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ABSTRACT 
 

This study investigates the integration of high-resolution multispectral and topographic data obtained through 
drone technology with machine learning to enhance flood risk prediction. Using a multispectral GeoTIFF file 
covering a designated flood-prone area, critical feature such as the Normalized Difference Vegetation Index 
(NDVI), slope, and Terrain Ruggedness Index (TRI) were extracted to train a logistic regression model. The 
model achieved an accuracy of 86.35% and an ROC-AUC score of 0.98, demonstrating strong predictive 
performance in distinguishing flood-prone from non-flood-prone areas. Feature importance analysis 
identified low NDVI and high terrain ruggedness as significant predictors of increased flood susceptibility. 
Despite its strengths, the model showed a tendency to overpredict flood risk, resulting in a higher false-
positive rate. This highlights the need for further refinement, including the incorporation of additional data 
sources such as historical flood records and rainfall data, as well as the exploration of advanced machine 
learning models to improve precision and reliability. Overall, this study demonstrates the potential of 
integrating drone-derived data with machine learning for flood risk management. The proposed approach 
offers a scalable solution for real-time flood prediction, providing actionable insights for improving disaster 
preparedness and response in flood-prone regions.  

Keywords: Flood Risk Prediction, Machine Learning, Disaster Management, Drone Technology, 
Multispectral Data 

 
1. INTRODUCTION  
 

Flooding is one of the most frequent and 
devastating natural disasters, affecting millions of 
lives globally each year. In Indonesia, flooding 
accounts for over 40% of recorded disasters 
annually, leading to significant socio-economic and 
environmental losses. Rapid urbanization, 
deforestation, and the impacts of climate change 
have exacerbated the frequency and severity of 
flooding, posing challenges to disaster management 
authorities and local communities [1]. Flood risk 
prediction, which is critical for effective 
preparedness and mitigation, requires innovative 
approaches to address these growing challenges. 

Traditional flood prediction systems rely on 
hydrological models that use historical data, rainfall 
intensity, and river flow patterns. However, these 
models face limitations in accurately capturing the 
spatial and temporal dynamics of floods, particularly 

in regions with insufficient data infrastructure. For 
instance, hydrological models often struggle to 
deliver localized predictions that are essential for 
community-specific disaster response [2], [3], [4]. 
Additionally, the time-intensive processing of 
satellite and radar data in conventional methods 
delays critical decision-making during flood events 
[5]. 

In recent years, advancements in drone 
technology have revolutionized environmental 
monitoring and disaster management. Drones 
equipped with multispectral sensors offer a unique 
capability to gather high-resolution data from 
inaccessible and flood-prone areas, providing 
detailed insights into environmental conditions such 
as vegetation health, terrain characteristics, and 
water flow paths [6], [7], [8]. Unlike satellite 
systems, drones can operate under cloud cover and 
deliver near-real-time data at a fraction of the cost 
[9], [10], [11]. These attributes make drones 
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indispensable tools for flood risk mapping and 
prediction, particularly in regions like Indonesia that 
are characterized by diverse and complex 
geographies. 

Machine learning (ML) further enhances 
the predictive capacity of flood risk models by 
efficiently analyzing large and complex datasets. ML 
techniques such as Random Forest, Support Vector 
Machines (SVM), and Neural Networks have 
consistently demonstrated superior performance in 
flood forecasting compared to traditional statistical 
methods. These algorithms are particularly adept at 
handling nonlinear relationships and imbalanced 
datasets, common challenges in flood-related studies 
[12], [13], [14]. For example, [15] found that 
decision trees and logistic regression algorithms 
perform effectively in flood prediction tasks when 
combined with robust feature engineering 
techniques.  

Despite these advancements, the integration 
of drone technology and machine learning remains 
underexplored, particularly in Indonesia. Existing 
studies have either focused on applying ML 
algorithms to static datasets or utilizing drones for 
environmental monitoring without leveraging the 
full potential of integrated approaches. For instance, 
studies by [16] proposed hybrid machine learning 
models for flood forecasting but lacked the 
integration of real-time drone data. Similarly, [9] 
employed convolutional neural networks (CNNs) 
with UAV imagery for flood detection but focused 
primarily on post-flood damage assessment. 

