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ABSTRACT 
 
Search engines face a critical challenge in addressing query-document vocabulary mismatch during 
Information Retrieval (IR), when user queries do not match the document content. Automatic Query 
Expansion (AQE) has been widely used to mitigate this issue by identifying related terms. This research 
work presents a new hybrid AQE technique which includes DMNs within the BM25 model and two 
techniques, namely EQE1 & V2Q including DAN. It can be asserted that the hybrid technique is 
characterized by the optimality of the retrieval performances of the two networks, with reduced query drift. 
Experimental evaluation reveals that EQE1+(DANs+DMNs) obtained P@10 of 44.20LDilde MAP of 33.10 
for the TREC 2001, whereas V2Q+(DANs+DMNs) obtained MAP of 30.40 and P@10 of 39.30. However 
the proposed method BM25+DMNs achieved the highest average MAP of 38.10 for TREC 2001 surpassing 
all the methods presented in this study. However, it is suggested that additional improvements employing 
the enhanced embeddings or fine-tuning of the hybrid solutions be implemented due to the drawbacks in 
expanding the query and positioning of vectors.  
 Keywords: Automatic Query Expansion, Information Retrieval, Word Embedding, Deep Averaging 
Networks, Deep Median Networks 

 
1. INTRODUCTION  
 
The first problem facing search engines is that the 
average query is only 2–3 words long [1–3]. This 
shortcoming stems from users’ inability to articulate 
their informational needs optimally to allow search 
engines to meet those needs satisfactorily. Belkin’s 
Anomalous State of Knowledge (ASK) hypothesis 
[4] has identified this problem due to lack of 
knowledge among the users. AQE techniques have 
been developed to overcome this problem with 
techniques such as expanding the user queries with 
related terms to enhance the capture of the intention 
of the user in the current document retrieval 

processes [5] &[6] . AQE is used in today’s major 
search engine like Google, yahoo and other where 
auto complete features or suggested words are used 
[7]. 
There are two main clans of AQE techniques that is 
the global and the local. Global techniques use 
outside sources such as thesauri, of which WordNet 
is a popular and valuable source for finding related 
terms to a given word [8]. Local techniques on the 
other hand utilize relevance feedback, whereby 
using results from a particular retrieval in order to 
update the query with the most relevant terms [9, 
10]. There was the Pseudo Relevance Feedback 
(PRF), a local technique that assumes the first set of 
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documents are relevant and extracts new working 
terms from them [3]. 
AQE techniques experience difficulties. 
International techniques tend to produce ambiguous 
terms derived from ontological resources such as 
WordNet and therefore require word disambiguation 
prior to their use in added keyword queries. PRF, a 
local technique, might be impacted with noise terms 
and multiple topics documents within top ranked 
results may also influence its performance [11]. 
Hence, while the techniques of AQE enhance 
precision and recall separately, it is challenging to 
optimize both for concomitantly [12]. 
Recent research has been directed towards the 
elimination of these drawbacks using semantic 
modeling techniques such as Word embedding 
(WE). ‘WE’ methods encode words as points in a 
dense, low dimensional space that encodes syntax 
and semantic relationship [13– 15]. There are 
architectures like Continuous Bag-of-Words 
(CBOW), and Skip-gram (SG) in the Word2Vec-
tools that predicts words based on context. These 
embeddings allow AQE techniques to find terms 
semantically related for query expansion [15]. 
However, traditional WE-based AQE directly 
retrieves the candidate terms without taking into 
account the interaction and the correlation between 
the terms within the source query. 
Some of the works that serve as recommendations 
for enhancing AQE effectiveness are modeling 
query semantics in the form of collective vocabulary 
terms. This approach makes it easier to have 
candidate terms nearly similar to the topics of the 
primary query. Another method is to use an image 
classifier for terms, Deep Averaging Networks 
(DANs) that averages the embedded word vectors to 
classify related terms comprehensively [24, 25]. 
However, research in WE has significantly 
advanced, little innovation of WE application in AIR 
can be identified. Indeed, Arabic has a rather rich 
morphology and relatively limited ontological 
potential, that makes it difficult to solve important 
NLP problems, such as AQE [16–18]. Previous work 
in AIR mostly deals with stop warding methods and 
arranging the documents according to their similar 
stemmed terms [19–23]. 
This work also proposes a novel hybrid AQE 
approach using Deep Median Networks (DMNs) 
[24] and DANs [25] with the help of sentence 
embedding. This method enriches AIR for Arabic 
documents by rectifying the problem of term match 
and the general retrieval performance. The proposed 
hybrid approach shows that it is possible to address 
specific difficulties of Arabic NLP by integrating 
advanced semantic modeling. This study uses 

