
 Journal of Theoretical and Applied Information Technology
31st January 2025. Vol.103. No.2

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

650

RELIABLE UNDERWATER IMAGE CLASSIFICATION WITH
ENHANCED CNN MODELS USING QUOKKA

OPTIMIZATION

SARAVANAN P1, VADIVAZHAGAN K2
1Research Scholar & Assistant Professor, Department of Computer and Information Science

Annamalai University, Chidambaram, Tamilnadu, India
2Assistant Professor, Department of Computer and Information Science,

Annamalai University, Chidambaram, Tamilnadu, India
E-mail: 1aucse.saran@gmail.com, 2vadivazhagan.k@gmail.com

ABSTRACT

This article presents an innovative deep-learning model, QuokkaNet, for underwater image classification
tasks. By optimizing the Enhanced CNN (N-CNN) model using Quokka Optimization (QO), QuokkaNet
demonstrates significant advancements in performance. The N-CNN model incorporates the layers such as
convolutional, pooling, normalization, fully connected, and Nesterov Accelerated Gradient, creating a robust
framework for image classification. Quokka Optimization further enhances this model through systematic
exploration, exploitation, fitness evaluation, selection, adaptation, and migration. The study highlights
QuokkaNet's superior capabilities and effectiveness in underwater image classification compared to
DeepSeaNet and MCANet. These findings confirm QuokkaNet's potential as a reliable and accurate
underwater research and exploration tool, offering significant improvements in the classification of complex
underwater images. The innovative approach and optimization techniques employed in QuokkaNet set a new
benchmark for performance in this domain.

Keywords: Underwater Image Classification, CNN, QuokkaNet, Nesterov Accelerated Gradient, Quokka

Optimization, Image Analysis, Classification Accuracy, N-CNN

1. INTRODUCTION

The underwater environment poses unique
challenges for capturing and analyzing images due to
factors such as light absorption, scattering, and the
presence of marine particles [1]. These challenges
necessitate specialized underwater image
identification and classification techniques, which
are critical for various scientific, environmental, and
industrial applications [2].

Images are visual representations of objects or

scenes captured and stored in digital formats for
analysis. Underwater images, however, are subject to
the complexities of the underwater environment [3].
Water absorbs light, especially at longer
wavelengths, leading to significant color distortion.
Particles in the water scatter light, reducing image
clarity and contrast. Capturing high-quality
underwater images requires specialized equipment
and techniques to mitigate these issues [4]. Image
identification is recognizing and labeling objects or
features within an image. This involves using
algorithms to detect patterns and match them to
known categories. The identification process is
particularly challenging for underwater images due
to the environmental factors that affect image quality
[5]. Techniques such as color correction, dehazing,

and noise reduction are essential for improving the
visibility and accuracy of underwater image
identification. Advanced machine learning
algorithms play a crucial role in accurately
processing these enhanced images to identify various
objects and features [6].

Image classification involves categorizing

images into predefined groups based on their
content. This requires extracting significant features
from the images and training machine learning
models on these features. Underwater image
classification presents additional challenges
compared to terrestrial image classification [6]. The
diversity of marine life and underwater
environments and the varying conditions under
which images are captured necessitate robust and
adaptive classification techniques. Convolutional
neural networks (CNNs) have shown significant
success in this domain, providing reliable
classification results for underwater images. Image
identification and classification involve recognizing
and categorizing objects or patterns within an image
[7].

 Journal of Theoretical and Applied Information Technology
31st January 2025. Vol.103. No.2

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

651

Machine learning and deep learning methods,
especially CNNs, are usually used in these
procedures. The steps include:

 Feature Extraction: Identifying essential
features or attributes within an image.

 Training: Using labeled datasets to teach a
model to recognize patterns and objects.

 Prediction: Applying the trained model to
classify new images into predefined
categories.

Underwater images differ fundamentally from

those captured in terrestrial environments [8]. The
underwater setting introduces unique factors that
affect image quality, such as light attenuation, color
shifting, and suspended particles. These factors
necessitate preprocessing steps to enhance the
quality of underwater images [9]. Methods such as
histogram equalization, adaptive contrast
enhancement, and color restoration are commonly
used to improve the visibility and detail of
underwater images, making them suitable for
subsequent identification and classification tasks
[10].

Underwater image identification is essential for

recognizing and monitoring marine species,
detecting underwater structures, and assessing
environmental changes. Accurate identification is
vital for applications in marine biology, underwater
archaeology, and environmental monitoring [11].
Advanced image processing and machine learning
techniques enable the identification of various
objects and features in underwater images,
overcoming the challenges posed by the underwater
environment. Underwater image classification
focuses on categorizing images into specific classes,
such as different species of fish, types of coral reefs,
or various underwater landscapes [12]. Developing
accurate classification models requires
comprehensive training datasets that capture the
diversity of underwater scenes. Deep learning
models, particularly CNNs, are trained on these
datasets to develop the ability to classify new images
accurately [13]. These classification systems are
crucial for scientific research, conservation efforts,
and industrial applications such as underwater
exploration and resource management. Underwater
image classification and identification present
unique challenges due to poor visibility, color
distortion, and light absorption [14]. Key steps in this
process include:

 Preprocessing: Correcting distortions and
enhancing image quality through color
correction and noise reduction.

 Segmentation: Isolating objects or regions
of interest from the background may be
cluttered with marine life or sediments.

 Feature Extraction: Identifying unique
features of underwater objects, which can
be challenging due to varying lighting
conditions and object appearances.

 Classification: Using trained models to
categorize objects, such as different fish
species, corals, or underwater structures.

The challenges associated with underwater
imaging require innovative approaches for image
identification and classification [15]. Advances in
image processing and machine learning have
significantly improved the ability to handle
underwater images, leading to more precise and
reliable results [16]. Researchers and engineers are
developing effective methods for underwater image
identification and classification by addressing the
specific difficulties of underwater environments.
These innovations are essential for advancing the
capabilities of underwater research, conservation,
and exploration technologies [17]

1.1. Problem Statement

Underwater image classification poses
significant challenges due to the unique and harsh
environment found beneath the surface. Variability
in lighting conditions, presence of particulate matter,
and limited visibility complicate the accurate
classification of underwater images. These factors
often lead to poor image quality, making extracting
meaningful features necessary for effective
classification difficult. Underwater environments are
highly dynamic, with fluctuating conditions that can
drastically change the appearance of objects, further
complicating the task. Traditional image
classification techniques struggle to adapt to these
complexities, often resulting in high false positive
and false negative rates. This affects the reliability of
underwater imaging applications, critical in marine
biology, underwater exploration, and environmental
monitoring. The need for robust and accurate
classification models is evident to overcome these
issues and ensure reliable data interpretation.

Optimization of these models becomes
imperative to enhance their performance and adapt
to challenging underwater conditions. Without
effective optimization strategies, models may fail to
generalize well across different scenarios, leading to

 Journal of Theoretical and Applied Information Technology
31st January 2025. Vol.103. No.2

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

652

inconsistent results. Addressing these problems
requires innovative approaches to optimize the
performance of classification models, ensuring they
can handle the inherent difficulties of underwater
image data and deliver reliable and accurate
classification outcomes.

2. LITERATURE REVIEW
“Hybrid Carbon” [18] focuses on developing

hybrid carbon nanotube self-adhesive sensors
specifically designed for underwater target
detection. These sensors leverage carbon nanotubes'
unique electrical properties and sensitivity,
combined with adhesive capabilities, to improve
detection efficiency in aquatic environments. The
hybrid nature of the sensors allows for enhanced
adhesion to various surfaces, ensuring stable and
reliable placement in dynamic underwater
conditions. “Quadratic Boost Routing” [19]
introduces a novel quadratic ensemble weighted
emphasis boosting technique aimed at achieving
energy and bandwidth-efficient routing in
underwater sensor networks (UWSNs). The method
optimizes data transmission processes to reduce
energy consumption and extend network lifespan.

“Enhanced Aggregation”[20] presents an

innovative algorithm that combines feature
enrichment with a dynamic accumulation strategy.
The algorithm enhances detection accuracy by
progressively refining features' representation
through multiple processing stages. “Self-Attention
Detection” [21] introduces a self-attention and long-
range relationship capture network specifically
designed for underwater object detection. This
advanced network architecture utilizes self-attention
mechanisms to capture detailed spatial relationships
within underwater scenes. “Boosting R-CNN”[22]
explores an innovative reweighting technique for R-
CNN samples based on errors identified by the
Region Proposal Network (RPN). The proposed
Boosting R-CNN method focuses on improving
underwater object detection by addressing sample
weighting, which enhances the learning process of
the detection model.

“Slugging Impact Modeling”[23] identifies and

models the maximum impact force associated with
critical slugging in underwater compressed gas
energy storage systems. Slugging, characterized by
the rapid movement of liquid and gas phases, poses
significant challenges to these systems' structural
integrity and efficiency. This study focuses on
understanding the dynamics of slugging phenomena

and developing a comprehensive model to predict
the maximum impact force exerted during slugging
events. “PlasPi TDM”[24] enhances the capabilities
of the low-cost camera platform, PlasPi TDM, to
facilitate advanced underwater physical-ecological
observations. The research aims to improve the
quality and efficiency of underwater data collection
by augmenting the existing platform with improved
imaging and data processing capabilities. “Deep Sea
Debris”[25] discusses a deep neural network-based
approach for the instant detection of deep-sea debris
to support maneuverable underwater machines in
maintaining sustainable ocean environments. The
proposed method leverages deep learning techniques
to quickly and accurately identify debris in deep-sea
environments.

“YOLO-Fish”[26] focuses on YOLO-Fish, a

robust fish detection model designed to operate in
realistic underwater environments. The model builds
upon the YOLO (You Only Look Once)
architecture, renowned for its speed and accuracy in
object detection. YOLO-Fish is tailored to address
the unique challenges of underwater imaging, such
as low visibility, variable lighting conditions, and
diverse fish appearances. “Sea Cucumber”[27]
involves developing a monitoring system for cage-
cultured sea cucumbers using an underwater time-
lapse camera combined with deep learning-based
image analysis. This innovative approach aims to
enhance aquaculture management by providing
continuous and automated monitoring of sea
cucumber populations.

“AVOA-LSTM Sunglass”[28] presents an

innovative approach for segmenting and classifying
the eye region in sunglass images using AVOA-
LSTM with MRCNN. The method combines the
strengths of adaptive variable optimization
algorithm (AVOA), long short-term memory
(LSTM), and Mask R-CNN (MRCNN) to handle the
challenges of image-based identification effectively.
The approach aims to segment and classify the eye
region obscured by sunglasses accurately, a task
often complicated by reflections and partial
occlusions. “Underwater Acoustic Denoising”[29]
proposes a novel denoising method for underwater
acoustic signals using a combination of empirical
mode decomposition (EEMD), correlation
coefficient analysis, permutation entropy, and
wavelet threshold denoising. This comprehensive
approach addresses the unique challenges
underwater acoustic environments pose, such as
noise from water movement, marine life, and human
activities.

 Journal of Theoretical and Applied Information Technology
31st January 2025. Vol.103. No.2

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

653

“Backscatter Recognition”[30] introduces a deep

fuzzy extreme convolutional neural network
optimized via the hunger games search algorithm for
underwater backscatter recognition. The proposed
method enhances recognition accuracy by
integrating fuzzy logic principles with deep learning
techniques. The hunger games search algorithm
optimizes the network's parameters, improving its
ability to recognize and classify backscatter signals
in underwater environments. “Striation Images”[31]
employs deep learning techniques on striation
images for classifying underwater and surface
targets. Striation images, characterized by delicate
linear patterns, provide valuable visual features for
distinguishing between different types of targets.
“Fish Disease Recognition”[32] presents a CNN-
OSELM multi-layer fusion network with an
attention mechanism for recognizing fish diseases in
aquaculture. The proposed method combines
convolutional neural networks (CNNs) with an
online sequential extreme learning machine
(OSELM) to enhance the accuracy of disease
diagnosis. The attention mechanism further
improves the model's ability to focus on relevant
features, enabling precise identification of various
fish diseases. Optimization is crucial in most
research to achieve the expected results.
Optimization is common to in all domain research
[33]-[61].

