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ABSTRACT 
 
Latent Autoimmune Diabetes in Adults (LADA), also known as type 1.5 diabetes, represents a hybrid form 
of diabetes with characteristics of both type 1 and type 2 diabetes. Unlike type 1 diabetes, which has a rapid 
onset, LADA develops gradually, often diagnosed in adults over 30. In contrast to type 2 diabetes, LADA is 
caused by an autoimmune response that progressively destroys insulin-producing beta cells. This overlap 
often leads to misdiagnosis, as LADA is commonly mistaken for type 2 diabetes, delaying appropriate 
treatment. Classification algorithms face challenges in predicting LADA due to overlapping symptoms, high-
dimensional health data, and imbalanced datasets. Existing methods lack robustness in accurately 
differentiating LADA from other diabetes types, leading to frequent misclassifications and treatment 
inefficiencies. To address these challenges, the Frog Leap Inspired Optimization-based Extreme Learning 
Machine (FLIO-ELM) has been proposed. FLIO-ELM combines bio-inspired optimization with a single-
layer neural network framework. Inspired by frog-leaping behavior, this method enhances input weight and 
bias optimization, ensuring better feature selection. Frogs in the optimization represent potential solutions, 
with local and global search phases refining parameters. The Extreme Learning Machine (ELM) framework 
computes output weights using the least squares method, ensuring fast training and robust generalization. 
This hybrid mechanism balances exploration and exploitation to improve prediction accuracy. FLIO-ELM 
achieves significant improvements in performance metrics, with an 81.304% classification accuracy and an 
82.093% F-measure. Its false discovery and omission rates are minimized, ensuring reliability in LADA 
prediction. These results establish FLIO-ELM as an effective diagnostic tool. 
Keywords: LADA, Frog Leap Inspired Optimization, ELM, Diabetes, Bio-Inspired Algorithms 
 
1. INTRODUCTION  

 
Latent Autoimmune Diabetes in Adults 

(LADA), often described as "type 1.5 diabetes," 
represents a distinct form of diabetes blending 
characteristics from both type 1 and type 2 
diabetes[1]. LADA arises from an autoimmune 
response, where the body’s immune system 
gradually targets and damages the insulin-producing 
beta cells in the pancreas. Unlike the rapid onset in 
typical type 1 diabetes, LADA develops slowly, 
often diagnosed in adults over the age of 30. This 
gradual decline in insulin production, combined with 
its slow progression, results in frequent 
misdiagnoses as type 2 diabetes, leading to treatment 
challenges. Standard diagnostic tools primarily 
focused on metabolic markers often fail to identify 
LADA’s autoimmune components. Testing for 
autoantibodies, such as glutamic acid decarboxylase 
(GAD) antibodies, can provide a more accurate 

diagnosis by confirming the autoimmune nature of 
LADA. Identifying LADA early proves critical, as 
optimal treatment may involve insulin rather than 
standard oral medications for type 2 diabetes[2]. 
Recognizing LADA’s unique pathology helps in 
implementing an appropriate management approach, 
which may slow beta-cell deterioration and preserve 
endogenous insulin production. Understanding 
LADA as a distinct entity within the diabetes 
spectrum enhances personalized treatment 
strategies, improving both short-term and long-term 
outcomes for those affected[3]. 

 
Classification algorithms have enabled a 

significant advancement in diabetes prediction by 
analyzing complex health data to categorize 
individuals according to their risk profiles. Through 
examination of factors such as blood glucose levels, 
family history, lifestyle habits, and metabolic 
indicators, these algorithms identify patterns that can 
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signal early or pre-diabetic stages, allowing for 
timely intervention[4], [5]. They assess each 
variable's relevance and weight, refining the 
prediction of diabetes onset or classification of 
specific types, which can vary significantly in 
pathology and treatment needs. Accurate prediction 
through classification reduces misdiagnosis and 
guides personalized treatment plans, as specific 
forms of diabetes require tailored approaches. Early 
identification through classification models helps 
healthcare providers implement preventive 
measures, thereby reducing potential complications 
linked to delayed diagnosis[6]. By distinguishing 
among diabetes types with greater precision, 
classification methods support optimized 
management strategies, such as lifestyle 
modifications or timely medication, improving long-
term patient outcomes. The ability of classification 
algorithms to continually adapt with new data 
ensures their role remains pivotal in the future of 
diabetes care, equipping healthcare providers with 
insights to deliver data-driven, proactive 
treatment[7]. 