This study aims to address these gaps by 
proposing an integrated framework that combines 
drone-derived multispectral data with machine 
learning algorithms to enhance flood risk prediction. 
Specifically, the study leverages features such as 
Normalized Difference Vegetation Index (NDVI), 
slope, and Terrain Ruggedness Index (TRI) to train 
predictive models capable of identifying flood-prone 
areas with high precision. The proposed framework 
not only provides a scalable solution for real-time 
flood monitoring but also aligns with global disaster 
resilience strategies, such as the United Nations’ 
Sendai Framework for Disaster Risk Reduction. By 
addressing the limitations of existing methodologies, 
this research contributes to the development of data-
driven policies and practices that mitigate the 
impacts of flooding on vulnerable communities. 

2. RELATED WORKS  

Flood risk prediction has been a critical 
area of research due to the increasing frequency and 

intensity of floods caused by climate change, 
urbanization, and deforestation. Various methods 
have been proposed over the years, ranging from 
traditional hydrological models to advanced 
machine learning algorithms and drone-assisted data 
collection. This section reviews the most relevant 
literature in the domains of remote sensing, machine 
learning, and the integration of drone technology for 
flood prediction to establish the novelty and 
necessity of the proposed research. 

2.1 Traditional Approaches to Flood Prediction 
Conventional flood prediction relies 

heavily on hydrological models such as the 
Nonlinear Muskingum Model (NMM) and 
numerical solutions like St. Venant flow equations 
[17], [18], [19]. These models require extensive 
datasets of rainfall, river flow, and topography. 
However, their accuracy is often limited due to the 
dynamic and nonlinear nature of hydrological 
systems. For instance, [2] highlighted the limitations 
of traditional methods, which often struggle to 
predict localized floods and require computationally 
intensive calibration. The reliance on static datasets 
and the inability to handle rapidly changing 
environmental conditions have further limited their 
applicability in real-time disaster scenarios. 

2.2 Machine Learning in Flood Prediction 
Machine learning (ML) has emerged as a 

transformative approach to flood risk assessment, 
offering the ability to process large, complex 
datasets and uncover nonlinear relationships. Recent 
studies have demonstrated the effectiveness of 
various ML techniques, such as Random Forest, 
Support Vector Machines (SVM), and Neural 
Networks, in predicting flood occurrence and 
severity. 

For example, [12] conducted an extensive 
review of ML applications in flood prediction, 
identifying ensemble methods like Gradient 
Boosting and XGBoost as highly effective for 
improving model performance. Similarly, [15], [20], 
[21], [22], [23], [24] compared logistic regression, 
decision trees, and Naive Bayes classifiers, finding 
that decision trees excel in precision and recall 
metrics for flood prediction. 

While ML techniques have shown 
significant promise, their reliance on static and 
historical datasets poses challenges for dynamic and 
real-time flood scenarios. Few studies have 
integrated environmental data, such as drone-
derived imagery, with machine learning for flood 
prediction, indicating a gap in the literature that this 
study aims to address. 
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2.3. Drone Technology in Flood Monitoring 
Drones, equipped with advanced sensors 

and cameras, have revolutionized remote sensing 
and environmental monitoring. Their ability to 
capture high-resolution, real-time data from 
inaccessible areas makes them ideal for flood 
monitoring and mapping. Studies by [9] and [5] 
demonstrated the potential of drones for collecting 
aerial images and generating geospatial datasets for 
flood risk assessment. 

Drones also excel in vegetation and 
topography mapping through indices like the 
Normalized Difference Vegetation Index (NDVI) 
and Terrain Ruggedness Index (TRI). [25] utilized 
drones to monitor pre- and post-flooding land cover 
changes, showing that drone data provides better 
resolution and precision than satellite imagery. 
Despite these advancements, most drone 
applications have focused on post-disaster damage 
assessment rather than predictive modeling. 

