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ABSTRACT 

 Federated learning has become a key concept in collaborative machine learning, allowing several clients to 
train models independently of one another's raw data. However, federated learning's decentralized structure 
poses serious security risks, especially when it comes to securely transferring training parameters between 
clients and the central server. This research proposes the construction of effective protocols employing 
Elliptic Curve Cryptography (ECC) for the safe transfer of training parameters in a federated network in 
order to address these issues. ECC is selected because of its robust security characteristics and computational 
effectiveness, which make it especially appropriate for situations with limited resources, which are frequently 
found in federated learning scenarios. The suggested approach makes use of ECC to enable safe key 
exchange, guaranteeing that training parameters are encrypted in transit to thwart manipulation and unwanted 
access. Furthermore, the protocol is made to reduce communication overhead, which improves the federated 
learning process's overall effectiveness. A thorough security analysis shows how resistant the protocol is to 
common risks like eavesdropping and man-in-the-middle assaults. The efficiency of the protocol is further 
supported by experimental results, which demonstrate notable reductions in computation time and energy 
usage when compared to conventional cryptography techniques. To sum up, this work opens the door for 
federated learning to be more widely used in security-sensitive applications by offering a reliable and 
effective method for safeguarding communication in federated learning settings. 

Keywords: Federated Learning, Elliptic Curve Cryptography (ECC), Secure Transmission, Training 
Parameters, Cryptographic Protocols, Data Security, Key Exchange, Parameter Aggregation, 
Communication Efficiency, Network Security 

 

1. INTRODUCTION 

A cutting-edge machine learning paradigm 
called federated learning (FL) makes it possible to 
construct models across numerous decentralized 
servers or devices, each of which has local data 
samples. This gets rid of the need to share data. 
Federated learning is based on the idea of 
decentralized data processing, in contrast to 
conventional centralized machine learning 

methods, which collect data on a central server for 
training. The main idea is to share just the model 
updates (parameters, gradients, etc.) with the 
central server after the models have been trained 
locally on each client device. This server 
aggregates the modifications to create a global 
model, which is then returned to the clients. This 
makes it especially desirable in industries like 
healthcare, finance, and personalized services 
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where protecting personal information is crucial. 
Federated learning poses distinct challenges as 
well, such as managing non-identical and non-
independent data distribution among clients, 
guaranteeing strong communication 
effectiveness, and resolving security concerns like 
model poisoning attacks. Because of this, FL is a 
dynamic field of study with continuous efforts to 
improve its security, scalability, and robustness. 
The central server and participating devices 
normally communicate with each other multiple 
times during the FL process. Using its data, each 
device trains a local model, which it then 
transmits to the central server with updated model 
parameters. These updates are combined by the 
server to produce a global model, which is 
subsequently re-shared with the devices for the 
subsequent training cycle. The model converges 
when this cycle is repeated. Federated Learning is 
especially useful in industries like healthcare, 
finance, and mobile applications where data 
privacy is critical. It tackles a number of important 
issues, such as data heterogeneity, effective 
communication, and making sure that models are 
safe and reliable. Personalized learning, in which 
models are adapted to particular users or devices, 
is another benefit of this approach. 

1.1. Motivation for ECC 

 In Federated learning environments, 
Elliptic Curve Cryptography (ECC) is a highly 
motivated option for data transmission security 
and optimization. Because of its robust security, 
high computing speed, and low communication 
overhead, it is especially well-suited to FL's 
decentralized and resource-constrained structure. 
With the use of ECC, federated learning systems 
may help create machine learning models that are 
resilient and scalable while guaranteeing data 
privacy and integrity as well as efficient client 
communication. One example of a public-key 
encryption is elliptic curve encryption (ECC), 
which is based on the algebraic structure of 
elliptic curves over finite fields. Compared to 
conventional cryptosystems like RSA, ECC 
employs substantially smaller keys while offering 
similar levels of protection. Because of its 
effectiveness, ECC is especially appealing for 
applications with constrained power, bandwidth, 
and computational resources. 

Federated Learning is one of the cryptographic 
systems that use ECC because of the following 
main reasons: 

R1: Greater Security with Smaller Keys: 
Compared to more conventional techniques like 
RSA or Diffie-Hellman, ECC provides superior 
security levels with smaller key sizes. This 
decrease in key size results in less computational 
overhead while still offering strong defense 
against intrusions. 

