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ABSTRACT 

This article presents an innovative deep-learning model, QuokkaNet, for underwater image classification 
tasks. By optimizing the Enhanced CNN (N-CNN) model using Quokka Optimization (QO), QuokkaNet 
demonstrates significant advancements in performance. The N-CNN model incorporates the layers such as 
convolutional, pooling, normalization, fully connected, and Nesterov Accelerated Gradient, creating a robust 
framework for image classification. Quokka Optimization further enhances this model through systematic 
exploration, exploitation, fitness evaluation, selection, adaptation, and migration. The study highlights 
QuokkaNet's superior capabilities and effectiveness in underwater image classification compared to 
DeepSeaNet and MCANet. These findings confirm QuokkaNet's potential as a reliable and accurate 
underwater research and exploration tool, offering significant improvements in the classification of complex 
underwater images. The innovative approach and optimization techniques employed in QuokkaNet set a new 
benchmark for performance in this domain. 
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1. INTRODUCTION  

The underwater environment poses unique 
challenges for capturing and analyzing images due to 
factors such as light absorption, scattering, and the 
presence of marine particles [1]. These challenges 
necessitate specialized underwater image 
identification and classification techniques, which 
are critical for various scientific, environmental, and 
industrial applications [2]. 

 
Images are visual representations of objects or 

scenes captured and stored in digital formats for 
analysis. Underwater images, however, are subject to 
the complexities of the underwater environment [3]. 
Water absorbs light, especially at longer 
wavelengths, leading to significant color distortion. 
Particles in the water scatter light, reducing image 
clarity and contrast. Capturing high-quality 
underwater images requires specialized equipment 
and techniques to mitigate these issues [4]. Image 
identification is recognizing and labeling objects or 
features within an image. This involves using 
algorithms to detect patterns and match them to 
known categories. The identification process is 
particularly challenging for underwater images due 
to the environmental factors that affect image quality 
[5]. Techniques such as color correction, dehazing, 

and noise reduction are essential for improving the 
visibility and accuracy of underwater image 
identification. Advanced machine learning 
algorithms play a crucial role in accurately 
processing these enhanced images to identify various 
objects and features [6]. 

 
Image classification involves categorizing 

images into predefined groups based on their 
content. This requires extracting significant features 
from the images and training machine learning 
models on these features. Underwater image 
classification presents additional challenges 
compared to terrestrial image classification [6]. The 
diversity of marine life and underwater 
environments and the varying conditions under 
which images are captured necessitate robust and 
adaptive classification techniques. Convolutional 
neural networks (CNNs) have shown significant 
success in this domain, providing reliable 
classification results for underwater images. Image 
identification and classification involve recognizing 
and categorizing objects or patterns within an image 
[7]. 

 



 Journal of Theoretical and Applied Information Technology 
31st January 2025. Vol.103. No.2 

©   Little Lion Scientific  
 

ISSN: 1992-8645                                                                    www.jatit.org                                                     E-ISSN: 1817-3195 

 
651 

 

Machine learning and deep learning methods, 
especially CNNs, are usually used in these 
procedures. The steps include: 

 Feature Extraction: Identifying essential 
features or attributes within an image. 

 Training: Using labeled datasets to teach a 
model to recognize patterns and objects. 

 Prediction: Applying the trained model to 
classify new images into predefined 
categories. 

 
Underwater images differ fundamentally from 

those captured in terrestrial environments [8]. The 
underwater setting introduces unique factors that 
affect image quality, such as light attenuation, color 
shifting, and suspended particles. These factors 
necessitate preprocessing steps to enhance the 
quality of underwater images [9]. Methods such as 
histogram equalization, adaptive contrast 
enhancement, and color restoration are commonly 
used to improve the visibility and detail of 
underwater images, making them suitable for 
subsequent identification and classification tasks 
[10]. 

 
Underwater image identification is essential for 

recognizing and monitoring marine species, 
detecting underwater structures, and assessing 
environmental changes. Accurate identification is 
vital for applications in marine biology, underwater 
archaeology, and environmental monitoring [11]. 
Advanced image processing and machine learning 
techniques enable the identification of various 
objects and features in underwater images, 
overcoming the challenges posed by the underwater 
environment. Underwater image classification 
focuses on categorizing images into specific classes, 
such as different species of fish, types of coral reefs, 
or various underwater landscapes [12]. Developing 
accurate classification models requires 
comprehensive training datasets that capture the 
diversity of underwater scenes. Deep learning 
models, particularly CNNs, are trained on these 
datasets to develop the ability to classify new images 
accurately [13]. These classification systems are 
crucial for scientific research, conservation efforts, 
and industrial applications such as underwater 
exploration and resource management. Underwater 
image classification and identification present 
unique challenges due to poor visibility, color 
distortion, and light absorption [14]. Key steps in this 
process include: 

 Preprocessing: Correcting distortions and 
enhancing image quality through color 
correction and noise reduction. 

 Segmentation: Isolating objects or regions 
of interest from the background may be 
cluttered with marine life or sediments. 

 Feature Extraction: Identifying unique 
features of underwater objects, which can 
be challenging due to varying lighting 
conditions and object appearances. 

 Classification: Using trained models to 
categorize objects, such as different fish 
species, corals, or underwater structures. 

 

The challenges associated with underwater 
imaging require innovative approaches for image 
identification and classification [15]. Advances in 
image processing and machine learning have 
significantly improved the ability to handle 
underwater images, leading to more precise and 
reliable results [16]. Researchers and engineers are 
developing effective methods for underwater image 
identification and classification by addressing the 
specific difficulties of underwater environments. 
These innovations are essential for advancing the 
capabilities of underwater research, conservation, 
and exploration technologies [17] 

 
1.1. Problem Statement  

Underwater image classification poses 
significant challenges due to the unique and harsh 
environment found beneath the surface. Variability 
in lighting conditions, presence of particulate matter, 
and limited visibility complicate the accurate 
classification of underwater images. These factors 
often lead to poor image quality, making extracting 
meaningful features necessary for effective 
classification difficult. Underwater environments are 
highly dynamic, with fluctuating conditions that can 
drastically change the appearance of objects, further 
complicating the task. Traditional image 
classification techniques struggle to adapt to these 
complexities, often resulting in high false positive 
and false negative rates. This affects the reliability of 
underwater imaging applications, critical in marine 
biology, underwater exploration, and environmental 
monitoring. The need for robust and accurate 
classification models is evident to overcome these 
issues and ensure reliable data interpretation. 
 

Optimization of these models becomes 
imperative to enhance their performance and adapt 
to challenging underwater conditions. Without 
effective optimization strategies, models may fail to 
generalize well across different scenarios, leading to 
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inconsistent results. Addressing these problems 
requires innovative approaches to optimize the 
performance of classification models, ensuring they 
can handle the inherent difficulties of underwater 
image data and deliver reliable and accurate 
classification outcomes. 

 
 

2. LITERATURE REVIEW 
“Hybrid Carbon” [18] focuses on developing 

hybrid carbon nanotube self-adhesive sensors 
specifically designed for underwater target 
detection. These sensors leverage carbon nanotubes' 
unique electrical properties and sensitivity, 
combined with adhesive capabilities, to improve 
detection efficiency in aquatic environments. The 
hybrid nature of the sensors allows for enhanced 
adhesion to various surfaces, ensuring stable and 
reliable placement in dynamic underwater 
conditions. “Quadratic Boost Routing” [19] 
introduces a novel quadratic ensemble weighted 
emphasis boosting technique aimed at achieving 
energy and bandwidth-efficient routing in 
underwater sensor networks (UWSNs). The method 
optimizes data transmission processes to reduce 
energy consumption and extend network lifespan. 

 
“Enhanced Aggregation”[20] presents an 

innovative algorithm that combines feature 
enrichment with a dynamic accumulation strategy. 
The algorithm enhances detection accuracy by 
progressively refining features' representation 
through multiple processing stages. “Self-Attention 
Detection” [21] introduces a self-attention and long-
range relationship capture network specifically 
designed for underwater object detection. This 
advanced network architecture utilizes self-attention 
mechanisms to capture detailed spatial relationships 
within underwater scenes. “Boosting R-CNN”[22] 
explores an innovative reweighting technique for R-
CNN samples based on errors identified by the 
Region Proposal Network (RPN). The proposed 
Boosting R-CNN method focuses on improving 
underwater object detection by addressing sample 
weighting, which enhances the learning process of 
the detection model. 

 
“Slugging Impact Modeling”[23] identifies and 

models the maximum impact force associated with 
critical slugging in underwater compressed gas 
energy storage systems. Slugging, characterized by 
the rapid movement of liquid and gas phases, poses 
significant challenges to these systems' structural 
integrity and efficiency. This study focuses on 
understanding the dynamics of slugging phenomena 

and developing a comprehensive model to predict 
the maximum impact force exerted during slugging 
events. “PlasPi TDM”[24] enhances the capabilities 
of the low-cost camera platform, PlasPi TDM, to 
facilitate advanced underwater physical-ecological 
observations. The research aims to improve the 
quality and efficiency of underwater data collection 
by augmenting the existing platform with improved 
imaging and data processing capabilities. “Deep Sea 
Debris”[25] discusses a deep neural network-based 
approach for the instant detection of deep-sea debris 
to support maneuverable underwater machines in 
maintaining sustainable ocean environments. The 
proposed method leverages deep learning techniques 
to quickly and accurately identify debris in deep-sea 
environments. 