2.4. Integration of Drone Technology and 
Machine Learning 

The integration of drone technology and 
machine learning represents a significant 
advancement in flood risk prediction. By combining 
high-resolution drone imagery with ML algorithms, 
researchers can develop predictive models that are 
both accurate and adaptable to real-time scenarios. 
[9] used convolutional neural networks (CNNs) with 
UAV data to classify flood-affected areas, achieving 
an accuracy of 91%. Similarly, [26], [27] employed 
deep convolutional neural networks (CNNs) to map 
flood extents using UAV imagery, reporting superior 
performance compared to traditional classifiers like 
SVM. 

However, few studies have focused on 
leveraging specific features like NDVI and TRI for 
flood risk prediction. Most existing work has applied 
ML algorithms to classify flood-affected areas 
without exploring their predictive capabilities. This 
gap highlights the need for a comprehensive 
framework that integrates drone-derived features 
with advanced ML techniques for flood prediction. 

2.5. Gaps in the Literature 
Despite the significant advancements in 

drone technology and ML, several gaps remain in the 
literature: 

a. Real-time Predictive Models: Few studies have 
focused on integrating real-time drone data 
with ML algorithms for flood risk prediction, 
particularly in regions with diverse and 
complex geographies like Indonesia. 

b. Feature Engineering: While NDVI and TRI are 
recognized as critical indicators of flood 
susceptibility, their application in predictive 
models remains underexplored. 

c. Localized Applications: Most existing models 
are developed for general use, with limited 
adaptability to region-specific conditions. 

2.6. Contributions of This Study 
This study aims to fill these gaps by: 

a. Developing an integrated framework that 
combines drone-derived features (NDVI, 
slope, TRI) with ML algorithms for flood risk 
prediction. 

b. Demonstrating the applicability of the 
framework in Indonesia, a region characterized 
by high flood vulnerability and diverse 
geographies. 

c. Providing a scalable solution for flood 
monitoring and prediction to support disaster 
preparedness and response. 

3. METHOD 
 

Figure 1 illustrates the step-by-step 
methodology implemented in the study, starting 
from data collection using drone-acquired 
multispectral data, through preprocessing, feature 
engineering, and model development, to evaluation 
and discussion of results. Each stage contributes to 
building a robust and interpretable flood prediction 
framework tailored for the study area. 

 

 

Figure 1. Workflow for Flood Prediction Model  
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3. 1. Study Area and Data Acquisition 
This study focuses on utilizing high-

resolution multispectral raster data to predict flood 
risk in a specified flood-prone area. The primary 
dataset, a multispectral .tif file, was obtained using 
advanced drone technology equipped with 
multispectral cameras. The data covers a 
geographical area in Bandung Regency, West Java, 
Indonesia and includes four spectral bands, which 
provide detailed information on the terrain and 
vegetation characteristics. The characteristics of the 
dataset are as follows: 

- File Format: GeoTIFF (.tif), containing high-
resolution data. 

- Resolution: 6,779 pixels in width and 4,117 
pixels in height. 

- Bands: 
Band 1 (Red): Used for identifying vegetation 
and surface characteristics. 
Band 2 (NIR): Critical for calculating the 
Normalized Difference Vegetation Index 
(NDVI). 
Band 3 and 4: Additional spectral bands that 
may represent other wavelengths useful in land 
classification. 

- Coordinate Reference System (CRS): 
EPSG:4326 (WGS 84), a widely used 
geographic coordinate system. 

This dataset serves as the foundation for 
feature extraction and model training. Figure 2 
illustrates the visualization of Band 1, showcasing 
the reflectance values of the study area. This data 
was used to derive various topographic features 
essential for flood risk modeling. 

This study focuses on the application of 
high-resolution topographic data obtained through 
drone technology to predict flood risk in a specified 
flood-prone area. The drone utilized in this research 
was equipped with advanced sensors, including 
multispectral cameras, enabling the capture of 
detailed spatial and spectral information on terrain 
and vegetation. These data provide critical insights 
into environmental factors influencing flood 
susceptibility. 

