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ABSTRACT 
 

Under the premise of literature identifying the molecules that constitute the liver and their alterations in 
disease cases, liver biopsy stages can be marked with fluorescence intensities induced by their composition. 
This article presents a statistical analysis of fluorescence spectra induced in 401 liver biopsies, associated 
with four disease states previously classified by pathologists using the METAVIR scale. The spectra are 
presented as a database containing 7,551 intensity measurements. To induce fluorescence in liver tissue, three 
light sources with wavelengths of 330 nm, 365 nm, and 405 nm were used, wavelengths close to the excitation 
of the main components for characterizing liver disease stages. 

Keywords: Fluorescence Spectra Of Liver, Induced Fluorescence, Medical Data Analysis, Photonics, 
Spectrum Dataset.  

 
1. INTRODUCTION  
 

The liver is one of the largest and most complex 
organs in the human body. It is located in the upper 
right quadrant of the abdomen, just below the 
diaphragm. In an adult, it weighs approximately 1.4 
to 1.6 kilograms. Its reddish coloration is due to its 
rich blood supply, and it is composed of multiple 
lobes. 

The liver performs more than 500 essential 
functions for the body. It regulates the metabolism of 
carbohydrates, proteins, and fats. It converts glucose 
into glycogen (energy storage), metabolizes lipids, 
and produces cholesterol. It filters and removes 
toxins, waste products, and harmful chemicals from 
the blood, including alcohol, medications, and 
ammonia, transforming them into less toxic 
substances or forms that can be eliminated by the 
kidneys or digestive tract. The liver produces bile, a 
fluid essential for the digestion of fats. Bile is stored 
in the gallbladder and released into the small 
intestine when fatty foods are consumed. The liver 
also produces important plasma proteins such as 

albumin, which maintains osmotic pressure, and 
clotting factors essential for wound healing and 
blood coagulation. It plays a role in the activation 
and deactivation of hormones, including the 
conversion of thyroxine (T4) into triiodothyronine 
(T3), a more active form of the thyroid hormone 
[1,2]. 

The liver is composed of various chemical 
substances, primarily water, which accounts for 70-
75% of its weight. Water acts as a solvent for many 
chemical reactions and is essential for the transport 
of substances. The liver also consists of 15-20% 
proteins, including enzymes, albumin, and clotting 
factors, which are abundant in this organ. 

Liver cells, called hepatocytes, are responsible for 
producing many of these proteins. The liver is also 
composed of 3-5% lipids, including triglycerides, 
cholesterol, and phospholipids, which are necessary 
for energy storage and the structure of cell 
membranes. It contains 2-8% glycogen, the stored 
form of glucose in the liver, which serves as a rapid 
energy source. The liver stores and regulates the 
release of fat-soluble vitamins (A, D, E, and K) and 
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minerals such as iron and copper, which are essential 
for various metabolic functions. Finally, it contains 
enzymes that are crucial for catalyzing biochemical 
reactions, such as those involved in nutrient 
breakdown, detoxification, and compound synthesis 
[3,4,5,6]. 

On the other hand, the liver can be affected by 
various diseases that compromise its ability to 
perform its functions. These diseases can have 
multiple causes, including viral infections, toxins, 
metabolic disorders, and autoimmune issues. 
Hepatitis A, B, C, D, and E are generally 
inflammations of the liver caused by viruses, 
alcohol, medications, or autoimmune diseases. Fatty 
liver disease (hepatic steatosis) is the excessive 
accumulation of fat in liver cells. Cirrhosis results 
from chronic liver damage that leads to scarring 
(fibrosis) of the liver. Healthy cells are replaced by 
scar tissue, severely impairing the liver's ability to 
function. Another liver condition is liver failure, 
which occurs when the liver loses its capacity to 
function properly, caused by factors such as viral 
infections, drug overdoses, or advanced cirrhosis. 

Liver cancer may arise as a primary tumor or from 
metastasis of other organs. The most common types 
include hepatocellular carcinoma, the most frequent 
form of primary liver cancer, often associated with 
cirrhosis caused by hepatitis B or C, alcoholism, or 
fatty liver disease. The second type is 
cholangiocarcinoma, which affects the bile ducts 
both inside and outside the liver [1,7,8,9]. 

A diseased liver alters its normal chemical 
composition: there is an accumulation of 
triglycerides and cholesterol, a reduction in the 
synthesis of albumin and clotting factors, increased 
levels of ammonia and bilirubin, and decreased 
detoxification capacity. There is an imbalance of 
vitamins A, D, E, and K, along with the toxic 
accumulation of iron or copper. Excessive collagen 
and scar tissue are produced, glycogen storage 
decreases, glucose regulation is impaired, and there 
is a reduction in glutathione accompanied by an 
increase in free radicals [10,11,12,13]. 