R2: Efficient Computation: ECC's smaller key 
sizes lighten the computational load on devices, 
which is crucial in settings with limited resources, 
like IoT sensors or mobile devices. Since a variety 
of clients, including low-power edge devices, are 
frequently involved in Federated Learning (FL), 
the computational efficiency of ECC is essential 
to guaranteeing seamless and effective operations. 

R3: Decreased Bandwidth Consumption: ECC 
uses less bandwidth to transmit cryptographic 
data because of the smaller key sizes. In Federated 
Learning scenarios, this is crucial because there 
may be frequent and bandwidth-constrained data 
transfers between local clients and central servers 
or peers. 

R4: Future-Proofing Against Quantum 
Attacks: Many established cryptographic 
techniques, such as RSA, may become susceptible 
as quantum computing develops. ECC is a more 
flexible cryptographic scheme due to its smaller 
keys and compact structure, even though it is 
theoretically vulnerable to quantum attacks as 
well. To secure future security, post-quantum 
ECC algorithms are being investigated by 
researchers. 

1.2. Objectives 

Federated Learning (FL) minimizes 
connection with a central server and protects data 
privacy by training machine learning models 
among dispersed devices. The use of ECC 
enhances both the security and efficiency of this 
process: 

Obj1: Secure Transmission of Training 
Parameters: In FL, only model parameters, 
rather than raw data, are shared between clients 
and servers. ECC can be employed to securely 
transmit these training parameters, ensuring that 
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malicious actors cannot intercept or alter them 
during communication. This protects both the 
model's integrity and the privacy of participants' 
data. 

Obj2: Clients with Limited Resources: Mobile 
phones and edge devices are common clients in 
FL systems. These devices frequently have short 
battery lives and low processing power. ECC is a 
good choice for these kinds of devices because of 
its lower computational requirements, which 
guarantee that cryptographic operations won't 
materially impair the machine learning tasks' 
performance. 
 
Obj3: Reducing Communication Expenses: 
Managing communication overhead is a major 
problem in federated learning, especially when 
thousands of clients are involved. Because ECC 
uses smaller keys than other encryption 
algorithms, it can achieve strong encryption with 
less data, which reduces latency and increases 
communication efficiency. 
 
Obj4: Reducing Man-in-the-Middle Attacks: 
Federated Learning systems are susceptible to a 
number of network assaults, such as MITM 
attacks, in which a third party eavesdrops on client 
and server communications. Strong defense 
against such attacks is offered by ECC-based 
encryption, which makes sure that intercepted 
data is useless without the right decryption key. 
 
Obj5: Preservation of Privacy: Protecting the 
privacy of each client's data is a fundamental tenet 
of federated learning. To further protect data, 
ECC can be combined with privacy-preserving 
methods like DP or HE. ECC guarantees the 
security and privacy of the transmitted encrypted 
model updates in this particular context. 

Federated Learning frameworks can achieve 
improved security by implementing ECC without 
sacrificing the efficiency needed for large-scale, 
decentralized systems. 
 
2. LITERATURE SURVEY 

A new paradigm in machine learning called 
FL allows localized data to be used for 
collaborative model training amongst 
decentralized clients. However, there are a 
number of security issues brought about by this 
distributed nature, especially with regard to secure 
aggregation and communication. The literature 
that has been written about these security issues is 
examined in this review. 

 
2.1. Federated Learning Security Issues 

Because of the requirement to safeguard both 
the integrity of the global model and the 
confidentiality of the client data, federated 
learning poses special security challenges. The 
ensuing security considerations are vital: 

 
 Confidentiality: Maintaining the 

privacy of client information and model 
updates during communication is known 
as confidentiality. 

 Integrity: Defending the model against 
hostile updates and assaults. 

 Authentication: Preventing unwanted 
access by confirming the identities of the 
server and the participating clients.  

 
To secure the FL process, these issues require 
sophisticated cryptographic techniques and 
protocols as shown in TABLE 1. 

Table 1: Federated Learning Security Issues in Existing Systems 

Reference Protocol Designed Findings 
[1] Using secret sharing and secure multi-

party computation (MPC) to provide 
safe aggregation. 

 Communication Overhead 
 Computation Complexity 
 Scalability Issues 

[2] This paper provides an overview of 
homomorphic encryption techniques 
used in privacy-preserving machine 
learning, like Federated Learning. 

 High Computational Overhead 
 Large Cipher text Size 
 Latency Issues 
 Complexity of Implementation 

[3] This paper investigates the application 
of Trusted Execution Environments 
(TEEs) for securing model update 
aggregation in Federated Learning. 
 