The primary output of the drone survey was 
a Digital Elevation Model (DEM), which served as 
the foundation for deriving essential topographic 
features. Key features extracted from the DEM 
include elevation, slope, and Terrain Ruggedness 
Index (TRI). These variables are integral to 
understanding hydrological patterns, such as water 
flow dynamics, accumulation zones, and areas prone 

to flooding. For instance, regions with lower 
elevation and flatter slopes are more susceptible to 
water retention, while higher terrain ruggedness may 
affect water runoff pathways and intensity. 

 
While the study highlights the predictive 

potential of drone-derived topographic data, it does 
not incorporate supplementary data sources such as 
historical flood records, rainfall intensity, or 
proximity to water bodies. This exclusion was 
deliberate, allowing for an isolated assessment of 
topographic features in predicting flood risk. 
However, the absence of such additional datasets 
may limit the model’s ability to fully capture the 
complexity of flood dynamics. Future research could 
integrate these variables to enhance predictive 
accuracy and provide a more comprehensive 
framework for flood risk management. 

 

 

Figure 2. Band 1 Visualization  

3.2. Data Preprocessing 
Several preprocessing steps were undertaken to 

ensure that the data was suitable for flood risk 
modeling: 

1. Loading and Inspection: The 
multispectral .tif file was loaded using the 
rasterio library in Python. The data was 
inspected for integrity and consistency. If 
errors or corruptions were detected, the file 
was reprocessed using gdal_translate to 
ensure a valid and usable raster format for 
analysis. 

2. Downsampling: Due to the high spatial 
resolution of the dataset, the raster data was 
downsampled by a factor of 20 to reduce 
computational load while retaining critical 
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spatial details necessary for feature 
extraction. 

3. Feature Extraction: 
- NDVI Calculation: NDVI was 

calculated using the Red and NIR bands 
to assess the vegetation cover, which 
influences flood risk. The formula used is: 

      (1)                                                                     

- Slope and Ruggedness Index: Derived 
from the Red band, slope and ruggedness 
provide information about the terrain's 
steepness and surface variability, both of 
which are important for predicting water 
accumulation and flow paths. 

4. Normalization: All extracted features were 
normalized using the StandardScaler to 
ensure they were on the same scale, which 
is essential for model training. 

 

Figure 3. NDVI Map of the Study Area 

The Normalized Difference Vegetation 
Index (NDVI) map provides a spatial distribution of 
vegetation cover within the study area as seen in 
figure 3. The NDVI values range from 0.0 to 1.0, 
where higher values indicate denser vegetation 
(shown in green), and lower values indicate sparse 
or no vegetation (shown in brown to red) [26]. The 
mean NDVI value for the area is 0.33, suggesting 
moderate vegetation coverage overall. Areas with 
lower NDVI values are generally more susceptible 
to flooding due to reduced vegetation density, which 
impacts water infiltration and increases surface 

runoff [27]. These low-NDVI regions can be seen 
prominently in the central and southwestern parts of 
the map. The standard deviation of 0.24 indicates 
variability in vegetation density across the study 
area. 

3.3 Feature Engineering 
Additional features were engineered from the 

topographic and spectral data to enhance the model's 
predictive capability: 

1. Slope: Calculated as the rate of change in 
elevation. Areas with lower slope values 
are more likely to experience water 
retention, making them more prone to 
flooding. 

2. Aspect: The direction of the slope, which 
can influence the direction of water runoff. 

3. Terrain Ruggedness Index (TRI): This 
index quantifies the roughness of the 
terrain. A higher TRI indicates a more 
complex surface, potentially affecting 
water flow and accumulation. 

3.4 Labeling and Data Balancing 
In the absence of historical flood data, a 

heuristic approach was used to label flood risk: 
1. Flood Risk Labeling: Areas with NDVI 

values below 0.2 were labeled as high flood 
risk, based on the assumption that these 
areas have sparse vegetation cover, making 
them more susceptible to flooding. This 
threshold was chosen based on domain 
knowledge and visual inspection of the 
study area. 