 
Bio-inspired optimization techniques have 

proven invaluable in advancing diabetes 
classification by enhancing the efficiency and 
accuracy of classification algorithms. These 
techniques draw inspiration from natural 
processes—such as the movement of animals, 
evolutionary patterns, and collective behaviors—
replicating these mechanisms to improve algorithm 
performance[8]. In the classification of diabetes, 
bio-inspired optimization strengthens algorithms by 
refining feature selection, identifying which data 
points—such as glucose levels, age, family history, 
and lifestyle factors—are most relevant to predicting 
diabetes risk or distinguishing between different 
types of diabetes. This focused selection reduces 
computational demands and improves prediction 
accuracy, addressing one of the most challenging 
aspects of diabetes classification. Bio-inspired 
optimization also addresses issues in handling large, 
complex datasets, which often contain overlapping 
characteristics across different diabetes types[9]. By 
optimizing parameters and tuning the model based 
on naturally inspired search strategies, these 
algorithms navigate through complex data to find 
optimal solutions with fewer resources. The 
adaptability of bio-inspired optimization allows 
these classification algorithms to self-adjust and 
improve continuously as they encounter new data, 
keeping pace with changing patient information and 
medical advancements. Through this approach, bio-
inspired optimization contributes to creating highly 

accurate, reliable, and efficient classification 
models, directly benefiting diabetes prediction and 
personalized healthcare[10]. 

 
1.1 Problem Statement 

Diabetes classification remains a challenging 
area in medical diagnostics due to overlapping 
symptoms, genetic variability, and environmental 
factors, which complicate the distinction between 
types of diabetes. Conventional classification 
algorithms often face limitations in identifying and 
categorizing specific diabetes subtypes accurately, 
leading to frequent misdiagnosis and ineffective 
treatments. Many current algorithms struggle with 
high-dimensional data, which includes numerous 
patient attributes like glucose levels, insulin 
sensitivity, lifestyle factors, and genetic 
predispositions. Such complexity creates issues with 
data redundancy and irrelevant feature selection, 
reducing prediction accuracy. Additionally, the 
dynamic nature of patient health data requires 
adaptive models capable of updating with new 
information. The absence of precise, adaptive 
algorithms for diabetes classification impacts early 
diagnosis and treatment effectiveness, potentially 
resulting in delayed intervention and increased risk 
of complications. Improving classification accuracy 
and adaptability within diabetic datasets remains an 
urgent need to enhance healthcare outcomes. 

 
1.2. Motivation 

The need for accurate diabetes classification 
has gained importance as diabetes prevalence rises 
globally, impacting millions of lives and straining 
healthcare systems. Effective classification is 
essential not only to ensure appropriate treatments 
but also to prevent the progression of complications, 
such as cardiovascular disease, neuropathy, and 
kidney failure, which can develop from 
misdiagnosed or poorly managed diabetes. 
Traditional classification methods often fail to 
account for the diversity in diabetes presentations, 
particularly with conditions like Latent Autoimmune 
Diabetes in Adults (LADA), requiring advanced, 
adaptive approaches. Bio-inspired optimization 
provides a promising solution, with its ability to 
handle large, complex datasets and optimize feature 
selection. This approach has potential to enhance the 
predictive accuracy of diabetes classification 
algorithms, improving patient outcomes. 
Developing precise and adaptive classification 
methods addresses a critical gap, fostering early 
interventions that can ultimately reduce healthcare 
costs and enhance quality of life for diabetes 
patients. 
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1.3.  Objective 
The main objective of this research focuses on 