“Image Retrieval” [62] discusses an adaptable

image retrieval system that utilizes kernel machines
and selective sampling with relevance feedback. The
system is designed to improve the accuracy and
efficiency of retrieving relevant images from large
datasets. The system learns user preferences by
incorporating relevant feedback and iteratively
refines the search results. Kernel machines enhance
the system's ability to handle complex and nonlinear
relationships between images, while selective
sampling focuses on the most informative samples to
optimize retrieval. “Bubble-Forming Regime”[63]
identifies bubble-forming regimes based on textural
features of an image and the feature selection method
of MCWA. The research aims to refine the analysis
and understanding of bubble dynamics, which are
critical in various industrial and scientific
applications.

“DeepSeaNet”[64] a bio-detection network

designed for species identification in deep-sea
imagery. The network uses advanced deep learning
techniques to analyze and classify images from the
deep sea, ensuring precise species identification in

difficult underwater conditions. “MCANet”[65]
utilizes a multi-channel attention network combined
with a multi-color space encoder. This method
improves underwater image classification by using
various color space information and concentrating
on essential image regions, resolving issues like
color distortion and poor visibility.

2.1. Intention and Goal

The unique challenges of underwater
environments present significant hurdles for image
classification, highlighting the need for advanced
methodologies to improve accuracy and reliability.
Poor lighting, particulate matter, and dynamic
underwater conditions often lead to degraded image
quality, complicating the feature extraction and
classification processes. These issues necessitate
robust models capable of adapting to and
overcoming these environmental complexities. The
Intention stems from the critical need for accurate
underwater image classification in marine biology,
underwater exploration, and environmental
monitoring applications. Enhanced classification
capabilities can lead to better monitoring of aquatic
ecosystems, more efficient exploration missions, and
improved ecological assessments. The aim is to
develop a model that excels in performance and
maintains consistency and reliability under the
varied conditions found in underwater
environments.

This article aims to explore the potential of

Quokka Optimization (QO) in enhancing CNNs for
underwater image classification. By integrating QO
into the Enhanced CNN (N-CNN) model, this study
seeks to improve classification accuracy, robustness,
and overall performance significantly. The goal is to
demonstrate that QuokkaNet can effectively address
the inherent challenges of underwater image
classification, providing a reliable and optimized
solution for complex underwater imaging tasks.

3. ENHANCED CNN MODELS USING

QUOKKA OPTIMIZATION (QuokkaNet)

A CNN consists of multiple layers designed to
process and transform an input image into a
structured output, typically a classification or
identification. The primary components include
convolutional, pooling, and fully connected layers.
Each layer plays a specific role in feature extraction
and image interpretation. Fig 1. Illustrates the
unprocessed underwater images.

 Journal of Theoretical and Applied Information Technology
31st January 2025. Vol.103. No.2

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

654

3.1. Enhanced CNN with NAG (N-CNN)
CNN is an artificial neural network that

processes and analyzes visual data. It comprises
convolutional, pooling, and fully connected layers
that work together to extract and interpret features
from images. Nesterov Accelerated Gradient (NAG)
is an optimization technique that enhances the
traditional gradient descent method by considering
the gradient at a future position, leading to faster
convergence and improved performance. They are
integrating the Nesterov Accelerated Gradient into a
Convolutional Neural Network, resulting in an
enhanced version called N-CNN.

Fig 1. Unprocessed Underwater Images

3.1.1. Construct the Convolutional Layers of
N-CNN

Constructing the convolutional layers in N-CNN

involves defining the filters, applying convolution
operations, and using activation functions. These
steps are crucial for feature extraction from input
images, forming the foundation for subsequent
layers in the network. A filter is a small matrix used
to scan through the input image. Assume that I stands
for the input picture and K for the filter. A feature
map F is generated by sliding the filter across the
input picture and multiplying the results element-
wise. The convolution procedure is represented as
Eq.(1).

𝐹(𝑖, 𝑗) = ෍ ෍ 𝐼(𝑖 + 𝑟, 𝑗
்

௧ୀଵ

ோ

௥ୀଵ

+ 𝑡). 𝐾(𝑟, 𝑡)
(1)

where R and T are the dimensions of the filter, and
(i,j) denotes the position in the input image, this
operation detects specific features within local
regions of the image.

The filter's step size as it traverses the input
picture is determined by Stride S. The filter shifts by
a single pixel when S= 1, and with S=2, the filter
shifts two pixels simultaneously. By enclosing the
input image with a border of zeros, padding P
controls the spatial dimensions of the output feature
map. Stride S determines the step size by which the
filter moves across the input image. If S=1, the filter
moves one pixel at a time. If S=2, the filter moves
two pixels at a time. Padding P involves adding a
border of zeros around the input image to control the
spatial dimensions of the output feature map. The
dimensions of the output feature map F can be
represented in Eq.(2).

𝐹ௗ௜௠ = ൬
𝐼ௗ௜௠ − 𝐾ௗ௜௠ + 2𝑃

𝑆
൰ + 1 (2)

where 𝐼ௗ௜௠ and 𝐾ௗ௜௠ are the dimensions of the input
image and filter, respectively. Proper selection of
stride and padding ensures that important edge
features are preserved.

The network is made non-linear by applying an
activation function after convolution. A popular unit
is the Rectified Linear Unit (ReLU) is expressed
mathematically in Eq.(3).

𝑅𝑒𝐿𝑈(𝑥) = max (0, 𝑥) (3)

ReLU activates only the positive values in the
feature map, enhancing the network's ability to learn
complex patterns.

The use of several filters captures various aspects
of the input picture. Each filter produces a separate
feature map, and stacking these maps along the depth
dimension forms the complete output of the
convolutional layer. If 𝑛 filters are used, the output
volume will have a depth of 𝑛. Let 𝐹௞ represent the
feature map from the 𝑘-th filter, then the output
volume 𝑂 is shown in Eq.(4).

𝑂 = [𝐹ଵ, 𝐹ଶ, … , 𝐹௡] (4)

The network can learn features with hierarchies
when several convolutional layers are stacked. The
earlier layers capture the lower-level elements, such
as edges, while the later layers capture the higher-
level features, such as forms and textures. Each
subsequent convolutional layer takes the output
volume O from the previous layer as its input,
applies its own set of filters, and produces a new
output volume. This iterative process allows the
network to build a rich, multi-level representation of
the input image.

3.1.2. Implement Pooling Layers of N-CNN

 Journal of Theoretical and Applied Information Technology
31st January 2025. Vol.103. No.2

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

655

To control overfitting and minimize
computational complexity, pooling layers decrease
the spatial dimensions of the feature maps while
keeping critical information. The majority of pooling
operations employ max pooling. This technique
involves defining a pooling window, typically of
size 𝑝 × 𝑝. The pooling window slides over the
feature map, and the maximum value is selected
within each window. Let 𝐹 represent the feature map
and 𝑃 the pooling window. The max pooling
operation is expressed mathematically in Eq.(5).

𝑃(𝑖, 𝑗) = 𝑚𝑎𝑥{𝐹(𝑚, 𝑛)|(𝑚, 𝑛) ∈ 𝑊(𝑖, 𝑗)} (5)

This operation significantly reduces the feature
map's dimensions while preserving the most salient
features, where (𝑖,) represents the pooling window
centered at position (𝑖,).

Average pooling is another approach; it takes the
whole window and averages it out. That which is
known as the average pooling operation is expressed
mathematically in Eq.(6).

𝑃(𝑖, 𝑗) =
1

𝑝 × 𝑝
෍ 𝐹(𝑚, 𝑛)

(௠,௡)∈ௐ(௜,௝)
 (6)

Average pooling provides a smoothed version of the
feature map by averaging the values in each window,
although max pooling is often preferred for retaining
sharp features.

The dimensions of the output feature map P after
pooling can be determined based on the size of the
pooling window p, stride s, and the dimensions of
the input feature map F. The mathematical
expression for the output dimensions Pdim is Eq.(7).

𝑃ௗ௜௠ = ൬
𝐹ௗ௜௠ − 𝑝

𝑠
൰ + 1 (7)

where Pdim represents the dimensions of the input
feature map. The stride s controls how much the
pooling window moves across the feature map,
influencing the output size.

In N-CNN, pooling layers are typically inserted
after convolutional layers. It is possible to stack
many pooling layers to extract hierarchical feature
representations while reducing the spatial
dimensions gradually. The network's
generalizability is enhanced by each pooling layer,
which processes the output of the one before it. The
pooling operation maintains the spatial hierarchy of
the features by retaining significant information
across different scales. By reducing the feature map
dimensions, pooling layers help manage the
computational load and ensure efficient network
training.

3.1.3. Normalization Layers of N-CNN

Normalization layers enhance the stability and
efficiency of the network by standardizing the inputs
to each layer, thereby accelerating training and
improving performance. One standard normalizing
method in N-CNN is batch normalization. By taking
the batch standard deviation and dividing it by the
batch mean, this approach normalizes the output of
an earlier activation layer. Next, learnable
parameters are used to scale and shift the normalized
output. X denotes the batch normalization layer's
input, the batch mean by μ, and the batch standard
deviation by σ. The normalized output 𝑋෠ is
calculated as shown in Eq.(8).

𝑋෠ =
𝑋 − 𝜇

√𝜎ଶ + 𝜖
 (8)

where ϵ is a small constant added for numerical
stability, this operation ensures that the input to each
layer has a consistent distribution, which aids in
training.

Learnable parameters γ (scale) and β (shift) are
used to scale and shift the output after normalization
is mathematically represented in Eq.(9).

𝑌 = 𝛾𝑋෠ + 𝛽 (9)

The parameters γ and β allow the network to restore
the representation power lost during normalization.
These parameters are learned during training,
enabling the network to adapt and improve
performance

Layer normalization is another technique that
independently normalizes the inputs across the
features for each data point. This method is
particularly useful for recurrent neural networks but
can also be applied in N-CNN. Let 𝜇௅ and 𝜎௅
represent the mean and standard deviation for the
features in a layer. The normalized output 𝑋෠௅ for
layer normalization is expressed mathematically in
Eq.(10).

𝑋෠௅ =
𝑋 − 𝜇௅

ඥ𝜎௅
ଶ + 𝜖

 (10)

Layer normalization helps stabilize the learning
process and ensures that the activations within each
layer remain well-behaved.

Normalization layers are usually added to N-
CNN before the activation function and after each
fully linked or convolutional layer. This integration
ensures that the inputs to subsequent layers have
consistent distributions, leading to improved
convergence rates and model performance.

 Journal of Theoretical and Applied Information Technology
31st January 2025. Vol.103. No.2

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

656

Normalization layers provide several benefits,
including reduced internal covariate shift,
accelerated training, and improved gradient flow.
Normalization layers allow the network to learn
more effectively by standardizing the inputs and
making the training process more efficient. This step
is essential for building deep and complex networks
like N-CNN, where maintaining stability and
efficiency is crucial. By integrating normalization
layers, N-CNN achieves better training dynamics
and enhanced performance, paving the way for
constructing more advanced network architectures.

3.1.4. Fully Connected Layers of N-CNN

This phase is to provide accurate predictions,
these layers also called dense layers integrate the
characteristics obtained by the convolutional and
pooling layers. The last pooling or convolutional
layer output consists of multi-dimensional feature
maps. Before feeding these into the fully connected
layers, it is necessary to flatten them into a one-
dimensional vector. Let 𝐹 represent the 3D feature
map output with dimensions 𝑑 × ℎ × 𝑤 (depth,
height, width). The flattening operation transforms
this 3D feature map into a 1D vector 𝑉 represented
mathematically in Eq.(11).

𝑉 = [𝑓ଵ, 𝑓ଶ, … , 𝑓௫×௛×௪] (11)

where f represents the individual elements of the
feature map.

Neural connections between layers are quite
thick in a completely linked layer. Each neuron
processes its inputs in a fully connected layer in a
weighted sum and then applies an activation
function. Let W represent the weight matrix and b
the bias vector for the fully connected layer. The
output Z of a fully connected layer can be expressed
as Eq.(12).

𝑍 = 𝑊. 𝑉 + 𝑏 (12)

where W has dimensions n×(d×h×w),V has
dimensions (d×h×w)×1, and b has dimensions n×1.
Here, n is the number of neurons in the fully
connected layer.

 By applying an activation function to the fully

linked layer's output, non-linearity may be
introduced into the network. Here is the definition of
the Rectified Linear Unit (ReLU), an activation
function often used mathematically expressed in
Eq.(13).