 Trusted Execution Environments 
(TEEs) Vulnerabilities  

 Limited Scalability  
 Deployment Complexity  
 Lack of Transparency  
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 Cost and Energy Consumption 
[4] This survey reviews various secure 

multi-party computation algorithms 
created for Federated Learning. It 
discusses various secure aggregation 
techniques and assesses how well they 
preserve security and privacy 
 

 High Computational Overhead  
 Increased Communication Costs 
 Complexity of Implementation 

Trade-offs Between Security and 
Efficiency  

 Protocol Limitations 

[5] This review focuses primarily on the 
integration of Differential Privacy with 
Federated Learning.It talks about how 
differential privacy can be used to 
introduce noise into model updates, 
protecting client data while maintaining 
the ability to train models effectively. 
 

 Accuracy Trade-off 
 Communication Overhead 
 Complex Parameter Tuning 
 Aggregation Vulnerabilities 
 Limited Applicability to Non-IID 

Data 

[6] This paper describes current 
approaches and their shortcomings for 
the application of differential privacy in 
Federated Learning. Additionally, it 
highlights open research challenges 
regarding how to balance model 
performance, efficiency, and privacy. 

 Privacy-Utility Tradeoff 
 Computational Overhead 
 Communication Costs 
 Model and Data Complexity 

[7] A secure communication protocol for 
Federated Learning environments is 
proposed in this paper. In order to 
provide safe transmission of model 
updates, it places a strong emphasis on 
privacy protection via encryption and 
authentication procedures. 
 

 High Communication Overhead 
 Limited Bandwidth 
 Increased Computational Load 
 Scalability Issues 

[8] The difficulties in attaining 
computation efficiency, privacy, and 
communication in federated learning 
are discussed in this paper. It offers 
fresh protocols and enhancements to 
boost the communication security and 
effectiveness in FL systems. 
 

 Privacy  
 Communication  
 Computation Efficiency 

[9] In order to improve security and 
privacy, this paper investigates the 
integration of Federated Learning with 
blockchain technology. It suggests 
utilizing blockchain technology to 
manage secure model updates and 
authentication in Federated Learning. 
 

 Scalability Issues 
 High Computational Overhead 
 Storage Constraints 
 Storage Constraints 

[10] The study looks into how post-quantum 
cryptography affects Federated 
Learning. It looks at potential 
cryptographic methods that are resistant 
to quantum fluctuations and how well 
they work for safe communication and 
aggregation in FL systems. 
 

 Increased Computational Overhead 
 Increased Communication Overhead 
 Compatibility Issues 
 Algorithm Maturity and Security 
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2.2 Federated Learning: Safe Aggregation 

FL has garnered significant attention in 
recent years as a potential substitute for 
centralizing data for model training. This method 
was initially used in production by Google, who 
used it to develop, refine, and continuously 
improve Android's predictive keyboard (GBoard). 
To train a model, the data scientist has usually 
required direct access to a centralized data source. 
Centralizing a sensitive, dispersed data set for 
training, however, might prove to be an 
impossible task. For instance, centralizing the 
data for GBoard would necessitate giving Google 
direct access to every keystroke made by every 
user. Many would consider this to be a privacy 
violation, and it might inadvertently allow Google 
to gather credit card numbers, passwords, and 
other private information that users type. By only 

sharing updates to a model rather than the actual 
data used to train it, federated learning helps 
mitigate this issue. Every data owner needs to 
obtain the machine learning model from the 
model owner for federated learning to work. The 
training process is initially applied to the local 
data of the data owner, in this case each mobile 
phone, and it specifies how the model should be 
updated depending on the inputs and the expected 
result. The changes will then be merged there and 
sent to the model owner. This collective 
aggregation from all updates from all data owners 
will finally come to an end when the training 
method (such stochastic gradient descent) 
produces a locally optimal set of weights, as seen 
in FIGURE 1.  

 
 
 

 

 

 

 

Figure 1: Safe Aggregation in Federated Learning 

Federated learning won't, however, ensure that 
private data isn't disclosed by exchanging updates, 
making it an incomplete solution for data privacy 
[11][12]. It has been demonstrated by a number of 
federated learning attacks that client updates can 
reveal personal information. To counteract this 
exposure of sensitive data, we can use secure 

aggregation and differential privacy to help 
safeguard the updates [13]. 