developing a Frog Leap Inspired Optimization-based 
Extreme Learning Machine (FLIO-ELM) to improve 
the classification accuracy of Latent Autoimmune 
Diabetes in Adults (LADA) among other diabetes 
types. This objective employs frog leap-inspired 
optimization to enhance feature selection and 
optimize parameter tuning within the Extreme 
Learning Machine (ELM) framework. By simulating 
the adaptive leap strategies of frogs, FLIO-ELM 
addresses challenges in handling high-dimensional 
and complex data, improving both speed and 
predictive accuracy. This optimized approach aims 
to isolate the most relevant features in diabetic 
datasets, enabling precise differentiation of LADA 
cases from type 1 and type 2 diabetes. This refined 
classification model supports healthcare providers 
by offering a faster, more reliable diagnostic tool, 
ultimately contributing to early intervention and 
personalized treatment strategies for patients with 
LADA. 

 
2. LITERATURE REVIEW 

Hybrid Artificial Neural Network (HANN) is 
proposed for predicting diabetes mellitus with 
improved accuracy and reliability. The research 
investigates the potential of neural network 
algorithms to analyze patient data and identify 
patterns indicative of diabetes. The approach 
employs k-fold cross-validation to ensure unbiased 
performance evaluation while exploring the 
influence of hidden layer configurations on 
prediction accuracy. By utilizing structured data and 
scalable training methods, the system demonstrates 
adaptability across varying datasets. The findings 
provide evidence of significant accuracy 
improvements, making the model a promising tool 
for early detection of diabetes. This study reinforces 
the role of artificial intelligence in advancing 
healthcare diagnostics and personalized treatment 
strategies [11]. Efficient Deep Learning Technique 
(EDLT) is proposed for analyzing and predicting 
diabetes with improved accuracy using the Indian 
Diabetes Dataset. The framework integrates 
advanced neural network architectures to process 
large-scale medical data effectively. The research 
emphasizes the importance of feature extraction and 
optimization strategies to enhance classification 
outcomes. Rigorous evaluation demonstrates the 
model's capability in achieving reliable predictions, 
addressing challenges in chronic disease detection. 
The study provides a significant contribution to the 
application of artificial intelligence in healthcare, 
offering a robust solution for improving diagnostic 

accuracy and patient care in diabetes management 
[12]. 
 

The Enhanced Machine Learning Approach by 
Ying et al. (2024) predicts severe proteinuria in IgA 
nephropathy patients, effectively analyzing clinical 
data for improved patient stratification. This 
algorithm integrates robust feature selection, 
enhancing model accuracy and clinical relevance in 
nephrology. The study’s results underscore the 
potential for tailored healthcare interventions, aiding 
in the proactive management of disease progression 
[13]. The Transparent Machine Learning Algorithm 
by Musacchio et al. (2024) analyzes HbA1c patterns 
linked to therapeutic inertia in type 2 diabetes cases 
where metformin monotherapy fails. By identifying 
hidden data patterns, this model assists clinicians in 
overcoming therapeutic inertia, thereby enhancing 
diabetes management outcomes [14]. The Patient 
Sentiment Analysis Model by Madan et al. (2024) 
applies machine learning to assess healthcare 
sentiment, empowering providers to adapt to patient 
needs based on real-time feedback. The model has 
contributed to enhancing patient-centered care by 
capturing sentiment dynamics, thus facilitating data-
driven healthcare improvements [15]. The Predictive 
Machine Learning Approach by Cichosz et al. 
(2024) evaluates pancreatic cancer risk among 
newly diagnosed diabetes patients using biochemical 
markers. The algorithm identifies risk factors early, 
underscoring its role in facilitating timely 
intervention for high-risk individuals, with potential 
implications in oncology and preventative healthcare 
[16]. 
 