𝑅𝑒𝐿𝑈(𝑧) = max (0, 𝑧) (13)

N-CNN may contain multiple fully connected
layers to transform the extracted features gradually
into the desired output. After processing the output
of the preceding layer, each fully connected layer
applies a weighted sum and then sends the result via
an activation function. Let 𝑍(௜) represent the output
of the 𝑖-th fully connected layer, 𝑊(௜) the weight
matrix, and 𝑏(௜) the bias vector. For the 𝑖-th fully
connected layer, the operation can be expressed as
Eq.(14).

𝑍(௜) = 𝑅𝑒𝐿𝑈൫𝑊(௜). 𝑍(௜ିଵ) + 𝑏(௜)൯ (14)

where 𝑍(௜ିଵ) is the output from the previous layer.

Depending on the job, the activation function

used by the final fully linked layer is usually
variable. If you're doing a classification job, the
softmax activation function will turn your output
into a probability distribution across the classes. The
output of the final completely linked layer is denoted
as 𝑍(௅), where 𝐿 is the total number of layers. The
softmax function is defined as shown in Eq.(15).

𝑠𝑜𝑓𝑡𝑚𝑎𝑥൫𝑧௝൯ =
𝑒௭ೖ

∑ 𝑒௭ೖ௡
௞ୀଵ

 (15)

where 𝑧௝ is the 𝑗𝑡ℎ element of 𝑍(௅), and 𝑛is the
number of classes. This function ensures that the
output probabilities sum to one, making it suitable
for classification tasks. Incorporating fully
connected layers allows N-CNN to integrate and
interpret the hierarchical features extracted by
previous layers, enabling the network to make
accurate predictions.

3.1.5. Loss Function of N-CNN

As a training optimization tool, the loss function
measures how far off the actual objectives are from
the projected outputs. The most popular loss
function for classification tasks is the cross-entropy
loss, which produces a probability value between 0
and 1 as an output and quantifies the effectiveness of
the classification model. Let 𝑦 denote the true label
and 𝑦ො represent the predicted probability for each
class. The cross-entropy loss 𝐿 for a single example
can be expressed mathematically in Eq.(16).

𝐿 = − ෍ 𝑦௜𝑙𝑜𝑔(𝑦ො௜)
஼

௜ୀଵ
 (16)

The sentence states that for each observation 𝑖, 𝑦௜ is
either 0 or 1, indicating the proper classification for
that observation and that 𝑦ො௜ is the projected
probability of that observation being in class 𝑖. Here,
𝐶 is the number of classes. This loss function
penalizes incorrect classifications more severely,
thus encouraging the network to produce accurate

 Journal of Theoretical and Applied Information Technology
31st January 2025. Vol.103. No.2

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

657

predictions. A batch of 𝑁 training examples, the
average cross-entropy loss 𝐿௕௔௧௖௛ is shown in
Eq.(17).

.

𝐿௕௔௧௖௛ = −
1

𝑁
෍ ෍ 𝑦௜௝൫𝑦ො௜௝൯

஼

௜ୀଵ

ே

௝ୀଵ
 (17)

where 𝑦௜௝ and 𝑦ො௜௝ represent the true label and
predicted probability for the 𝑗-th example and the 𝑖-
th class, respectively. Averaging the loss over the
batch ensures that the gradient updates consider the
overall performance across multiple examples,
promoting more stable and generalized learning.

 In some cases, the mean squared error (MSE) is
used as the loss function when dealing with
regression tasks. Let 𝑦 be the true value and 𝑦ො the
predicted value. The mean squared error 𝐿ெௌா is
calculated as shown in Eq.(18)

𝐿ெௌா = −
1

𝑁
෍ ൫𝑦௝ − 𝑦ො௝൯

ଶ
ே

௝ୀଵ
 (18)

To reduce the margin of error in continuous value
prediction, this loss function calculates the average
squared difference between the actual and forecast
values. Incorporating regularization terms into the
loss function can prevent overfitting by penalizing
large weights. L2 regularization, also known as
weight decay, adds a penalty proportional to the sum
of the squared weights. The regularized loss𝐿௥௘௚ can
be expressed mathematically in Eq.(19).

𝐿௥௘௚ = 𝐿 + 𝜆 ෍ 𝑤௞
ଶ

௄

௞ୀଵ
 (19)

where 𝜆 is the regularization parameter and 𝑤௞
represents the weights of the network. This term
discourages the network from assigning excessively
high importance to any feature, promoting a more
balanced model. By defining an appropriate loss
function, N-CNN effectively measures the
discrepancy between its predictions and the true
labels, providing a basis for optimizing the network's
parameters to minimize this discrepancy. This step is
fundamental in training the network to achieve high
accuracy and generalization on unseen data.

3.1.6. Nesterov Accelerated Gradient (NAG) of N-
CNN

Nesterov Accelerated Gradient (NAG) is an
optimization technique designed to improve the
convergence speed and stability of the training
process. Building on the momentum method, NAG
anticipates the future position of the parameters to
make more informed updates. In N-CNN, applying
NAG involves several steps, beginning with
initializing parameters and iteratively updating them

based on the gradients of the loss function. Let 𝜃
represent the parameters of N-CNN, 𝑣 the velocity
vector, 𝜂 the learning rate, and 𝜇 the momentum
coefficient. The update rule for the velocity vector in
the standard momentum method is expressed as
Eq.(20).

𝑣௧ାଵ = 𝜇𝑣௧ − 𝜂∇𝐿(𝜃௧) (20)

where ∇𝐿(𝜃௧)denotes the gradient of the loss
function 𝐿 concerning the parameters 𝜃௧ at iteration
𝑡. The parameters are then updated, as shown in
Eq.(21).

𝜃௧ାଵ = 𝜃௧ − 𝑣௧ାଵ (21)

The key difference in NAG is that the gradient is not
calculated at the current parameters. 𝜃௧, but at a
lookahead position 𝜃௧ + 𝜇𝑣௧ .This anticipatory step
helps to correct the course before making the actual
update, thereby improving the convergence rate. The
lookahead gradient is expressed mathematically in
Eq.(22).

∇𝐿(𝜃௧ + 𝜇𝑣௧) (22)

The velocity update in NAG is then modified to
incorporate this lookahead gradient, represented
mathematically in Eq.(23).

𝜃௧ାଵ = 𝜃௧ + 𝑣௧ାଵ (23)

These equations collectively describe the NAG
optimization process, which involves first
computing the lookahead gradient, updating the
velocity vector, and adjusting the parameters. This
approach provides a more accurate direction for
updates by considering future positions, leading to
faster and more stable convergence. Applying NAG
to N-CNN entails repeatedly executing these steps
for each iteration of the training process; by
consistently using the lookahead gradient, N-CNN
benefits from more precise updates that help to avoid
oscillations and overshooting, common issues in
standard gradient descent methods. Consequently,
NAG enables N-CNN to achieve better performance
and efficiency during training, ultimately leading to
a more robust and accurate model. This step is
integral to the optimization strategy, ensuring that
the network parameters converge to their optimal
values effectively.

3.1.7. N-CNN Training

Forward and backward propagation is essential
for training a convolutional neural network (CNN).
To generate predictions, inputs must first travel
through the network during forward propagation. To

 Journal of Theoretical and Applied Information Technology
31st January 2025. Vol.103. No.2

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

658

update the network parameters, the backward
propagation phase determines the loss function's
gradients concerning those parameters.

Forward propagation starts by passing input data
through each network layer, from convolutional
layers to fully connected layers, ultimately
producing the output. Let𝑥 represent the input and
𝑊(௟) and 𝑏(௟) denote the weights and biases of layer
𝑙, respectively. For a convolutional layer, the output
feature map 𝑍(௟)can be expressed as Eq.(24).

𝑍(௟) = 𝑓൫𝑊(௟) ∗ 𝐴(௟ିଵ) + 𝑏(௟)൯ (24)

where 𝐴(௟ିଵ) is the activation from the previous
layer, ∗ denotes the convolution operation, and 𝑓 is
the activation function. The output is mathematically
represented in fully connected layers in Eq.(25).

𝑍(௟) = 𝑊(௟)𝐴(௟ିଵ)𝑏(௟) (25)

The final output of the network, after passing
through all layers, is used to calculate the loss 𝐿
concerning the true labels.

Optimization is made possible via backward
propagation, which entails computing the gradients
of the loss function 𝐿 concerning each network
parameter. The chain rule is applied to propagate
gradients backward through the network. The
gradient of the loss concerning the weights in the
output layer 𝑊(௅) is expressed mathematically in
Eq.(26).

𝜕𝐿

𝜕𝑊(௅)
=

𝜕𝐿

𝜕𝐴(௅)
.
𝜕𝐴(௅)

𝜕𝑍(௅)
.

𝜕𝑍(௅)

𝜕𝑊(௅)
 (26)

where 𝐴(௅) is the activation of the last layer, and 𝑍(௅)
is the pre-activation output. The gradients for the
biases 𝑏(௅) are shown in Eq.(27).

𝜕𝐿

𝜕𝑏(௅)
=

𝜕𝐿

𝜕𝐴(௅)
.
𝜕𝐴(௅)

𝜕𝑍(௅)
.
𝜕𝑍(௅)

𝜕𝑏(௅)
 (27)

Gradients are calculated similarly for
intermediate layers, considering the contributions
from subsequent layers. For a hidden layer 𝑙, the
gradient concerning the weights 𝑊(௟) is expressed
mathematically in Eq.(28).

𝜕𝐿

𝜕𝑊(௟)
= 𝛿(௟ାଵ). 𝐴(௟)் (28)

where 𝛿(௟ାଵ) is the gradient propagated from the next
layer, and 𝐴(௟)் is the transpose of the activation of
the current layer.

After computing the gradients, parameters are
updated using an optimization algorithm such as
Nesterov Accelerated Gradient (NAG). The velocity

and parameter updates are performed in Eq.(29) and
Eq.(30).

𝑣௧ାଵ = 𝜇𝑣௧ − 𝜂∇𝐿(𝜃௧ + 𝜇𝑣௧) (29)

𝜃௧ାଵ = 𝜃௧ + 𝑣௧ାଵ (30)

Training continues iteratively, with forward and
backward propagation steps repeated for each batch
of input data. This process adjusts the network
parameters to minimize the loss function, ultimately
improving the model's performance on the given
task.

3.1.8. Evaluation and Fine-Tuning

Evaluation typically involves using a separate
validation dataset to measure the network's
performance and identify areas for improvement.
Forward propagation is conducted on the validation
dataset to obtain predictions for N-CNN. Let 𝑦ො௜
represent the predicted output for the 𝑖-th sample and
𝑦௜ the true label. Standard assessment measures
include the F1 score, recall, accuracy, and precision.
For a classification task, accuracy 𝐴 represented
mathematically in Eq.(31).

𝐴 =
1

𝑁
෍ 1(𝑦ො௜ = 𝑦௜)

ே

௜ୀଵ
 (31)

Assuming that there are 𝑁 samples in the
validation set, the indicator function 1 gives one if
the predicted label is identical to the real label and 0
otherwise. The loss function used during training is
also computed on the validation dataset to monitor
overfitting. The cross-entropy loss 𝐿௩௔௟ for the
validation set can be expressed as Eq.(32).

𝐿௩௔௟ = −
1

𝑁
෍ ෍ 𝑦௜௝𝑙𝑜𝑔൫𝑦ො௜௝൯

஼

௝ୀଵ

ே

௜ୀଵ
 (32)

where 𝑦௜௝ is the true label, and 𝑦ො௜௝ is the predicted
probability for class 𝑗 of the 𝑖𝑡ℎ sample.

Fine-tuning involves adjusting hyperparameters,
optimizing the network architecture, and applying
techniques to reduce overfitting. One approach is to
use regularization methods, such as dropout,
randomly setting a fraction of the activations to zero
during training. Let 𝑝 represent the dropout
probability. The dropout-modified activation 𝐴ௗ௥௢௣
for a layer can be expressed as Eq.(33).

𝐴ௗ௥௢௣ = 𝐴. 𝑟 (33)

where 𝐴 is the original activation, and 𝑟 is a mask
vector with each element independently set to 1 with
probability 1 − 𝑝 and 0 with probability 𝑝.

 Journal of Theoretical and Applied Information Technology
31st January 2025. Vol.103. No.2

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

659

Adjusting the learning rate during training can
also improve the model's performance. It is possible
to use adaptive learning rates or learning rate
scheduling methods. A common approach is to
reduce the learning rate by a factor 𝛾 after a certain
number of epochs 𝑇.