2. Data Balancing: The dataset exhibited 
significant imbalance, with a larger number 
of non-flood-prone areas compared to 
flood-prone ones. To address this, the 
Synthetic Minority Over-sampling 
Technique (SMOTE) was applied to 
generate synthetic samples of the minority 
class, balancing the dataset and preventing 
model bias towards the majority class. 
 

3.5 Model Development  
A logistic regression model was selected due to 

its simplicity and interpretability in the initial 
analysis phase. The following steps were followed 
in the model development process: 

1. Data Splitting: The balanced dataset was 
split into training and testing sets using a 
70:30 ratio, ensuring that the model's 
performance could be evaluated on unseen 
data. 

2. Model Training: The logistic regression 
model was trained using the balanced 
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training set, with all features normalized to 
ensure uniform scale. The model was 
configured with a maximum of 1,000 
iterations to ensure convergence. 

3. Cross-Validation: Stratified K-Folds 
cross-validation was used to evaluate the 
model's performance on the training set. 
The recall metric was used to assess the 
model's ability to correctly identify flood-
prone areas, which is critical for 
minimizing false negatives. 
 

3.6. Model Evaluation 
The performance of the Random Forest 

model was evaluated using several metrics: 
1. Confusion Matrix: A confusion matrix was 

generated to analyze the model's 
classification performance in terms of true 
positives (correctly predicted high-risk 
areas), true negatives (correctly predicted 
low-risk areas), false positives (incorrectly 
predicted high-risk areas), and false 
negatives (incorrectly predicted low-risk 
areas). 

2. Classification Report: The classification 
report provided precision, recall, F1-score, 
and support for both classes, giving a 
comprehensive view of the model's ability 
to distinguish between flood-prone and 
non-flood-prone areas. 

3. ROC-AUC Score: The Receiver Operating 
Characteristic - Area Under the Curve 
(ROC-AUC) score was calculated to assess 
the model's overall ability to differentiate 
between high-risk and low-risk areas. A 
higher ROC-AUC score indicates better 
discriminatory power. 

4. Feature Importance: The importance of 
each feature in the model was analyzed to 
understand which variables had the most 
influence on flood prediction. Elevation 
and slope were identified as the most 
significant predictors. 

This methodology provides a 
comprehensive approach to leveraging drone-
derived topographic data for flood prediction. The 
use of machine learning models, such as Random 
Forest, combined with appropriate data balancing 
and feature engineering techniques, ensures a robust 

and interpretable model for identifying flood-prone 
areas.  

 
4. RESULTS AND DISCUSSION 

4.1. Model Performance Overview 
The flood risk prediction model was built 

using logistic regression with features extracted 
from a downsampled raster dataset, including NDVI, 
red band reflectance, slope, and ruggedness index. 
The model was trained on a dataset with a significant 
class imbalance, which was addressed by stratified 
splitting of the data. The performance metrics 
indicate that the model is highly effective at 
identifying flood-prone areas, but it tends to 
overpredict the flood risk, leading to a high number 
of false positives. Table 1 summarizes the 
classification metrics for the model, showing a high 
recall (1.00) for flood-prone areas but a relatively 
low recall (0.22) for non-flood-prone areas. The high 
ROC AUC score of 0.98 suggests that the model has 
a strong discriminative ability between the two 
classes. 

