navigate 
complex environments, this protocol enhances 
routing in dynamic ad hoc networks. It maximizes 
throughput and minimizes latency by dynamically 
adjusting routes based on network changes and 
optimizing message exchange. Its decentralized 
nature mirrors the autonomy of dragonflies, 
ensuring robustness even in challenging network 
conditions. The fusion of biological insights and 
technological innovation heralds a new era in 
efficient communication protocols. 
 
Research Hypothesis: 

Based on the identified gaps and the 
objectives outlined in the study, the following 
hypotheses are articulated to guide the experimental 
validation and theoretical assertions of the 
Dragonfly-Inspired OLSR Protocol: 

 Hypothesis 1 (H1): The integration of 
dragonfly-inspired optimization algorithms 
within the OLSR protocol significantly 
reduces control overhead and routing latency 
compared to traditional OLSR and other 
commonly used routing protocols in 
FANETs. 

 Hypothesis 2 (H2): DO-OLSR enhances 
network performance in terms of throughput, 
packet delivery ratio, and latency under 
dynamic environmental conditions, 
performing superiorly compared to existing 
routing protocols employed in similar 
FANET settings. 

 Hypothesis 3 (H3): The implementation of 
the DO-OLSR protocol results in a 
noticeable improvement in energy 
efficiency, thereby extending the operational 
endurance of UAVs within FANETs without 
compromising network reliability and 
communication quality. 

 Hypothesis 4 (H4): DO-OLSR exhibits 
greater adaptability to sudden changes in 
network topology and environmental 
conditions, demonstrating more robust and 
reliable communication in FANETs 
compared to conventional routing protocols. 

 
These hypotheses will be tested through a series of 
simulations and empirical evaluations, designed to 
rigorously assess the performance, efficiency, and 
adaptability of the DO-OLSR protocol under varied 
and controlled experimental conditions. The 
outcomes of these tests are anticipated to validate 
the proposed benefits of the protocol, substantiating 
its potential to revolutionize communication 
strategies within FANETs. 
 
3.1. Objective Definition  

Objective definition is a crucial initial step 
in DO-OLSR. In this step, the optimization problem 
is precisely formulated, specifying the algorithm’s 
goal. Mathematically, the objective function is 
denoted as 𝑓(𝑥), where 𝑥 represents the solution 
vector, i.e., the configuration of the OLSR routing 
protocol. In the context of OLSR, the objective 
function encapsulates the performance metrics that 
the optimization seeks to optimize. Let 𝑃 be the set 
of all possible OLSR configurations and 𝑥௜ be the 
configuration of the 𝑖௧௛ dragonfly in the population. 
The objective function 𝑓(𝑥௜) quantifies the quality 
of the OLSR configuration and is specific to the 
optimization goal. For instance, if the goal is to 
minimize end-to-end delay, the objective function 
may be expressed as Eq.(1). 
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𝑓(𝑥௜) = ෍ 𝐷௝(𝑥௜)
ே

௝ୀଵ
 (1) 

where 𝐷௝(𝑥௜) represents the end-to-end delay for 
the 𝑗௧௛ link in the network, and 𝑁 is the total 
number of links. The objective function aggregates 
the delays over all links to produce a scalar value 
representing the overall performance of the OLSR 
configuration. 
 

Alternatively, if the goal is maximizing 
network throughput, the objective function could be 
Eq.(2). 

𝑓(𝑥௜) = ෍ 𝑇௝(𝑥௜)
ே

௝ୀଵ
 (2) 

where 𝑇௝(𝑥௜) denotes the throughput of the 𝑗௧௛ link. 
The negative sign is introduced since Dragonfly 
Optimization seeks to minimize the objective 
function, and maximizing throughput is equivalent 
to minimizing the negative of throughput. 
 
3.2. Parameter Initialization 

Parameter initialization is a critical phase 
in the application of DO-OLSR. It involves setting 
up the necessary parameters that govern the 
behaviour of the optimization algorithm. 
Mathematically, let 𝑃 be the parameter space, and 𝑝 
represent a vector containing the algorithm-specific 
parameters. The parameters are crucial in shaping 
the exploration and exploitation characteristics of 
the Dragonfly Optimization algorithm. The primary 
parameters to be initialized include the population 
size (𝑝𝑜𝑝_𝑠𝑖𝑧𝑒), the maximum number of iterations 
(𝑚𝑎𝑥_𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠), and any other control 
parameters specific to Dragonfly Optimization, 
denoted as, 𝑝 = [𝑝𝑜𝑝_𝑠𝑖𝑧𝑒, 𝑚𝑎𝑥_𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠, … ]. 
The population size determines the number of 
dragonflies in each generation, influencing the 
diversity of solutions explored. The maximum 
number of iterations defines the stopping criterion, 
ensuring the algorithm terminates after a predefined 
number of iterations. In mathematical terms, the 
parameter initialization can be represented as 
Eq.(3). 

𝑝(଴) = 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒_𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠() (3) 

where 𝑝(଴)denotes the initial parameter vector, and 
𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒_𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠() is a function that sets the 
values for the parameters based on the problem 
requirements and algorithm characteristics. 
 

Dragonfly Optimization may have specific 
parameters related to the algorithm’s internal 

dynamics. These could include parameters 
controlling the influence of leaders on the rest of 
the population, the step size in the search space, or 
any adaptation mechanisms. Let 𝑞 represent the 
internal parameters of Dragonfly Optimization, and 
𝑝 and 𝑞 together define the entire set of parameters, 
and it is shown as Eq.(4). 

𝑝(଴) = [𝑝𝑜𝑝_𝑠𝑖𝑧𝑒, max_𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠, 𝑞] (4) 

 
In enhancing the OLSR protocol, careful 

parameter tuning is essential to balance exploration 
and exploitation. The population size influences the 
varied routing configurations explored, while the 
maximum number of iterations ensures that the 
algorithm does not run indefinitely. 
 
3.3. Topology Representation 

Topology representation is a pivotal step 
in DO-OLSR. The FANET’s physical layout is 
mathematically modelled in this step, defining the 
nodes and links that constitute the communication 
infrastructure. The representation allows for the 
translation of the real-world network into a 
mathematical framework, facilitating the 
application of optimization algorithms. Consider a 
network with 𝑁 nodes denoted as 𝑁 = {1,2, … , 𝑁}, 
where each node corresponds to a network device 
capable of transmitting and receiving data. The 
communication links between nodes form the 
network’s edges, constituting the set of links 𝐿. 
Mathematically, the network topology is 
represented by a graph 𝐺 = (𝑁, 𝐿), where 𝑁 is the 
set of nodes, and 𝐿 is the set of links. Let 𝐴 be the 
adjacency matrix representing the connectivity of 
the network. The adjacency matrix is a square 
matrix of size 𝑁 × 𝑁, where 𝐴௜௝ is defined as 
Eq.(5). 

ቄ
1  𝑖𝑓 𝑡ℎ𝑒𝑟𝑒 𝑖𝑠 𝑎 𝑙𝑖𝑛𝑘 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑛𝑜𝑑𝑒𝑠 𝑖 𝑎𝑛𝑑 𝑗

0                                      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
 (5) 

 
Eq.(5) captures the relationships between 

nodes regarding links, providing a binary 
representation of network connectivity. The link 
weight matrix 𝑊 is defined to represent the 
characteristics of each link, such as latency or 
throughput. If  𝑤௜௝   represents the weight of the link 
between nodes 𝑖 and 𝑗, then 𝑊 is a matrix where 
𝑊௜௝ = 𝑤௜௝   if there is a link, and 𝑊௜௝ = 0 if there is 
no link. Eq.(6) determines the link weight between 
nodes. 
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൦

𝑤ଵଵ𝑤ଵଶ    …   𝑤ଵே

𝑤ଶଵ𝑤ଶଶ    …   𝑤ଶே

⋮        ⋮         ⋱        ⋮ 
𝑤ேଵ𝑤ேଶ    …   𝑤ேே

൪ (6) 

 
The OLSR protocol enhancement involves 

finding the optimal configuration for routing 
messages among the network nodes. This 
configuration is represented by a matrix 𝑅 that 
defines the routing decisions for each node pair. If 
𝑟௜௝  is the routing decision for the link between 
nodes 𝑖 and 𝑗, then 𝑅 is a matrix where 𝑅௜௝ = 𝑟௜௝ if 
there is a link, and 𝑅௜௝ = 0 if there is no link. Eq.(7) 
assists in making routing decisions. 