 
“YOLO-Fish”[26] focuses on YOLO-Fish, a 

robust fish detection model designed to operate in 
realistic underwater environments. The model builds 
upon the YOLO (You Only Look Once) 
architecture, renowned for its speed and accuracy in 
object detection. YOLO-Fish is tailored to address 
the unique challenges of underwater imaging, such 
as low visibility, variable lighting conditions, and 
diverse fish appearances. “Sea Cucumber”[27] 
involves developing a monitoring system for cage-
cultured sea cucumbers using an underwater time-
lapse camera combined with deep learning-based 
image analysis. This innovative approach aims to 
enhance aquaculture management by providing 
continuous and automated monitoring of sea 
cucumber populations. 

 
“AVOA-LSTM Sunglass”[28] presents an 

innovative approach for segmenting and classifying 
the eye region in sunglass images using AVOA-
LSTM with MRCNN. The method combines the 
strengths of adaptive variable optimization 
algorithm (AVOA), long short-term memory 
(LSTM), and Mask R-CNN (MRCNN) to handle the 
challenges of image-based identification effectively. 
The approach aims to segment and classify the eye 
region obscured by sunglasses accurately, a task 
often complicated by reflections and partial 
occlusions. “Underwater Acoustic Denoising”[29] 
proposes a novel denoising method for underwater 
acoustic signals using a combination of empirical 
mode decomposition (EEMD), correlation 
coefficient analysis, permutation entropy, and 
wavelet threshold denoising. This comprehensive 
approach addresses the unique challenges 
underwater acoustic environments pose, such as 
noise from water movement, marine life, and human 
activities.  
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“Backscatter Recognition”[30] introduces a deep 

fuzzy extreme convolutional neural network 
optimized via the hunger games search algorithm for 
underwater backscatter recognition. The proposed 
method enhances recognition accuracy by 
integrating fuzzy logic principles with deep learning 
techniques. The hunger games search algorithm 
optimizes the network's parameters, improving its 
ability to recognize and classify backscatter signals 
in underwater environments. “Striation Images”[31] 
employs deep learning techniques on striation 
images for classifying underwater and surface 
targets. Striation images, characterized by delicate 
linear patterns, provide valuable visual features for 
distinguishing between different types of targets. 
“Fish Disease Recognition”[32] presents a CNN-
OSELM multi-layer fusion network with an 
attention mechanism for recognizing fish diseases in 
aquaculture. The proposed method combines 
convolutional neural networks (CNNs) with an 
online sequential extreme learning machine 
(OSELM) to enhance the accuracy of disease 
diagnosis. The attention mechanism further 
improves the model's ability to focus on relevant 
features, enabling precise identification of various 
fish diseases. Optimization is crucial in most 
research to achieve the expected results. 
Optimization is common to in all domain research 
[33]-[61]. 

 
“Image Retrieval” [62] discusses an adaptable 

image retrieval system that utilizes kernel machines 
and selective sampling with relevance feedback. The 
system is designed to improve the accuracy and 
efficiency of retrieving relevant images from large 
datasets. The system learns user preferences by 
incorporating relevant feedback and iteratively 
refines the search results. Kernel machines enhance 
the system's ability to handle complex and nonlinear 
relationships between images, while selective 
sampling focuses on the most informative samples to 
optimize retrieval. “Bubble-Forming Regime”[63] 
identifies bubble-forming regimes based on textural 
features of an image and the feature selection method 
of MCWA. The research aims to refine the analysis 
and understanding of bubble dynamics, which are 
critical in various industrial and scientific 
applications.  

 
“DeepSeaNet”[64] a bio-detection network 

designed for species identification in deep-sea 
imagery. The network uses advanced deep learning 
techniques to analyze and classify images from the 
deep sea, ensuring precise species identification in 

difficult underwater conditions.  “MCANet”[65] 
utilizes a multi-channel attention network combined 
with a multi-color space encoder. This method 
improves underwater image classification by using 
various color space information and concentrating 
on essential image regions, resolving issues like 
color distortion and poor visibility. 

 
2.1. Intention and Goal 

The unique challenges of underwater 
environments present significant hurdles for image 
classification, highlighting the need for advanced 
methodologies to improve accuracy and reliability. 
Poor lighting, particulate matter, and dynamic 
underwater conditions often lead to degraded image 
quality, complicating the feature extraction and 
classification processes. These issues necessitate 
robust models capable of adapting to and 
overcoming these environmental complexities. The 
Intention stems from the critical need for accurate 
underwater image classification in marine biology, 
underwater exploration, and environmental 
monitoring applications. Enhanced classification 
capabilities can lead to better monitoring of aquatic 
ecosystems, more efficient exploration missions, and 
improved ecological assessments. The aim is to 
develop a model that excels in performance and 
maintains consistency and reliability under the 
varied conditions found in underwater 
environments. 

 
This article aims to explore the potential of 

Quokka Optimization (QO) in enhancing CNNs for 
underwater image classification. By integrating QO 
into the Enhanced CNN (N-CNN) model, this study 
seeks to improve classification accuracy, robustness, 
and overall performance significantly. The goal is to 
demonstrate that QuokkaNet can effectively address 
the inherent challenges of underwater image 
classification, providing a reliable and optimized 
solution for complex underwater imaging tasks. 
 
3. ENHANCED CNN MODELS USING 

QUOKKA OPTIMIZATION (QuokkaNet)  
 

A CNN consists of multiple layers designed to 
process and transform an input image into a 
structured output, typically a classification or 
identification. The primary components include 
convolutional, pooling, and fully connected layers. 
Each layer plays a specific role in feature extraction 
and image interpretation. Fig 1. Illustrates the 
unprocessed underwater images. 
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3.1. Enhanced CNN with NAG (N-CNN) 
CNN is an artificial neural network that 

processes and analyzes visual data. It comprises 
convolutional, pooling, and fully connected layers 
that work together to extract and interpret features 
from images. Nesterov Accelerated Gradient (NAG) 
is an optimization technique that enhances the 
traditional gradient descent method by considering 
the gradient at a future position, leading to faster 
convergence and improved performance. They are 
integrating the Nesterov Accelerated Gradient into a 
Convolutional Neural Network, resulting in an 
enhanced version called N-CNN. 
 

 
Fig 1. Unprocessed Underwater Images 

 
3.1.1. Construct the Convolutional Layers of       
N-CNN 

 
Constructing the convolutional layers in N-CNN 

involves defining the filters, applying convolution 
operations, and using activation functions. These 
steps are crucial for feature extraction from input 
images, forming the foundation for subsequent 
layers in the network. A filter is a small matrix used 
to scan through the input image. Assume that I stands 
for the input picture and K for the filter. A feature 
map F is generated by sliding the filter across the 
input picture and multiplying the results element-
wise. The convolution procedure is represented as 
Eq.(1). 

𝐹(𝑖, 𝑗) = ෍ ෍ 𝐼(𝑖 + 𝑟, 𝑗
்

௧ୀଵ

ோ

௥ୀଵ

+ 𝑡). 𝐾(𝑟, 𝑡) 
(1) 

where R and T are the dimensions of the filter, and 
(i,j) denotes the position in the input image, this 
operation detects specific features within local 
regions of the image. 
 

The filter's step size as it traverses the input 
picture is determined by Stride S. The filter shifts by 
a single pixel when S= 1, and with S=2, the filter 
shifts two pixels simultaneously. By enclosing the 
input image with a border of zeros, padding P 
controls the spatial dimensions of the output feature 
map. Stride S determines the step size by which the 
filter moves across the input image. If S=1, the filter 
moves one pixel at a time. If S=2, the filter moves 
two pixels at a time. Padding P involves adding a 
border of zeros around the input image to control the 
spatial dimensions of the output feature map. The 
dimensions of the output feature map F can be 
represented in Eq.(2). 

𝐹ௗ௜௠ = ൬
𝐼ௗ௜௠ − 𝐾ௗ௜௠ + 2𝑃

𝑆
൰ + 1 (2) 

where 𝐼ௗ௜௠ and 𝐾ௗ௜௠ are the dimensions of the input 
image and filter, respectively. Proper selection of 
stride and padding ensures that important edge 
features are preserved. 
 

The network is made non-linear by applying an 
activation function after convolution. A popular unit 
is the Rectified Linear Unit (ReLU) is expressed 
mathematically in Eq.(3). 

𝑅𝑒𝐿𝑈(𝑥) = max (0, 𝑥) (3) 

ReLU activates only the positive values in the 
feature map, enhancing the network's ability to learn 
complex patterns. 
 

The use of several filters captures various aspects 
of the input picture. Each filter produces a separate 
feature map, and stacking these maps along the depth 
dimension forms the complete output of the 
convolutional layer. If 𝑛 filters are used, the output 
volume will have a depth of 𝑛. Let 𝐹௞ represent the 
feature map from the 𝑘-th filter, then the output 
volume 𝑂 is shown in Eq.(4). 

𝑂 = [𝐹ଵ, 𝐹ଶ, … , 𝐹௡] (4) 

The network can learn features with hierarchies 
when several convolutional layers are stacked. The 
earlier layers capture the lower-level elements, such 
as edges, while the later layers capture the higher-
level features, such as forms and textures. Each 
subsequent convolutional layer takes the output 
volume O from the previous layer as its input, 
applies its own set of filters, and produces a new 
output volume. This iterative process allows the 
network to build a rich, multi-level representation of 
the input image. 
 
3.1.2. Implement Pooling Layers of N-CNN 
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To control overfitting and minimize 
computational complexity, pooling layers decrease 
the spatial dimensions of the feature maps while 
keeping critical information. The majority of pooling 
operations employ max pooling. This technique 
involves defining a pooling window, typically of 
size 𝑝 × 𝑝. The pooling window slides over the 
feature map, and the maximum value is selected 
within each window. Let 𝐹 represent the feature map 
and 𝑃 the pooling window. The max pooling 
operation is expressed mathematically in Eq.(5). 