 
Table 1. Summary of Classification Metrics for the Flood 

Risk Prediction Model  
 

Metric Non-
Flood-
Prone (0) 

Flood-
Prone (1) 

Overall 

Precision 1.00 0.86 - 
Recall 0.22 1.00 - 
F1-Score 0.36 0.92 - 
Support 3,662 17,289 - 
Accuracy - - 86.35% 
ROC AUC 
Score 

- - 0.98 

4.2. Confusion Matrix Analysis 

The confusion matrix in Figure 4 reveals 
the model's performance in predicting flood-prone 
and non-flood-prone areas. The model demonstrated 
strong performance in identifying flood-prone areas, 
with 17,289 instances correctly classified as flood-
prone (true positives) and achieving a perfect recall 
of 1.00. This indicates that the model successfully 
identified all flood-prone areas, which is a critical 
strength for disaster management and minimizing 
the risk of missing high-risk zones. However, the 
model showed limitations in classifying non-flood-
prone areas, with only 803 true negatives and 2,859 
false positives. The high number of false positives 
suggests a tendency to overpredict flood-prone 
areas, leading to a precision of 0.86 for flood-prone 
classifications. While this ensures comprehensive 



 Journal of Theoretical and Applied Information Technology 
31st January 2025. Vol.103. No.2 

©   Little Lion Scientific  
 

ISSN: 1992-8645                                                                    www.jatit.org                                                     E-ISSN: 1817-3195 

 
635 

 

coverage of flood-prone zones, it may result in 
inefficient resource allocation and unnecessary 
alarms. The overall accuracy of the model was 
86.35%, demonstrating its effectiveness in 
distinguishing between flood-prone and non-flood-
prone areas. 

 

Figure 4. Confussion Matrix Analysis 

The confusion matrix highlights the model's 
conservative approach, prioritizing the identification 
of all flood-prone areas (high recall) at the expense 
of a high number of false positives. 

4.3. ROC Curve Analysis 
The provided ROC curve in Figure 5 

illustrates the model's ability to distinguish between 
flood-prone and non-flood-prone areas. With an 
Area Under the Curve (AUC) of 0.98, the model 
demonstrates an excellent discriminatory capability, 
indicating that it can effectively separate the two 
classes. The curve starts with a steep rise, showing 
that the model achieves a high true positive rate 
(sensitivity) with minimal false positive rates at 
lower thresholds. This indicates that the model is 
particularly effective at identifying flood-prone 
areas, a critical requirement for flood risk prediction 
systems. As the curve progresses, it flattens slightly, 
reflecting an increase in false positive rates as the 
sensitivity continues to improve. This trend aligns 
with the confusion matrix analysis, where a high 
number of false positives was observed. While the 
model is highly sensitive, the gradual slope toward 
the upper-right corner of the graph suggests that non-
flood-prone areas are occasionally misclassified as 
flood-prone, impacting the model's specificity. 
Overall, the ROC curve highlights the model's strong 

performance in predicting flood-prone areas, 
supported by its high AUC value. 

 

Figure 5. ROC Curve of the Logistic Regression Model 

4.4. Precision-Recall Trade-off 

The precision-recall curve in Figure 6 
provides insight into the trade-off between precision 
and recall for the flood-prone class. The curve shows 
that as the model increases its recall, precision 
decreases, which is expected in scenarios with class 
imbalance. 

 

Figure 6. Precision-Recall Curve of the Logistic 
Regression Model 

This trade-off is crucial for flood risk 
management. A model with high recall ensures that 
most flood-prone areas are detected, minimizing the 
risk of missing any critical zones. However, the drop 
in precision suggests that many non-flood-prone 
areas are falsely flagged, which could lead to 
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inefficient resource allocation and unwarranted 
alarm. 
 
4.5. Feature Importance Analysis 

The feature importance plot in Figure 7 shows 
the relative importance of each feature based on the 
absolute values of the logistic regression 
coefficients. NDVI and ruggedness are the most 
influential features in predicting flood risk, followed 
by the red band reflectance and slope. 

1. NDVI: Higher NDVI values generally 
indicate more vegetation, which can reduce 
flood risk. Conversely, low NDVI values 
(e.g., barren land) are more susceptible to 
flooding. 

2. Ruggedness: Higher ruggedness indicates 
more uneven terrain, which can influence 
water flow and accumulation patterns. 

3. Red Band Reflectance: This feature, often 
linked to surface characteristics, can also be 
a proxy for vegetation or soil type, 
impacting flood risk. 

4. Slope: Steeper slopes can lead to faster 
water runoff, reducing flood risk, whereas 
flatter areas are more prone to water 
accumulation. 