൦

𝑟ଵଵ𝑟ଵଶ    …   𝑟ଵே

𝑟ଶଵ𝑟ଶଶ    …   𝑟ଶே

⋮        ⋮         ⋱        ⋮ 
𝑟ேଵ𝑟ேଶ    …   𝑟ேே

൪ (7) 

 
The objective of Dragonfly Optimization 

is to optimize the configuration matrix 𝑅 to 
improve the overall performance of the OLSR 
protocol concerning the defined objectives. This 
involves finding the optimal routing decisions that 
minimize or maximize the objective function. 
Considering the dynamic nature of FANET, where 
link conditions may change over time, the 
optimization process might include adapting the 
routing decisions based on the current network 
state. Let 𝑡 represent the time index, and 𝑅(𝑡) be 
the configuration matrix at time 𝑡. The adaptation 
of routing decisions over time can be captured by 
incorporating the time index into the optimization 
process, expressed in Eq.(8). 

൦

𝑟ଵଵ(𝑡)   𝑟ଵଶ(𝑡)   …   𝑟ଵே(𝑡) 
𝑟ଶଵ(𝑡)   𝑟ଶଶ(𝑡)   …   𝑟ଶே(𝑡) 

⋮        ⋮         ⋱        ⋮ 
𝑟ேଵ(𝑡)   𝑟ேଶ(𝑡)   …   𝑟ேே(𝑡)

൪ (8) 

 
3.4. Fitness Evaluation 

Fitness evaluation is a crucial step of the 
DO-OLSR protocol. This step involves assessing 
the quality of potential solutions represented by 
dragonflies in the population. The fitness of each 
solution is determined by how well it aligns with 
the optimization objectives, providing a 
quantitative measure of its performance within the 
context of the OLSR protocol. Let 𝑃 represent the 
solution space and 𝑥௜ denote the 𝑖௧௛ solution 
(configuration) within the population. The fitness 
function, denoted as 𝑓(𝑥௜), quantifies the quality of 
the OLSR configuration encoded by 𝑥௜ . The 
objective is to minimize or maximize the fitness 

function, depending on the optimization goal, 
expressed as Eq.(9). 

𝑓(𝑥௜) (9) 

 
The specific form of the fitness function 

depends on the chosen optimization objectives. In 
the context of OLSR, it may encompass various 
performance metrics, such as minimizing end-to-
end delay, maximizing network throughput, or 
optimizing for a combination of multiple 
objectives. Let 𝑀 represent the set of performance 
metrics and 𝑀௞(𝑥௜)  be the 𝑘௧௛ metric associated 
with the 𝑖௧௛ solution. Eq.(10) shows how the fitness 
function depends on optimization objectives. 

𝑓(𝑥௜) = ෍ 𝑀௞(𝑥௜)
௞∈ெ

 (10) 

 
Eq.(10) aggregates the contributions of 

individual metrics, reflecting the holistic evaluation 
of the OLSR configuration. It transforms the 
performance metrics into a single scalar value, 
enabling the algorithm to compare and rank 
different solutions within the population. If the 
optimization problem involves constraints, they can 
be incorporated into the fitness function using 
penalty terms. Let 𝐶௝(𝑥௜)  represent the 𝑗௧௛ 
constraint associated with the 𝑖௧௛ solution. The 
penalized fitness function 𝑓(̅𝑥௜) can be expressed as 
Eq.(11). 

𝑓(̅𝑥௜) = 𝑓(𝑥௜) + Σ௝𝑃௝ . 𝑝𝑒𝑛𝑎𝑙𝑡𝑦 ቀ𝐶௝(𝑥௜)ቁ (11) 

where 𝑃௝ is a penalty coefficient associated with the 
𝑗௧௛ constraint, and penalty(. ) is a function that 
increases as the constraint violation becomes more 
severe. 
 

The fitness evaluation process requires 
computing the fitness values for all dragonflies in 
the population. Let 𝐷 represent the set of 
dragonflies, and 𝐹 denote the set of fitness values 
corresponding to each dragonfly, which is 
expressed in Eq.(12). 

𝐹 = {𝑓(𝑥௜)|𝑥௜ ∈ 𝐷} (12) 

 
The resulting set 𝐹 provides a basis for the 

sorting process in subsequent steps, allowing the 
identification of leaders and guiding the exploration 
of the solution space. Considering the dynamic 
nature of FANET, where link conditions may 
change over time, the fitness evaluation may be 
performed at each time step 𝑡. In this case, the 
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Eq.(13) becomes a function of both the solution 
vector 𝑥௜ and the time index 𝑡. 

𝑓(𝑥௜ , 𝑡) = ෍ 𝑀௞(𝑥௜ , 𝑡)
௞∈ெ

 (13) 

 
Incorporating time as a variable enables 

the algorithm to adapt to changing network 
conditions and optimize routing configurations 
dynamically. 
 
3.5. Dragonfly Initialization 

Dragonfly initialization involves the 
creation of an initial population of dragonflies, each 
representing a potential solution in the search 
space. The mathematical representation of 
dragonflies, their positions, and the associated 
fitness values lay the groundwork for subsequent 
exploration and optimization. Consider a 
population of  𝑁 dragonflies denoted as 𝐷 =
{𝑥ଵ, 𝑥ଶ, … . , 𝑥ே}, where 𝑥௜ represents the 𝑖௧௛  
dragonfly and is a vector encoding the OLSR 
configuration. The dragonfly population is a diverse 
set of potential solutions, and each dragonfly’s 
position is crucial in determining its influence on 
the exploration and exploitation dynamics. The 
position of a dragonfly, denoted as 𝑥௜, is a vector in 
the solution space, and the OLSR configuration 
determines its components. If the solution space is 
represented as 𝑃, given in Eq.(14). 

𝑥௜ = {𝑥௜ଵ, 𝑥௜ଶ, … . , 𝑥௜ெ} (14) 

where 𝑀 represents the dimensionality of the 
solution space, which is determined by the 
complexity of the OLSR configuration being 
optimized. Each component 𝑥௜௠ corresponds to a 
specific parameter or decision variable within the 
configuration. 
 

Random values are assigned to initialize 
the dragonflies’ positions within the solution space. 
Let 𝑈(𝑎, 𝑏) represent a random uniform 
distribution between 𝑎 and 𝑏. The initialization 
process can be expressed as Eq.(15). 

𝑥௜௠
(଴)

= 𝑈(𝑎௠, 𝑏௠) (15) 

where 𝑎௠ and 𝑏௠define the lower and upper 
bounds for the 𝑚௧௛ component of the dragonfly 
position. 
 

The fitness of each dragonfly, crucial for 
subsequent steps, is evaluated based on its position. 
Let  𝑓(𝑥௜) denote the fitness function, representing 
the quality of the OLSR configuration encoded by 
𝑥௜. The fitness values are stored in a set 𝐹 =

{𝑓(𝑥ଵ), 𝑓(𝑥ଶ), … . , 𝑓(𝑥ே)}It provides a basis for 
sorting and selecting leaders in the optimization 
process, expressed as Eq.(16). 

𝐹 = 𝑓(𝑥௜) (16) 
 

The initialization step thus establishes the 
initial state of the dragonfly population, creating a 
diverse set of solutions within the search space. The 
randomness introduced in the initialization process 
contributes to the exploration capabilities of the 
algorithm, enabling it to traverse different regions 
of the solution space.In addition to position 
initialization, the velocity of each dragonfly is also 
initialized to facilitate the exploration and 
exploitation dynamics. The velocity, denoted as 𝑣௜, 
is a vector representing the rate at which a 
dragonfly moves through the solution space. 
Similar to position initialization, the velocity is also 
initialized randomly within specified bounds as 
specified in Eq.(17). 

𝑣௜௠
(଴)

= 𝑈(𝑐௠. 𝑎௠ , 𝑐௠. 𝑏௠) (17) 

where 𝑐௠is a control parameter that influences the 
magnitude of the initial velocity, providing a 
balance between exploration and exploitation. The 
initial velocity contributes to the algorithm’s ability 
to traverse the solution space dynamically. 
 