 
2.2.1. Using Cryptographic Techniques for 
Secure Aggregation 
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Elliptic Curve Cryptography: ECC is 
a popular public-key encryption method that is 
widely used due to its high security and 
effectiveness. This is particularly valid for 
situations like embedded systems, mobile devices, 
and Internet of Things networks where resources 
are scarce. With significantly smaller key sizes, 
ECC offers the same level of security as more 
conventional cryptosystems like RSA. Its base is 
the mathematics of elliptic curves over finite 

fields. Elliptic Curve encryption (ECC), a public-
key encryption technology, is becoming more and 
more popular, especially for resource-constrained 
applications like Internet of Things (IoT) systems, 
embedded systems, and mobile devices. Because 
ECC provides excellent security with reduced key 
sizes, it is very efficient in terms of bandwidth, 
memory utilization, and processor power 
required. Here we summarize the Use of ECC in 
Cryptographic Protocols in TABLE 2 

 

Table 2: Securing Aggregation via Cryptographic Techniques 

Security Aggregation 
Protocols in ECC 

Recommendations for 
efficient FL aggregation 

techniques 
 

ECC Benefits in Environments with 
Limited Resources 

 

TLS [14] ECDH a safe key exchange 
protocol. ECDSA, is another 
method used for digital 
signatures and safe 
authentication. 

 Reduced Key Size: One of 
ECC's main benefits over 
other public-key systems like 
RSA is that its key size is less. 

 Reduced computer 
Overhead: Because ECC's 
mathematical operations are 
more effective, encryption, 
decryption, and key 
generation need less 
computer resources. 

 Faster Encryption and Key 
Generation: ECC enables 
faster encryption and 
decryption procedures due to 
its lower key sizes and better 
algorithms. 

 Decreased Bandwidth 
utilization: During key 
exchanges, smaller ECC keys 
also result in a decrease in 
bandwidth utilization. 

 Scalability: Due to its 
efficiency, ECC can be 
effectively implemented on a 
wide range of platforms, 
including high-performance 
cloud computing settings and 
low-power embedded 
systems. 

VPNs [15] VPN protocols such as 
IKEv2/IPsec, which use ECC. 

Blockchain and 
Cryptocurrencies [16] 

Public-private key pairs are 
created using ECC, and 
transactions are signed using 
ECDSA. 

Internet of Things (IoT) 
Security [17] 

ECC is used by protocols like 
DTLS to provide end-to-end 
encryption and secure device 
authentication in Internet of 
Things  

Digital Signatures and 
Authentication [18] 

Many authentication systems 
use ECC-based digital signature 
techniques, such ECDSA and 
ECQV (Elliptic Curve Qu-
Vanstone). 

Existing Protocols for Secure 
Transmission: The secure exchange of training 
parameters between clients and a central server is 
necessary for federated learning (FL) to ensure 
data privacy and integrity. Many procedures and 

tactics are used to protect these transmissions, 
each with pros and cons of their own. Every 
protocol has unique benefits and disadvantages. 
Although they increase costs or decrease 
accuracy, differential privacy and secure 
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aggregation are effective privacy protection 
techniques. Although homomorphic encryption 
provides robust guarantees, it is not 
computationally feasible for several applications. 
TEEs offer hardware-based security, but they also 
put you in a manufacturer's shoes. FedAvg's 

encrypted channels and ECC are effective, but 
they might not provide the highest level of privacy 
protection in the absence of other measures, here 
we summarize the Existing Protocols pros and 
cons with respective FL shown in TABLE 3. 

Table 3: The advantages and disadvantages of current protocols for corresponding Federated Learning 

Protocols Overview Positives Vulnerabilities 
Homomorphic 
Encryption (HE) 
[19] 

Computation on encrypted data 
is possible with homomorphic 
encryption. Clients encrypt their 
updates in federated learning so 
that the server can aggregate 
them without having to decrypt 
each one individually. 

High privacy 
protections and 
permits the use of 
encrypted data for 
operations. 
 

Costly and sluggish to 
compute, particularly 
for big models. 
High latency makes it 
impractical for real-
time applications at 
this time. 

Differential 
Privacy (DP) [20] 

Differential privacy prevents the 
reverse engineering of specific 
client data from the model 
updates by adding noise to the 
clients' changes before sharing 
them. 
 

Preserves personal 
client information 
from hostile servers. 
manages the quantity 
of noise added while 
maintaining privacy 

Causes noise-induced 
accuracy decrease in 
the model. 
has to be adjusted in 
order to prevent data 
exposure or excessive 
privacy (bad model 
performance). 