𝜂௡௘௪ = 𝜂. 𝛾 (34)

where in Eq.(34), 𝜂 is the current learning rate and
𝜂௡௘௪ is the updated learning rate.

Early stopping is another technique to prevent
overfitting, terminating training when the validation
loss ceases to improve. Let 𝐿௩௔௟(𝑡) be the validation
loss at epoch 𝑡 as expressed in Eq.(35).

𝐿௩௔௟(𝑡) = 𝐿௩௔௟(𝑡 − 𝑝) (35)

For 𝑝 consecutive epochs, it was indicating no
improvement. The model's performance on the
validation set is optimized by evaluating and fine-
tuning N-CNN, ensuring better generalization to
unseen data. This iterative process involves
continuous monitoring and adjustment, culminating
in a robust and accurate neural network model.

3.2. N-CNN Model with Quokka Optimization
(QuokkaNet)

Quokka Optimization (QO) is a metaheuristic
optimization algorithm inspired by the foraging
behavior of quokkas, small marsupials native to
Australia. QO aims to explore the search space
efficiently and converge to optimal solutions by
mimicking the quokkas' adaptive foraging strategies.
Applying QO to enhance the performance of the
Enhanced CNN (N-CNN) model for underwater
image identification and classification involves
several steps.

3.2.1. QuokkaNet Initialization

In the initialization step of QuokkaNet, the
population of quokkas representing potential
solutions to the optimization problem is initialized.
Each quokka corresponds to a unique set of
hyperparameters or network configurations for the
Enhanced CNN (N-CNN) model. Let 𝑄 denote the
population of quokkas, 𝑞௜ represent the 𝑖-th quokka
and 𝜃௜ denote the parameters of the 𝑖-th quokka.

Parameter Initialization is to initialize the
parameters 𝜃௜ of each quokka 𝑞௜ randomly within
predefined ranges. These parameters may include
learning rates, activation functions, layer
configurations, and other N-CNN-related

hyperparameters expressed mathematically in
Eq.(36).

𝜃௜ = 𝑟𝑎𝑛𝑑𝑜𝑚(𝑎, 𝑏) (36)

where 𝑎 and 𝑏 represent the lower and upper bounds
of the parameter space, respectively.

Population Creation is to create the initial
population 𝑄 by generating a specified number of
quokkas 𝑞௜, each with its unique parameter
configuration 𝜃௜. The population size is determined
based on the optimization requirements and
computational resources, as shown mathematically
in Eq.(37).

𝑄 = {𝑞ଵ, 𝑞ଶ, … , 𝑞ே} (37)

where 𝑁 is the number of quokkas in the population.

Evaluate the fitness of each quokka in the
population based on its parameter configuration 𝜃௜.
This involves training and validating the
corresponding N-CNN model using the
hyperparameters of each quokka and measuring its
performance on a validation dataset expressed as
Eq.(38).

𝑓(𝑞௜) = 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒_𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝜃௜) (38)

where 𝑓(𝑞௜) represents the fitness score of quokka
𝑞௜ . Once all quokkas in the population have been
initialized and their fitness evaluated, the
initialization step is complete. QuokkaNet is now
ready to proceed to the exploration and optimization
phases.

3.2.2. QuokkaNet Exploration
In this phase of QuokkaNet, quokkas navigate the
search space by adjusting their positions based on
local and global information. This process aims to
explore different combinations of hyperparameters
and network configurations for the Enhanced CNN
(N-CNN) model, facilitating the discovery of
promising solutions. Let 𝑄 denote the population of
quokkas, 𝑞௜ represent the 𝑖-th quokka and 𝜃௜ denote
the parameters of the 𝑖-th quokka.

Quokkas explore their local surroundings by
adjusting their parameter configurations within a
certain neighborhood. This encourages the
exploitation of nearby solutions while maintaining
diversity within the population. The local
exploration can be mathematically expressed as
Eq.(39).

 Journal of Theoretical and Applied Information Technology
31st January 2025. Vol.103. No.2

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

660

 𝜃௜
(௧ାଵ)

= 𝜃௜
(௧)

+ 𝜖௜ (39)

where 𝜖௜ represents the perturbation applied to the
parameters of quokka 𝑞௜ at iteration 𝑡.

Quokkas also engage in global exploration by
exchanging information with others in the
population. This allows them to learn from
successful solutions discovered by their peers and
explore regions of the search space that have not yet
been thoroughly explored. The global exploration
process can be formalized as Eq.(40).

𝜃௜
(௧ାଵ)

= 𝜃௜
(௧)

+ ෍ 𝛽௜௝ . ൫𝜃௝
(௧)

− 𝜃௜
(௧)

൯
ே

௝ୀଵ
 (40)

Quokkas employs strategies to explore different

regions of the search space to prevent premature
convergence and maintain diversity within the
population. This includes introducing randomness in
parameter adjustments and encouraging quokkas to
explore unexplored areas. The diversity maintenance
process can be represented mathematically in
Eq.(41).

𝜃௜
(௧ାଵ)

= 𝜃௜
(௧)

+ 𝛾௜ . 𝑟𝑎𝑛𝑑𝑜𝑚_𝑣𝑒𝑐𝑡𝑜𝑟 (41)

where 𝛾௜ represents the exploration rate of quokka
𝑞௜ , and 𝑟𝑎𝑛𝑑𝑜𝑚_𝑣𝑒𝑐𝑡𝑜𝑟 is a vector of random
perturbations.

After exploring new parameter configurations,
the fitness of each quokka is re-evaluated to assess
the performance of the corresponding N-CNN
model. This involves training and validating the
model using the updated hyperparameters and
measuring its performance on a validation dataset.

𝑓൫𝑞௜
(௧ାଵ)

൯ = 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒_𝑓𝑖𝑡𝑛𝑒𝑠𝑠൫𝜃௜
(௧ାଵ)

൯ (42)

where in Eq.(42), 𝑓൫𝑞௜
(௧ାଵ)

൯ represents the fitness
score of quokka 𝑞௜ at iteration 𝑡 + 1.

Once all quokkas in the population have explored
new parameter configurations and their fitness has
been re-evaluated, the exploration step is complete.
QuokkaNet is now ready to proceed to the
exploitation phase, where it refines promising
solutions discovered during exploration. The
exploration step of QuokkaNet enables Quokkas to
navigate the search space and discover potentially
promising solutions for optimizing the performance
of the Enhanced CNN (N-CNN) model.

3.2.3. QuokkaNet Exploitation

In the exploitation phase of QuokkaNet, quokkas
focus on refining and improving promising solutions
discovered during exploration. This process involves
leveraging local and global information to exploit
regions of the search space with high-quality
solutions, aiming to enhance further the performance
of the Enhanced CNN (N-CNN) model. Let 𝑄
denote the population of quokkas, 𝑞௜ represent the 𝑖-
th quokka and 𝜃௜ denote the parameters of the 𝑖-th
quokka.

Quokkas refines their parameter configurations
by focusing on local improvements that are near-
promising solutions. This involves adjusting
parameter values based on local information
obtained during exploration. The local exploitation
process can be formulated as Eq.(43).

𝜃௜
(௧ାଵ)

= 𝜃௜
(௧)

+ 𝛿௜. ∇𝑓൫𝑞௜
(௧)

൯ (43)

where 𝛿௜ represents the step size for quokka 𝑞௜ and

∇𝑓൫𝑞௜
(௧)

൯ is the gradient of the fitness function
concerning the parameters of quokka 𝑞௜ at iteration
𝑡.

Quokkas also benefit from global information
shared by other quokkas in the population. By
leveraging successful solutions discovered by their
peers, quokkas can exploit regions of the search
space with higher-quality solutions. The global
exploitation process can be mathematically
expressed as Eq.(44).

𝜃௜
(௧ାଵ)

= 𝜃௜
(௧)

+ ෍ 𝛽௜௝ .
ே

௝ୀଵ
൫𝜃௜

(௧)
− 𝜃௜

(௧)
൯ (44)

where 𝛽௜௝ represents the influence of quokka 𝑞௝ on
quokka 𝑞௜, determined based on their relative fitness
scores.

Quokkas iteratively refine their parameter
configurations to further optimize the N-CNN
model's performance. This involves adjusting
hyperparameters such as learning rates, activation
functions, and network architectures to improve the
model's accuracy and generalization. The parameter
refinement process is represented mathematically in
Eq.(45)

𝜃௜
(௧ାଵ)

= 𝑟𝑒𝑓𝑖𝑛𝑒_𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠൫𝜃௜
(௧)

൯ (45)

where 𝑟𝑒𝑓𝑖𝑛𝑒_𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 represents a
function that refines the parameters of quokka 𝑞௜
based on local and global information. The fitness of
each quokka is re-evaluated to assess the
performance of the updated N-CNN model. This
involves training and validating the model using the
refined hyperparameters and measuring its

 Journal of Theoretical and Applied Information Technology
31st January 2025. Vol.103. No.2

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

661

performance on a validation dataset. Once all
quokkas in the population have refined their
parameter configurations and their fitness has been
re-evaluated, the exploitation step is complete.
QuokkaNet is now ready to proceed to the next
iteration, where it continues to refine and improve
the solutions discovered during exploitation.

3.2.4. QuokkaNet Fitness Evaluation

The ensemble predictions of the AdamBoost In
the fitness evaluation step of QuokkaNet, the
performance of each quokka is assessed based on its
parameter configuration and its corresponding N-
CNN model's performance on a validation dataset.
This step is crucial in guiding the optimization
process by providing feedback on the quality of
solutions discovered during exploration and
exploitation. Let 𝑄 denote the population of
quokkas, 𝑞௜ represent the 𝑖-th quokka and 𝜃௜ denote
the parameters of the 𝑖-th quokka. Quokkas train
their corresponding N-CNN models using the
parameter configurations. 𝜃௜ determined during
exploration and exploitation. This involves feeding
training data into the network, computing
predictions, and comparing them with the ground
truth labels to calculate a loss function. The training
process can be represented mathematically in
Eq.(46).

𝑇𝑟𝑎𝑖𝑛൫𝑞௜
(௧)

൯ (46)

where Train represents the training process for quota
𝑞௜ at iteration 𝑡.

After training, quokkas validate their N-CNN
models using a separate validation dataset to assess
their generalization performance. This involves
passing validation data through the trained models,
computing predictions, and evaluating them against
the true labels expressed mathematically in Eq.(47).

𝑉𝑎𝑙𝑖𝑑𝑎𝑡𝑒൫𝑞௜
(௧)

൯ (47)

where 𝑉𝑎𝑙𝑖𝑑𝑎𝑡𝑒 represents the validation process for
quokka 𝑞௜ at iteration 𝑡.

Quokkas computes each individual's fitness
based on the performance of its corresponding N-
CNN model on the validation dataset. This fitness
score measures the solution quality the quokka's
parameter configuration represents. The fitness
computation can be formalized as shown in Eq.(48).

𝑓൫𝑞௜
(௧)

൯ = 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 ቀ𝑉𝑎𝑙𝑖𝑑𝑎𝑡𝑒൫𝑞௜
(௧)

൯ቁ (48)

where 𝑓൫𝑞௜
(௧)

൯ represents the fitness score of quokka
𝑞௜ at iteration 𝑡.

Once the fitness of each quokka has been
computed, the population of quokkas is updated
based on their fitness scores. Quokkas with higher
fitness values are more likely to survive and
propagate their parameter configurations to the next
generation. In comparison, those with lower fitness
values may be replaced by new offspring generated
during optimization.

𝑄(௧ାଵ) = 𝑆𝑒𝑙𝑒𝑐𝑡 ቀ𝑄(௧), 𝑓൫𝑞௜
(௧)

൯ቁ (49)

where in Eq.(49), 𝑄(௧) and 𝑄(௧ାଵ) represent the
populations of quokkas at iterations 𝑡 and 𝑡 + 1,
respectively, and 𝑆𝑒𝑙𝑒𝑐𝑡 is a selection process that
determines which quokkas survive and reproduce
based on their fitness scores.

QuokkaNet checks for convergence by
monitoring the fitness scores of the population over
multiple iterations. If the fitness scores stabilize or
show no significant improvement over several
iterations, the optimization process may be
terminated, indicating that QuokkaNet has
converged to a satisfactory solution.