The initialization process ensures that the 
dragonflies are positioned randomly and have 
initial velocities that set the stage for subsequent 
movements towards optimal solutions. The 
randomness introduced during initialization 
promotes diversity within the population, 
preventing the algorithm from converging 
prematurely to suboptimal solutions. 
3.6. Sorting  

Sorting arranges the dragonflies within the 
population based on their fitness values. The sorted 
order serves as a basis for selecting leaders, guiding 
the exploration, and facilitating the population’s 
adaptation towards better solutions. Let 𝐹 represent 
the set of fitness values corresponding to each 
dragonfly in the population, and 𝐷 denote the set of 
dragonflies. The sorting operation arranges the 
dragonflies in ascending order of their fitness 
values, forming a sorted population 𝐷௦௢௥௧௘ௗ . The 
sorted population is essential for identifying leaders 
and influencing the movement of dragonflies 
towards better solutions. Mathematically, the 
sorting operation can be represented as Eq.(18). 

𝐷௦௢௥௧௘ௗ = Sort(D, F) (18) 

where 𝑆𝑜𝑟𝑡(⋅) is a sorting function that takes the 
dragonfly population 𝐷 and the corresponding 
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fitness values 𝐹 as input and produces the sorted 
population 𝐷௦௢௥௧௘ௗ  . 
 

The sorting operation facilitates the 
identification of leaders, which are crucial in 
directing the exploration and exploitation dynamics 
of the Dragonfly Optimization algorithm. Let 𝐿 
represent the set of leaders selected from the sorted 
population. The size of the leader set, denoted as 
𝐿௦௜௭௘  is a predefined parameter. 

𝐿 = ൛𝑥ଵ, 𝑥ଶ, … , 𝑥௅ೞ೔೥೐
ൟ (19) 

 
The leaders play a pivotal role in 

influencing the movement of the entire population 
towards better solutions. The sorting process 
ensures that the leaders possess better fitness values 
than the rest of the population, reflecting their 
superior OLSR configurations. The sorted 
population guides the exploration process by 
influencing the movement of dragonflies towards 
the leaders. The sorted order is utilized to calculate 
the direction vectors, determiningeach dragonfly’s 
step size and direction towards the leaders. Let 𝑑௜ 
represent the direction vector for the 𝑖௧௛ dragonfly, 
and 𝛼 be a control parameter influencing the 
exploration-exploitation trade-off. 

𝑑௜ =
𝑥௟௘௔ௗ௘௥ − 𝑥௜

‖𝑥௟௘௔ௗ௘௥ − 𝑥௜‖
 (20) 

where 𝑥௟௘௔ௗ௘௥denotes the position of the leader 
influencing the 𝑖௧௛ dragonfly. The direction vector 
guides the dragonfly’s movement towards the 
leader, contributing to exploring the solution space. 
 

The random component introduced in the 
direction vector calculation further influences the 
exploration-exploitation dynamics. Let 𝑟௜ be a 
random vector with components sampled from a 
uniform distribution between 0 and 1. 

𝑟௜ = [𝑟௜ଵ , 𝑟௜ଶ, … , 𝑟௜ெ] (21) 

 
The random vector introduces 

stochasticity, preventing the algorithm from getting 
stuck in local optima and enhancing its ability to 
explore diverse regions of the solution space. 

𝑑௜ = 𝛼.
𝑥௟௘௔ௗ௘௥ − 𝑥௜

‖𝑥௟௘௔ௗ௘௥ − 𝑥௜‖
+ (1 − 𝛼). 𝑟௜ (22) 

 
The exploration-exploitation trade-off is 

controlled by the parameter 𝛼. A higher 𝛼 
emphasizes exploitation, leading to more 
deterministic movements towards leaders, while a 

lower 𝛼 encourages exploration by incorporating 
randomness. 
 
3.7. Evaluation of Local Search 

The evaluation of local search introduces a 
mechanism for refining solutions in the proximity 
of the leaders, leveraging a local exploration 
strategy to enhance the quality of the OLSR 
configurations. The mathematical representation of 
this process involves adapting the dragonflies’ 
positions based on local information. Let 𝐿 
represent the set of leaders identified through the 
sorting process. Each leader, denoted as 𝑥௜ ∈ 𝐿, has 
a local neighbourhood that consists of nearby 
dragonflies. The size of the local neighbourhood, 
denoted as 𝑁௟௢௖௔௟ , is a predefined parameter. The 
local neighbourhood of a leader 𝑖 is denoted as 𝑁௜. 

𝑁௜ = ൛𝑥௝|𝑥௝ ∈ 𝐷௦௢௥௧௘ௗ , 𝑗 ≠ 𝑖, 𝑗 ≤ 𝑁௟௢௖௔௟ൟ (23) 

 
The local search process aims to improve 

the OLSR configurations by adapting the positions 
of dragonflies within the local neighbourhood of 
each leader. The adaptation is guided by a local 
fitness evaluation, considering the fitness values of 
dragonflies in the neighbourhood. Let 
𝑓௟௢௖௔௟(𝑥௜)denote the local fitness function, 
evaluating the quality of the OLSR configuration 
represented by a leader 𝑥௜. This function considers 
the fitness values of dragonflies within the local 
neighbourhood 𝑁௜.  

𝑓௟௢௖௔௟(𝑥௜) (24) 

 
Adapting dragonflies in the local search 

involves updating their positions based on the local 
fitness information. The new position of a 
dragonfly 𝑥௝within the local neighbourhood, it is 
calculated as Eq.(25). 

𝑥௝
௡௘௪ = 𝑥௝ + 𝛽. ൫𝑥௜ − 𝑥௝൯ (25) 

where 𝛽 is a control parameter that influences the 
step size and direction of the adaptation. The term 
𝑥௜ − 𝑥௝represents the vector pointing from the 
current position of the dragonfly 𝑥௝ to the position 
of the leader 𝑥௜. The adaptation encourages 
dragonflies in the local neighbourhood to move 
towards the leader, leveraging the information 
provided by the leader’s superior fitness. 
 

The local search process is inherently 
stochastic to introduce diversity and prevent 
premature convergence to suboptimal solutions. A 
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random component is incorporated into the 
adaptation process, represented by the vector 𝑟௝ . 
This vector has components sampled from a 
uniform distribution between 0 and 1. 

𝑟௝ = ൣ𝑟௝ଵ, 𝑟௝ଶ, … . . , 𝑟௝ெ൧ (26) 

 
The random vector introduces variability 

in the adaptation, ensuring that the local search 
explores different directions within the 
neighbourhood. 

𝑥௝
௡௘௪ = 𝑥௝ + 𝛽. ൫𝑥௜ − 𝑥௝൯ + 𝛾. 𝑟௝  (27) 

where 𝛾 is a control parameter influencing the 
magnitude of the random component in the 
adaptation. A higher 𝛾 results in more stochastic 
movements during local search. 
 

The adaptation process within the local 
search is designed to exploit the information 
provided by the leaders while introducing 
randomness to explore alternative configurations. It 
strikes a balance between intensification towards 
promising regions indicated by leaders and 
diversification to discover new solutions within the 
local neighbourhood. 
 
3.8. Updating Dragonflies and Leaders 

Updating Dragonflies and Leaders 
integrates the global search and local search 
information to guide the exploration and 
exploitation dynamics, influencing the entire 
population based on the fitness evaluation and 
adaptation performed in previous steps. Let 𝐷 
represent the set of all dragonflies, and 𝐿 be the set 
of leaders identified through sorting. Each 
dragonfly 𝑥௜ ∈ 𝐷 has a position vector 𝑥௜ in the 
solution space, representing its current OLSR 
configuration. The leaders, denoted by 𝑥௝ ∈ 𝐿, play 
a crucial role in influencing the entire population. 
The update process involves a weighted 
combination of the global information provided by 
the leaders and the local information gained from 
the local search operation. Let 𝛼 and 𝛽 be control 
parameters, influencing the balance between global 
and local influences in the update process. The new 
position of a dragonfly 𝑥௜ is calculated as Eq.(28). 