𝑃(𝑖, 𝑗) = 𝑚𝑎𝑥{𝐹(𝑚, 𝑛)|(𝑚, 𝑛) ∈ 𝑊(𝑖, 𝑗)} (5) 

This operation significantly reduces the feature 
map's dimensions while preserving the most salient 
features, where (𝑖,) represents the pooling window 
centered at position (𝑖,). 
 
Average pooling is another approach; it takes the 
whole window and averages it out. That which is 
known as the average pooling operation is expressed 
mathematically in Eq.(6). 

𝑃(𝑖, 𝑗) =
1

𝑝 × 𝑝
෍ 𝐹(𝑚, 𝑛)

(௠,௡)∈ௐ(௜,௝)
 (6) 

Average pooling provides a smoothed version of the 
feature map by averaging the values in each window, 
although max pooling is often preferred for retaining 
sharp features. 
 

The dimensions of the output feature map P after 
pooling can be determined based on the size of the 
pooling window p, stride s, and the dimensions of 
the input feature map F. The mathematical 
expression for the output dimensions Pdim is Eq.(7). 

𝑃ௗ௜௠ = ൬
𝐹ௗ௜௠ − 𝑝

𝑠
൰ + 1 (7) 

where Pdim represents the dimensions of the input 
feature map. The stride s controls how much the 
pooling window moves across the feature map, 
influencing the output size. 
 

In N-CNN, pooling layers are typically inserted 
after convolutional layers. It is possible to stack 
many pooling layers to extract hierarchical feature 
representations while reducing the spatial 
dimensions gradually. The network's 
generalizability is enhanced by each pooling layer, 
which processes the output of the one before it. The 
pooling operation maintains the spatial hierarchy of 
the features by retaining significant information 
across different scales. By reducing the feature map 
dimensions, pooling layers help manage the 
computational load and ensure efficient network 
training. 

 
3.1.3. Normalization Layers of N-CNN 

Normalization layers enhance the stability and 
efficiency of the network by standardizing the inputs 
to each layer, thereby accelerating training and 
improving performance. One standard normalizing 
method in N-CNN is batch normalization. By taking 
the batch standard deviation and dividing it by the 
batch mean, this approach normalizes the output of 
an earlier activation layer. Next, learnable 
parameters are used to scale and shift the normalized 
output. X denotes the batch normalization layer's 
input, the batch mean by μ, and the batch standard 
deviation by σ. The normalized output 𝑋෠ is 
calculated as shown in Eq.(8). 

𝑋෠ =
𝑋 − 𝜇

√𝜎ଶ + 𝜖
 (8) 

where ϵ is a small constant added for numerical 
stability, this operation ensures that the input to each 
layer has a consistent distribution, which aids in 
training. 
 

Learnable parameters γ (scale) and β (shift) are 
used to scale and shift the output after normalization 
is mathematically represented in Eq.(9). 

𝑌 = 𝛾𝑋෠ + 𝛽 (9) 

The parameters γ and β allow the network to restore 
the representation power lost during normalization. 
These parameters are learned during training, 
enabling the network to adapt and improve 
performance 
 

Layer normalization is another technique that 
independently normalizes the inputs across the 
features for each data point. This method is 
particularly useful for recurrent neural networks but 
can also be applied in N-CNN. Let 𝜇௅ and 𝜎௅ 
represent the mean and standard deviation for the 
features in a layer.  The normalized output 𝑋෠௅ for 
layer normalization is expressed mathematically in 
Eq.(10).  

𝑋෠௅ =
𝑋 − 𝜇௅

ඥ𝜎௅
ଶ + 𝜖

 (10) 

Layer normalization helps stabilize the learning 
process and ensures that the activations within each 
layer remain well-behaved. 
 

Normalization layers are usually added to N-
CNN before the activation function and after each 
fully linked or convolutional layer. This integration 
ensures that the inputs to subsequent layers have 
consistent distributions, leading to improved 
convergence rates and model performance. 
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Normalization layers provide several benefits, 
including reduced internal covariate shift, 
accelerated training, and improved gradient flow. 
Normalization layers allow the network to learn 
more effectively by standardizing the inputs and 
making the training process more efficient. This step 
is essential for building deep and complex networks 
like N-CNN, where maintaining stability and 
efficiency is crucial. By integrating normalization 
layers, N-CNN achieves better training dynamics 
and enhanced performance, paving the way for 
constructing more advanced network architectures.  
 
3.1.4. Fully Connected Layers of N-CNN   

This phase is to provide accurate predictions, 
these layers also called dense layers integrate the 
characteristics obtained by the convolutional and 
pooling layers. The last pooling or convolutional 
layer output consists of multi-dimensional feature 
maps. Before feeding these into the fully connected 
layers, it is necessary to flatten them into a one-
dimensional vector. Let 𝐹 represent the 3D feature 
map output with dimensions 𝑑 × ℎ × 𝑤 (depth, 
height, width). The flattening operation transforms 
this 3D feature map into a 1D vector 𝑉 represented 
mathematically in Eq.(11). 

𝑉 = [𝑓ଵ, 𝑓ଶ, … , 𝑓௫×௛×௪] (11) 

where f represents the individual elements of the 
feature map. 
 

Neural connections between layers are quite 
thick in a completely linked layer. Each neuron 
processes its inputs in a fully connected layer in a 
weighted sum and then applies an activation 
function. Let W represent the weight matrix and b 
the bias vector for the fully connected layer. The 
output Z of a fully connected layer can be expressed 
as Eq.(12). 

𝑍 = 𝑊. 𝑉 + 𝑏 (12) 

where W has dimensions n×(d×h×w),V has 
dimensions (d×h×w)×1, and b has dimensions n×1. 
Here, n is the number of neurons in the fully 
connected layer. 

 
 By applying an activation function to the fully 

linked layer's output, non-linearity may be 
introduced into the network. Here is the definition of 
the Rectified Linear Unit (ReLU), an activation 
function often used mathematically expressed in 
Eq.(13). 

𝑅𝑒𝐿𝑈(𝑧) = max (0, 𝑧) (13) 

N-CNN may contain multiple fully connected 
layers to transform the extracted features gradually 
into the desired output. After processing the output 
of the preceding layer, each fully connected layer 
applies a weighted sum and then sends the result via 
an activation function. Let 𝑍(௜) represent the output 
of the 𝑖-th fully connected layer, 𝑊(௜)  the weight 
matrix, and 𝑏(௜)  the bias vector. For the 𝑖-th fully 
connected layer, the operation can be expressed as 
Eq.(14). 

𝑍(௜) = 𝑅𝑒𝐿𝑈൫𝑊(௜). 𝑍(௜ିଵ) + 𝑏(௜)൯ (14) 

where 𝑍(௜ିଵ) is the output from the previous layer. 
 
Depending on the job, the activation function 

used by the final fully linked layer is usually 
variable. If you're doing a classification job, the 
softmax activation function will turn your output 
into a probability distribution across the classes. The 
output of the final completely linked layer is denoted 
as 𝑍(௅), where 𝐿 is the total number of layers. The 
softmax function is defined as shown in Eq.(15). 

𝑠𝑜𝑓𝑡𝑚𝑎𝑥൫𝑧௝൯ =
𝑒௭ೖ

∑ 𝑒௭ೖ௡
௞ୀଵ

 (15) 

where 𝑧௝ is the 𝑗𝑡ℎ element of 𝑍(௅), and 𝑛is the 
number of classes. This function ensures that the 
output probabilities sum to one, making it suitable 
for classification tasks. Incorporating fully 
connected layers allows N-CNN to integrate and 
interpret the hierarchical features extracted by 
previous layers, enabling the network to make 
accurate predictions. 
 
3.1.5. Loss Function of N-CNN 

As a training optimization tool, the loss function 
measures how far off the actual objectives are from 
the projected outputs. The most popular loss 
function for classification tasks is the cross-entropy 
loss, which produces a probability value between 0 
and 1 as an output and quantifies the effectiveness of 
the classification model. Let 𝑦 denote the true label 
and 𝑦ො represent the predicted probability for each 
class. The cross-entropy loss 𝐿 for a single example 
can be expressed mathematically in Eq.(16). 

𝐿 = − ෍ 𝑦௜𝑙𝑜𝑔(𝑦ො௜)
஼

௜ୀଵ
 (16) 

The sentence states that for each observation 𝑖, 𝑦௜  is 
either 0 or 1, indicating the proper classification for 
that observation and that 𝑦ො௜ is the projected 
probability of that observation being in class 𝑖. Here, 
𝐶 is the number of classes. This loss function 
penalizes incorrect classifications more severely, 
thus encouraging the network to produce accurate 
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predictions. A batch of 𝑁 training examples, the 
average cross-entropy loss 𝐿௕௔௧௖௛  is shown in 
Eq.(17). 

. 

𝐿௕௔௧௖௛ = −
1

𝑁
෍ ෍ 𝑦௜௝൫𝑦ො௜௝൯

஼

௜ୀଵ

ே

௝ୀଵ
 (17) 

where 𝑦௜௝ and 𝑦ො௜௝ represent the true label and 
predicted probability for the 𝑗-th example and the 𝑖-
th class, respectively. Averaging the loss over the 
batch ensures that the gradient updates consider the 
overall performance across multiple examples, 
promoting more stable and generalized learning. 

 
 In some cases, the mean squared error (MSE) is 
used as the loss function when dealing with 
regression tasks. Let 𝑦 be the true value and 𝑦ො the 
predicted value. The mean squared error 𝐿ெௌா   is 
calculated as shown in Eq.(18) 

𝐿ெௌா = −
1

𝑁
෍ ൫𝑦௝ − 𝑦ො௝൯

ଶ
ே

௝ୀଵ
 (18) 

To reduce the margin of error in continuous value 
prediction, this loss function calculates the average 
squared difference between the actual and forecast 
values. Incorporating regularization terms into the 
loss function can prevent overfitting by penalizing 
large weights. L2 regularization, also known as 
weight decay, adds a penalty proportional to the sum 
of the squared weights. The regularized loss𝐿௥௘௚ can 
be expressed mathematically in Eq.(19). 