𝐶𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒 𝐶ℎ𝑒𝑐𝑘 ቀ𝑓൫𝑞௜
(௧)

൯ቁ (50)

where in Eq.(50), 𝐶𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒 𝐶ℎ𝑒𝑐𝑘 assesses
whether the fitness scores have converged.

The fitness evaluation step of QuokkaNet plays a
crucial role in guiding the optimization process by
assessing the quality of solutions discovered during
exploration and exploitation. By training N-CNN
models and evaluating their performance on a
validation dataset, QuokkaNet identifies promising
solutions and continuously improves the model's
accuracy and generalization capabilities.

3.2.5. QuokkaNet Selection

In the selection step of QuokkaNet, quokkas are
chosen for propagation to the next generation based
on their fitness scores. This process determines
which quokkas survive and reproduce, guiding the
evolution of the population towards higher-quality
solutions. Let 𝑄 denote the population of quokkas,

𝑞௜ represent the 𝑖-th quokka, 𝑓൫𝑞௜
(௧)

൯ denote the
fitness score of quokka 𝑞௜ at iteration 𝑡, and 𝑄(௧)
represent the population of quokkas at iteration 𝑡.

Quokkas are ranked based on their fitness scores,
with higher fitness scores indicating better-
performing individuals. This ranking allows
QuokkaNet to prioritize individuals with superior

 Journal of Theoretical and Applied Information Technology
31st January 2025. Vol.103. No.2

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

662

solutions for propagation to the next generation. The
ranking process can be mathematically represented
as Eq.(51).

𝑅𝑎𝑛𝑘 ቀ𝑞(௧), 𝑓൫𝑞௜
(௧)

൯ቁ (51)

where 𝑅𝑎𝑛𝑘 ranks the quokkas in 𝑄(௧) based on their
fitness scores.

Quokkas are propagated using a selection
mechanism that considers their ranking and fitness
scores. Various selection mechanisms can be
employed, such as roulette wheel selection,
tournament selection, or elitism. The selection
mechanism ensures that quokkas with higher fitness
scores are more likely to be selected for propagation.

𝑆𝑒𝑙𝑒𝑐𝑡 ቀ𝑄(௧), 𝑓൫𝑞௜
(௧)

൯ቁ (52)

where in Eq.(52), 𝑆𝑒𝑙𝑒𝑐𝑡 selects quokkas from 𝑄(௧)
based on their fitness scores.

Quokkas selected for propagation contribute
their parameter configurations to the next
generation, ensuring that promising solutions are
preserved and further evolved. This involves
creating offspring by applying genetic operators
such as crossover and mutation to the selected
quokkas' parameter configurations, expressed
mathematically as Eq.(53).

𝑃𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑒 ቀ𝑄(௧), 𝑓൫𝑞௜
(௧)

൯ቁ (53)

where 𝑃𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑒 generates offspring based on the
selected quokkas in 𝑄(௧).

After propagation, the population of quokkas is
updated to include the selected individuals and their
offspring. This ensures that the population remains
diverse and continues to explore different regions of
the search space. The population update process can
be expressed as Eq.(54).

𝑄(௧ାଵ)

= 𝑈𝑝𝑑𝑎𝑡𝑒 ቆ𝑄(௧), 𝑃𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑒 ൬𝑄(௧), 𝑓 ቀ𝑞௜
(௧)

ቁ൰ቇ (54)

where 𝑄(௧ାଵ) represents the population of quokkas at
iteration 𝑡 + 1, and 𝑈𝑝𝑑𝑎𝑡𝑒 updates the population
based on the selected individuals and their offspring.

QuokkaNet may control the size of the
population to manage computational resources
efficiently and prevent overfitting. This involves
maintaining a constant population size or
dynamically adjusting it based on the performance
of the optimization process is represented
mathematically in Eq.(55).

𝐶𝑜𝑛𝑡𝑟𝑜𝑙_𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛_𝑆𝑖𝑧𝑒൫𝑄(௧ାଵ)൯ (55)

where 𝐶𝑜𝑛𝑡𝑟𝑜𝑙_𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛_𝑆𝑖𝑧𝑒 manages the
size of the population at iteration 𝑡 + 1. The
selection step of QuokkaNet plays a crucial role in
guiding the evolution of the population towards
higher-quality solutions by selecting quokkas based
on their fitness scores.

3.2.6. Adaptation of QuokkaNet

Quokkas adjust their behavior based on the
success or failure of previous foraging attempts. This
adaptive process ensures that QuokkaNet efficiently
balances exploration and exploitation strategies to
navigate the search space effectively. Let 𝑄 denote
the population of quokkas, 𝑞௜ represent the 𝑖-th

quokka, 𝑓൫𝑞௜
(௧)

൯ denote the fitness score of quokka
𝑞௜ at iteration 𝑡, and 𝑄(௧) represent the population of
quokkas at iteration 𝑡.

Quokkas update their exploration and
exploitation strategies based on the success or failure
of previous foraging attempts. This involves
adjusting parameters or probabilities associated with
exploration and exploitation mechanisms to
optimize the search process, expressed
mathematically in Eq.(56).

𝑈𝑝𝑑𝑎𝑡𝑒_𝑆𝑡𝑟𝑎𝑡𝑒𝑔𝑦 ቀ𝑄(௧), 𝑓൫𝑞௜
(௧)

൯ቁ (56)

where 𝑈𝑝𝑑𝑎𝑡𝑒_𝑆𝑡𝑟𝑎𝑡𝑒𝑔𝑦 adjusts the exploration
and exploitation strategies based on the performance
of the population.

Quokkas employ adaptive mechanisms to
dynamically adjust their behavior in response to
changes in the search landscape. These mechanisms
may include adaptive step sizes, mutation rates, or
selection probabilities, allowing QuokkaNet to adapt
its exploration and exploitation strategies over time.

𝐴𝑑𝑎𝑝𝑡_𝑀𝑒𝑐ℎ𝑎𝑛𝑖𝑠𝑚𝑠 ቀ𝑄(௧), 𝑓൫𝑞௜
(௧)

൯ቁ (57)

where in Eq.(57), 𝐴𝑑𝑎𝑝𝑡_𝑀𝑒𝑐ℎ𝑎𝑛𝑖𝑠𝑚𝑠 updates
adaptive parameters or probabilities based on the
performance of the population.

Quokkas learn from their experiences by tracking
the success or failure of previous foraging attempts
and adjusting their behavior accordingly. This
learning process enables QuokkaNet to recognize
promising regions of the search space and focus its
exploration and exploitation efforts on areas with
higher potential for finding optimal solutions.

 Journal of Theoretical and Applied Information Technology
31st January 2025. Vol.103. No.2

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

663

𝐿𝑒𝑎𝑟𝑛_𝑓𝑟𝑜𝑚_𝐸𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒 ቀ𝑄(௧), 𝑓൫𝑞௜
(௧)

൯ቁ (58)

where in Eq.(58), 𝐿𝑒𝑎𝑟𝑛_𝑓𝑟𝑜𝑚_𝐸𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒
updates quokkas' behavior based on the outcomes of
previous iterations.

QuokkaNet maintains an adaptive balance
between exploration and exploitation strategies to
ensure effective navigation of the search space. This
involves dynamically adjusting the trade-off
between exploring new regions and exploiting
known solutions based on the current state of the
optimization process. The adaptive exploration-
exploitation balance can be expressed
mathematically in Eq.(59).

𝐴𝑑𝑎𝑝𝑡_𝐸𝑥𝑝𝑙𝑜𝑟𝑎𝑡𝑖𝑜𝑛_𝐸𝑥𝑝𝑙𝑜𝑖𝑡𝑎𝑡𝑖𝑜𝑛_𝐵𝑎𝑙𝑎𝑛𝑐𝑒 ൬𝑄(௧), 𝑓 ቀ𝑞௜
(௧)

ቁ൰ (59)

where 𝐴𝑑𝑎𝑝𝑡_𝐸𝑥𝑝𝑙𝑜𝑟𝑎𝑡𝑖𝑜𝑛 − 𝐸𝑥𝑝𝑙𝑜𝑖𝑡𝑎𝑡𝑖𝑜𝑛_𝐵𝑎𝑙𝑎𝑛𝑐𝑒
adjusts the exploration and exploitation balance
based on the population's performance. The
adaptation step of QuokkaNet ensures that the
optimization process remains flexible and
responsive to changes in the search landscape.

3.2.7. QuokkaNet Migration

In the migration phase of QuokkaNet, quokkas
exchange information and genetic material to
facilitate diversity and prevent premature
convergence. This process involves the movement of
individuals between different subpopulations or
habitats, allowing for the exchange of beneficial
traits and promoting the exploration of new regions
in the search space. Let 𝑄 denote the population of

quokkas, 𝑞௜ represent the 𝑖-th quokka, 𝑓൫𝑞௜
(௧)

൯
denote the fitness score of quokka 𝑞௜ at iteration 𝑡,
and 𝑄(௧) represent the population of quokkas at
iteration 𝑡. QuokkaNet divides the population of
quokkas into multiple subpopulations or habitats,
each representing a distinct search space region. This
division allows for localized exploration and
exploitation within each subpopulation while
maintaining diversity at the global level is shown in
mathematical form as Eq.(60).

𝐹𝑜𝑟𝑚_𝑆𝑢𝑏𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑠൫𝑄(௧)൯ (60)

where 𝐹𝑜𝑟𝑚_𝑆𝑢𝑏𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑠 partitions the
population into subpopulations.

Quokkas migrate between subpopulations to
exchange genetic material and information,
promoting diversity and spreading beneficial traits.
The migration mechanism can involve periodic
exchange of individuals, directed migration towards

regions with higher potential, or random movement
to explore new areas, expressed mathematically in
Eq.(61).

𝑀𝑖𝑔𝑟𝑎𝑡𝑒൫𝑄(௧)൯ (61)

where 𝑀𝑖𝑔𝑟𝑎𝑡𝑒 facilitates the movement of quokkas
between subpopulations.

During migration, quokkas exchange genetic
material through mechanisms such as crossover and
recombination, leading to the creation of offspring
with diverse genetic characteristics. This genetic
exchange promotes the spread of beneficial traits and
facilitates adaptation to changing environmental
conditions. The genetic exchange process can be
represented mathematically as Eq.(62).

𝐺𝑒𝑛𝑒𝑡𝑖𝑐_𝐸𝑥𝑐ℎ𝑎𝑛𝑔𝑒൫𝑄(௧)൯ (62)

where 𝐺𝑒𝑛𝑒𝑡𝑖𝑐_𝐸𝑥𝑐ℎ𝑎𝑛𝑔𝑒 facilitates the exchange
of genetic material between quokkas.

Migration promotes diversity within the
population by introducing new genetic material and
facilitating the exploration of new regions in the
search space. This diversity helps prevent premature
convergence and ensures that the optimization
process continues to explore a wide range of
solutions.

𝑃𝑟𝑜𝑚𝑜𝑡𝑒_𝐷𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦൫𝑄(௧)൯ (63)

where in Eq.(63), 𝑃𝑟𝑜𝑚𝑜𝑡𝑒_𝐷𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦 maintains
diversity within the population through migration.

QuokkaNet adapts its migration strategy based
on the current state of the optimization process and
the characteristics of the search landscape. This
adaptive strategy allows QuokkaNet to adjust the
frequency and direction of migration to maximize
exploration and exploitation efficiency.

𝐴𝑑𝑎𝑝𝑡_𝑀𝑖𝑔𝑟𝑎𝑡𝑖𝑜𝑛_𝑠𝑡𝑟𝑎𝑔𝑒𝑡𝑦 ቀ𝑄(௧), 𝑓൫𝑞௜
(௧)

൯ቁ (64)

where in Eq.(64), 𝐴𝑑𝑎𝑝𝑡_𝑀𝑖𝑔𝑟𝑎𝑡𝑖𝑜𝑛_𝑠𝑡𝑟𝑎𝑔𝑒𝑡𝑦
adjusts the migration strategy based on the fitness
scores of the population. The migration step of
QuokkaNet facilitates the exchange of genetic
material and information between quokkas,
promoting diversity and exploration of new regions
in the search space.