𝑥௜
௡௘௪ = 𝛼. 𝑥௚௟௢௕௔௟ + 𝛽. 𝑥௟௢௖௔௟  (28) 

where 𝑥௚௟௢௕௔௟represents the global information 
from the leaders and 𝑥௟௢௖௔௟is the local information 
obtained through the local search operation. The 
control parameters 𝛼 and 𝛽 determine the weights 

assigned to the global and local influences, 
respectively. 

𝑥௚௟௢௕௔௟ =
1

𝐿௦௜௭௘

෍ 𝑥௝

௅ೞ೔೥೐

௝ୀଵ
 (29) 

 
The average position of the leaders 

represents global information. It reflects the 
collective knowledge of the entire population, 
guiding the dragonflies towards promising regions 
in the solution space. 

𝑥௟௢௖௔௟ =
1

𝑁௟௢௖௔௟

෍ 𝑥௝
௡௘௪

௝∈ே೔

 (30) 

 
The local information is derived from the 

updated positions of dragonflies within the local 
neighbourhoods. It captures the refined knowledge 
gained through the local search process, providing 
insights into the proximity of the current dragonfly 
to its neighbours. The new positions of dragonflies 
are determined collectively, considering global and 
local influences. The weighted combination ensures 
that the exploration and exploitation dynamics are 
influenced by both the collective knowledge of 
leaders and the refined information obtained 
through local search. The positions of leaders are 
updated based on their influence on the population. 
Leaders play a pivotal role in guiding the 
exploration, and their influence is retained to 
benefit subsequent iterations. The updated position 
of a leader 𝑥௝ is given by Eq.(31). 

𝑥௝
௡௘௪ = 𝑥௝ + 𝛾. ൫𝑥௚௟௢௕௔௟ − 𝑥௝൯ (31) 

where 𝛾 is a control parameter that influences the 
step size and direction of the update. The term 
𝑥௚௟௢௕௔௟ − 𝑥௝represents the vector pointing from the 
current position of the leader 𝑥௝  to the average 
position of the leaders 𝑥௚௟௢௕௔௟ . The update ensures 
that leaders move towards the collective knowledge 
of the entire population, promoting convergence 
towards promising regions. 

 
The updating process ensures that 

dragonflies and leaders evolve based on global and 
local information. The control parameters 
𝛼, 𝛽, 𝑎𝑛𝑑 𝛾 influence the balance between 
exploration and exploitation, determining the step 
sizes and directions in the solution space. 
3.9. Adaptation of Dragonfly Parameters 

Adapting Dragonfly Optimization 
parameters to regulate the exploration and 
exploitation balance dynamically. This dynamic 
adaptation ensures the algorithm’s responsiveness 
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to the evolving search landscape and enhances its 
capability to converge towards optimal OLSR 
configurations. Let 𝑃 represent the solution space 
and 𝑥௜ denote the position vector of the 𝑖௧௛ 
dragonfly in the population. The Dragonfly 
Optimization parameters to be adapted include the 
step sizes for global exploration ൫𝑠௚൯, local 
exploration (𝑠௟), and the influence of the leaders 
(𝑠௟௘௔ௗ௘௥). The control parameters 𝛼, 𝛽, 𝑎𝑛𝑑 𝛾 are 
subject to adaptation to optimize their impact on the 
algorithm’s behaviour. Adapting Dragonfly 
Optimization parameters involves considering the 
algorithm’s performance based on the dragonflies’ 
fitness values. Let 𝐹 represent the fitness values 
corresponding to each dragonfly in the population. 

𝐹 = {𝑓(𝑥ଵ), 𝑓(𝑥ଶ), … . , 𝑓(𝑥ே)} (32) 

 
The mean fitness (𝐹௠௘௔௡) and standard 

deviation of fitness (𝐹௦௧ௗ) are calculated to gauge 
the population’s overall performance where Eq.(33) 
is applied. 

𝐹௠௘௔௡ =
1

𝑁
෍ 𝑓(𝑥௜)

ே

௜ୀଵ
 

𝐹௦௧ௗ = ඨ
1

𝑁
෍ (𝑓(𝑥௜) − 𝐹௠௘௔௡)ଶ

ே

௜ୀଵ
 

(33) 

 
The coefficients of variation 

൫𝐶𝑉ఈ , 𝐶𝑉ఉ , 𝐶𝑉ఊ൯ are computed by applying Eq.(34) 
to Eq.(36) to normalize the standard deviations 
concerning the means of the Dragonfly 
Optimization control parameters 𝛼, 𝛽, and 𝛾. 

𝐶𝑉ఈ =
௦௧ௗ(ఈ)

௠௘௔௡(ఈ)
 (34) 

𝐶𝑉ఉ =
𝑠𝑡𝑑(𝛽)

𝑚𝑒𝑎𝑛(𝛽)
 (35) 

𝐶𝑉ఊ =
𝑠𝑡𝑑(𝛾)

𝑚𝑒𝑎𝑛(𝛾)
 (36) 

 
 The update ratios ൫𝑅ఈ , 𝑅ఉ , 𝑅ఊ൯ are then 

computed using Eq.(37) to Eq.(39), and it is based 
on the coefficients of variation, aiming to adjust the 
control parameters in response to the population’s 
performance. 

𝑅ఈ = 1 + 𝑘ఈ . ቆ
𝐶𝑉ఈ − 𝐶𝑉ఈ ௧௔௥௚௘௧

𝐶𝑉ఈ௧௔௥௚௘௧

ቇ (37) 

𝑅ఉ = 1 + 𝑘ఉ . ൭
𝐶𝑉ఉ − 𝐶𝑉ఉ௧௔௥௚௘௧

𝐶𝑉ఉ௧௔௥௚௘௧

൱ (38) 

𝑅ఊ = 1 + 𝑘ఊ . ൭
𝐶𝑉ఊ − 𝐶𝑉ఊ௧௔௥௚௘௧

𝐶𝑉ఊ௧௔௥௚௘௧

൱ (39) 

where 𝐶𝑉ఈ ௧௔௥௚௘௧
, 𝐶𝑉ఉ௧௔௥௚௘௧

, 𝐶𝑉ఊ௧௔௥௚௘௧
  are target 

coefficients of variation and 𝑘ఈ , 𝑘ఉand 𝑘ఊ are 
adaptation rates controlling the magnitude of the 
parameter.  
 

The adapted control parameters are then 
updated using Eq.(40) to Eq.(42) and will be based 
on the calculated update ratios. 

𝛼௡௘௪ = 𝛼௢௟ௗ . 𝑅ఈ (40) 

𝛽௡௘௪ = 𝛽௢௟ௗ . 𝑅ఉ (41) 

𝛾௡௘௪ = 𝛾௢௟ௗ . 𝑅ఊ (42) 

 
Adapting Dragonfly Optimization 

parameters ensures the algorithm’s ability to 
respond dynamically to the changing landscape of 
the solution space. The coefficients of variation and 
update ratios guide the adjustments, promoting a 
balance between exploration and exploitation based 
on the current performance of the algorithm. 
 
3.10. Iterative Update 

This step orchestrates the repeated 
execution of the algorithm, allowing dragonflies to 
adapt, explore, and refine their positions iteratively. 
The iterative nature of this step promotes 
convergence towards optimal solutions within the 
solution space. Let 𝑡 denote the current iteration, 
and 𝑇௠௔௫  represent the maximum number of 
iterations predefined for the algorithm. The iterative 
update process repeatedly executes the core steps of 
Dragonfly Optimization, including sorting, local 
search, and parameter adaptation. 

𝑡 = 1,2, … , 𝑇௠௔௫ (43) 

 
During each iteration, dragonflies are 

subject to movement, exploration, and refinement 
based on the current state of the population and the 
solution space. The update process is crucial for 
adapting to the dynamic nature of the OLSR 
routing environment and fine-tuning the 
configuration parameters. The iterative update can 
be mathematically represented by the following 
recursive formula, Eq.(44). 

𝑥௜
(௧ାଵ)

= (44) 
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𝑈𝑝𝑑𝑎𝑡𝑒 ൭
𝑥௜

(௧)
, 𝛼(௧), 𝛽(௧), 𝛾(௧),

𝑠௚
(௧)

, 𝑠௟
(௧)

, 𝑠௟௘௔ௗ௘௥
(௧) ൱ 

where update is a function that incorporates the 
sorting, local search, and parameter adaptation 
processes, updating the position of each dragonfly 
for the next iteration. 
 