𝐿௥௘௚ = 𝐿 + 𝜆 ෍ 𝑤௞
ଶ

௄

௞ୀଵ
 (19) 

where 𝜆 is the regularization parameter and 𝑤௞ 
represents the weights of the network. This term 
discourages the network from assigning excessively 
high importance to any feature, promoting a more 
balanced model. By defining an appropriate loss 
function, N-CNN effectively measures the 
discrepancy between its predictions and the true 
labels, providing a basis for optimizing the network's 
parameters to minimize this discrepancy. This step is 
fundamental in training the network to achieve high 
accuracy and generalization on unseen data. 

 
3.1.6. Nesterov Accelerated Gradient (NAG) of N-
CNN 

Nesterov Accelerated Gradient (NAG) is an 
optimization technique designed to improve the 
convergence speed and stability of the training 
process. Building on the momentum method, NAG 
anticipates the future position of the parameters to 
make more informed updates. In N-CNN, applying 
NAG involves several steps, beginning with 
initializing parameters and iteratively updating them 

based on the gradients of the loss function. Let 𝜃 
represent the parameters of N-CNN, 𝑣 the velocity 
vector, 𝜂 the learning rate, and 𝜇 the momentum 
coefficient. The update rule for the velocity vector in 
the standard momentum method is expressed as 
Eq.(20). 

𝑣௧ାଵ = 𝜇𝑣௧ − 𝜂∇𝐿(𝜃௧) (20) 

where ∇𝐿(𝜃௧)denotes the gradient of the loss 
function 𝐿 concerning the parameters 𝜃௧ at iteration 
𝑡. The parameters are then updated, as shown in 
Eq.(21). 

𝜃௧ାଵ = 𝜃௧ − 𝑣௧ାଵ (21) 

The key difference in NAG is that the gradient is not 
calculated at the current parameters. 𝜃௧, but at a 
lookahead position 𝜃௧ + 𝜇𝑣௧ .This anticipatory step 
helps to correct the course before making the actual 
update, thereby improving the convergence rate. The 
lookahead gradient is expressed mathematically in 
Eq.(22). 

∇𝐿(𝜃௧ + 𝜇𝑣௧) (22) 

The velocity update in NAG is then modified to 
incorporate this lookahead gradient, represented 
mathematically in Eq.(23). 

𝜃௧ାଵ = 𝜃௧ + 𝑣௧ାଵ (23) 

These equations collectively describe the NAG 
optimization process, which involves first 
computing the lookahead gradient, updating the 
velocity vector, and adjusting the parameters. This 
approach provides a more accurate direction for 
updates by considering future positions, leading to 
faster and more stable convergence.  Applying NAG 
to N-CNN entails repeatedly executing these steps 
for each iteration of the training process; by 
consistently using the lookahead gradient, N-CNN 
benefits from more precise updates that help to avoid 
oscillations and overshooting, common issues in 
standard gradient descent methods. Consequently, 
NAG enables N-CNN to achieve better performance 
and efficiency during training, ultimately leading to 
a more robust and accurate model. This step is 
integral to the optimization strategy, ensuring that 
the network parameters converge to their optimal 
values effectively. 
 
3.1.7. N-CNN Training 

Forward and backward propagation is essential 
for training a convolutional neural network (CNN). 
To generate predictions, inputs must first travel 
through the network during forward propagation. To 
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update the network parameters, the backward 
propagation phase determines the loss function's 
gradients concerning those parameters. 
 

Forward propagation starts by passing input data 
through each network layer, from convolutional 
layers to fully connected layers, ultimately 
producing the output. Let𝑥 represent the input and 
𝑊(௟) and 𝑏(௟) denote the weights and biases of layer 
𝑙, respectively. For a convolutional layer, the output 
feature map 𝑍(௟)can be expressed as Eq.(24). 

𝑍(௟) = 𝑓൫𝑊(௟) ∗ 𝐴(௟ିଵ) + 𝑏(௟)൯ (24) 

where 𝐴(௟ିଵ) is the activation from the previous 
layer, ∗ denotes the convolution operation, and 𝑓 is 
the activation function. The output is mathematically 
represented in fully connected layers in Eq.(25). 

𝑍(௟) = 𝑊(௟)𝐴(௟ିଵ)𝑏(௟) (25) 

The final output of the network, after passing 
through all layers, is used to calculate the loss 𝐿 
concerning the true labels. 
 

Optimization is made possible via backward 
propagation, which entails computing the gradients 
of the loss function 𝐿 concerning each network 
parameter. The chain rule is applied to propagate 
gradients backward through the network. The 
gradient of the loss concerning the weights in the 
output layer 𝑊(௅) is expressed mathematically in 
Eq.(26). 

𝜕𝐿

𝜕𝑊(௅)
=

𝜕𝐿

𝜕𝐴(௅)
.
𝜕𝐴(௅)

𝜕𝑍(௅)
.

𝜕𝑍(௅)

𝜕𝑊(௅)
 (26) 

where 𝐴(௅) is the activation of the last layer, and 𝑍(௅) 
is the pre-activation output. The gradients for the 
biases 𝑏(௅) are shown in Eq.(27). 

𝜕𝐿

𝜕𝑏(௅)
=

𝜕𝐿

𝜕𝐴(௅)
.
𝜕𝐴(௅)

𝜕𝑍(௅)
.
𝜕𝑍(௅)

𝜕𝑏(௅)
 (27) 

Gradients are calculated similarly for 
intermediate layers, considering the contributions 
from subsequent layers. For a hidden layer 𝑙, the 
gradient concerning the weights 𝑊(௟) is expressed 
mathematically in Eq.(28). 

𝜕𝐿

𝜕𝑊(௟)
= 𝛿(௟ାଵ). 𝐴(௟)் (28) 

where 𝛿(௟ାଵ) is the gradient propagated from the next 
layer, and 𝐴(௟)் is the transpose of the activation of 
the current layer. 
 

After computing the gradients, parameters are 
updated using an optimization algorithm such as 
Nesterov Accelerated Gradient (NAG). The velocity 

and parameter updates are performed in Eq.(29) and 
Eq.(30). 

𝑣௧ାଵ = 𝜇𝑣௧ − 𝜂∇𝐿(𝜃௧ + 𝜇𝑣௧) (29) 

𝜃௧ାଵ = 𝜃௧ + 𝑣௧ାଵ (30) 

Training continues iteratively, with forward and 
backward propagation steps repeated for each batch 
of input data. This process adjusts the network 
parameters to minimize the loss function, ultimately 
improving the model's performance on the given 
task. 
 
3.1.8. Evaluation and Fine-Tuning 

Evaluation typically involves using a separate 
validation dataset to measure the network's 
performance and identify areas for improvement. 
Forward propagation is conducted on the validation 
dataset to obtain predictions for N-CNN. Let 𝑦ො௜ 
represent the predicted output for the 𝑖-th sample and 
𝑦௜  the true label. Standard assessment measures 
include the F1 score, recall, accuracy, and precision. 
For a classification task, accuracy 𝐴 represented 
mathematically in Eq.(31). 

𝐴 =
1

𝑁
෍ 1(𝑦ො௜ = 𝑦௜)

ே

௜ୀଵ
 (31) 

Assuming that there are 𝑁 samples in the 
validation set, the indicator function 1 gives one if 
the predicted label is identical to the real label and 0 
otherwise. The loss function used during training is 
also computed on the validation dataset to monitor 
overfitting. The cross-entropy loss 𝐿௩௔௟  for the 
validation set can be expressed as Eq.(32). 

𝐿௩௔௟ = −
1

𝑁
෍ ෍ 𝑦௜௝𝑙𝑜𝑔൫𝑦ො௜௝൯

஼

௝ୀଵ

ே

௜ୀଵ
 (32) 

where 𝑦௜௝ is the true label, and 𝑦ො௜௝ is the predicted 
probability for class 𝑗 of the 𝑖𝑡ℎ sample. 
 

Fine-tuning involves adjusting hyperparameters, 
optimizing the network architecture, and applying 
techniques to reduce overfitting. One approach is to 
use regularization methods, such as dropout, 
randomly setting a fraction of the activations to zero 
during training. Let 𝑝 represent the dropout 
probability. The dropout-modified activation 𝐴ௗ௥௢௣ 
for a layer can be expressed as Eq.(33). 

𝐴ௗ௥௢௣ = 𝐴. 𝑟 (33) 

where 𝐴 is the original activation, and 𝑟 is a mask 
vector with each element independently set to 1 with 
probability 1 − 𝑝 and 0 with probability 𝑝. 
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Adjusting the learning rate during training can 
also improve the model's performance. It is possible 
to use adaptive learning rates or learning rate 
scheduling methods. A common approach is to 
reduce the learning rate by a factor 𝛾 after a certain 
number of epochs 𝑇. 

𝜂௡௘௪ = 𝜂. 𝛾 (34) 

where in Eq.(34), 𝜂 is the current learning rate and 
𝜂௡௘௪  is the updated learning rate. 
 

Early stopping is another technique to prevent 
overfitting, terminating training when the validation 
loss ceases to improve. Let 𝐿௩௔௟(𝑡) be the validation 
loss at epoch 𝑡  as expressed in Eq.(35). 

𝐿௩௔௟(𝑡) = 𝐿௩௔௟(𝑡 − 𝑝) (35) 

For 𝑝 consecutive epochs, it was indicating no 
improvement. The model's performance on the 
validation set is optimized by evaluating and fine-
tuning N-CNN, ensuring better generalization to 
unseen data. This iterative process involves 
continuous monitoring and adjustment, culminating 
in a robust and accurate neural network model. 
 