3.2.8. QuokkaNet Termination

This phase ensures that the optimization process
halts when certain conditions are met, indicating that
QuokkaNet has sufficiently explored the search

 Journal of Theoretical and Applied Information Technology
31st January 2025. Vol.103. No.2

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

664

space or achieved satisfactory performance. Let 𝑄
denote the population of quokkas, 𝑞௜ represent the 𝑖-

th quokka, 𝑓൫𝑞௜
(௧)

൯ denote the fitness score of quokka
𝑞௜ at iteration 𝑡, and 𝑄(௧) represent the population of
quokkas at iteration 𝑡. QuokkaNet checks for
convergence by monitoring the fitness scores of the
population over multiple iterations. Suppose the
fitness scores stabilize or show no significant
improvement over several iterations. The
optimization process may be terminated in that case,
indicating that QuokkaNet has converged to a
satisfactory solution, expressed as Eq.(65).

𝐶𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒_𝐶ℎ𝑒𝑐𝑘 ቀ𝑓൫𝑞௜
(௧)

൯ቁ (65)

where 𝐶𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒_𝐶ℎ𝑒𝑐𝑘 assesses whether the
fitness scores have converged.

QuokkaNet may be terminated after a predefined
maximum number of iterations to limit
computational resources and prevent overfitting.
The optimization process is halted once the
maximum number of iterations is reached and the
best-performing solution discovered so far is
returned. The termination based on maximum
iterations can be expressed as Eq.(66).

𝑀𝑎𝑥_𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠_𝐶ℎ𝑒𝑐𝑘(𝑡) (66)

where 𝑀𝑎𝑥_𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠_𝐶ℎ𝑒𝑐𝑘 checks if the current
iteration exceeds the maximum allowable iterations.

The optimization process may be terminated if
QuokkaNet performs satisfactorily on a validation
dataset. This criterion ensures that the optimization
process halts once the model's performance meets or
exceeds predefined performance thresholds, as
expressed mathematically in Eq.(67).

𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒_𝐶ℎ𝑒𝑐𝑘 ቀ𝑓൫𝑞௜
(௧)

൯ቁ (67)

where 𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒_𝐶ℎ𝑒𝑐𝑘 evaluates whether the
model's performance meets predefined thresholds.

QuokkaNet may be terminated if computational
or memory resources are exhausted, preventing
further optimization. This ensures the optimization
process does not consume excessive resources
beyond predefined limits. The termination based on
resource constraints can be represented as Eq.(68).

𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒_𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠_𝐶ℎ𝑒𝑐𝑘 (68)

The optimization process may be terminated
based on user intervention, allowing users to
manually halt the process if necessary. This criterion
allows users to intervene and terminate the

optimization process based on their judgment. The
termination based on user intervention can be
expressed as Eq.(69).

𝑈𝑠𝑒𝑟_𝐼𝑛𝑡𝑒𝑟𝑣𝑒𝑛𝑡𝑖𝑜𝑛_𝐶ℎ𝑒𝑐𝑘 (69)

where 𝑈𝑠𝑒𝑟_𝐼𝑛𝑡𝑒𝑟𝑣𝑒𝑛𝑡𝑖𝑜𝑛_𝐶ℎ𝑒𝑐𝑘 allows users to
halt the optimization process manually.

The termination step of QuokkaNet ensures that the
optimization process concludes appropriately based
on predefined stopping criteria. Fig 2. Illustrates the
processed underwater images.

Fig 2. Processed Underwater Images

4. DATASET

The Large Scale Underwater Image Dataset
(LSUI) is an essential dataset designed to support
underwater image processing, identification, and
classification research. With thousands of images
captured in diverse marine environments, the LSUI
dataset is valuable for developing and testing
machine learning models. These images include a
variety of scenes, such as different species of marine
life, underwater landscapes, and man-made objects,
making the dataset comprehensive and versatile.
One of the key challenges in underwater imaging is
the effect of environmental factors on image quality.
The LSUI dataset addresses this by including images
taken under various conditions, such as varying
depths, different times of day, and various water
clarity levels. This diversity in imaging conditions is
critical for training machine learning models that can
generalize well to underwater environments. The
dataset helps overcome the difficulties associated
with light absorption, scattering, and turbidity,
which often degrade underwater image quality.

 Journal of Theoretical and Applied Information Technology
31st January 2025. Vol.103. No.2

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

665

Each image in the LSUI dataset is accompanied
by detailed annotations, providing labels for objects
and features within the image. This metadata
includes information about the capture conditions,
such as location, depth, and environmental factors.
These annotations are invaluable for supervised
learning tasks, enabling precise training models for
underwater image identification and classification.
The comprehensive labeling ensures that the dataset
can be effectively used to develop algorithms
capable of accurate and reliable performance. The
LSUI dataset is not only beneficial for machine
learning but also for various scientific and
conservation applications. In marine biology,
researchers can use the dataset to study species
distribution, monitor changes in aquatic ecosystems,
and assess the health of coral reefs. Environmental
monitoring efforts benefit from the ability to track
underwater pollution, observe habitat changes, and
evaluate the impact of human activities on marine
environments. The underwater archaeologists can
utilize the dataset to document and analyze
submerged cultural heritage sites.

The LSUI dataset addresses the significant
challenges of underwater imaging by providing a
diverse and well-annotated collection of images.
This resource is crucial for advancing the field of
underwater image processing, enabling the
development of more effective algorithms for
identification and classification. Its wide-ranging
applications in scientific research, conservation, and
archaeology highlight the dataset's importance in
enhancing the understanding and preservation of
underwater environments.

5. RESULTS AND DISCUSSION:

The results from the evaluation of DeepSeaNet,
MCANet, and QuokkaNet reveal significant
differences in performance metrics, highlighting the
efficacy of each model in underwater image
classification tasks.

5.1. Classification Accuracy and F-Measure

The true positive (TP) counts were 1342.723 for
DeepSeaNet, 1514.811 for MCANet, and 2001.750
for QuokkaNet. This progression indicates a clear
improvement in correctly identifying positive
instances, with QuokkaNet demonstrating superior
performance. The true negative (TN) values
followed a similar trend, with DeepSeaNet achieving
1383.806, MCANet 1549.288, and QuokkaNet
2057.295, suggesting QuokkaNet's enhanced
capability to identify negative instances correctly.
The false positive (FP) counts were 1067.653 for

DeepSeaNet, 964.721 for MCANet, and 494.345 for
QuokkaNet. Lower FP rates indicate fewer incorrect
identifications, and QuokkaNet again shows its
advantage. For false negatives (FN), DeepSeaNet
had 1209.817, MCANet 975.180, and QuokkaNet
450.610, underscoring QuokkaNet's improved
performance in minimizing missed positive
instances.

.
Fig 3. Illustrates the outcome of Classification
Accuracy and F-Measure. The True Positive Rate
(TPR) or sensitivity, which measures the proportion
of actual positives correctly identified, was 52.603%
for DeepSeaNet, 60.836% for MCANet, and
81.625% for QuokkaNet. This metric illustrates
QuokkaNet's effectiveness in capturing positive
instances. The True Negative Rate (TNR), indicating
the proportion of actual negatives correctly
identified, was 56.448% for DeepSeaNet, 61.626%
for MCANet, and 80.626% for QuokkaNet, further
affirming QuokkaNet's superiority in correctly
identifying negative instances. The False Positive
Rate (FPR), reflecting the proportion of incorrect
positive identifications among actual negatives, was
43.552% for DeepSeaNet, 38.374% for MCANet,
and 19.374% for QuokkaNet. Lower FPR values are
preferable, highlighting QuokkaNet's effectiveness
in minimizing false positives. The False Negative
Rate (FNR), indicating the proportion of missed
positive instances, was 47.397% for DeepSeaNet,
39.164% for MCANet, and 18.375% for
QuokkaNet, underscoring QuokkaNet's lower rate of
missed positives.

Fig 3. Classification Accuracy and F-Measure.

Precision, the proportion of correct positive
identifications among all positive identifications,
was 55.706% for DeepSeaNet, 61.093% for
MCANet, and 80.195% for QuokkaNet. Higher
precision indicates more reliable positive

11

31

51

71

91

CA
FM

54.487
54.110

61.233 60.964

81.116 80.904

R
es

ul
ts

 (
%

)

Performance Metrics

DeepSeaNet

MCANet

QuokkaNet

 Journal of Theoretical and Applied Information Technology
31st January 2025. Vol.103. No.2

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

666

identifications, with QuokkaNet demonstrating
superior precision. Classification Accuracy (CA),
measuring the overall correctness of classifications,
was 54.487% for DeepSeaNet, 61.233% for
MCANet, and 81.116% for QuokkaNet, with
QuokkaNet showing a significant accuracy
advantage.

The F-Measure, combining precision and recall
into a single metric, was 54.110 for DeepSeaNet,
60.964 for MCANet, and 80.904 for QuokkaNet.
The F-Measure results highlight QuokkaNet's
balanced performance in both precision and recall.

Table 1. Classification Accuracy and F-Measure.
Classification
Algorithms CA FM
DeepSeaNet 54.487 54.110

MCANet 61.233 60.964
QuokkaNet 81.116 80.904

In Table 1, which tabulates the CA and FM

values, DeepSeaNet had a CA of 54.487% and an
FM of 54.110. MCANet improved with a CA of
61.233% and an FM of 60.964. QuokkaNet achieved
the highest performance, with a CA of 81.116% and
an FM of 80.904, demonstrating its superior
classification capabilities. The results indicate that
QuokkaNet outperforms DeepSeaNet and MCANet
across all evaluated metrics. QuokkaNet's higher TP
and TN values and lower FP and FN rates contribute
to its superior TPR, TNR, FPR, FNR, precision,
classification accuracy, and F-Measure. The analysis
confirms that QuokkaNet significantly improves
underwater image classification, making it the most
effective model among the three.

5.2. Fowlkes-Mallows Index and Matthews
Correlation Coefficient

DeepSeaNet achieved a Fowlkes-Mallows Index
(FMI) of 54.132 and a Matthews Correlation
Coefficient (MCC) of 9.056. The FMI, which
evaluates the geometric mean of precision and recall,
indicates moderate performance. The MCC,
reflecting the quality of binary classifications,
underscores the limited correlation between
predicted and actual classes for DeepSeaNet. These
results suggest that while DeepSeaNet provides
reasonable accuracy, its predictive power remains
modest. MCANet improved these results with an
FMI of 60.964 and an MCC of 22.463. The higher
FMI demonstrates a better balance between
precision and recall than DeepSeaNet. The increased
MCC signifies a stronger correlation between
predictions and actual outcomes, highlighting

MCANet's enhanced classification capabilities. This
improvement suggests MCANet's greater
effectiveness in correctly identifying underwater
images.

Fig 4. Illustrates the outcome of the Fowlkes-

Mallows Index and Matthews Correlation
Coefficient. QuokkaNet surpassed DeepSeaNet and
MCANet, achieving an FMI of 80.907 and an MCC
of 62.240. The highest FMI among the three
indicates QuokkaNet's superior precision-recall
balance. The substantial MCC value signifies a
robust correlation between predicted and actual
classifications, reflecting QuokkaNet's exceptional
performance in underwater image classification
tasks. These metrics illustrate QuokkaNet's
dominance in accurately classifying underwater
images.

Fig 4. Fowlkes-Mallows Index and Matthews

Correlation Coefficient.

The Fowlkes-Mallows Index (FMI) and
Matthews Correlation Coefficient (MCC) provide
critical insights into the models' performance.
Analyzing the FMI values of 54.132 for
DeepSeaNet, 60.964 for MCANet, and 80.907 for
QuokkaNet reveals a progressive improvement in
the balance of precision and recall, with QuokkaNet
demonstrating the best results. Similarly, the MCC
values of 9.056 for DeepSeaNet, 22.463 for
MCANet, and 62.240 for QuokkaNet highlight a
substantial enhancement in prediction quality, with
QuokkaNet showing a significant advantage.

Classification
Algorithms FMI MCC
DeepSeaNet 54.132 9.056

MCANet 60.964 22.463
QuokkaNet 80.907 62.240

Table 2. Fowlkes-Mallows Index and Matthews

Correlation Coefficient

8

58

FMI
MCC

54.132

9.056

60.964

22.463

80.907

62.240

R
es

u
lt

s
(%

)

Performance Metrics

DeepSeaNet

MCANet

QuokkaNet

 Journal of Theoretical and Applied Information Technology
31st January 2025. Vol.103. No.2

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

667

Table 2 illustrates the consolidated FMI and

MCC of QuokkaNet. The classification algorithms'
FMI and MCC values reiterate the superior
performance of QuokkaNet, followed by MCANet,
with DeepSeaNet lagging. These comparative
metrics underscore QuokkaNet's exceptional ability
to classify underwater images, affirming its
robustness and reliability accurately. The evaluation
metrics comprehensively compare DeepSeaNet,
MCANet, and QuokkaNet. The results demonstrate
QuokkaNet's superior performance across various
metrics, including FMI and MCC. These findings
confirm QuokkaNet's effectiveness and accuracy in
underwater image classification, making it the most
reliable model among the three.