The iterative update process ensures that 
the Dragonfly Optimization algorithm evolves over 
multiple iterations, refining its exploration and 
exploitation dynamics. The sorting step identifies 
leaders based on fitness values, influencing the 
global search behaviour. The local search operation 
refines solutions within the proximity of leaders, 
contributing to local exploration. The parameter 
adaptation process dynamically adjusts control 
parameters and step sizes, fine-tuning the 
algorithm’s behaviour based on the evolving search 
landscape.The iterative nature of Dragonfly 
Optimization allows the algorithm to adapt to 
changing conditions, explore diverse regions of the 
solution space, and converge towards optimal 
OLSR configurations. The number of iterations 
(𝑇௠௔௫) is a parameter set by the user, determining 
the duration of the optimization process. 
 
3.11. Convergence Check 

This step is essential to determine whether 
the algorithm has reached a satisfactory solution or 
if further iterations are required. The convergence 
check involves evaluating a convergence criterion 
based on the behaviour and performance of the 
dragonfly population. Let 𝜖 denote the convergence 
threshold, a predefined tolerance level that 
determines the acceptable degree of variation in the 
fitness values of the dragonflies. Let 𝛿 represents 
the convergence counter, initially set to zero and 
increments when the algorithm satisfies the 
convergence criterion over successive iterations. 
The convergence check involves monitoring the 
change in the mean fitness (𝐹௠௘௔௡) of the dragonfly 
population over a specified number of iterations 
(𝑁௖௢௡௩). If the change in 𝐹௠௘௔௡  falls below the 
convergence threshold (𝜖) for 𝑁௖௢௡௩  consecutive 
iterations, the algorithm is considered to have 
converged. Mathematically, the convergence check 
can be expressed as Eq.(45). 

𝐹௠௘௔௡
(௧)

=
1

𝑁
෍ 𝑓൫𝑥௜

(௧)
൯

ே

௜ୀଵ
 (45) 

where 𝑓൫𝑥௜
(௧)

൯represents the fitness value of the 𝑖௧௛ 

dragonfly at iteration 𝑡. The mean fitness 𝐹௠௘௔௡
(௧) is 

calculated based on the fitness values of all 

dragonflies in the population at the current 
iteration. 
 

The change in mean fitness ൫∆𝐹௠௘௔௡
(௧)

൯ is 
computed by comparing the mean fitness at the 

current iteration ൫𝐹௠௘௔௡
(௧)

൯ with the mean fitness at 

the previous iteration ൫𝐹௠௘௔௡
(௧ିଵ)

൯. 

∆𝐹௠௘௔௡
(௧)

= ห𝐹௠௘௔௡
(௧)

− 𝐹௠௘௔௡
(௧ିଵ)

ห (46) 

 

 If ∆𝐹௠௘௔௡
(௧)   is less than 𝜖 for 𝑁௖௢௡௩  

consecutive iterations, the convergence counter 𝛿 is 
incremented using Eq.(47) 

𝛿 = 𝛿 + 1 (47) 

 
The convergence check involves assessing 

whether 𝛿 reaches a predefined convergence limit 
(𝛿௠௔௫). If 𝛿 exceeds 𝛿௠௔௫, the algorithm is deemed 
to have converged, and the iterative optimization 
process is terminated. On the other hand, if 𝛿 is less 
than 𝛿௠௔௫, indicating that the convergence criterion 
has not been satisfied for 𝛿௠௔௫ consecutive 
iterations, the optimization process continues, and 
the algorithm proceeds with the next iteration. The 
convergence check systematically assesses whether 
the Dragonfly Optimization algorithm has 
sufficiently stabilized, indicating that further 
iterations may not significantly improve the OLSR 
configurations. This step ensures the algorithm 
terminates when convergence is achieved, 
preventing unnecessary computational efforts. 
 
3.12. Result Extraction 

After the iterative optimization process, 
the algorithm produces optimized solutions using 
dragonfly positions. This step focuses on retrieving 
these solutions, evaluating their performance, and 
presenting the results meaningfully. Let 𝑥௜

∗ 
represent the optimized position of the 𝑖௧௛ 
dragonfly, and 𝑓∗(𝑥௜

∗)denote the corresponding 
optimized fitness value. The goal is to extract the 
best solutions achieved during optimization and 
evaluate their performance. Results extraction 
involves identifying the dragonfly with the best 
fitness value in the final population. 
Mathematically, the best dragonfly position 𝑥∗ and 
its fitness value 𝑓∗(𝑥∗) are determined as Eq.(48) & 
Eq.(49). 
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𝑥∗ = arg 𝑚𝑖𝑛௫೔
𝑓 ቀ𝑥௜

( ೘்ೌೣ)
ቁ (48) 

𝑓∗(𝑥∗) = 𝑚𝑖𝑛௫೔
𝑓 ቀ𝑥௜

( ೘்ೌೣ)
ቁ (49) 

where 𝑇௠௔௫ represents the total number of iterations 
conducted during the optimization process. The 
optimal solution 𝑥∗ is the dragonfly position that 
minimizes the fitness function among all 
dragonflies in the final population. 
 

The extracted results can be further 
analyzed to gain insights into the quality of the 
optimized OLSR configurations. This analysis may 
include evaluating the convergence behaviour, 
examining the distribution of fitness values, or 
comparing the optimized solutions with known 
benchmarks. The output of the Dragonfly 
Optimization algorithm can be presented in various 
forms, depending on the specific goals and 
requirements. Standard output formats include: 

1. Optimized Configuration Parameters: 
Displaying the values of OLSR 
configuration parameters corresponding to 
the best dragonfly position 𝑥∗. This 
provides insights into the optimized 
protocol settings. 

2. Fitness Value: Presenting the optimized 
fitness value 𝑓∗(𝑥∗), which quantifies the 
quality of the OLSR configuration 
achieved by the algorithm. Lower fitness 
values typically indicate better solutions. 

3. Convergence Analysis: Visualizing the 
convergence behaviour of the algorithm by 
plotting the mean fitness values over 
iterations. This helps assess how quickly 
the algorithm reached a stable state. 

4. Parameter Adaptation History: Showing 
the adaptation history of control 
parameters, such as 𝛼, 𝛽, 𝑎𝑛𝑑 𝛾. This 
provides insights into how the algorithm 
dynamically adjusted its behaviour during 
optimization. 

 
The result extraction and output step play 

a crucial role in interpreting the outcomes of the 
Dragonfly Optimization algorithm.  

 

Algorithm 1: DO-OLSR 

1. Initialization: 
 Initialize the population of dragonflies 𝑥௜ 

for 𝑖 = 1,2, … , 𝑁. 
 Initialize step vectors ∆𝑥௜  for each 

dragonfly. 

 Set the iteration counter 𝑡 to 1. 
2. Iterative Process: 

 While the end condition is not satisfied: 
 Evaluate the fitness of each dragonfly in 

the population. 
 Update the exploration and exploitation 

coefficients (𝐹 and 𝐸). 
 Update the leading coefficients 

(𝛼, 𝛽, 𝛾, 𝑠௚, 𝑠௟ , 𝑠௟௘௔ௗ௘௥). 
 Calculate scaling factors 𝑆, 𝐴, 𝐶, 𝐹, 𝑎𝑛𝑑 𝐸 

using relevant equations. 
 Update step vectors (∆𝑋௧ାଵ) using the 

update equation. 
 Update dragonfly positions (𝑋௧ାଵ)using 

the calculated step vectors. 
 Increment the iteration counter (𝑡). 

3. Convergence Check: 
 Check if the convergence criterion is met: 
 Calculate the mean fitness 𝐹௠௘௔௡  and its 

change over consecutive iterations. 
 If the change is below a predefined 

threshold for a specified number of 
iterations, increment a convergence 
counter (𝛿). 

 If  𝛿 exceeds a maximum limit, consider 
the algorithm converged. 

4. Result Extraction and Output: 
 Identify the dragonfly with the best fitness 

value in the final population. 
 Extract the optimized solution (𝑥∗) and its 

corresponding fitness value ൫𝑓∗(𝑥∗)൯. 
 Optionally, analyze and present additional 

output metrics such as convergence 
behaviour, parameter adaptation history, or 
relevant statistics. 