The diagnosis of liver diseases involves a 
combination of clinical evaluations, laboratory tests, 
imaging studies, and, in some cases, biopsies. 
Physicians assess patient symptoms (such as 
jaundice, fatigue, weight loss, and abdominal pain) 
and perform physical examinations, looking for 
signs such as an enlarged liver or spleen 
(hepatomegaly, splenomegaly), fluid accumulation 
in the abdomen (ascites), or dilated veins on the skin 
(telangiectasias). The next diagnostic step includes 

clinical studies aimed at detecting alterations in liver 
function, specifically chemical changes associated 
with the liver, such as elevated levels of alanine 
aminotransferase and aspartate aminotransferase 
enzymes, among others. Tests for viral hepatitis and 
fibrosis markers are also conducted to evaluate the 
degree of liver damage [7, 14,15,16,17,18]. 

Liver imaging tests, such as abdominal 
ultrasound, ultrasound elastography, computed 
tomography (CT), and magnetic resonance imaging 
(MRI), are also commonly performed. Additional 
tests include genetic and autoimmune screenings 
[14,19]. 

With these diagnostic methods, it is possible to 
accurately identify liver diseases and determine their 
stage or severity. However, in certain chronic cases, 
establishing an appropriate treatment requires a more 
precise assessment of inflammation levels, fibrosis 
severity, or the presence of accumulated substances 
such as iron, copper, or amyloid. A biopsy is often 
necessary in cases of focal liver lesions or to confirm 
specific conditions. This invasive and risky 
procedure is typically reserved for situations where 
it is strictly required [10,14,20,21,22,23]. 

Liver disease causes tissue damage, which is 
assessed using a scale that classifies the severity of 
liver fibrosis to evaluate the progression of the 
disease. The METAVIR scale evaluates both fibrosis 
(F) and inflammatory activity or necro-inflammatory 
grade (A). In this study, the scale is used to assess 
fibrosis [1,14,24]: 

• F0: No fibrosis.  
• F1: Portal fibrosis without septa (fibrous bridges 
between areas of the liver). 
• F2: Portal fibrosis with a few septa. 
• F3: Bridging fibrosis (advanced fibrosis), but not 
complete cirrhosis. 
• F4: Cirrhosis (severe fibrosis affecting liver 
architecture). 
 

There are other scales to assess liver damage, such 
as the Knodell Histological Activity Index, the Ishak 
scale, the Batts and Ludwing scale, the Child-Pugh 
scale, and the MELD scale, among others [1,14]. 

As mentioned, healthy liver tissue contains 
chemical compounds that are altered when damaged 
by disease. An alternative technique to assess 
damage as precisely as a biopsy is to evaluate the 
chemical or biochemical components in liver tissue 
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by measuring their fluorescence emission when 
exposed to specific lighting [25,26,27,28]. This 
technique is used in the present study to obtain 
fluorescence spectra from liver tissue samples. 

The challenge lies in characterizing disease states 
using the METAVIR scale from liver biopsy 
samples. As a proposed solution, induced 
fluorescence is presented as a potential future 
alternative and non-invasive method for the liver. 
This technique aims to achieve greater precision in 
diagnosing liver disease severity, enabling the 
medical field to provide tailored treatments for 
patients. This study presents an analysis of data 
forming the induced fluorescence spectra, obtained 
experimentally by the research group at the Instituto 
Politécnico Nacional of Mexico, which is publicly 
accessible. 

2. METHOD   

A light source with a narrow radiation 

spectrum and a predominant wavelength , such as 
a laser or certain light-emitting diodes, emits 
photons with a specific quantum of energy 
associated with this wavelength [29]. The energy of 
a photon is given by Equation (1): 

 

   (1) 
 
Where E is the energy carried by a photon, 

expressed in joules [J], c is the speed of light in a 
vacuum (3x108 m/s), and λ is the wavelength of the 
photon, expressed in meters [m]. 
 

When light with a predetermined 
wavelength strikes organic or inorganic material, 
several phenomena occur, primarily: absorption, 
reflection, scattering, and transmission. This 
interaction of light with matter is described by 
quantum physics. When light, which carries energy, 
interacts with matter, it can absorb specific 
wavelengths and increase its energy state. Upon 
releasing the absorbed energy, part of it may be 
emitted as heat, and part as light with lower energy 
than the incident light. This phenomenon is known 
as fluorescence and is characteristic of the molecules 
and atoms that make up the material [30,31]. 

Based on the above, an experimental setup 
is used to obtain the data that form the induced 
fluorescence spectra corresponding to the 
composition of liver tissue [32,33,34,35,36,37,38], 
as shown in Figure 1. 