Trusted 
Execution 
Environments 
(TEEs) [21] 

TEEs, such as Intel SGX, offer a 
trusted and separated space on 
the server where calculations are 
carried out in a secure 
environment. Sending client 
data to the TEE allows for 
secure processing and exposure-
free disposal. 
 
 

Robust hardware-
based protection that 
shields data while it's 
being processed. 
Accelerated and 
effective for 
instantaneous 
applications. 

Depends on having 
faith in the hardware's 
maker. 
susceptible to assaults 
via side channels. 
Scalability issues with 
large-scale FL 
networks. 

Elliptic Curve 
Cryptography 
(ECC) [22] 

By offering encryption, digital 
signatures, and secure key 
exchanges at a reduced 
computational and bandwidth 
overhead than more 
conventional cryptographic 
techniques like RSA, ECC is 
frequently employed to secure 
parameter communication. 

Because of the 
smaller key sizes, 
less processing 
power and network 
overhead are needed 
to achieve the same 
level of security.  
Ideal for resource-
constrained devices 
like mobile clients. 

Still vulnerable to 
some attacks, such 
side-channel or 
quantum assaults, if 
not done correctly 
 

 

3. PROPOSED PROTOCOL FOR CLIENT 
AND SERVER ENCRYPTION AND 
DECRYPTION 

Enhancing communication efficiency, 
privacy, and security is the goal of the proposed 
protocol for the safe transfer of training 
parameters in a federated learning (FL) network 
utilizing elliptic curve cryptography (ECC) [23]. 

An outline of the architecture and how ECC is 
crucial to maintaining secure communication can 
be seen below. To guarantee the safe transfer of 
training parameters in federated learning 
networks, the suggested protocol makes 
advantage of ECC [24-25]. The protocol offers 
strong privacy, authentication, and integrity 
guarantees by utilizing the effective key 
exchange, encryption, and digital signatures of 
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ECC, which makes it perfect for resource-
constrained applications. It is a reliable option for 
contemporary federated networks where security 
and performance are crucial due to its efficiency 
and scalability. Because in federated learning (FL) 
systems, elliptic curve cryptography (ECC), 
which provides a high degree of security at 
smaller key sizes, is a common option for secure 

communication. By integrating ECC into a 
federated learning process, the security of training 
parameter communication between clients and the 
central server is enhanced. This is a detailed 
explanation of the procedure. 

 

 

Algorithm of Elliptic Curve Cryptography (ECC) in Federated Learning 

Step 1: Client and Server:  
 

a. Each client (participating device) and the central server generate their own public-private 
key pair using ECC. 

b. Private Key (d): A randomly chosen number in the range [1, n−1], where n is the order of 
the elliptic curve. 

c. Public Key (Q): The public key is derived from the private key using the elliptic curve 
point multiplication: Q=d×G, where G is the generator point on the elliptic curve. 

Clients and server exchange their public key. 
 
Step 2: Training for Models (Local) 
 

a. Train the model locally its own dataset. 
b. Make sure the server doesn't receive any raw data. 
c. Local model updates (weights or gradients) are computed by each client. 

 
Step 3: Gradient Encryption 
 
Gradients are encrypted by the client using the server's public key via ECC before being sent to the central 
server. 
Encryption Formula: 

a. Encrypted Gradient (C1, C2): C1= k * G, C2 = Gradient + k * Qs. 
b. Here, k is a randomly generated number and Qs is the server's public key. 

 
Step 4: Secure Transmission to Server 
 
The client transmits data: Through the network, the client transmits the encrypted gradients (C1, C2) to the 
server. Because of the encryption, the server is unable to view the actual gradients. 
 
Step 5: Decryption at Server 
 

a. The server uses its private key ds to decrypt the encrypted gradients after receiving them. 
b. Decryption Formula:  Gradient = C2− ds ×C1 

 
Step 6: Aggregation at Server 
 

a. Federated Averaging is one of the secure aggregation techniques the server uses to combine 
the decrypted gradients from several clients. 

b. By combining the contributions of the clients, this aggregation process makes sure that 
individual gradients are hidden. 
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Step 7: Global Model Update 
a. The global model is updated by the server and sent back to the clients based on the 

aggregated gradients. 
b. It is optional to encrypt the updated model with ECC in order to guarantee secure 

transmission to clients. 
 
Step 8: Decryption of the Client and Model Update 

a. If encryption was used, each client uses its own private key to decrypt the received model. 
b. The new global model parameters are then updated by the client in its local model. 

 
 

Step 9: Iterative Method 
  ** Until the global model converges, this process is repeated multiple times. 
 