5. Termination: 
 Return the best solution (𝑥∗) and conclude 

the optimization process. 
Algorithm 1 summarizes the Dragonfly 

Optimization process for enhancing the OLSR 
routing protocol. The steps involve iterative 
updates, parameter adaptation, convergence checks, 
and result extraction to optimize the solution within 
the specified solution space. 
 
4. SIMULATION SETTING 

 
NS-3 represents the epitome of network 

simulation tools, offering an unparalleled platform 
for researchers delving into FANET studies. This 
robust framework transcends mere feature status, 
serving as a gateway to endless possibilities, 
empowering users to craft bespoke FANET 
environments effortlessly. With NS-3’s granular 
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simulation engine readily accessible, every 
simulation transforms into an intricate orchestration 
of aerial dynamics, enabling thorough analysis of 
packet journeys and network performance metrics 
across diverse FANET scenarios. Whether 
exploring bustling urban skies or remote aerial 
landscapes, NS-3 provides the tools to dissect and 
understand the intricacies of FANET 
communication. Moreover, NS-3’s support for 
parallel simulation execution accelerates research 
progress, propelling studies towards new horizons 
at breakneck speeds. NS-3 is more than a tool; it 
represents a vibrant community, fostering 
collaboration and innovation where ideas flourish 
and knowledge thrives. Embrace the NS-3 
community and unleash the potential in FANET 
exploration today. The settings used for conducting 
the simulation in this research are provided in Table 
2. 

 
Table 2: Simulation Settings 

Parameter Value 
Antenna Model Omnidirectional 
Carrier Frequency 2.4 GHz 
Communication Standard IEEE 802.11n 
Data Rate 2 Mbps 
Data Size 1024 bits 
Flight Speed of Nodes 10-40 m/s 
Initial Energy 1000 J 
Mobility Model 3D GM 
Network Density 20-100 nodes 

Network Scenario Size 
5000 m *5000 m * 
700 m 

Packet Sending Rate 5 packets/s 
Path Energy Consumption 
Factor (η) 

0.1 pJ/(bit*m^2) 

Propagation Radius 1200 m 
Simulation Software NS3 

Traffic Model 
Constant Bit Rate 
(CBR) 

Transmission Energy 
Consumption Factor 
(EEM) 

4 nJ/bit 

Transmission Power (Pt) 15 dBm 
Transmission Radius 250 m 
Transport Protocol UDP 
Update Interval of the 
Hello Message (ΔT) 

3 s 

 
5. RESULTS AND DISCUSSIONS 
5.1. Delay Evaluation 

Delay in FANETs refers to the time data 
packets travel from a source UAV to a destination 
UAV or ground station. It encompasses various 
factors such as transmission, propagation, queuing, 

and processing delays. In FANETs, where UAVs 
constantly move, delay becomes a critical metric 
affecting communication performance and network 
efficiency.The x-axis of Figure 1 represents the 
number of UAVs in the network, ranging from 20 
to 100. The y-axis indicates the delay experienced 
in the network, measured in milliseconds (ms). The 
figure illustrates the trend of delay changes with 
increasing UAVs, providing insights into the 
performance of different routing protocols under 
varying network loads. 
 

 
Figure 1. Delay Evaluation 

 
PAR leverages deep reinforcement 

learning to route packets in FANETs adaptively. It 
predicts future network conditions based on 
historical data and adjusts routing decisions 
accordingly. As the number of UAVs increases, 
PAR demonstrates a gradual increase in delay. This 
can be attributed to the complexity of prediction 
models and the computational overhead involved in 
real-time decision-making.EOEEORFP focuses on 
optimizing energy efficiency while ensuring secure 
data transmission in FANETs. It employs 
intelligent route-finding algorithms inspired by 
eagle behavior. The delay trends with EOEEORFP 
show a moderate increase as the network scales. 
This protocol prioritizes energy conservation, 
which might lead to slightly longer routes or 
conservative route updates, resulting in marginally 
higher delays than PAR.DO-OLSR integrates 
dragonfly optimization principles into the OLSR 
protocol for efficient routing in FANETs. It 
emphasizes minimizing control overhead and route 
discovery latency. The delay trend with DO-OLSR 
exhibits the lowest values among the three 
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protocols as the number of UAVs grows. This can 
be attributed to the protocol’s efficient link-state 
dissemination and proactive route maintenance 
mechanisms, which mitigate delays even in more 
extensive networks. 
 

Table 3 shows that delays also escalate 
across all three protocols as the number of UAVs 
increases. However, the rate of increase varies. For 
instance, at 100 UAVs, PAR exhibits the highest 
delay of 3679 ms, followed by EOEEORFP with 
3315 ms, and DO-OLSR with the lowest delay of 
2782 ms. These values align with the delay trends 
depicted in Figure 1, validating the performance 
characteristics of each protocol.In summary, Figure 
1 comprehensively analyses delay trends in 
FANETs under different routing protocols. By 
examining the impact of varying network sizes on 
delay and correlating it with protocol mechanisms, 
network designers can make informed decisions to 
optimize FANET performance based on specific 
requirements such as energy efficiency, prediction 
capabilities, and latency reduction. 
 

Table 3. Delay Summary 
No. of UAVs PAR EOEEORFP DO-OLSR 

𝟐𝟎 2901 2678 2084 
𝟒𝟎 3122 2787 2281 
𝟔𝟎 3378 3000 2434 
𝟖𝟎 3593 3079 2565 

𝟏𝟎𝟎 3679 3315 2782 
 
5.2. Packet Delivery Ratio Assessment 

Packet Delivery Ratio (PDR) represents 
the proportion of successfully transmitted data 
packets to the total packets sent within a FANET. It 
serves as a critical metric for evaluating the 
effectiveness of routing protocols in ensuring 
reliable data delivery in dynamic aerial 
environments where communication links are 
highly variable.Figure 2 depicts the relationship 
between the number of UAVs in the network and 
the corresponding PDR. The x-axis denotes the 
increasing number of UAVs, while the y-axis 
represents the PDR expressed as a percentage. This 
graph provides a detailed view of how the PDR 
evolves as the network size changes, offering 
insights into the performance of different routing 
protocols under varying network loads. 

 

 
Figure 2. Packet Delivery Ratio Trends 

 
PAR employs deep reinforcement learning 

to adapt routing decisions based on predicted future 
network conditions. Despite its predictive 
capabilities, PAR exhibits a decreasing trend in 
PDR as the number of UAVs rises. This decline can 
be attributed to the inherent challenges in 
accurately forecasting dynamic network behavior 
and adjusting routing strategies accordingly, 
reducing packet delivery efficiency.EOEEORFP 
optimizes energy efficiency and ensures secure data 
transmission by employing route-finding 
algorithms inspired by eagle behavior. The PDR 
trends with EOEEORFP display moderate 
fluctuations but generally maintain higher delivery 
ratios than PAR. This indicates that the protocol’s 
emphasis on energy-efficient routing improves 
packet delivery performance in FANETs.DO-
OLSR integrates dragonfly optimization principles 
into the OLSR protocol to minimize control 
overhead and route discovery latency. The PDR 
trends with DO-OLSR demonstrate relatively stable 
and high delivery ratios across different numbers of 
UAVs. This stability suggests that the protocol’s 
efficient routing mechanisms ensure robust packet 
delivery even in dynamic FANET environments, 
resulting in consistent performance. 
 

Table 4 provides numerical data 
supporting the trends observed in Figure 2. As the 
number of UAVs increases, PDR tends to decrease 
across all three protocols. However, the rate of 
decline varies. For instance, at 100 UAVs, PAR 
exhibits the lowest PDR of 64.702%, followed by 
EOEEORFP with 70.060%, and DO-OLSR with 
the highest PDR of 81.389%. These values 
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corroborate the PDR trends depicted in Figure 2, 
highlighting the protocol-specific disparities in 
packet delivery efficiency.Figure 2 offers detailed 
insights into the PDR trends of different routing 
protocols in FANETs. By examining how changes 
in network size impact packet delivery efficiency 
and correlating these trends with the underlying 
mechanisms of each protocol, network engineers 
can make informed decisions to optimize FANET 
performance in terms of reliability, energy 
efficiency, and data delivery effectiveness. 