sentiment analysis with deep learning models, 
including XLNet and BERT, on a novel Rotten 
Tomatoes dataset to summarize movie reviews 
effectively [26] . This study improving data analytics 
integration for strategic decision-making and 
organizational competitiveness. Such work could 
leveraging word embedding to enhance search 
engines [27]. 
This study detecting semantic errors with 95.6% 
accuracy in NLP text correction, and the results 
could uses word embedding and weighted federated 
learning to enhance search engines by [28]. 
This study leverages word embedding to enhance 
search engine accuracy, proposing a unified 
Database Security Meta-model (DBSM) for 
improved security understanding and solutions. The 
outcomes could be  leverages word embedding to 
enhance search engine accuracy [29].leveraging 
word embedding for search engines could be benefit 
several application as investigated in the following 
studies , This study, systematically reviews 
information systems' impact on public sector 
performance, highlighting skill development, ROI, 
and strategic decision-making[30]. 
This study uses bibliometric analysis and word 
embedding to explore digital transformation trends 
in banking, highlighting FinTech, innovation, and 
technology adoption from 2009 to 2023[31]. 
This study uses bibliometric analysis to explore 
knowledge management in healthcare, highlighting 
trends, key themes, leading countries, and 
collaboration patterns from 1996 to 2023[32]. 
 
2. RELATED WORKS  
Situations like the following often occur: Moreover, 
there are difficulties that include Vocabulary 
mismatch commonly [33] & [3]. To these, 
researchers have offered a number of solutions, of 
which Automatic Query Expansion (AQE) is one of 
the best known. AQE techniques alter the user 
queries by including useful terms making the IR 
systems more accurate and precise [34]. Out of all 
methods in AQE, Word Embedding (WE) has 
received considerable attention [13-15, 35]. 
 
2.1 Word Embedding in NLP and IR 
           WE stands for the language modelling and 
feature learning methodology that is a part of the 
Natural Language Processing paradigm which 
initiates semantic interpretation of the text. WE, for 
example, is a semantic vector space model in which 
words are real-numbered vectors in a given corpus. 
Two representation types are commonly used: Local 
representation based on the occurrence of a word and 
distributed representation, where the words in 
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similar context are nearer in the WE space [36] 
&[37]. For instance, the Arabic terms “ذكر” (male) 
and “انثى” (female) are contextually similar, and their 
vectors appear closer in the WE space. 
 