4.IMPLEMENTATION AND 
EXPERIMENTAL SETUP 

In order to cooperatively train a machine 
learning model across several clients while 
maintaining data privacy, we construct a federated 
learning system in this study. A coordinator server 
and several clients, each working with their own 
local datasets, make up the system. Aggregated 
client updates are used in federated learning 
rounds to repeatedly update a global model. 

4.1 System Architecture 

The federated learning setup involves the 
following components: 

 Coordinator Server: Combines client-
provided model updates and oversees the 
global model. 

 Clients: Using their own datasets, each 
client trains a local model, which they 
then transmit to the server with updates.  

 
4.1.1. Data Preparation: Each client operates 
on a different dataset:  
 
Client 1: heart1ex.csv 
Client 2: heart2ex.csv 
Client 3: heart3ex.csv 
The datasets are preprocessed and used for local 
model training. 

4.1.2. Model Definition 
A feedforward neural network is employed, which 
consists of: Input Layer: 13 neurons 
corresponding to the number of features in the 
dataset). 

Hidden Layer 1: 16 neurons with ReLU 
activation 
Hidden Layer 2: 8 neurons with ReLU activation 
Output Layer: 1 neuron with sigmoid activation 
for binary classification 
The model is developed using the Stochastic 
Gradient Descent (SGD) optimizer with binary 
Cross entropy loss and a learning rate of 0.01. 
 
4.2 Federated Learning Process 

 
Client Initialization: Each client 

generates an Elliptic Curve Cryptography (ECC) 
key pair for secure communication. Clients 
connect to the coordinator server and exchange 
public keys. 
 
4.2.1. Training and Communication 
 

 Round Start: The coordinator server 
sends the current global model weights 
to each client. 

 Local Training: Each client trains the 
received global model on their local 
dataset for a specified number of epochs. 

 Weight Update: Clients encrypt their 
updated model weights using AES-GCM 
with a derived key (based on ECC key 
exchange) and send the encrypted 
weights back to the server. 

4.3 Dataset Analysis and Description 
The project utilizes three distinct 

datasets for training the federated learning model, 
each sourced from different clients as shown 
following TABLE 4: 
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Table 4: Client’s dataset training comparison with features and targeted variables 

Data set for 
Clients 

Description Features Targeted Variable 

Client 1 This dataset contains 
features related to heart 
disease prediction 

13 numerical attributes 
including age, sex, blood 
pressure, cholesterol levels, 
etc 

 
 
 
 
A binary 
classification that 
shows if heart 
disease is present or 
not. 

Client 2 Similar to the first dataset, 
this dataset is another 
instance of heart disease data 
with potentially different 
samples or additional feature 

13 numerical attributes 
similar to those in the first 
dataset 

Client 3 The third dataset in the same 
domain, possibly with 
different data points or 
slightly varied attribute 
s. 

13 numerical attributes 
consistent with the other 
datasets 

4.4 Algorithm Justifications: 
 
4.4.1. Model Architecture: 

 Neural Network Structure: The 
selected model architecture is made up 
of output layer sigmoid activation and 
dense layers with ReLU activations for 
hidden layers. The model can identify 
non-linear patterns in the data thanks to 
this design, which works well for 
binary classification tasks. 

 Optimizer: Stochastic Gradient 
Descent (SGD) with a learning rate of 
0.01 is used due to its simplicity and 
effectiveness in training neural 
networks. SGD is suitable for federated 
learning scenarios where models are 
updated incrementally. 

4.4.2. Federated Learning Approach: 

 Client-Server Model: Each client 
trains the model locally, ensuring that 
data remains private and is not 
transferred to the server. This approach 
aligns with the core principles of 
federated learning, focusing on privacy 
and efficiency. 

 FedAvg Algorithm: The Federated 
Averaging (FedAvg) algorithm is 

chosen for its simplicity and 
effectiveness in aggregating model 
updates from multiple clients. By 
averaging the weights, the server can 
create a more generalized model that 
reflects the collective knowledge of all 
participating clients. 

4.4.3. Cryptographic Techniques: 

 Elliptic Curve Cryptography (ECC): 
Because ECC is more efficient and has 
stronger security features than 
traditional cryptographic systems, even 
with smaller key sizes, it is used for 
secure key exchange. 

 AES-GCM Encryption: Advanced 
Encryption Standard with 
Galois/Counter Mode (AES-GCM) is 
used for encrypting model weights to 
ensure data confidentiality and 
integrity during transmission. This 
choice provides robust protection 
against potential eavesdropping and 
tampering. 