 

Figure 7. Feature Importance in Logistic Regression 
Model 

4.6. Model Strengths and Limitations 
a. Strengths: 

1. High Sensitivity for Flood-Prone Areas: 
The model's recall of 1.00 for flood-prone 
areas ensures that all high-risk zones are 
detected, making it a robust tool for flood 
risk prediction. 

2. Excellent Discrimination Capability: 
The ROC AUC score of 0.98 shows that the 
model effectively distinguishes between 
flood-prone and non-flood-prone areas. 

b. Limitations: 
1. Overestimation of Flood Risk: The high 

number of false positives and low recall for 
non-flood-prone areas (0.22) indicates that 
the model tends to overestimate flood risk, 
which can lead to unnecessary warnings 
and inefficient resource allocation. 

2. Imbalanced Prediction Performance: 
While the model performs well in 
identifying flood-prone areas, its 
performance for non-flood-prone areas is 
suboptimal, reflected in the low F1-score 
for class 0 (0.36). 

3.7. Recommendations for Improvement 
1. Feature Augmentation: Incorporate 

additional features such as proximity to 
water bodies, soil type, historical flood 
data, and land use classification to improve 
model accuracy and reduce false positives. 

2. Threshold Tuning: Adjust the decision 
threshold to achieve a better balance 
between precision and recall, reducing false 
positives while maintaining high recall for 
flood-prone areas. 

3. Advanced Modeling Techniques: Use 
more sophisticated models like Gradient 
Boosting, XGBoost, or Neural Networks, 
combined with hyperparameter tuning, to 
enhance predictive performance and handle 
class imbalance more effectively. 

The logistic regression model provides a strong 
baseline for flood risk prediction [28], [29], with 
high recall for flood-prone areas. However, its 
tendency to overpredict flood risk highlights the 
need for further refinement. Future work should 
focus on improving the model's precision and 
reducing false positives through enhanced feature 
engineering and advanced modeling techniques. 
This will ensure a more balanced and accurate flood 
risk prediction, ultimately supporting better disaster 
management and resource allocation. 

5. CONCLUSSION 

This study highlights the effectiveness of 
integrating drone technology and machine learning 
for flood risk prediction in Indonesia. By utilizing 
high-resolution multispectral and topographic data 
captured via drones, critical features such as the 
Normalized Difference Vegetation Index (NDVI), 
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slope, and Terrain Ruggedness Index (TRI) were 
extracted to develop a predictive model. The logistic 
regression model achieved an accuracy of 86.35% 
and an ROC-AUC score of 0.98, underscoring its 
strong performance in identifying flood-prone areas. 
The analysis demonstrated the critical role of NDVI 
and ruggedness as significant predictors of flood 
susceptibility, emphasizing the influence of 
vegetation cover and terrain characteristics on flood 
risk. 

While the model's high recall for flood-
prone areas ensures comprehensive detection of 
high-risk zones, it also revealed limitations, 
including a high false-positive rate and imbalanced 
classification performance between flood-prone and 
non-flood-prone areas. These findings underscore 
the need for further refinement of the predictive 
framework. Future research should incorporate 
additional data sources, such as rainfall intensity, 
proximity to water bodies, and historical flood 
records, to enhance predictive accuracy. 
Furthermore, adopting advanced machine learning 
techniques, such as ensemble models or deep 
learning approaches, could address classification 
imbalance and improve model reliability. 

This research makes a significant 
contribution to the field of flood risk management by 
demonstrating the potential of drone-derived data 
and machine learning for real-time, high-resolution 
flood predictions. The proposed framework aligns 
with global disaster resilience initiatives, such as the 
United Nations’ Sendai Framework for Disaster 
Risk Reduction, and provides actionable insights for 
improving disaster preparedness and response 
strategies. By addressing the identified limitations, 
the framework can be developed into a robust tool 
for reducing the impacts of flooding, particularly in 
geographically complex and vulnerable regions like 
Indonesia. 
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