3.2. N-CNN Model with Quokka Optimization 
(QuokkaNet) 

Quokka Optimization (QO) is a metaheuristic 
optimization algorithm inspired by the foraging 
behavior of quokkas, small marsupials native to 
Australia. QO aims to explore the search space 
efficiently and converge to optimal solutions by 
mimicking the quokkas' adaptive foraging strategies. 
Applying QO to enhance the performance of the 
Enhanced CNN (N-CNN) model for underwater 
image identification and classification involves 
several steps. 
 
3.2.1. QuokkaNet Initialization 

In the initialization step of QuokkaNet, the 
population of quokkas representing potential 
solutions to the optimization problem is initialized. 
Each quokka corresponds to a unique set of 
hyperparameters or network configurations for the 
Enhanced CNN (N-CNN) model. Let 𝑄 denote the 
population of quokkas, 𝑞௜ represent the 𝑖-th quokka 
and 𝜃௜ denote the parameters of the 𝑖-th quokka. 
 

Parameter Initialization is to initialize the 
parameters 𝜃௜ of each quokka 𝑞௜ randomly within 
predefined ranges. These parameters may include 
learning rates, activation functions, layer 
configurations, and other N-CNN-related 

hyperparameters expressed mathematically in 
Eq.(36). 

𝜃௜ = 𝑟𝑎𝑛𝑑𝑜𝑚(𝑎, 𝑏) (36) 

where 𝑎 and 𝑏 represent the lower and upper bounds 
of the parameter space, respectively. 
 

Population Creation is to create the initial 
population 𝑄 by generating a specified number of 
quokkas 𝑞௜, each with its unique parameter 
configuration 𝜃௜. The population size is determined 
based on the optimization requirements and 
computational resources, as shown mathematically 
in Eq.(37). 

𝑄 = {𝑞ଵ, 𝑞ଶ, … , 𝑞ே} (37) 

where 𝑁 is the number of quokkas in the population. 
 

Evaluate the fitness of each quokka in the 
population based on its parameter configuration 𝜃௜. 
This involves training and validating the 
corresponding N-CNN model using the 
hyperparameters of each quokka and measuring its 
performance on a validation dataset expressed as 
Eq.(38). 

𝑓(𝑞௜) = 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒_𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝜃௜) (38) 

where 𝑓(𝑞௜) represents the fitness score of quokka 
𝑞௜ . Once all quokkas in the population have been 
initialized and their fitness evaluated, the 
initialization step is complete. QuokkaNet is now 
ready to proceed to the exploration and optimization 
phases. 
 
3.2.2. QuokkaNet Exploration 
In this phase of QuokkaNet, quokkas navigate the 
search space by adjusting their positions based on 
local and global information. This process aims to 
explore different combinations of hyperparameters 
and network configurations for the Enhanced CNN 
(N-CNN) model, facilitating the discovery of 
promising solutions. Let 𝑄 denote the population of 
quokkas, 𝑞௜  represent the 𝑖-th quokka and 𝜃௜  denote 
the parameters of the 𝑖-th quokka. 
 

Quokkas explore their local surroundings by 
adjusting their parameter configurations within a 
certain neighborhood. This encourages the 
exploitation of nearby solutions while maintaining 
diversity within the population. The local 
exploration can be mathematically expressed as 
Eq.(39). 
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 𝜃௜
(௧ାଵ)

= 𝜃௜
(௧)

+ 𝜖௜  (39) 

where 𝜖௜ represents the perturbation applied to the 
parameters of quokka 𝑞௜ at iteration 𝑡. 
 

Quokkas also engage in global exploration by 
exchanging information with others in the 
population. This allows them to learn from 
successful solutions discovered by their peers and 
explore regions of the search space that have not yet 
been thoroughly explored. The global exploration 
process can be formalized as Eq.(40). 

𝜃௜
(௧ାଵ)

= 𝜃௜
(௧)

+ ෍ 𝛽௜௝ . ൫𝜃௝
(௧)

− 𝜃௜
(௧)

൯
ே

௝ୀଵ
 (40) 

 
Quokkas employs strategies to explore different 

regions of the search space to prevent premature 
convergence and maintain diversity within the 
population. This includes introducing randomness in 
parameter adjustments and encouraging quokkas to 
explore unexplored areas. The diversity maintenance 
process can be represented mathematically in 
Eq.(41). 

𝜃௜
(௧ାଵ)

= 𝜃௜
(௧)

+ 𝛾௜ . 𝑟𝑎𝑛𝑑𝑜𝑚_𝑣𝑒𝑐𝑡𝑜𝑟 (41) 

where 𝛾௜ represents the exploration rate of quokka 
𝑞௜ , and 𝑟𝑎𝑛𝑑𝑜𝑚_𝑣𝑒𝑐𝑡𝑜𝑟 is a vector of random 
perturbations. 
 

After exploring new parameter configurations, 
the fitness of each quokka is re-evaluated to assess 
the performance of the corresponding N-CNN 
model. This involves training and validating the 
model using the updated hyperparameters and 
measuring its performance on a validation dataset. 

𝑓൫𝑞௜
(௧ାଵ)

൯ = 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒_𝑓𝑖𝑡𝑛𝑒𝑠𝑠൫𝜃௜
(௧ାଵ)

൯ (42) 

where in Eq.(42), 𝑓൫𝑞௜
(௧ାଵ)

൯ represents the fitness 
score of quokka 𝑞௜ at iteration 𝑡 + 1. 
 

Once all quokkas in the population have explored 
new parameter configurations and their fitness has 
been re-evaluated, the exploration step is complete. 
QuokkaNet is now ready to proceed to the 
exploitation phase, where it refines promising 
solutions discovered during exploration. The 
exploration step of QuokkaNet enables Quokkas to 
navigate the search space and discover potentially 
promising solutions for optimizing the performance 
of the Enhanced CNN (N-CNN) model. 
 
3.2.3. QuokkaNet Exploitation 

In the exploitation phase of QuokkaNet, quokkas 
focus on refining and improving promising solutions 
discovered during exploration. This process involves 
leveraging local and global information to exploit 
regions of the search space with high-quality 
solutions, aiming to enhance further the performance 
of the Enhanced CNN (N-CNN) model. Let 𝑄 
denote the population of quokkas, 𝑞௜ represent the 𝑖-
th quokka and 𝜃௜ denote the parameters of the 𝑖-th 
quokka. 

Quokkas refines their parameter configurations 
by focusing on local improvements that are near-
promising solutions. This involves adjusting 
parameter values based on local information 
obtained during exploration. The local exploitation 
process can be formulated as Eq.(43). 

𝜃௜
(௧ାଵ)

= 𝜃௜
(௧)

+ 𝛿௜. ∇𝑓൫𝑞௜
(௧)

൯ (43) 

where 𝛿௜ represents the step size for quokka 𝑞௜ and 

∇𝑓൫𝑞௜
(௧)

൯ is the gradient of the fitness function 
concerning the parameters of quokka 𝑞௜ at iteration 
𝑡. 
 

Quokkas also benefit from global information 
shared by other quokkas in the population. By 
leveraging successful solutions discovered by their 
peers, quokkas can exploit regions of the search 
space with higher-quality solutions. The global 
exploitation process can be mathematically 
expressed as Eq.(44). 

𝜃௜
(௧ାଵ)

= 𝜃௜
(௧)

+ ෍ 𝛽௜௝ .
ே

௝ୀଵ
൫𝜃௜

(௧)
− 𝜃௜

(௧)
൯ (44) 

where 𝛽௜௝ represents the influence of quokka 𝑞௝ on 
quokka 𝑞௜, determined based on their relative fitness 
scores. 
 

Quokkas iteratively refine their parameter 
configurations to further optimize the N-CNN 
model's performance. This involves adjusting 
hyperparameters such as learning rates, activation 
functions, and network architectures to improve the 
model's accuracy and generalization. The parameter 
refinement process is represented mathematically in 
Eq.(45) 

𝜃௜
(௧ାଵ)

= 𝑟𝑒𝑓𝑖𝑛𝑒_𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠൫𝜃௜
(௧)

൯ (45) 

where 𝑟𝑒𝑓𝑖𝑛𝑒_𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 represents a 
function that refines the parameters of quokka 𝑞௜ 
based on local and global information. The fitness of 
each quokka is re-evaluated to assess the 
performance of the updated N-CNN model. This 
involves training and validating the model using the 
refined hyperparameters and measuring its 
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performance on a validation dataset. Once all 
quokkas in the population have refined their 
parameter configurations and their fitness has been 
re-evaluated, the exploitation step is complete. 
QuokkaNet is now ready to proceed to the next 
iteration, where it continues to refine and improve 
the solutions discovered during exploitation. 
 
3.2.4. QuokkaNet Fitness Evaluation 

The ensemble predictions of the AdamBoost In 
the fitness evaluation step of QuokkaNet, the 
performance of each quokka is assessed based on its 
parameter configuration and its corresponding N-
CNN model's performance on a validation dataset. 
This step is crucial in guiding the optimization 
process by providing feedback on the quality of 
solutions discovered during exploration and 
exploitation. Let 𝑄 denote the population of 
quokkas, 𝑞௜ represent the 𝑖-th quokka and 𝜃௜   denote 
the parameters of the 𝑖-th quokka. Quokkas train 
their corresponding N-CNN models using the 
parameter configurations. 𝜃௜ determined during 
exploration and exploitation. This involves feeding 
training data into the network, computing 
predictions, and comparing them with the ground 
truth labels to calculate a loss function. The training 
process can be represented mathematically in 
Eq.(46). 

𝑇𝑟𝑎𝑖𝑛൫𝑞௜
(௧)

൯ (46) 

where Train represents the training process for quota 
𝑞௜ at iteration 𝑡. 
 