5. RESULTS AND DISCUSSION 

5.1 Model Accuracy Across Clients:  
The accuracy of the local models trained on each 
client’s dataset is summarized in the table below: 
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Table 5: Clients Accuracy summarized after Training 

   Client                                Accuracy (%) 

 

The models used in this project include Logistic 
Regression, Support Vector Machine (SVM), 
Random Forest, and a Convolutional Neural 
Network (CNN), with each model trained and 
evaluated in the Federated Learning setup. The 
results highlight the performance of each 
algorithm, culminating in the conclusion that the 
CNN model provided the best overall results. 

5.2 Model Accuracy Comparison 

The accuracy of the models after training and 
testing across the clients' datasets is summarized 
below. 

 Table 6: Different Algorithms Comparison with trained 
dataset performance. 

Algorithm Accuracy 
(%) 

Logistic Regression 92.23 

Support Vector Machine (SVM) 94.54 

Random Forest 95.87 

Convolutional Neural Network 
(CNN) 

98.33 

 

The results show that while all the models 
performed well, the CNN consistently achieved 
the highest accuracy across the client datasets. 

5.3 Performance of CNN 

Accuracy: The CNN achieved the highest 
accuracy, 98.33%, outperforming the other 
models. This result can be attributed to the ability 
of CNNs to capture complex patterns in data due 
to their deep architecture and feature extraction 
capabilities. 

 Model Convergence: The CNN model 
showed faster convergence, with a 
steady reduction in loss during the 
training rounds, indicating that it learned 
from the decentralized datasets more 
effectively than the other models. 

 Handling Data Complexity: The 
CNN's architecture allowed it to handle 
the complexity and variations in the 
client datasets better than traditional 
machine learning models like Logistic 
Regression and SVM. 

5.4 Model Performance Evaluation 

The training and validation performance of the 
models were evaluated over several epochs to 
analyze the accuracy and loss metrics. Below are 
the plots for each peer model’s accuracy and loss 

Client 1 Performance 

 Accuracy: The training and validation 
accuracy of Peer 1 model remain 
consistent across all epochs, with the 
model achieving almost 100% training 
accuracy and slightly lower validation 
accuracy (~98.8%). 

 Loss: The training loss remains near 
zero, while the validation loss is higher 
but stabilizes around 0.175 by the end of 
the epochs.  

 

 

 

 

 

 

 

 

 

 

Client 1   98.33  

  Client 2 98.23 

Client 3   96.35  
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Figure 2: Client 1 Accuracy and Loss 

Client 2 Performance 

 Accuracy: Peer 2 model displays similar 
behavior to Peer 1, with training 
accuracy at ~99.5% and validation 
accuracy also very high (~100%). 

 Loss: The training loss slightly 
increases with time, while validation 
loss trends upward, ending at 
approximately 0.013 

 

Figure 3: Client 2 Accuracy and Loss 

Client 3 Performance 

 Accuracy: The accuracy for both 
training and validation in Peer 3 is highly 
consistent, similar to other peers. 

 Loss: Peer 3’s training and validation 
loss show some fluctuations, especially 
in the last few epochs, but the values 
remain relatively low. 
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Figure 4: Client 3 Accuracy and Loss 

Global Model Performance 

The performance of the global model after 
aggregation from the three clients is shown 
below: 

 

 

 

 

6. SECURITY ANALYSIS OF ELLIPTIC 
CURVE CRYPTOGRAPHY (ECC) 

The present study conducts a 
comparative analysis of Elliptic Curve 
Cryptography (ECC) and other cryptographic 
techniques, including RSA, Diffie-Hellman (DH), 
and symmetric key cryptography, with respect to 
the secure transmission of training parameters in 
a federated network. Key security characteristics 
are examined, such as the strength of the 
encryption, computing efficiency, communication 
overhead, and possible vulnerabilities. 

6.1. Strengths of ECC 

 Effective key size: ECC's smaller key 
sizes (256 bits vs. 3072 bits for RSA, for 
example) minimize computational 
overhead and communication overhead, 
which is especially helpful in federated 
learning contexts with a large number of 
devices. 

 Minimal communication overhead: In 
networks with limited bandwidth, as 

those in healthcare or Internet of Things-
based federated systems, ECC's effective 
key exchange protocols, like Elliptic 
Curve Diffie-Hellman (ECDH), are 
perfect for the safe transfer of training 
parameters. 