2.2 Applications of Word Embedding in AQE 

Researchers have explored various 
applications of WE in AQE to improve IR 
performance: 
2.2.1 Local Embedding-based AQE 
[15]proposed a novel AQE technique using local 
embeddings derived from retrieved documents. 
Using the Kullback–Leibler divergence language 
model, they re-ranked documents based on local 
embeddings. Experimental results showed that local 
embeddings outperformed global techniques in 
document retrieval. 
2.2.2 High-quality Vector Representations 
[14]compared AQE techniques by employing high-
quality vector representations based on deep 
learning. Words like “driver” and “taxi” were 
represented by similar vectors, and cosine similarity 
measured the semantic distance between terms. 
Tests on four CLEF collections with skip-gram 
architecture demonstrated statistically significant 
improvements over baseline models like Mutual 
Information (MI) and Pseudo-Relevance Feedback 
(PRF)[38, 39]. 
2.2.3 Relevance Feedback Models 
[13]proposed a relevance feedback (RF) model 
incorporating semantic relationships via embedded 
word vectors. By using Kernel Density Estimation 
(KDE) for weighted co-occurrence calculation, they 
established a framework for leveraging term 
compositionality in AQE. Experiments on TREC 
test collections showed the KDE-based RF approach 
outperformed traditional feedback models. 
2.2.4 Word2Vec-basedAQE 
[40]used Word2Vec to train Skip-gram and CBOW 
models on the TREC Washington Post Corpus. They 
implemented query reweighting strategies and 
measured term similarity using Euclidean distance. 
Results revealed that reweighting improved retrieval 
efficiency compared to assigning equal weights to 
expanded query terms[41]. 
2.2.5 Arabic Text Retrieval Using AQE 
[42]integrated WE semantic similarities into various 
IR models, including Language Models (LM), Log-
Logistic Distribution Model (LGD), Smoothed 
Power-Law Model (SPL), and Okapi BM25. Their 
approach addressed vocabulary mismatches using 
three neural WE processes—Skip-gram, CBOW, 
and GloVe. Strategies such as selecting similar 
words from retrieved texts or the complete corpus 

demonstrated better performance than baseline WE-
based models[43-46]. 
 
2.3 Advances in Contextual AQE Strategies 
While most AQE methods assume all query terms 
contribute positively, neglecting query context often 
leads to inefficiencies. Researchers have proposed 
context-aware solutions: 
2.3.1 Query-Guided AQE (V2Q) 
[12] introduced V2Q, which filters unnecessary 
terms from queries, thus avoiding detrimental 
expansion. By representing words using Word2Vec, 
they tested two Approaches: Query-Driven 
Association (Q2V) and Prospect-Driven Association 
(V2Q).V2Q outperformed Q2V by focusing only on 
terms with high semantic similarity to the query[32]. 
2.3.2 Embedding-based Query Expansion 
(EQE1) 
[47]proposed EQE1, which leverages WE vectors to 
add semantically similar terms to queries. This 
technique assumes that query terms are conditionally 
independent, emphasizing semantic alignment 
between expanded and original terms. Experiments 
using TREC collections demonstrated that 
embedding-based approaches surpassed baseline 
methods like Maximum Likelihood Estimation 
(MLE) and heuristic-based query expansion (VEXP) 
[48] &[49]. 
2.3.3 Deep Averaging Networks (DANs) 
[25]developed a new AQE method, DANs, which 
used the average vector of original query terms to 
determine candidates for expansion. By considering 
the overall query context, DANs avoided query 
drift—a common issue with term-specific 
expansions[50]. 
2.3.4 Limitations and Future Directions 
While WE-based AQE methods have significantly 
improved IR systems, challenges remain. For 
instance, individual term-based expansions often 
neglect query-level context, leading to suboptimal 
retrieval. However, semantic relationships are 
sometimes very basic with little attention to the 
distinctions between the meanings. While methods 
like V2Q and DANs have resolved these problems 
to some extent, the incorporation of contextual and 
semantic information remains somewhat separate 
from the actual queries. The future research should 
expand to dynamic weighting mechanisms and 
implementation of statistical neural hybrid models 
for improvement of the expansions plans. 
 
Implementation of WE in AQE ensures efficient 
translation to bridge vocabulary gaps and optimizes 
query reformulation making IR reinvent itself. 
Studies of engines such as local embeddings of 
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objects with high-quality vector representation or 
models based on a set of relevance feedback have 
revealed high usability of the developed approaches 
in different datasets and conditions. However, more 
context-sensitive, and semantically sophisticated 
expansion methods still constitute an important 
research topic. Further developments in this area will 
contribute to the increased efficiency of IR systems 
in terms of satisfying various users’ requirements. 
 
3. METHOD 
3.1 Word2Vec and Hybrid Approach 
Word2Vec is a deep learning toolkit presented by 
[39] which looks at a text corpus as input and 
provides word vectors as output. There matches a 
vocabulary by training data and analyses vector 
interpretations of words [51].  
 
These are as follows: Continuous Bag of Words 
(CBOW) and Skip-Gram (SG). The idea is to give a 
middle word in cases of CBOW model, or a context 
in cases of SG model, by simply taking a distributed 
representation of the surrounding words or a 
representation of an input word. 
 