After training, quokkas validate their N-CNN 
models using a separate validation dataset to assess 
their generalization performance. This involves 
passing validation data through the trained models, 
computing predictions, and evaluating them against 
the true labels expressed mathematically in Eq.(47). 

𝑉𝑎𝑙𝑖𝑑𝑎𝑡𝑒൫𝑞௜
(௧)

൯ (47) 

where 𝑉𝑎𝑙𝑖𝑑𝑎𝑡𝑒 represents the validation process for 
quokka 𝑞௜ at iteration 𝑡. 
 

Quokkas computes each individual's fitness 
based on the performance of its corresponding N-
CNN model on the validation dataset. This fitness 
score measures the solution quality the quokka's 
parameter configuration represents. The fitness 
computation can be formalized as shown in Eq.(48). 

𝑓൫𝑞௜
(௧)

൯ = 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 ቀ𝑉𝑎𝑙𝑖𝑑𝑎𝑡𝑒൫𝑞௜
(௧)

൯ቁ (48) 

where 𝑓൫𝑞௜
(௧)

൯ represents the fitness score of quokka 
𝑞௜ at iteration 𝑡. 
 

Once the fitness of each quokka has been 
computed, the population of quokkas is updated 
based on their fitness scores. Quokkas with higher 
fitness values are more likely to survive and 
propagate their parameter configurations to the next 
generation. In comparison, those with lower fitness 
values may be replaced by new offspring generated 
during optimization. 

𝑄(௧ାଵ) = 𝑆𝑒𝑙𝑒𝑐𝑡 ቀ𝑄(௧), 𝑓൫𝑞௜
(௧)

൯ቁ (49) 

where in Eq.(49), 𝑄(௧) and 𝑄(௧ାଵ) represent the 
populations of quokkas at iterations 𝑡 and 𝑡 + 1, 
respectively, and 𝑆𝑒𝑙𝑒𝑐𝑡 is a selection process that 
determines which quokkas survive and reproduce 
based on their fitness scores. 
 

QuokkaNet checks for convergence by 
monitoring the fitness scores of the population over 
multiple iterations. If the fitness scores stabilize or 
show no significant improvement over several 
iterations, the optimization process may be 
terminated, indicating that QuokkaNet has 
converged to a satisfactory solution. 

𝐶𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒 𝐶ℎ𝑒𝑐𝑘 ቀ𝑓൫𝑞௜
(௧)

൯ቁ (50) 

where in Eq.(50), 𝐶𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒 𝐶ℎ𝑒𝑐𝑘 assesses 
whether the fitness scores have converged. 

The fitness evaluation step of QuokkaNet plays a 
crucial role in guiding the optimization process by 
assessing the quality of solutions discovered during 
exploration and exploitation. By training N-CNN 
models and evaluating their performance on a 
validation dataset, QuokkaNet identifies promising 
solutions and continuously improves the model's 
accuracy and generalization capabilities. 
 
3.2.5. QuokkaNet Selection 

In the selection step of QuokkaNet, quokkas are 
chosen for propagation to the next generation based 
on their fitness scores. This process determines 
which quokkas survive and reproduce, guiding the 
evolution of the population towards higher-quality 
solutions. Let 𝑄 denote the population of quokkas, 

𝑞௜ represent the 𝑖-th quokka, 𝑓൫𝑞௜
(௧)

൯ denote the 
fitness score of quokka 𝑞௜ at iteration 𝑡, and 𝑄(௧) 
represent the population of quokkas at iteration 𝑡. 
 

Quokkas are ranked based on their fitness scores, 
with higher fitness scores indicating better-
performing individuals. This ranking allows 
QuokkaNet to prioritize individuals with superior 
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solutions for propagation to the next generation. The 
ranking process can be mathematically represented 
as Eq.(51). 

𝑅𝑎𝑛𝑘 ቀ𝑞(௧), 𝑓൫𝑞௜
(௧)

൯ቁ (51) 

where 𝑅𝑎𝑛𝑘 ranks the quokkas in 𝑄(௧) based on their 
fitness scores. 
 

Quokkas are propagated using a selection 
mechanism that considers their ranking and fitness 
scores. Various selection mechanisms can be 
employed, such as roulette wheel selection, 
tournament selection, or elitism. The selection 
mechanism ensures that quokkas with higher fitness 
scores are more likely to be selected for propagation. 

𝑆𝑒𝑙𝑒𝑐𝑡 ቀ𝑄(௧), 𝑓൫𝑞௜
(௧)

൯ቁ (52) 

where in Eq.(52), 𝑆𝑒𝑙𝑒𝑐𝑡 selects quokkas from 𝑄(௧) 
based on their fitness scores. 
 

Quokkas selected for propagation contribute 
their parameter configurations to the next 
generation, ensuring that promising solutions are 
preserved and further evolved. This involves 
creating offspring by applying genetic operators 
such as crossover and mutation to the selected 
quokkas' parameter configurations, expressed 
mathematically as Eq.(53). 

𝑃𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑒 ቀ𝑄(௧), 𝑓൫𝑞௜
(௧)

൯ቁ (53) 

where 𝑃𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑒 generates offspring based on the 
selected quokkas in 𝑄(௧). 
 

After propagation, the population of quokkas is 
updated to include the selected individuals and their 
offspring. This ensures that the population remains 
diverse and continues to explore different regions of 
the search space. The population update process can 
be expressed as Eq.(54). 

𝑄(௧ାଵ)

= 𝑈𝑝𝑑𝑎𝑡𝑒 ቆ𝑄(௧), 𝑃𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑒 ൬𝑄(௧), 𝑓 ቀ𝑞௜
(௧)

ቁ൰ቇ (54) 

where 𝑄(௧ାଵ) represents the population of quokkas at 
iteration 𝑡 + 1, and 𝑈𝑝𝑑𝑎𝑡𝑒 updates the population 
based on the selected individuals and their offspring. 
 

QuokkaNet may control the size of the 
population to manage computational resources 
efficiently and prevent overfitting. This involves 
maintaining a constant population size or 
dynamically adjusting it based on the performance 
of the optimization process is represented 
mathematically in Eq.(55).  

𝐶𝑜𝑛𝑡𝑟𝑜𝑙_𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛_𝑆𝑖𝑧𝑒൫𝑄(௧ାଵ)൯ (55) 

where 𝐶𝑜𝑛𝑡𝑟𝑜𝑙_𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛_𝑆𝑖𝑧𝑒 manages the 
size of the population at iteration 𝑡 + 1. The 
selection step of QuokkaNet plays a crucial role in 
guiding the evolution of the population towards 
higher-quality solutions by selecting quokkas based 
on their fitness scores. 
 
3.2.6. Adaptation of QuokkaNet 

Quokkas adjust their behavior based on the 
success or failure of previous foraging attempts. This 
adaptive process ensures that QuokkaNet efficiently 
balances exploration and exploitation strategies to 
navigate the search space effectively. Let 𝑄 denote 
the population of quokkas, 𝑞௜ represent the 𝑖-th 

quokka, 𝑓൫𝑞௜
(௧)

൯ denote the fitness score of quokka 
𝑞௜ at iteration 𝑡, and 𝑄(௧)  represent the population of 
quokkas at iteration 𝑡. 
 

Quokkas update their exploration and 
exploitation strategies based on the success or failure 
of previous foraging attempts. This involves 
adjusting parameters or probabilities associated with 
exploration and exploitation mechanisms to 
optimize the search process, expressed 
mathematically in Eq.(56). 

𝑈𝑝𝑑𝑎𝑡𝑒_𝑆𝑡𝑟𝑎𝑡𝑒𝑔𝑦 ቀ𝑄(௧), 𝑓൫𝑞௜
(௧)

൯ቁ (56) 

where 𝑈𝑝𝑑𝑎𝑡𝑒_𝑆𝑡𝑟𝑎𝑡𝑒𝑔𝑦 adjusts the exploration 
and exploitation strategies based on the performance 
of the population. 
 

Quokkas employ adaptive mechanisms to 
dynamically adjust their behavior in response to 
changes in the search landscape. These mechanisms 
may include adaptive step sizes, mutation rates, or 
selection probabilities, allowing QuokkaNet to adapt 
its exploration and exploitation strategies over time.  

𝐴𝑑𝑎𝑝𝑡_𝑀𝑒𝑐ℎ𝑎𝑛𝑖𝑠𝑚𝑠 ቀ𝑄(௧), 𝑓൫𝑞௜
(௧)

൯ቁ (57) 

where in Eq.(57), 𝐴𝑑𝑎𝑝𝑡_𝑀𝑒𝑐ℎ𝑎𝑛𝑖𝑠𝑚𝑠 updates 
adaptive parameters or probabilities based on the 
performance of the population. 
 

Quokkas learn from their experiences by tracking 
the success or failure of previous foraging attempts 
and adjusting their behavior accordingly. This 
learning process enables QuokkaNet to recognize 
promising regions of the search space and focus its 
exploration and exploitation efforts on areas with 
higher potential for finding optimal solutions.  
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𝐿𝑒𝑎𝑟𝑛_𝑓𝑟𝑜𝑚_𝐸𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒 ቀ𝑄(௧), 𝑓൫𝑞௜
(௧)

൯ቁ (58) 

where in Eq.(58), 𝐿𝑒𝑎𝑟𝑛_𝑓𝑟𝑜𝑚_𝐸𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒 
updates quokkas' behavior based on the outcomes of 
previous iterations. 
 

QuokkaNet maintains an adaptive balance 
between exploration and exploitation strategies to 
ensure effective navigation of the search space. This 
involves dynamically adjusting the trade-off 
between exploring new regions and exploiting 
known solutions based on the current state of the 
optimization process. The adaptive exploration-
exploitation balance can be expressed 
mathematically in Eq.(59). 