6. CONCLUSION

The comparative analysis of DeepSeaNet,
MCANet, and QuokkaNet for underwater image
classification tasks reveals significant advancements
in performance metrics with QuokkaNet. By
leveraging enhanced convolutional neural networks
and Quokka Optimization, QuokkaNet demonstrates
superior capabilities regarding true positive and true
negative rates, precision, classification accuracy,
and F-measure. The improved precision-recall
balance and strong correlation between predicted
and actual outcomes, as indicated by higher
Fowlkes-Mallows Index and Matthews Correlation
Coefficient values, further affirm QuokkaNet's
robustness. Integrating convolutional, pooling,
normalization, and fully connected layers and
applying Nesterov Accelerated Gradient in the N-
CNN model form a solid foundation for effective
image classification. Quokka Optimization enhances
this model through systematic exploration,
exploitation, fitness evaluation, selection,
adaptation, and migration, ensuring optimal
performance. This study highlights the significant
advancements achieved through QuokkaNet in
underwater image classification, demonstrating a
clear performance edge over DeepSeaNet and
MCANet. The results confirm that QuokkaNet's
innovative approach and optimization techniques
offer a reliable and accurate solution for complex
image classification tasks, making it a valuable tool
for underwater research and exploration
applications.

REFERENCES:
[1] P. M. d’Orey, M. G. Gaitán, P. M. Santos, M.

Ribeiro, J. B. de Sousa, and L. Almeida,
“Assessing short-range Shore-to-Shore (S2S)
and Shore-to-Vessel (S2V) WiFi

communications,” Comput. Networks, p.
110505, 2024, doi:
https://doi.org/10.1016/j.comnet.2024.110505
.

[2] N. K. Gupta, R. S. Yadav, R. K. Nagaria, D.
Gupta, A. M. Tripathi, and O. J. Pandey,
“Anchor-based void detouring routing
protocol in three dimensional IoT networks,”
Comput. Networks, vol. 227, p. 109691, 2023,
doi: 10.1016/j.comnet.2023.109691.

[3] V. Malathi, A. Manikandan, and K. Krishnan,
“Optimzied resnet model of convolutional
neural network for under sea water object
detection and classification,” Multimed. Tools
Appl., vol. 82, no. 24, pp. 37551–37571, 2023,
doi: 10.1007/s11042-023-15041-5.

[4] J. An and W. M. N. Wan Zainon, “Integrating
color cues to improve multimodal sentiment
analysis in social media,” Eng. Appl. Artif.
Intell., vol. 126, p. 106874, 2023, doi:
10.1016/j.engappai.2023.106874.

[5] J. Pan, L. Xia, Q. Wu, Y. Guo, Y. Chen, and X.
Tian, “Automatic strawberry leaf scorch
severity estimation via faster R-CNN and few-
shot learning,” Ecol. Inform., vol. 70, p.
101706, 2022, doi:
10.1016/j.ecoinf.2022.101706.

[6] D. liang Zhang, Z. Jiang, F. Mohammadzadeh,
S. M. Hasani Azhdari, L. Abualigah, and T. M.
Ghazal, “FUZ-SMO: A fuzzy slime mould
optimizer for mitigating false alarm rates in the
classification of underwater datasets using
deep convolutional neural networks,” Heliyon,
vol. 10, no. 7, pp. e28681–e28681, 2024, doi:
https://doi.org/10.1016/j.heliyon.2024.e28681
.

[7] E. Essa and I. R. Abdelmaksoud, “Temporal-
channel convolution with self-attention
network for human activity recognition using
wearable sensors,” Knowledge-Based Syst.,
vol. 278, p. 110867, 2023, doi:
https://doi.org/10.1016/j.knosys.2023.110867.

[8] A. Mitra, B. Bera, A. K. Das, S. S. Jamal, and
I. You, “Impact on blockchain-based AI/ML-
enabled big data analytics for Cognitive
Internet of Things environment,” Comput.
Commun., vol. 197, pp. 173–185, 2023, doi:
https://doi.org/10.1016/j.comcom.2022.10.01
0.

[9] Y. Zhou, B. Li, J. Wang, E. Rocco, and Q.
Meng, “Discovering unknowns: Context-
enhanced anomaly detection for curiosity-
driven autonomous underwater exploration,”
Pattern Recognit., vol. 131, p. 108860, 2022,
doi:

 Journal of Theoretical and Applied Information Technology
31st January 2025. Vol.103. No.2

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

668

https://doi.org/10.1016/j.patcog.2022.108860.
[10] J. Zhang, X. Liu, M. Chen, Q. Ye, and Z.

Wang, “Image sentiment classification via
multi-level sentiment region correlation
analysis,” Neurocomputing, vol. 469, pp. 221–
233, 2022, doi:
10.1016/j.neucom.2021.10.062.

[11] M. Jahanbakht, M. Rahimi Azghadi, and N. J.
Waltham, “Semi-supervised and weakly-
supervised deep neural networks and dataset
for fish detection in turbid underwater videos,”
Ecol. Inform., vol. 78, p. 102303, 2023, doi:
https://doi.org/10.1016/j.ecoinf.2023.102303.

[12] Y. Liu et al., “DP-FishNet: Dual-path Pyramid
Vision Transformer-based underwater fish
detection network,” Expert Syst. Appl., vol.
238, p. 122018, 2024, doi:
https://doi.org/10.1016/j.eswa.2023.122018.

[13] T. B. N. Freitas, T. S. Leite, B. de Ramos, A.
di Cosmo, and M. C. Proietti, “In an octopus’s
garden in the shade: Underwater image
analysis of litter use by benthic octopuses,”
Mar. Pollut. Bull., vol. 175, p. 113339, 2022,
doi:
https://doi.org/10.1016/j.marpolbul.2022.1133
39.

[14] C. Gupta, N. S. Gill, P. Gulia, S. Yadav, and J.
M. Chatterjee, “A novel finetuned YOLOv8
model for real-time underwater trash
detection,” J. Real-Time Image Process., vol.
21, no. 2, p. 48, 2024, doi: 10.1007/s11554-
024-01439-3.

[15] V. karthick Perumal, T. Supriyaa, P. R.
Santhosh, and D. S. Dhanasekaran, “CNN
BASED PLANT DISEASE
IDENTIFICATION USING PYNQ FPGA,”
Syst. Soft Comput., p. 200088, 2024, doi:
https://doi.org/10.1016/j.sasc.2024.200088.

[16] K. N. Qureshi, O. Kaiwartya, G. Jeon, and F.
Piccialli, “Neurocomputing for internet of
things: Object recognition and detection
strategy,” Neurocomputing, vol. 485, pp. 263–
273, 2022, doi:
10.1016/j.neucom.2021.04.140.

[17] M. Wang, B. Fu, J. Fan, Y. Wang, L. Zhang,
and C. Xia, “Sweet potato leaf detection in a
natural scene based on faster R-CNN with a
visual attention mechanism and DIoU-NMS,”
Ecol. Inform., vol. 73, p. 101931, 2023, doi:
10.1016/j.ecoinf.2022.101931.

[18] H. Li, Y. Liu, Z. Ye, Q. Zhang, S. Yang, and
M. Xu, “Underwater target detection using
hybrid carbon nanotube self-adhesive
sensors,” Device, vol. 2, no. 1, p. 100223,
2024, doi:

https://doi.org/10.1016/j.device.2023.100223.
[19] O. Vidhya and S. Ranjitha Kumari, “Quadratic

ensemble weighted emphasis boosting based
energy and bandwidth efficient routing in
Underwater Sensor Network,” Int. J. Intell.
Networks, vol. 4, pp. 130–139, 2023, doi:
10.1016/j.ijin.2023.05.001.

[20] X. Hua et al., “Underwater object detection
algorithm based on feature enhancement and
progressive dynamic aggregation strategy,”
Pattern Recognit., vol. 139, p. 109511, 2023,
doi:
https://doi.org/10.1016/j.patcog.2023.109511.

[21] Z. Gao, Y. Shi, and S. Li, “Self-attention and
long-range relationship capture network for
underwater object detection,” J. King Saud
Univ. - Comput. Inf. Sci., vol. 36, no. 2, p.
101971, 2024, doi:
https://doi.org/10.1016/j.jksuci.2024.101971.

[22] P. Song, P. Li, L. Dai, T. Wang, and Z. Chen,
“Boosting R-CNN: Reweighting R-CNN
samples by RPN’s error for underwater object
detection,” Neurocomputing, vol. 530, pp.
150–164, 2023, doi:
https://doi.org/10.1016/j.neucom.2023.01.088
.

[23] C. Liang et al., “Identification and maximum
impact force modeling investigation for critical
slugging in underwater compressed gas energy
storage systems,” J. Energy Storage, vol. 67, p.
107550, 2023, doi:
https://doi.org/10.1016/j.est.2023.107550.

[24] C. G. F. Zinzindohoué, T. Schoening, E. B.
Lima, and B. Fiedler, “PlasPi TDM:
Augmentation of a low-cost camera platform
for advanced underwater physical-ecological
observations,” HardwareX, vol. 15, pp.
e00470–e00470, 2023, doi:
https://doi.org/10.1016/j.ohx.2023.e00470.

[25] B. Huang, G. Chen, H. Zhang, G. Hou, and M.
Radenkovic, “Instant deep sea debris detection
for maneuverable underwater machines to
build sustainable ocean using deep neural
network,” Sci. Total Environ., vol. 878, p.
162826, 2023, doi:
https://doi.org/10.1016/j.scitotenv.2023.16282
6.

[26] A. Al Muksit, F. Hasan, M. F. Hasan Bhuiyan
Emon, M. R. Haque, A. R. Anwary, and S.
Shatabda, “YOLO-Fish: A robust fish
detection model to detect fish in realistic
underwater environment,” Ecol. Inform., vol.
72, p. 101847, 2022, doi:
https://doi.org/10.1016/j.ecoinf.2022.101847.

[27] T. Yoshida, J. Zhou, K. Terayama, and D.

 Journal of Theoretical and Applied Information Technology
31st January 2025. Vol.103. No.2

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

669

Kitazawa, “Monitoring of cage-cultured sea
cucumbers using an underwater time-lapse
camera and deep learning-based image
analysis,” Smart Agric. Technol., vol. 3, p.
100087, 2023, doi:
https://doi.org/10.1016/j.atech.2022.100087.

[28] D. A. K and N. Keshaveni, “An AVOA-LSTM
with MRCNN for segmenting and classifying
the sunglass image-based eye region
identification,” Multimed. Tools Appl., vol. 83,
no. 12, pp. 35073–35095, 2024, doi:
10.1007/s11042-023-16800-0.

[29] Y. Zhang, Z. Yang, X. Du, and X. Luo, “A
New Method for Denoising Underwater
Acoustic Signals Based on EEMD, Correlation
Coefficient, Permutation Entropy, and
Wavelet Threshold Denoising,” J. Mar. Sci.
Appl., vol. 23, no. 1, pp. 222–237, 2024, doi:
10.1007/s11804-024-00386-6.

[30] M. Khishe, M. Mohammadi, and A. Ramezani
Varkani, “Underwater Backscatter
Recognition Using Deep Fuzzy Extreme
Convolutional Neural Network Optimized via
Hunger Games Search,” Neural Process. Lett.,
vol. 55, no. 4, pp. 4843–4870, 2023, doi:
10.1007/s11063-022-11068-1.

[31] X. Zhou, K. Yang, and R. Duan, “Deep
Learning Based on Striation Images for
Underwater and Surface Target
Classification,” IEEE Signal Process. Lett.,
vol. 26, no. 9, pp. 1378–1382, 2019, doi:
10.1109/LSP.2019.2919102.