There is a proposed approach for getting the 
candidate vectors of DANs, which are AQE 
techniques [25]. Nevertheless, the location of query 
term vectors matters in DANs, for which DMNs are 
employed to build candidate expansion sets [24]. 
They increase the performance of AQE by finding 
the median vector of the original query term vectors 
as well as using it to derive expansion vectors. This 
research therefore proposes the use of a combined 
DAN and DMNs to improve on the Arabic 
Information Retrieval (AIR). The AQE technique 
works in synergy with probabilistic models such as 
BM25, EQE1, and V2Q in advancing performance. 
In other respects, DMNs use sentence embedding to 
get text vector representation and optimization in 
datasets contain syntactic variability like Arabic text. 
Researchers evaluated the DMNs approach on AQE 
by integrating it into three IR models: BM25, EQE1, 
and V2Q. Corpus used by them was the Arabic 
TREC 2001/2002 news articles dataset of the year 
1994-2000 .The study undertaken were with 25, 50 
and 75 queries over subsets. The Arabic TREC 
2001/2002 is the available benchmark for Arabic IR 
research till date [3]. 
 

Table 1.  Statistics for Arabic T REC Collections 

 
 
3.2 Basic Query Expansion based on DMNs 
(BM25+DMNs) 
Derived from the probabilistic framework, the Okapi 
BM25 model is superior to the rest of the algorithms 
in term weighting based on Term Frequency, Inverse 
Document Frequency, and Document Length. 
Equations 1 and 2 provide the definitions of its 
scoring functions 

෍ 𝑙𝑜𝑔
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Parameters k1 , k1, and K are given ,where k1 = 
1.2 , k2=0 to 1000 and b=0.75 is used , qf indicates 
the frequency of query term , dl refers to document 
length and avdl refers to average document length of 
the collection.  Equation 3 describes cosine 
similarity and, Equation 4 depicts another model of 
Word2Vec known as CBOW which computes target 
words from surrounding context, where ∣C∣ 
represent corpus size and c is the size of a dynamic 
window. 
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Equation number five is used to find the 

median vector of the original query term vectors, 
where Xk represents the arranged set of vectors 
corresponding to a specific query, where  n  denotes 
the vector dimension, typically set to 300. 

Google News and Similar Document 
Analysis Technique: Expansion of the Query using 
DANs and DMNs 
To identify the central vector among the initial query 
term vectors, Equation (5) is applied: 

m(vk) = Median of the vectors Xk where 
Xk={x1,x2…xin} and in = 300 m(vk) = Median of 
the vectors Xk where Xk={x1,x2…x in } and in = 
300 . This work proposed  a new method combining 
both query expansion with DANs and Median 
Networks query expansion giving it the name of 
DMN-DANs. First incorporated into the BM25 
probabilistic model, it is referred to as 
BM25+(DANs+DMNs), comprising several  steps: 

1. In this case calculate the average vector 
avg(vk)avg(vk) of original query terms 
based on DANs. 

2. Calculate the median vector m(vk)m(vk) of 
DMNs. 
 

3. Identify the most similar vectors in the 
Word Embedding (WE) corpus to 
both avg(vk)avg(vk) and m(vk)m(vk), 
creating two 
sets W={w1,w2,…,wk}W={w1,w2,…,wk
} and V={v1,v2,…,vk}V={v1,v2,…,vk}. 

4. Calculate similarities of vectors 
in WW and VV to avg(vk)avg(vk
) and m(vk)m(vk), selecting vectors with 
similarity ≥0.7≥0.7, a threshold supported 
by [33, 46]. 

5. Retrieve words corresponding to the 
selected vectors using the WE model, 
incorporate them into the original query, 
and retrieve documents. 