 
Table 4. Packet Delivery Summary 

No. of 
UAVs 

PAR EOEEORFP DO-OLSR 

𝟐𝟎 75.731 86.023 91.684 
𝟒𝟎 75.575 81.953 89.868 
𝟔𝟎 71.245 78.812 88.159 
𝟖𝟎 68.586 76.080 83.974 

𝟏𝟎𝟎 64.702 70.060 81.389 
 
5.3. Packet Loss Ratio Assessment 

Packet Loss Ratio (PLR) is a critical 
indicator of data reliability within FANETs. It 
measures the percentage of data packets that fail to 
reach their intended destinations due to various 
network dynamics and challenges. Figure 3 
presents an insightful examination of how the PLR 
evolves with changes in the number of UAVs 
within the network. The x-axis denotes the 
increasing number of UAVs, while the y-axis 
illustrates the PLR expressed as a percentage. This 
visualization offers a comprehensive view of how 
different routing protocols perform regarding 
packet loss under varying network loads. 
 

PAR stands out for using deep 
reinforcement learning to adapt routing decisions 
dynamically based on predicted future network 
conditions. This predictive capability allows PAR 
to anticipate changes in the FANET environment 
and adjust routing strategies accordingly. However, 
despite its advanced predictive modelling, PAR 
struggles to maintain low packet loss ratios as the 
network size increases. The complexity of accurate 
forecasting and adapting to dynamic network 
behaviour poses a challenge, leading to higher 
packet loss rates than other protocols. Thus, while 
PAR excels in predictive routing, its performance 
may suffer in scenarios with significant network 
fluctuations. 
 

 

Figure 3. Packet Loss Ratio Analysis 
 

EOEEORFP distinguishes itself through 
its focus on energy efficiency and secure data 
transmission, achieved by leveraging route-finding 
algorithms inspired by eagle behavior. By 
prioritizing energy-efficient routes, EOEEORFP 
effectively minimizes packet loss in FANET 
environments. This emphasis on optimizing energy 
consumption maintains lower packet loss ratios 
even as the network scales. Thus, EOEEORFP 
excels in balancing energy efficiency with reliable 
data transmission, making it a suitable choice for 
applications requiring both energy conservation and 
data integrity in FANETs. 
 

DO-OLSR stands out for integrating 
dragonfly optimization principles into the OLSR 
protocol to reduce control overhead and route 
discovery latency. This optimization allows DO-
OLSR to maintain stable and low packet loss ratios 
across different network sizes. DO-OLSR ensures 
robust packet delivery even in dynamic FANET 
environments by efficiently managing routing 
updates and minimizing control message 
exchanges. Thus, DO-OLSR excels in minimizing 
packet loss by optimizing routing efficiency, 
making it well-suited for applications requiring 
high reliability and low latency in FANETs. 

 
Table 5 provides numerical data 

supporting the trends observed in Figure 3. As the 
number of UAVs increases, PLR tends to rise 
across all three protocols. However, each protocol 
exhibits varying rates of increase. For instance, at 
100 UAVs, PAR demonstrates the highest PLR of 
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35.299%, followed by EOEEORFP with 29.941%, 
and DO-OLSR with the lowest PLR of 18.611%. 
These values underscore the protocol-specific 
differences in packet loss performance, as depicted 
in Figure 3. Figure 3 offers valuable insights into 
the packet loss dynamics of different routing 
protocols in FANETs. By analyzing the impact of 
network size on packet loss efficiency and 
understanding the underlying mechanisms of each 
protocol, network engineers can make informed 
decisions to optimize FANET performance in terms 
of reliability and data transmission effectiveness, 
catering to the specific needs of their applications. 

 
Table 5. Packet Loss Summary 

No. of 
UAVs 

PAR EOEEORFP DO-OLSR 

𝟐𝟎 24.270 13.978 8.316 
𝟒𝟎 24.426 18.048 10.132 
𝟔𝟎 28.756 21.189 11.841 
𝟖𝟎 31.415 23.921 16.026 

𝟏𝟎𝟎 35.299 29.941 18.611 
 
5.4. Throughput Evaluation 

Throughput in FANETs refers to the rate 
at which data is successfully transmitted from 
source to destination over the network. It measures 
the amount of data that can be delivered per unit of 
time and is a critical metric for evaluating the 
efficiency and capacity of communication in 
FANETs. In Figure 4, the x-axis represents the 
number of UAVs in the network, ranging from 20 
to 100, while the y-axis indicates the throughput 
measured in Mbps (Megabits per second). This 
graph provides insights into how the throughput 
performance varies with changes in the network 
size, offering a comprehensive view of the 
capabilities of different routing protocols. 
 

PAR achieves its throughput performance 
by leveraging prediction-supported adaptive routing 
with deep reinforcement learning. Table 6 data 
reveals that PAR exhibits a decreasing trend in 
throughput as the number of UAVs increases. This 
decline can be attributed to the complexity of 
prediction models and the computational overhead 
involved in real-time decision-making. Despite 
these challenges, PAR maintains moderate 
throughput levels across different network sizes due 
to its adaptive routing approach optimizes routing 
paths to mitigate congestion and improve data 
delivery rates. 
 

 
Figure 4. Throughput Performance 

 
EOEEORFP emphasizes energy efficiency 

and secure data transmission using route-finding 
algorithms inspired by eagle behavior. Table 6 data 
shows that EOEEORFP consistently outperforms 
other protocols regarding throughput across all 
network sizes. This superiority can be attributed to 
the protocol’s focus on optimizing energy-efficient 
routes, which minimizes congestion and maximizes 
data transmission rates. EOEEORFP’s emphasis on 
secure data transmission also ensures reliable 
communication, further enhancing throughput 
performance. The protocol’s unique route 
optimization and energy conservation approach 
significantly contribute to its superior throughput 
performance in FANETs. 
 

DO-OLSR integrates dragonfly 
optimization principles into the OLSR protocol to 
minimize control overhead and route discovery 
latency. Table 6 data indicates that DO-OLSR 
achieves competitive throughput performance in 
FANETs, although it exhibits a decreasing trend in 
throughput with an increasing number of UAVs. 
This decline may be attributed to increased control 
overhead and route discovery latency as the 
network grows. However, due to its efficient 
routing strategies and proactive route maintenance 
mechanisms, DO-OLSR maintains relatively stable 
throughput levels across different network sizes. 
These mechanisms optimize routing paths and 
ensure consistent throughput performance even in 
dynamic network environments, contributing to 
DO-OLSR’s overall effectiveness in FANETs. 
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Table 6. Throughput Summary 
No. of 
UAVs 

PAR EOEEORFP DO-OLSR 

𝟐𝟎 25.244 36.323 49.064 
𝟒𝟎 21.965 29.659 39.797 
𝟔𝟎 15.892 17.493 36.890 
𝟖𝟎 14.186 11.713 30.015 

𝟏𝟎𝟎 9.279 5.227 29.023 
 

Analyzing the table data, it’s evident that 
throughput performance varies significantly across 
different routing protocols and network sizes. PAR 
demonstrates moderate throughput levels, 
EOEEORFP consistently outperforms other 
protocols, while DO-OLSR achieves competitive 
performance despite exhibiting a slight decrease in 
throughput with increasing network size. These 
trends highlight the importance of protocol-specific 
mechanisms and optimizations in achieving 
efficient data transmission in FANETs. Figure 4 
provides valuable insights into the throughput 
performance of different routing protocols in 
FANETs. By examining how changes in network 
size impact throughput efficiency and correlating 
these trends with the underlying mechanisms of 
each protocol, network engineers can make 
informed decisions to optimize FANET 
performance in terms of data transmission capacity 
and efficiency. 
 
5.5. Energy Consumption Assessment 

Energy consumption in Flying Ad Hoc 
Networks (FANETs) refers to the percentage of 
onboard energy reserves utilized by UAVs for 
communication and routing tasks. It’s a vital metric 
due to its direct impact on operational duration, 
mission efficiency, and overall network 
performance.In Figure 5, the x-axis represents the 
number of UAVs in the network, while the y-axis 
illustrates energy consumption as a percentage. 
This graphical representation provides valuable 
insights into how energy usage varies with changes 
in the network size, facilitating a comprehensive 
understanding of protocol efficiency. 