[32] Y.-P. Huang and S. P. Khabusi, “A CNN-
OSELM Multi-Layer Fusion Network With
Attention Mechanism for Fish Disease
Recognition in Aquaculture,” IEEE Access,
vol. 11, pp. 58729–58744, 2023, doi:
10.1109/ACCESS.2023.3280540.

[33] M. Lingaraj, T. N. Sugumar, C. S. Felix, and J.
Ramkumar, “Query aware routing protocol for
mobility enabled wireless sensor network,” Int.
J. Comput. Networks Appl., vol. 8, no. 3, pp.
258–267, 2021, doi:
10.22247/ijcna/2021/209192.

[34] S. P. Geetha, N. M. S. Sundari, J. Ramkumar,
and R. Karthikeyan, “Energy Efficient Routing
in Quantum Flying Ad Hoc Network (Q-Fanet
) Using Mamdani Fuzzy Inference Enhanced
Dijkstra ’ S Algorithm (Mfi-Eda),” J. Theor.
Appl. Inf. Technol., vol. 102, no. 9, pp. 3708–
3724, 2024.

[35] K. S. J. Marseline, J. Ramkumar, and D. R.
Medhunhashini, “Sophisticated Kalman
Filtering-Based Neural Network for Analyzing
Sentiments in Online Courses,” in Smart

Innovation, Systems and Technologies, A. K.
Somani, A. Mundra, R. K. Gupta, S.
Bhattacharya, and A. P. Mazumdar, Eds.,
Springer Science and Business Media
Deutschland GmbH, 2024, pp. 345–358. doi:
10.1007/978-981-97-3690-4_26.

[36] J. Ramkumar and R. Vadivel, “CSIP—cuckoo
search inspired protocol for routing in
cognitive radio ad hoc networks,” in Advances
in Intelligent Systems and Computing, Springer
Verlag, 2017, pp. 145–153. doi: 10.1007/978-
981-10-3874-7_14.

[37] J. Ramkumar and R. Vadivel, “Improved frog
leap inspired protocol (IFLIP) – for routing in
cognitive radio ad hoc networks (CRAHN),”
World J. Eng., vol. 15, no. 2, pp. 306–311,
2018, doi: 10.1108/WJE-08-2017-0260.

[38] L. Mani, S. Arumugam, and R. Jaganathan,
“Performance Enhancement of Wireless
Sensor Network Using Feisty Particle Swarm
Optimization Protocol,” ACM Int. Conf.
Proceeding Ser., pp. 1–5, Dec. 2022, doi:
10.1145/3590837.3590907.

[39] R. Jaganathan, S. Mehta, and R. Krishan, Bio-
Inspired intelligence for smart decision-
making, vol. i. 2024. doi:
10.4018/9798369352762.

[40] R. Jaganathan and R. Vadivel, “Intelligent Fish
Swarm Inspired Protocol (IFSIP) for Dynamic
Ideal Routing in Cognitive Radio Ad-Hoc
Networks,” Int. J. Comput. Digit. Syst., vol. 10,
no. 1, pp. 1063–1074, 2021, doi:
10.12785/ijcds/100196.

[41] J. Ramkumar, R. Karthikeyan, and M.
Lingaraj, “Optimizing IoT-Based Quantum
Wireless Sensor Networks Using NM-TEEN
Fusion of Energy Efficiency and Systematic
Governance,” in Lecture Notes in Electrical
Engineering, V. Shrivastava, J. C. Bansal, and
B. K. Panigrahi, Eds., Springer Science and
Business Media Deutschland GmbH, 2025, pp.
141–153. doi: 10.1007/978-981-97-6710-
6_12.

[42] A. Senthilkumar, J. Ramkumar, M. Lingaraj,
D. Jayaraj, and B. Sureshkumar, “Minimizing
Energy Consumption in Vehicular Sensor
Networks Using Relentless Particle Swarm
Optimization Routing,” Int. J. Comput.
Networks Appl., vol. 10, no. 2, pp. 217–230,
2023, doi: 10.22247/ijcna/2023/220737.

[43] J. Ramkumar, R. Karthikeyan, and V.
Valarmathi, “Alpine Swift Routing Protocol
(ASRP) for Strategic Adaptive Connectivity
Enhancement and Boosted Quality of Service
in Drone Ad Hoc Network (DANET),” Int. J.

 Journal of Theoretical and Applied Information Technology
31st January 2025. Vol.103. No.2

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

670

Comput. Networks Appl., vol. 11, no. 5, pp.
726–748, 2024, doi: 10.22247/ijcna/2024/45.

[44] D. Jayaraj, J. Ramkumar, M. Lingaraj, and B.
Sureshkumar, “AFSORP: Adaptive Fish
Swarm Optimization-Based Routing Protocol
for Mobility Enabled Wireless Sensor
Network,” Int. J. Comput. Networks Appl., vol.
10, no. 1, pp. 119–129, Jan. 2023, doi:
10.22247/ijcna/2023/218516.

[45] J. Ramkumar, R. Vadivel, and B. Narasimhan,
“Constrained Cuckoo Search Optimization
Based Protocol for Routing in Cloud
Network,” Int. J. Comput. Networks Appl., vol.
8, no. 6, pp. 795–803, 2021, doi:
10.22247/ijcna/2021/210727.

[46] M. P. Swapna and J. Ramkumar, “Multiple
Memory Image Instances Stratagem to Detect
Fileless Malware,” in Communications in
Computer and Information Science, S.
Rajagopal, K. Popat, D. Meva, and S. Bajeja,
Eds., Cham: Springer Nature Switzerland,
2024, pp. 131–140. doi: 10.1007/978-3-031-
59100-6_11.

[47] J. Ramkumar and R. Vadivel, “Improved Wolf
prey inspired protocol for routing in cognitive
radio Ad Hoc networks,” Int. J. Comput.
Networks Appl., vol. 7, no. 5, pp. 126–136,
2020, doi: 10.22247/ijcna/2020/202977.

[48] R. Jaganathan, S. Mehta, and R. Krishan,
Intelligent Decision Making Through Bio-
Inspired Optimization. Sri Krishna Arts and
Science College, India: IGI Global, 2024. doi:
10.4018/979-8-3693-2073-0.

[49] J. Ramkumar, C. Kumuthini, B. Narasimhan,
and S. Boopalan, “Energy Consumption
Minimization in Cognitive Radio Mobile Ad-
Hoc Networks using Enriched Ad-hoc On-
demand Distance Vector Protocol,” 2022 Int.
Conf. Adv. Comput. Technol. Appl. ICACTA
2022, pp. 1–6, Mar. 2022, doi:
10.1109/ICACTA54488.2022.9752899.

[50] J. Ramkumar and R. Vadivel, “Whale
optimization routing protocol for minimizing
energy consumption in cognitive radio
wireless sensor network,” Int. J. Comput.
Networks Appl., vol. 8, no. 4, pp. 455–464,
2021, doi: 10.22247/ijcna/2021/209711.

[51] R. Karthikeyan and R. Vadivel, “Boosted
Mutated Corona Virus Optimization Routing
Protocol (BMCVORP) for Reliable Data
Transmission with Efficient Energy
Utilization,” Wirel. Pers. Commun., vol. 135,
no. 4, pp. 2281–2301, 2024, doi:
10.1007/s11277-024-11155-7.

[52] R. Jaganathan and V. Ramasamy,

“Performance modeling of bio-inspired
routing protocols in Cognitive Radio Ad Hoc
Network to reduce end-to-end delay,” Int. J.
Intell. Eng. Syst., vol. 12, no. 1, pp. 221–231,
2019, doi: 10.22266/IJIES2019.0228.22.

[53] J. Ramkumar, A. Senthilkumar, M. Lingaraj,
R. Karthikeyan, and L. Santhi, “Optimal
Approach for Minimizing Delays in Iot-Based
Quantum Wireless Sensor Networks Using
Nm-Leach Routing Protocol,” J. Theor. Appl.
Inf. Technol., vol. 102, no. 3, pp. 1099–1111,
2024, [Online]. Available:
https://www.scopus.com/inward/record.uri?ei
d=2-s2.0-
85185481011&partnerID=40&md5=bf0ff974
ceabc0ad58e589b28797c684

[54] N. K. Ojha, A. Pandita, and J. Ramkumar,
“Cyber security challenges and dark side of AI:
Review and current status,” in Demystifying
the Dark Side of AI in Business, 2024, pp. 117–
137. doi: 10.4018/979-8-3693-0724-3.ch007.

[55] R. Vadivel and J. Ramkumar, “QoS-enabled
improved cuckoo search-inspired protocol
(ICSIP) for IoT-based healthcare
applications,” Inc. Internet Things Healthc.
Appl. Wearable Devices, pp. 109–121, 2019,
doi: 10.4018/978-1-7998-1090-2.ch006.

[56] R. Karthikeyan and R. Vadivel, “Proficient
Dazzling Crow Optimization Routing Protocol
(PDCORP) for Effective Energy
Administration in Wireless Sensor Networks,”
in IEEE International Conference on
Electrical, Electronics, Communication and
Computers, ELEXCOM 2023, 2023, pp. 1–6.
doi:
10.1109/ELEXCOM58812.2023.10370559.

[57] J. Ramkumar and R. Vadivel, “Multi-Adaptive
Routing Protocol for Internet of Things based
Ad-hoc Networks,” Wirel. Pers. Commun.,
vol. 120, no. 2, pp. 887–909, Apr. 2021, doi:
10.1007/s11277-021-08495-z.

[58] J. Ramkumar, K. S. Jeen Marseline, and D. R.
Medhunhashini, “Relentless Firefly
Optimization-Based Routing Protocol
(RFORP) for Securing Fintech Data in IoT-
Based Ad-Hoc Networks,” Int. J. Comput.
Networks Appl., vol. 10, no. 4, pp. 668–687,
2023, doi: 10.22247/ijcna/2023/223319.

[59] M. P. Swapna, J. Ramkumar, and R.
Karthikeyan, “Energy-Aware Reliable
Routing with Blockchain Security for
Heterogeneous Wireless Sensor Networks,” in
Lecture Notes in Networks and Systems, V.
Goar, M. Kuri, R. Kumar, and T. Senjyu, Eds.,
Springer Science and Business Media

 Journal of Theoretical and Applied Information Technology
31st January 2025. Vol.103. No.2

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

671

Deutschland GmbH, 2025, pp. 713–723. doi:
10.1007/978-981-97-6106-7_43.

[60] J. Ramkumar, S. S. Dinakaran, M. Lingaraj, S.
Boopalan, and B. Narasimhan, “IoT-Based
Kalman Filtering and Particle Swarm
Optimization for Detecting Skin Lesion,” in
Lecture Notes in Electrical Engineering, K.
Murari, N. Prasad Padhy, and S. Kamalasadan,
Eds., Singapore: Springer Nature Singapore,
2023, pp. 17–27. doi: 10.1007/978-981-19-
8353-5_2.

[61] P. Menakadevi and J. Ramkumar, “Robust
Optimization Based Extreme Learning
Machine for Sentiment Analysis in Big Data,”
2022 Int. Conf. Adv. Comput. Technol. Appl.
ICACTA 2022, pp. 1–5, Mar. 2022, doi:
10.1109/ICACTA54488.2022.9753203.

[62] M. R. Azimi-Sadjadi, J. Salazar, and S.
Srinivasan, “An Adaptable Image Retrieval
System With Relevance Feedback Using
Kernel Machines and Selective Sampling,”
IEEE Trans. Image Process., vol. 18, no. 7, pp.
1645–1659, 2009, doi:
10.1109/TIP.2009.2017825.

[63] H. Wang, F. Dong, and L. Song, “Bubble-
Forming Regime Identification Based on
Image Textural Features and the MCWA
Feature Selection Method,” IEEE Access, vol.
5, pp. 15820–15830, 2017, doi:
10.1109/ACCESS.2017.2716783.

[64] A. Liu, Y. Liu, K. Xu, F. Zhao, Y. Zhou, and
X. Li, “DeepSeaNet: A Bio-Detection
Network Enabling Species Identification in the
Deep Sea Imagery,” IEEE Trans. Geosci.
Remote Sens., vol. 62, pp. 1–13, 2024, doi:
10.1109/TGRS.2024.3359350.

[65] G. Li et al., “MCANet: Multi-channel attention
network with multi-color space encoder for
underwater image classification,” Comput.
Electr. Eng., vol. 108, p. 108724, 2023, doi:
https://doi.org/10.1016/j.compeleceng.2023.1
08724.