𝐴𝑑𝑎𝑝𝑡_𝐸𝑥𝑝𝑙𝑜𝑟𝑎𝑡𝑖𝑜𝑛_𝐸𝑥𝑝𝑙𝑜𝑖𝑡𝑎𝑡𝑖𝑜𝑛_𝐵𝑎𝑙𝑎𝑛𝑐𝑒 ൬𝑄(௧), 𝑓 ቀ𝑞௜
(௧)

ቁ൰ (59) 

where 𝐴𝑑𝑎𝑝𝑡_𝐸𝑥𝑝𝑙𝑜𝑟𝑎𝑡𝑖𝑜𝑛 − 𝐸𝑥𝑝𝑙𝑜𝑖𝑡𝑎𝑡𝑖𝑜𝑛_𝐵𝑎𝑙𝑎𝑛𝑐𝑒 
adjusts the exploration and exploitation balance 
based on the population's performance. The 
adaptation step of QuokkaNet ensures that the 
optimization process remains flexible and 
responsive to changes in the search landscape.  
 
3.2.7. QuokkaNet Migration 

In the migration phase of QuokkaNet, quokkas 
exchange information and genetic material to 
facilitate diversity and prevent premature 
convergence. This process involves the movement of 
individuals between different subpopulations or 
habitats, allowing for the exchange of beneficial 
traits and promoting the exploration of new regions 
in the search space. Let 𝑄 denote the population of 

quokkas, 𝑞௜ represent the 𝑖-th quokka, 𝑓൫𝑞௜
(௧)

൯ 
denote the fitness score of quokka 𝑞௜ at iteration 𝑡, 
and 𝑄(௧) represent the population of quokkas at 
iteration 𝑡.  QuokkaNet divides the population of 
quokkas into multiple subpopulations or habitats, 
each representing a distinct search space region. This 
division allows for localized exploration and 
exploitation within each subpopulation while 
maintaining diversity at the global level is shown in 
mathematical form as Eq.(60).  

𝐹𝑜𝑟𝑚_𝑆𝑢𝑏𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑠൫𝑄(௧)൯ (60) 

where 𝐹𝑜𝑟𝑚_𝑆𝑢𝑏𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑠 partitions the 
population into subpopulations. 
 

Quokkas migrate between subpopulations to 
exchange genetic material and information, 
promoting diversity and spreading beneficial traits. 
The migration mechanism can involve periodic 
exchange of individuals, directed migration towards 

regions with higher potential, or random movement 
to explore new areas, expressed mathematically in 
Eq.(61). 

𝑀𝑖𝑔𝑟𝑎𝑡𝑒൫𝑄(௧)൯ (61) 

where 𝑀𝑖𝑔𝑟𝑎𝑡𝑒 facilitates the movement of quokkas 
between subpopulations. 
 

During migration, quokkas exchange genetic 
material through mechanisms such as crossover and 
recombination, leading to the creation of offspring 
with diverse genetic characteristics. This genetic 
exchange promotes the spread of beneficial traits and 
facilitates adaptation to changing environmental 
conditions. The genetic exchange process can be 
represented mathematically as Eq.(62). 

𝐺𝑒𝑛𝑒𝑡𝑖𝑐_𝐸𝑥𝑐ℎ𝑎𝑛𝑔𝑒൫𝑄(௧)൯ (62) 

where 𝐺𝑒𝑛𝑒𝑡𝑖𝑐_𝐸𝑥𝑐ℎ𝑎𝑛𝑔𝑒 facilitates the exchange 
of genetic material between quokkas. 
 

Migration promotes diversity within the 
population by introducing new genetic material and 
facilitating the exploration of new regions in the 
search space. This diversity helps prevent premature 
convergence and ensures that the optimization 
process continues to explore a wide range of 
solutions. 

𝑃𝑟𝑜𝑚𝑜𝑡𝑒_𝐷𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦൫𝑄(௧)൯ (63) 

where in Eq.(63), 𝑃𝑟𝑜𝑚𝑜𝑡𝑒_𝐷𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦 maintains 
diversity within the population through migration. 
 

QuokkaNet adapts its migration strategy based 
on the current state of the optimization process and 
the characteristics of the search landscape. This 
adaptive strategy allows QuokkaNet to adjust the 
frequency and direction of migration to maximize 
exploration and exploitation efficiency.  

𝐴𝑑𝑎𝑝𝑡_𝑀𝑖𝑔𝑟𝑎𝑡𝑖𝑜𝑛_𝑠𝑡𝑟𝑎𝑔𝑒𝑡𝑦 ቀ𝑄(௧), 𝑓൫𝑞௜
(௧)

൯ቁ (64) 

where in Eq.(64), 𝐴𝑑𝑎𝑝𝑡_𝑀𝑖𝑔𝑟𝑎𝑡𝑖𝑜𝑛_𝑠𝑡𝑟𝑎𝑔𝑒𝑡𝑦 
adjusts the migration strategy based on the fitness 
scores of the population. The migration step of 
QuokkaNet facilitates the exchange of genetic 
material and information between quokkas, 
promoting diversity and exploration of new regions 
in the search space. 
 
3.2.8. QuokkaNet Termination 

This phase ensures that the optimization process 
halts when certain conditions are met, indicating that 
QuokkaNet has sufficiently explored the search 
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space or achieved satisfactory performance. Let 𝑄 
denote the population of quokkas, 𝑞௜ represent the 𝑖-

th quokka, 𝑓൫𝑞௜
(௧)

൯ denote the fitness score of quokka 
𝑞௜ at iteration 𝑡, and 𝑄(௧) represent the population of 
quokkas at iteration 𝑡. QuokkaNet checks for 
convergence by monitoring the fitness scores of the 
population over multiple iterations. Suppose the 
fitness scores stabilize or show no significant 
improvement over several iterations. The 
optimization process may be terminated in that case, 
indicating that QuokkaNet has converged to a 
satisfactory solution, expressed as Eq.(65). 

𝐶𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒_𝐶ℎ𝑒𝑐𝑘 ቀ𝑓൫𝑞௜
(௧)

൯ቁ (65) 

where 𝐶𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒_𝐶ℎ𝑒𝑐𝑘 assesses whether the 
fitness scores have converged. 
 

QuokkaNet may be terminated after a predefined 
maximum number of iterations to limit 
computational resources and prevent overfitting. 
The optimization process is halted once the 
maximum number of iterations is reached and the 
best-performing solution discovered so far is 
returned. The termination based on maximum 
iterations can be expressed as Eq.(66). 

𝑀𝑎𝑥_𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠_𝐶ℎ𝑒𝑐𝑘(𝑡) (66) 

where 𝑀𝑎𝑥_𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠_𝐶ℎ𝑒𝑐𝑘 checks if the current 
iteration exceeds the maximum allowable iterations. 
 

The optimization process may be terminated if 
QuokkaNet performs satisfactorily on a validation 
dataset. This criterion ensures that the optimization 
process halts once the model's performance meets or 
exceeds predefined performance thresholds, as 
expressed mathematically in Eq.(67).  

𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒_𝐶ℎ𝑒𝑐𝑘 ቀ𝑓൫𝑞௜
(௧)

൯ቁ (67) 

where 𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒_𝐶ℎ𝑒𝑐𝑘 evaluates whether the 
model's performance meets predefined thresholds. 
 

QuokkaNet may be terminated if computational 
or memory resources are exhausted, preventing 
further optimization. This ensures the optimization 
process does not consume excessive resources 
beyond predefined limits. The termination based on 
resource constraints can be represented as Eq.(68). 

𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒_𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠_𝐶ℎ𝑒𝑐𝑘 (68) 

The optimization process may be terminated 
based on user intervention, allowing users to 
manually halt the process if necessary. This criterion 
allows users to intervene and terminate the 

optimization process based on their judgment. The 
termination based on user intervention can be 
expressed as Eq.(69). 

𝑈𝑠𝑒𝑟_𝐼𝑛𝑡𝑒𝑟𝑣𝑒𝑛𝑡𝑖𝑜𝑛_𝐶ℎ𝑒𝑐𝑘 (69) 

where 𝑈𝑠𝑒𝑟_𝐼𝑛𝑡𝑒𝑟𝑣𝑒𝑛𝑡𝑖𝑜𝑛_𝐶ℎ𝑒𝑐𝑘 allows users to 
halt the optimization process manually. 
 
The termination step of QuokkaNet ensures that the 
optimization process concludes appropriately based 
on predefined stopping criteria. Fig 2. Illustrates the 
processed underwater images. 
  

 
Fig 2. Processed Underwater Images 

 
4. DATASET 

The Large Scale Underwater Image Dataset 
(LSUI) is an essential dataset designed to support 
underwater image processing, identification, and 
classification research. With thousands of images 
captured in diverse marine environments, the LSUI 
dataset is valuable for developing and testing 
machine learning models. These images include a 
variety of scenes, such as different species of marine 
life, underwater landscapes, and man-made objects, 
making the dataset comprehensive and versatile. 
One of the key challenges in underwater imaging is 
the effect of environmental factors on image quality. 
The LSUI dataset addresses this by including images 
taken under various conditions, such as varying 
depths, different times of day, and various water 
clarity levels. This diversity in imaging conditions is 
critical for training machine learning models that can 
generalize well to underwater environments. The 
dataset helps overcome the difficulties associated 
with light absorption, scattering, and turbidity, 
which often degrade underwater image quality. 
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Each image in the LSUI dataset is accompanied 
by detailed annotations, providing labels for objects 
and features within the image. This metadata 
includes information about the capture conditions, 
such as location, depth, and environmental factors. 
These annotations are invaluable for supervised 
learning tasks, enabling precise training models for 
underwater image identification and classification. 
The comprehensive labeling ensures that the dataset 
can be effectively used to develop algorithms 
capable of accurate and reliable performance. The 
LSUI dataset is not only beneficial for machine 
learning but also for various scientific and 
conservation applications. In marine biology, 
researchers can use the dataset to study species 
distribution, monitor changes in aquatic ecosystems, 
and assess the health of coral reefs. Environmental 
monitoring efforts benefit from the ability to track 
underwater pollution, observe habitat changes, and 
evaluate the impact of human activities on marine 
environments. The underwater archaeologists can 
utilize the dataset to document and analyze 
submerged cultural heritage sites. 
 