The hybrid nature lies in leveraging 
both DANs and DMNs candidate sets, 
improving Automatic  

 
 
 

3.3 Hybrid Expansion with EQE1 and V2Q 

EQE1, proposed by Zamani and Croft [40], 
identifies candidate vectors similar to all query 
terms. To reduce complexity, this study compares 
candidate vectors against avg(vk)avg(vk
) and m(vk)m(vk), selecting those 
with ≥0.7≥0.7 similarity. After adding the 
corresponding words to the query, new documents 
are retrieved. 
V2Q+(DANs+DMNs) incorporates prospect 
guidance with hybrid expansion. Candidate vectors 
are selected using similarity measures 
against avg(vk)avg(vk) and m(vk)m(vk), producing 
sets WW, VV, and DD. Words from vectors meeting 
the threshold are added to the query. This hybrid 
method optimizes query expansion, utilizing the 
strengths of both techniques. 
 
4. EXPERIMENTS 
 
4.1 Experimental Setup: 
The hybrid AQE technique was tested using 
the TREC 2001/2002 Arabic newswire dataset, 
widely used in Arabic text retrieval [22, 43, 52]. This 
dataset includes 2,117 documents spanning May 
1994–December 2000. The Word2Vec 
process trained the WE corpus using 383,872 
Arabic articles from Agence France Presse, totaling 
over 1 GB after UTF-8 encoding. Three query 
collections were evaluated: TREC 2001 (25 
queries), TREC 2002 (50 queries), and their 
combination (TREC 2001/2002) with 75 queries. 
For stemming, the Farasa stemmer [22, 25, 46] was 
employed due to its effectiveness in Arabic. 
Retrieval was limited to the top 100 documents. 
 
4.2 Evaluation Baselines 
Five baselines were compared: 

1. BM25: A probabilistic model without 
expansion. 

2. DANs [25]: Using averaged vectors for 
expansion. 

3. DMNs [24]: Employing median vectors. 
4. EQE1 [47]: Embedding-based query 

expansion. 
5. V2Q [12]: Prospect-guided query 

expansion. 
Experiments were conducted using the Whoosh 
search engine [52], with semantic similarity 
measured via cosine similarity. 
4.3 Evaluation Metrics 
The study evaluates retrieval effectiveness using the 
following metrics: 
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1. Mean Average Precision (MAP): Applied 
to the top 100 documents, reflecting overall 
retrieval precision. 

2. P@10: Precision at the top 10 retrieved 
documents. 

3. Recall-Precision Curves: Visualizing 
performance across standard recall levels. 

The equations for these metrics are shown below: 
 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
|𝑅𝑒𝑙| ∩ |𝑅𝑒𝑡|

|𝑅𝑒𝑙|
 (6) 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
|𝑅𝑒𝑙| ∩ |𝑅𝑒𝑡|

|𝑅𝑒𝑡|
 (7) 

 

𝑀𝐴𝑃 =
1

𝑁
෍ 𝐴𝑃௜

௡

௜ୀଵ

 (8) 

 
Where: 

Ret is the total number of retrieved documents, 
Rel is the total number of relevant documents in the 
dataset, and  
 

𝐴𝑃 = ∑ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛௜ ∙ ∆𝑅𝑒𝑐𝑎𝑙𝑙௜
௡
௜ୀଵ . 

Where 𝒊 is the rank in the sequence of retrieved 
documents, 𝒏 is the number of retrieved documents, 
𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏𝒊 is the precision at cut-off 𝒊 in the list, 

and ∆𝑹𝒆𝒄𝒂𝒍𝒍𝒊 is the change in recall from items 𝒊 −
𝟏 to 𝒊. 
 
5. RESULTS AND DISCUSSION 
 
The following tables present precision at 10 (P@10) 
and MAP values for the proposed AQE methods and 
baseline approaches, evaluated on TREC 2001 (25 
queries), TREC 2002 (50 queries), and TREC 
2001/2002 (75 queries) collections. The experiments 
used the same dataset corpus, considering the top 
100 retrieved documents. 
The hybrid AQE method (DANs+DMNs) was 
applied to the BM25 framework, while two 
expanded approaches, EQE1 and V2Q, were 
enhanced using (DANs+DMNs) to identify 
candidate expansion terms. These modified 
methods, EQE1+(DANs+DMNs) and 
V2Q+(DANs+DMNs), were hypothesized to 
recommend better expansion terms and improve 
AIR systems' retrieval performance. 
Comparisons were made against BM25 (no 
expansion), BM25+DANs, BM25+DMNs, EQE1, 
EQE1+DANs, EQE1+DMNs, V2Q, V2Q+DANs, 
and V2Q+DMNs. Table 2 summarizes the results in 
terms of MAP and P@10. 
 