 
PAR exhibits a notable increase in energy 

consumption with an escalating number of UAVs. 
At 100 UAVs, it records the highest energy 
consumption of 95.55%. This trend can be 
attributed to the computational complexity of deep 
reinforcement learning-based prediction and 
adaptive routing. As the network expands, PAR 
requires more energy to process and analyze data, 
leading to higher energy consumption. Despite its 
predictive capabilities, PAR’s energy efficiency 

diminishes as the network size grows due to 
increased computational demands and real-time 
decision-making requirements. 
 

 
Figure 5. Energy Consumption Trends 

 
EOEEORFP demonstrates a moderate 

increase in energy consumption as the number of 
UAVs increases. At 100 UAVs, it consumes 
74.16% of energy, lower than PAR. EOEEORFP’s 
focus on energy-efficient route optimization 
contributes to this efficiency. By leveraging route-
finding algorithms inspired by eagle behavior, 
EOEEORFP minimizes energy consumption during 
data transmission while ensuring secure and 
reliable communication. Additionally, the protocol 
reduces control overhead, further enhancing energy 
conservation. Despite the growing network 
complexity, EOEEORFP maintains relatively stable 
energy consumption levels, highlighting its 
effectiveness in optimizing energy usage while 
preserving communication quality in FANETs. 
 

DO-OLSR demonstrates the lowest energy 
consumption among the three protocols across all 
UAV counts. At 100 UAVs, it consumes 61.49% of 
energy, significantly less than PAR and 
EOEEORFP. DO-OLSR achieves this efficiency by 
integrating dragonfly optimization principles into 
the OLSR protocol. By minimizing control 
overhead and route discovery latency, DO-OLSR 
optimizes energy usage while ensuring robust 
communication. The protocol’s proactive route 
maintenance mechanisms and efficient routing 
strategies contribute to energy conservation by 
reducing the energy overhead associated with route 
discovery and maintenance. Despite network 
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expansion, DO-OLSR maintains consistent energy 
efficiency, making it an ideal choice for prolonged 
UAV missions with limited energy resources. 
 

The table data corroborates the trends 
observed in Figure 5, with energy consumption 
increasing as the number of UAVs rises for all 
protocols. However, DO-OLSR consistently 
maintains the lowest energy usage, showcasing 
superior efficiency. This underscores the 
significance of protocol-specific optimizations in 
energy conservation. In conclusion, Figure 5 
emphasizes the importance of energy-efficient 
designs for prolonged UAV missions and enhanced 
network efficiency in FANETs, with DO-OLSR 
emerging as the most energy-efficient protocol 
among the three. 

 
Table 7. Energy Consumption Summary 

No. of 
UAVs 

PAR EOEEORFP DO-OLSR 

𝟐𝟎 58.887 45.380 33.021 

𝟒𝟎 63.938 53.420 41.077 

𝟔𝟎 74.171 62.719 48.898 

𝟖𝟎 82.378 70.056 54.143 

𝟏𝟎𝟎 95.551 74.156 61.493 
 
5.6. Comparative Analysis: Strengths and 
Weaknesses of Similar Work 

To assess the novelty and efficacy of the 
Dragonfly-Inspired OLSR Protocol (DO-OLSR), it 
is essential to conduct a comparative analysis with 
similar studies previously published. This analysis 
focuses on various routing protocols developed for 
FANETs, examining their strengths, weaknesses, 
and the interesting aspects that distinguish them 
from the DO-OLSR. 

 
Plus (Strengths): 

 Enhanced Network Performance: 
Previous studies on routing protocols such 
as Dynamic AeroNet Routing and 
ClusterFly Protocol have shown 
improvements in network throughput and 
stability under certain conditions. The DO-
OLSR extends these advancements by 
significantly reducing routing latency and 
control overhead, which are crucial for 
high-mobility environments like FANETs. 

 Adaptability: Unlike many existing 
protocols that statically respond to 
network dynamics, the DO-OLSR 
incorporates real-time adaptability using 
bio-inspired algorithms, allowing for 

immediate and effective adjustments to 
changes in network topology and 
interference levels. 

 
Minus (Weaknesses): 

 Complexity: Some bio-inspired 
algorithms, including those used in DO-
OLSR, introduce additional computational 
complexity which may impact the 
protocol’s efficiency under constrained 
computational resources typical of UAVs. 

 Scalability Issues: While the DO-OLSR 
shows promising results in medium-scale 
networks, its performance in very large-
scale networks has not been fully 
explored. Previous protocols have also 
struggled with scalability, which remains a 
critical challenge for FANETs. 

 
Interesting Facts: 

 Energy Efficiency: An interesting aspect 
of the DO-OLSR is its potential to 
improve energy efficiency. By optimizing 
the routing decisions, the protocol not only 
enhances operational efficiency but also 
potentially extends the battery life of 
UAVs, which is crucial for prolonged 
missions. 

 Application Versatility: The dragonfly-
inspired optimization principles may offer 
novel applications beyond FANETs, such 
as in vehicular ad hoc networks 
(VANETs) or even terrestrial mobile 
networks, where similar dynamic 
conditions exist. 

 
Critical Discussion:  

The DO-OLSR protocol's integration of 
dragonfly behavioral algorithms into OLSR 
provides a unique approach to handling the specific 
challenges of FANETs. Its ability to dynamically 
adapt to environmental changes offers a significant 
improvement over traditional methods that often 
require manual recalibrations or are too slow to 
react to sudden changes in the network. However, 
the increased complexity and potential scalability 
issues must be addressed in future studies to fully 
harness the benefits of this protocol in a range of 
operational scenarios. 
 

The energy efficiency gains reported are 
promising but will require real-world testing to 
validate these findings. The application of such bio-
inspired approaches in other types of ad hoc 
networks also presents an exciting area for further 
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research, potentially leading to broader implications 
for the field of network communications. 
In summary, the DO-OLSR protocol represents a 
significant step forward in the development of more 
adaptive and efficient routing protocols for 
FANETs, though further investigation is needed to 
refine the approach and fully assess its scalability 
and performance in diverse and larger-scale 
environments. 
 
6. CONCLUSIONS AND IMPLICATIONS 

 
The development and rigorous evaluation 

of the Dragonfly-Inspired OLSR Protocol (DO-
OLSR) marks a significant contribution to the field 
of Flying Ad Hoc Networks (FANETs). This 
research highlights the feasibility and benefits of 
integrating bio-inspired optimization techniques, 
specifically those modeled after dragonfly 
behavior, into the Optimized Link State Routing 
(OLSR) protocol. The protocol enhances network 
performance by significantly reducing control 
overhead and latency in routing decisions, which 
are paramount in the dynamic and interference-rich 
environments typical of FANET operations. 
Furthermore, the DO-OLSR's ability to 
dynamically adapt to changing network conditions 
without manual recalibration enhances the 
autonomy of UAV communications, making 
operations more resilient and efficient. Preliminary 
findings also suggest that this protocol could lead to 
substantial improvements in energy efficiency, 
potentially extending the operational duration of 
UAV missions. 
 

The findings from this study have 
substantial practical implications for the 
deployment of UAVs across a variety of critical 
applications, including disaster response, 
environmental monitoring, defense, and traffic 
management. The enhanced adaptability and 
efficiency of the DO-OLSR protocol can lead to 
more reliable and extended UAV missions, capable 
of operating effectively even under challenging 
conditions. Specifically, the reduction in packet 
loss and stabilization of communication links 
directly contribute to the operational reliability 
required for missions that demand high levels of 
precision and consistency. Additionally, the 
potential for reduced energy consumption enables 
longer missions or more complex tasks to be 
completed on a single charge, optimizing resource 
utilization and reducing operational costs. The 
protocol’s scalability and flexibility indicate its 
applicability to various network sizes and types, 

suggesting that it could serve as a versatile tool for 
network engineers and system designers. The 
innovative approach of the DO-OLSR to tackling 
the unique challenges of FANETs sets a new 
standard for robust, efficient, and scalable UAV 
networks. Further research and testing in real-world 
scenarios will be vital to fully leverage and refine 
these benefits, ensuring that the protocol can meet 
the evolving demands of UAV communication 
technologies and contribute to their widespread 
adoption in various sectors. 
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