The LSUI dataset addresses the significant 
challenges of underwater imaging by providing a 
diverse and well-annotated collection of images. 
This resource is crucial for advancing the field of 
underwater image processing, enabling the 
development of more effective algorithms for 
identification and classification. Its wide-ranging 
applications in scientific research, conservation, and 
archaeology highlight the dataset's importance in 
enhancing the understanding and preservation of 
underwater environments. 
 
5. RESULTS AND DISCUSSION: 

The results from the evaluation of DeepSeaNet, 
MCANet, and QuokkaNet reveal significant 
differences in performance metrics, highlighting the 
efficacy of each model in underwater image 
classification tasks. 
 
5.1. Classification Accuracy and F-Measure 

The true positive (TP) counts were 1342.723 for 
DeepSeaNet, 1514.811 for MCANet, and 2001.750 
for QuokkaNet. This progression indicates a clear 
improvement in correctly identifying positive 
instances, with QuokkaNet demonstrating superior 
performance. The true negative (TN) values 
followed a similar trend, with DeepSeaNet achieving 
1383.806, MCANet 1549.288, and QuokkaNet 
2057.295, suggesting QuokkaNet's enhanced 
capability to identify negative instances correctly. 
The false positive (FP) counts were 1067.653 for 

DeepSeaNet, 964.721 for MCANet, and 494.345 for 
QuokkaNet. Lower FP rates indicate fewer incorrect 
identifications, and QuokkaNet again shows its 
advantage. For false negatives (FN), DeepSeaNet 
had 1209.817, MCANet 975.180, and QuokkaNet 
450.610, underscoring QuokkaNet's improved 
performance in minimizing missed positive 
instances. 

.  
Fig 3. Illustrates the outcome of Classification 
Accuracy and F-Measure. The True Positive Rate 
(TPR) or sensitivity, which measures the proportion 
of actual positives correctly identified, was 52.603% 
for DeepSeaNet, 60.836% for MCANet, and 
81.625% for QuokkaNet. This metric illustrates 
QuokkaNet's effectiveness in capturing positive 
instances. The True Negative Rate (TNR), indicating 
the proportion of actual negatives correctly 
identified, was 56.448% for DeepSeaNet, 61.626% 
for MCANet, and 80.626% for QuokkaNet, further 
affirming QuokkaNet's superiority in correctly 
identifying negative instances. The False Positive 
Rate (FPR), reflecting the proportion of incorrect 
positive identifications among actual negatives, was 
43.552% for DeepSeaNet, 38.374% for MCANet, 
and 19.374% for QuokkaNet. Lower FPR values are 
preferable, highlighting QuokkaNet's effectiveness 
in minimizing false positives. The False Negative 
Rate (FNR), indicating the proportion of missed 
positive instances, was 47.397% for DeepSeaNet, 
39.164% for MCANet, and 18.375% for 
QuokkaNet, underscoring QuokkaNet's lower rate of 
missed positives. 
 

 
Fig 3. Classification Accuracy and F-Measure. 

 
Precision, the proportion of correct positive 
identifications among all positive identifications, 
was 55.706% for DeepSeaNet, 61.093% for 
MCANet, and 80.195% for QuokkaNet. Higher 
precision indicates more reliable positive 
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identifications, with QuokkaNet demonstrating 
superior precision. Classification Accuracy (CA), 
measuring the overall correctness of classifications, 
was 54.487% for DeepSeaNet, 61.233% for 
MCANet, and 81.116% for QuokkaNet, with 
QuokkaNet showing a significant accuracy 
advantage. 
 

The F-Measure, combining precision and recall 
into a single metric, was 54.110 for DeepSeaNet, 
60.964 for MCANet, and 80.904 for QuokkaNet. 
The F-Measure results highlight QuokkaNet's 
balanced performance in both precision and recall. 
 

Table 1. Classification Accuracy and F-Measure. 
Classification 
Algorithms CA FM 
DeepSeaNet 54.487 54.110 

MCANet 61.233 60.964 
QuokkaNet 81.116 80.904 

 
In Table 1, which tabulates the CA and FM 

values, DeepSeaNet had a CA of 54.487% and an 
FM of 54.110. MCANet improved with a CA of 
61.233% and an FM of 60.964. QuokkaNet achieved 
the highest performance, with a CA of 81.116% and 
an FM of 80.904, demonstrating its superior 
classification capabilities. The results indicate that 
QuokkaNet outperforms DeepSeaNet and MCANet 
across all evaluated metrics. QuokkaNet's higher TP 
and TN values and lower FP and FN rates contribute 
to its superior TPR, TNR, FPR, FNR, precision, 
classification accuracy, and F-Measure. The analysis 
confirms that QuokkaNet significantly improves 
underwater image classification, making it the most 
effective model among the three. 
 
5.2. Fowlkes-Mallows Index and Matthews 
Correlation Coefficient 

DeepSeaNet achieved a Fowlkes-Mallows Index 
(FMI) of 54.132 and a Matthews Correlation 
Coefficient (MCC) of 9.056. The FMI, which 
evaluates the geometric mean of precision and recall, 
indicates moderate performance. The MCC, 
reflecting the quality of binary classifications, 
underscores the limited correlation between 
predicted and actual classes for DeepSeaNet. These 
results suggest that while DeepSeaNet provides 
reasonable accuracy, its predictive power remains 
modest. MCANet improved these results with an 
FMI of 60.964 and an MCC of 22.463. The higher 
FMI demonstrates a better balance between 
precision and recall than DeepSeaNet. The increased 
MCC signifies a stronger correlation between 
predictions and actual outcomes, highlighting 

MCANet's enhanced classification capabilities. This 
improvement suggests MCANet's greater 
effectiveness in correctly identifying underwater 
images. 

 
Fig 4. Illustrates the outcome of the Fowlkes-

Mallows Index and Matthews Correlation 
Coefficient. QuokkaNet surpassed DeepSeaNet and 
MCANet, achieving an FMI of 80.907 and an MCC 
of 62.240. The highest FMI among the three 
indicates QuokkaNet's superior precision-recall 
balance. The substantial MCC value signifies a 
robust correlation between predicted and actual 
classifications, reflecting QuokkaNet's exceptional 
performance in underwater image classification 
tasks. These metrics illustrate QuokkaNet's 
dominance in accurately classifying underwater 
images. 

 

 
Fig 4. Fowlkes-Mallows Index and Matthews 

Correlation Coefficient. 
 

The Fowlkes-Mallows Index (FMI) and 
Matthews Correlation Coefficient (MCC) provide 
critical insights into the models' performance. 
Analyzing the FMI values of 54.132 for 
DeepSeaNet, 60.964 for MCANet, and 80.907 for 
QuokkaNet reveals a progressive improvement in 
the balance of precision and recall, with QuokkaNet 
demonstrating the best results. Similarly, the MCC 
values of 9.056 for DeepSeaNet, 22.463 for 
MCANet, and 62.240 for QuokkaNet highlight a 
substantial enhancement in prediction quality, with 
QuokkaNet showing a significant advantage. 
 

Classification 
Algorithms FMI MCC 
DeepSeaNet 54.132 9.056 

MCANet 60.964 22.463 
QuokkaNet 80.907 62.240 

 
Table 2. Fowlkes-Mallows Index and Matthews 

Correlation Coefficient 
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Table 2 illustrates the consolidated FMI and 

MCC of QuokkaNet. The classification algorithms' 
FMI and MCC values reiterate the superior 
performance of QuokkaNet, followed by MCANet, 
with DeepSeaNet lagging. These comparative 
metrics underscore QuokkaNet's exceptional ability 
to classify underwater images, affirming its 
robustness and reliability accurately. The evaluation 
metrics comprehensively compare DeepSeaNet, 
MCANet, and QuokkaNet. The results demonstrate 
QuokkaNet's superior performance across various 
metrics, including FMI and MCC. These findings 
confirm QuokkaNet's effectiveness and accuracy in 
underwater image classification, making it the most 
reliable model among the three. 
 
6. CONCLUSION 

The comparative analysis of DeepSeaNet, 
MCANet, and QuokkaNet for underwater image 
classification tasks reveals significant advancements 
in performance metrics with QuokkaNet. By 
leveraging enhanced convolutional neural networks 
and Quokka Optimization, QuokkaNet demonstrates 
superior capabilities regarding true positive and true 
negative rates, precision, classification accuracy, 
and F-measure. The improved precision-recall 
balance and strong correlation between predicted 
and actual outcomes, as indicated by higher 
Fowlkes-Mallows Index and Matthews Correlation 
Coefficient values, further affirm QuokkaNet's 
robustness.  Integrating convolutional, pooling, 
normalization, and fully connected layers and 
applying Nesterov Accelerated Gradient in the N-
CNN model form a solid foundation for effective 
image classification. Quokka Optimization enhances 
this model through systematic exploration, 
exploitation, fitness evaluation, selection, 
adaptation, and migration, ensuring optimal 
performance. This study highlights the significant 
advancements achieved through QuokkaNet in 
underwater image classification, demonstrating a 
clear performance edge over DeepSeaNet and 
MCANet. The results confirm that QuokkaNet's 
innovative approach and optimization techniques 
offer a reliable and accurate solution for complex 
image classification tasks, making it a valuable tool 
for underwater research and exploration 
applications. 
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