Three light-emitting diode sources were 
used, emitting at wavelengths of 330 nm 
(UVTOP330, SETi), 365 nm (NCSU033A, Nichia), 
and 405 nm (405–1WUE, Violed Int.) with optical 
powers of 0.125, 1.25, and 0.55 mW, respectively. 
These wavelengths are close to those required to 
excite the biochemical components affected by liver 
disease, modifying the population of their energy 
levels to produce fluorescence effects [30,31,39,40]. 

The setup includes a bifurcated optical fiber 
probe (QR400-UV-VIS) and a spectrometer 
(QE65000-ABS) from Ocean Optics. 

A computer controls the light source at a 
specific wavelength, which is delivered through the 
optical fiber to the liver biopsy, inducing 
fluorescence. This emitted light is captured by the 
optical fiber and transmitted to the spectrometer. The 
spectrometer performs a discrete scan over the 400–
800 nm range and records intensities at each step of 
the scan. These data are recorded on the computer 
and used to generate the fluorescence spectra. 

The liver tissue biopsies were provided by 
the Liver, Pancreas, and Motility Laboratory at the 
Experimental Medicine Unit, Faculty of Medicine, 
National Autonomous University of Mexico 
(UNAM)/General Hospital of Mexico "Dr. Eduardo 
Liceaga". The preparation of the biopsies followed a 
standard methodology [41] and was embedded in 
paraffin, with their METAVIR level already 
classified. The paraffin and its container exhibit 
fluorescence and reflection at wavelengths below 

𝐸 =
ℎ⋅𝑐

𝜆
     

 
Figure 1: Experimental Setup for Spectral Data 

Acquisition from Human Liver Biopsies 
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400 nm, which do not interfere with the spectral data 
of the tissue. 

In the classification of the samples, cases of 
F1-F2 are grouped into a single class because even 
experienced pathologists are unable to distinguish 
between F1 and F2. 
 
3. RESULTS 

This section describes the characteristics of 
the dataset of induced fluorescence spectra obtained 
using the methodology outlined above, along with 
statistical characteristics and interpretations of the 
data. 

A total of 401 spectra were recorded, 
corresponding to liver stages F0, F1-F2, F3, and F4, 
for three light sources with wavelengths of 330 nm, 
365 nm, and 405 nm. The number of spectra and data 
per category are shown in Table 1. 

The sampling intervals obtained by the 
spectrometer are not uniform because, in addition to 
the sample, the plastic base on which the biopsy is 
mounted is also illuminated. This base fluoresces 
between 400 and 445 nm when exposed to UV light 
at 330 nm and 365 nm. This information does not 
correspond to the liver samples and has been 
omitted. 

The spectrometer performs a discrete scan 
over the wavelength range with steps of 0.76 nm, 
recording intensities in arbitrary units per step. 
Luminous intensity units are not used because the 
spectrometer is not calibrated, providing only 

relative measurement units. This aspect is reflected 
in the intensity values of the spectra, as shown in 
Figure 2-a. Therefore, it is necessary to normalize 
the data, as seen in Figure 2-b, where the same data 
are displayed in both graphs. Normalization is 
performed using the Equation (2). 

 

Table 1: Database. 

Illumination 
Source 

Hepatic 
stage 

Number 
of 

spectra 

Data per 
spectrum 

Spectrum 
range, nm 

330 nm 
 

F0 29 654 400.98 899.25 
F1-F2 23 654 400.98 899.26 

F3  33 654 400.98 899.25 
F4 38 654 400.98 899.25 

365 nm 
 

F0 34 654 400.98 899.25 
F1-F2 26 654 400.98 899.26 

F3  30 654 400.98 899.25 
F4 40 654 400.98 899.26 

405 nm 

F0 41 580 458.96 899.25 
F1-F2 28 579 459.74 899.26 

F3  46 580 458.96 899.25 
F4 33 580 458.96 899.25 

 

 
a) 

 
b) 

Figure 2: Spectra of states F0, F1-F2, F3, and F4 
irradiated at 330 nm: a) Non-normalized data, b) 

Normalized data. 
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 (2) 

Where min(X) is the minimum value and 
max(X) is the maximum value in a spectrum. 
Meanwhile, x represents the value in the spectrum to 
be normalized, and Xnorm is the normalized value of 
X.  

This calculation is performed for each data 
point across all spectra in the database and for the 
three light sources. While other processes, such as z-
score normalization, which generates a distribution 

with a mean of 0, could be used, normalization 
ensures that all records remain within the same 
positive value range without losing the 
characteristics that distinguish each stage of the 
disease [42].  