 

 
Table 2. MAP and P@10 for all the models 

 

 
 The experimental outcomes in Table 2 
reveal that the hybrid (DANs+DMNs) technique 
integrated with the probabilistic BM25 model 
outperforms the BM25+DANs approach in MAP 
and P@10 for TREC 2001 but falls short against 
other baseline methods across all TREC collections. 
 

 
The hybrid EQE1+(DANs+DMNs) technique 
demonstrates superior performance over the baseline 
EQE1 in MAP and P@10 for TREC 2001, TREC 
2002, and TREC 2001/2002 collections. It also 
outperforms EQE1+DANs in MAP and P@10 but 
only for TREC 2001. Similarly, the hybrid 
V2Q+(DANs+DMNs) surpasses its baseline V2Q in 
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MAP and P@10 across all TREC collections and 
exceeds V2Q+DANs for TREC 2001 only. 
 
Before considering whether the outcomes meet the 
standard of performance laid down in literature, it is 
important to think about what that means and what 
the benchmarks established in comparable studies 
need. For information retrieval processes 
investigating TREC datasets, it is believed that 
values that surpass 35 on the MAP and approximate 
or surpass 40 on the P@10 are capable of penetrating 
the competition. 
 
For example: 
 
Baseline BM25: MAP values like 31.30 (TREC 
2001) and 28.70’s (TREC 2002) are quite normal 
and represent the baseline scores that many 
experiments use. Nevertheless, the BM25 + DANs + 
DMNs, with the MAP of 20.00 are lower, hence the 
drawbacks in vector based expansion strategies need 
improvement. 
 
EQE1 and V2Q with Extensions: With 
EQE1+(DANs+DMNs), a MAP of 33.10 (TREC 
2001) and P@10 of 44.20 showing it is better than 
EQE alone 30.70 MAP, 42.90 P@10 relative to the 
experimental results demonstrate certain 
enhancements in some cases. Still these figures are 
small if compared with state of the art hybrid models 
based on BERT or neural retrieval. 
 
DMNs: MAPs achieved by BM25+DMNs are 
consistently high, 38.10 on the average on TREC 
2001 and hence in sync with perfect performing 
models in analogous retrieval exercises. 
 
In total, some methods (BM25+DMNs and others) 
work as or better than literature values, while 
BM25+(DANs+DMNs) do worse compared to 
benchmarks. For competitive results in future work, 
different more sophisticated embeddings such as 
contextualized models can be applied or the hybrid 
approaches applied in the study can be further 
optimized for more effective QA in terms of query 
expansion and the positioning of the vectors. 
 
6. CONCLUSION AND FUTURE WORKS 
 
To enhance AIR performance, this study proposed a 
hybrid technique combining DANs and DMNs, 
leveraging their strengths to generate candidate 
expansion terms. Word2Vec was utilized for word 
embeddings, and comparisons were made with 
BM25, EQE1, V2Q, and their extensions. The 

hybrid method integrates the median vector from 
DMNs and the average vector from DANs to address 
vocabulary mismatch and improve retrieval 
performance. 
The findings demonstrate that the proposed hybrid 
technique often outperforms baselines like BM25, 
V2Q, and EQE1 in MAP and P@10 but is limited by 
vector positioning in the embedding space, similar to 
DANs. This suggests that while the hybrid approach 
captures semantic similarity effectively, it remains 
affected by spatial constraints in the vector space. 
Future research should develop techniques that are 
less influenced by vector positioning, focusing 
instead on enhancing the semantic representation of 
query terms. This could enable the retrieval of more 
relevant expansion terms, further improving the 
effectiveness of AIR systems. 
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