The Machine Learning-Based Model by Nayak 
et al. (2024) predicts and monitors diabetic kidney 
disease progression, leveraging retrospective data. 
This single-center study emphasizes the algorithm's 
potential in nephrology, where early identification of 
disease progression enhances patient outcomes and 
informs therapeutic decisions [17]. The Heart Rate 
Variability-Based Machine Learning Model by 
Keng et al. (2025) forecasts sepsis risk, derived from 
vital sign data. This model validates the prognostic 
potential of heart rate variability measures in 
intensive care, highlighting its significance in early 
sepsis intervention and risk stratification [18]. The 
Mobile Health Application Adoption Model by 
Kokila et al. (2024) identifies factors influencing 
mHealth app adoption using machine learning. This 
model provides insights into user preferences and 
potential barriers, contributing to strategies for 
improving healthcare accessibility through mobile 
technology [19]. The Web-Based Machine Learning 
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Model by Rahman et al. (2024) predicts polycystic 
ovary syndrome (PCOS) early, aiding in proactive 
health management for women. This approach 
utilizes accessible clinical data, enhancing early 
intervention capabilities in reproductive health [20]. 
The Birth Outcome Predictive Model by Adebanji et 
al. (2024) analyzes factors affecting birth outcomes 
through a machine learning perspective. This 
algorithm supports healthcare providers in 
identifying high-risk pregnancies, contributing to 
improved maternal and neonatal healthcare 
strategies [21].   
 

The Cancer-Related Fatigue Prediction Model 
by Wang et al. (2024) assesses fatigue risks in 
lymphoma survivors. Through machine learning, 
this model supports patient quality-of-life 
improvements by anticipating fatigue symptoms, 
offering a valuable tool for personalized 
survivorship care [22]. Explainable Deep Learning 
Approach by Tanim et al. (2025) utilizes 
DeepNetX2 to enhance diabetes diagnosis, 
integrating explainability in model decisions for 
healthcare applications. DeepNetX2 applies layered 
feature extraction, combining convolutional layers 
with fully connected ones, yielding accurate 
diagnostic outcomes. By emphasizing 
interpretability, the model enables clinicians to 
understand decision pathways, thus aligning deep 
learning outputs with clinical reasoning in diabetes 
care [23]. Subspace Learning Machine (SLM) by Fu 
et al. (2024) introduces a novel methodology for 
subspace learning by extracting low-dimensional 
representations from high-dimensional data. SLM 
employs geometric and statistical principles, 
enhancing learning efficiency while retaining 
essential data features. Performance evaluations 
reveal its robustness across diverse tasks, 
establishing SLM as a powerful tool in visual data 
representation [24]. 
 

Chronic Kidney Disease Diagnostic Model by 
Dharmarathne et al. (2024) implements a machine 
learning-based interface integrated with explainable 
AI to diagnose chronic kidney disease. The interface 
combines decision tree-based predictions with 
transparency tools that elucidate the reasoning 
behind model outputs, providing clinicians with 
insights for improved diagnostic accuracy in 
nephrology [25]. AI-aided Cardiovascular Diagnosis 
in Cattle by Cihan et al. (2024) compares machine 
learning and deep learning for detecting 
cardiovascular disease in cattle using retinal 
imaging. By leveraging image processing 
techniques, the study demonstrates deep learning’s 

superiority in extracting nuanced retinal features, 
showing promise in animal health management and 
early diagnosis [26]. Diverse Ensemble Learning 
Classifiers by Kawarkhe and Kaur (2024) for 
diabetes prediction utilize a mix of ensemble 
classifiers, including Random Forest, AdaBoost, and 
Gradient Boosting, to achieve high diagnostic 
accuracy. The model integrates multiple weak 
learners, enhancing predictive precision in diabetes 
datasets and underscoring ensemble methods’ 
robustness in medical diagnostics [27]. Machine 
Learning Model for Knee Arthroplasty by Mittal et 
al. (2024) predicts prolonged hospital stays post-
revision knee arthroplasty, utilizing a national 
dataset. Through regression-based techniques, the 
model identifies key predictors for length of stay, 
informing post-operative management strategies that 
optimize healthcare resources and improve patient 
outcomes [28]. 