 
The 401 spectra are grouped by stage and 

by the wavelength of the light source used. It can be 
observed that the healthy stage F0, across all three 
sources, shows a defined trend. The same applies to 
stage F4, which corresponds to the final stage of liver 
disease. For the intermediate stages F1-F2 and F3, 

𝑋𝑛𝑜𝑟𝑚 =
𝑋 − min(𝑋)

max(𝑋) − min(𝑋)
      

 
Figure 3: Normalized fluorescence spectra of liver biopsies 

 
Figure 4: Average histograms of fluorescence spectra from liver biopsies 
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the spectral shape can also be characteristic but 
exhibits variability, as shown in Figure 3. This 
variability should be considered when attempting 
classification tasks using intelligent algorithms, as 
the lack of a larger database may lead to errors in the 
process due to the dispersion in the intermediate 
stages. 

 
Figure 4 shows the average histograms for 

each stage by illumination wavelength. For all cases, 
the bin size is calculated using the Freedman-
Diaconis rule, as the spectra do not exhibit any 
specific data distribution. 

 
 For each set of spectra, the Pearson 

correlation coefficient is calculated using Equation 
(3). This calculation is performed through 
permutations of the spectra, resulting in a correlation 
matrix for each set, as shown in Figure 5. 

 

(3) 
 
Where X and Y are two series for 

correlation, each with n data points [43]. 
 
The correlations between the spectra 

indicate their linear statistical relationship. In the 
correlation matrices graphically shown in Figure 5, 
correlation values close to 1 predominate, suggesting 
that the data follow a similar trend within each subset 
of spectra. That is, the spectra in a set are similar, 

particularly for stages F0 and F4. In contrast, for F1-
F2 and F3, the correlation suggests that the spectra 
within each set are not as similar. Subjectively, in 
Figure 3, the spectral shapes for these sets appear 
similar; however, the correlation factor reveals that 
not all spectra within the set are alike. 

 
The similarity levels obtained with the 

Pearson correlation are also reflected in the standard 
deviation graphs shown in Figure 6. For stages F0 
and F4, the data dispersion is confined within a 
smaller standard deviation range. In contrast, greater 
data dispersion is observed in the spectra 
corresponding to disease stages F1-F2 and F3. 
Specifically, the highest data dispersion is found in 
the F3 spectra under 365 nm illumination, followed 
by F4 at 365 nm and F3 at 405 nm. 

𝑟 =
𝑛 ∑(𝑋𝑌)−∑𝑋 ∑𝑌

ඥ[𝑛 ∑𝑋2−(∑𝑋)2][𝑛 ∑𝑌2−(∑𝑌)2]
       

 
Figure 5: Correlation matrices of induced fluorescence spectra 

Figure 6: Standard deviation of the 401 spectra by 
disease level and illumination wavelength 
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To calculate the standard deviation of each 
spectrum, Equation (4) was used [44]. 

 

  (4) 
 
Where xi is the i-th data point of the 

spectrum, n is the number of x data points in the 
spectrum, and σ is the standard deviation. 

Meanwhile,  represents the mean of the x values, 
calculated using Equation (5). 
 

   (5) 
 
3. CONCLUSION 
 

Liver diseases are one of the major public 
health challenges worldwide. For patients to receive 
appropriate treatment, it is crucial to have the most 
accurate diagnosis possible to enhance disease 
management, slow its progression, and, in some 
cases, achieve partial recovery. The biochemistry of 
the molecules that make up the liver is altered by 
disease, producing markers detectable through 
fluorescence. The spectra presented differ in their 
intensities at specific wavelengths, which are 
attributed to bile salts, bilirubin, and changes in the 
concentrations of fat-soluble vitamins. However, no 
markers were identified for elastin and collagen 
because they were not illuminated with the 
wavelengths required to induce their fluorescence, as 
noted in the literature. 

The F0 and F4 classes are clearly 
distinguishable through the statistical analysis 
presented in this work. In contrast, the statistical 
metrics for the F1-F2 and F3 cases are similar. 

This work presents a dataset comprising 
induced fluorescence spectra, made available for use 
with artificial intelligence classifiers. The 
significance of this information lies in its potential to 
save lives through precise methods. Currently, the 
illumination wavelengths are 330 nm, 365 nm, and 
405 nm. This leaves the door open for future work 
with other wavelengths, considering that light 
sources in this range are uncommon or not yet 
manufactured. In the future, the methodology 
described and referenced in this article could be used 
as a minimally invasive and laparoscopic medical 
tool for assessing liver damage. 

 
ONLINE DATASET 

The dataset of spectra is available at the 
following internet link: 

 

https://proyectosrym.cic.ipn.mx/#/Espectros 
 

If the dataset is used to generate new 
research, the academic institution, the authors, and 
this article must be cited. 
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