 Scalability: ECC scales effectively in 
federated networks with multiple clients 
(e.g., hospitals, clinics, mobile devices) 
who need to securely share model 
parameters because of its lower 
computing load. 

6.1.2. Constraints on ECC 

 Vulnerability to quantum computing: 
While ECC is impervious to classical 
attacks, it is susceptible to attacks from 
quantum computing in the future. To 
ensure long-term security in federated 
systems, post-quantum cryptography 
(such as lattice-based cryptography) will 
eventually have to take the role of ECC. 

 Challenges with implementation: ECC 
must be carefully implemented to 
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prevent side-channel attacks and provide 
secure key exchange, especially in 
settings where devices can be vulnerable 
to physical access attacks or have limited 
computing capacity. 
 

6.1.3. Comparative Perspectives on Federated 
Education  

 ECC vs. RSA: Because of its smaller 
key sizes and lower computing costs, 
ECC outperforms RSA in federated 
learning. Within healthcare 
environments, where resources are 
limited for edge devices (such as medical 
IoT sensors), ECC enables effective 
encryption while upholding strong 
security. 

 ECC vs. Diffie-Hellman: ECC is a 
better option for secure communication 
in federated learning environments 
because it offers quicker and more 
effective key exchanges than the 

conventional Diffie-Hellman protocol. 
In healthcare applications where latency 
is a factor, this is particularly crucial. 

 ECC vs. Symmetric Key 
Cryptography: Symmetric key 
cryptography is computationally 
efficient, but it presents security 
problems when managing shared keys in 
a federated, decentralized setting. For 
client-server interactions in FL, ECC's 
public key infrastructure (PKI) provides 
a more scalable and secure solution. 

In federated networks, Elliptic Curve 
Cryptography (ECC) is a very effective and 
secure way to communicate training parameters. 
This is especially important in healthcare 
applications where safe, scalable, and lightweight 
protocols are necessary. ECC is the recommended 
cryptographic option for federated learning in 
resource-constrained situations because of its 
current benefits in key size, computing efficiency, 
and scalability, despite its vulnerability to 
potential quantum attacks. 

7. CONCLUSION AND FUTURE 
ENHANCEMENT 

To summarize, Elliptic Curve Cryptography 
(ECC) offers a workable way to build secure 
protocols for the safe transfer of training 
parameters in a federated network, hence 
enhancing the security and privacy of distributed 
machine learning models. Compared to previous 
methods, ECC's lightweight design provides 
higher cryptographic strength with smaller key 
sizes for devices with limited resources, as those 
used in federated learning. For large-scale, real-
time applications, the protocols minimize 
processing overhead and network latency while 
using ECC to ensure the confidentiality and 
integrity of the training data. Furthermore, the 
integration of ECC into federated learning 
frameworks helps to reduce potential security 
risks such data manipulation, man-in-the-middle 
attacks, and eavesdropping by protecting 
communication between client devices and the 
central server.ECC's lower communication costs 
help to overcome the issue of bandwidth and 
energy constraints in edge devices, which is in 
line with the objective of federated learning 
efficiency improvement. This work paves the way 

for future developments in secure distributed 
machine learning systems and highlights the 
significance of cryptographic innovation in 
federated networks. Further research could look 
into how these protocols could be improved for 
specific applications or combined with other 
security measures. methods, such as 
homomorphic encryption or secure multi-party 
computation, can boost productivity and security 
in federated learning settings. This study 
demonstrates the effectiveness of Federated 
Learning (FL) in preserving data privacy while 
achieving high model accuracy. By utilizing a 
neural network model trained across multiple 
decentralized clients, we have shown that FL can 
maintain robust predictive performance without 
centralizing sensitive data. This section highlights 
the principal findings from the Federated 
Learning experiments, offering insights into the 
performance and implications of the model. The 
observations are derived from the accuracy, loss 
metrics, and other evaluation results detailed in 
the previous sections. The global model achieved 
high accuracy across all three clients, with final 
accuracies of 98.33%, 98.23%, and 96.35%. This 
consistency demonstrates the model's 
effectiveness in generalizing across different 
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decentralized datasets. The small variation in 
accuracy among clients suggests that the 
Federated Learning approach successfully 
leveraged diverse data sources without 
significantly affecting the model's performance. 
The efficiency and security of the protocol could 
be further enhanced by investigating the 
following important areas. Federated Averaging, 
Post-Quantum Cryptography, Lightweight 
Protocols for IoT Devices, and Optimization of 
ECC Algorithms. 
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