 
Atrial Fibrillation Mortality Prediction Model 

by Luo et al. (2024) applies machine learning for in-
hospital mortality prediction in critically ill atrial 
fibrillation patients. This model integrates 
demographic, clinical, and lab data, employing 
gradient boosting and logistic regression to stratify 
risk levels accurately, thus aiding in critical care 
decision-making [29]. Big Data Classification 
Algorithms by Singh et al. (2025) explores various 
machine learning algorithms in classifying big data, 
evaluating methods such as Decision Trees, SVM, 
and Neural Networks. This comparative study 
analyzes algorithmic efficiency and accuracy, 
establishing criteria for selecting optimal classifiers 
in large-scale datasets, crucial in data-intensive 
applications [30]. Red Blood Cell Demand 
Prediction Model by Hur et al. (2024) uses machine 
learning for predicting personalized red blood cell 
needs in thoracic surgery. Validated through clinical 
datasets, this model incorporates patient-specific 
parameters to forecast transfusion requirements, 
contributing to precision in resource allocation and 
patient safety in surgical care [31]. Differentiable L-
1 Norm in Pattern Recognition by Zhang et al. 
(2024) introduces a novel L-1 norm, enhancing 
gradient-based optimization in pattern recognition. 
Designed for differentiability, this norm improves 
convergence in machine learning models, 
optimizing feature selection and classification 
accuracy, pivotal for complex recognition tasks [32]. 

 
Bio-inspired optimization algorithms 

consistently outperform conventional optimization 
algorithms by mimicking natural processes and 
behaviors, allowing for dynamic adaptability, global 



 Journal of Theoretical and Applied Information Technology 
31st January 2025. Vol.103. No.2 

©   Little Lion Scientific  
 

ISSN: 1992-8645                                                                    www.jatit.org                                                     E-ISSN: 1817-3195 

 
476 

 

search capabilities, and robustness against local 
optima [33]-[60]. These algorithms excel in handling 
complex, high-dimensional, and non-linear 
optimization problems with improved accuracy and 
efficiency. 

 
3. Frog Leap Inspired Optimization-based 
Extreme Learning Machine (FLIO-ELM) 

Frog Leap Inspired Optimization-based 
Extreme Learning Machine (FLIO-ELM) integrates 
the exploration capabilities of Frog Leap Inspired 
Optimization (FLIO) with the learning efficiency of 
Extreme Learning Machine (ELM). In this hybrid 
model, FLIO optimizes ELM's input weights and 
biases by simulating frogs' social foraging behavior, 
which enhances search and convergence. The ELM 
component uses a single-layer neural network with 
randomly assigned hidden layer weights, which are 
further refined by FLIO. This combination 
accelerates training, improves accuracy, and ensures 
robust model generalization, making FLIO-ELM 
suitable for complex tasks in large datasets, 
including classification, regression, and real-time 
decision-making applications. 
 
3.1. Problem Formulation  

Define the dataset   where   represents the input 
features and   is the target variable for a regression 
task or   for a classification task. The objective in the 
step involves determining the input matrix   and 
target vector   that will be used to train the ELM 
model. Let   be the input matrix, where each row 
corresponds to an input vector   and   is the target 
vector. The aim is to feed these inputs to the hidden 
layer of the ELM, which can be expressed 
mathematically as: 

𝐻 = 𝑔(𝑋𝑊 + 𝑏)   (1) 

where   is the hidden layer matrix,   represents the 
weight matrix between the input and hidden layer,   
is the bias vector, and   is the activation function 
applied element-wise. The hidden layer output   is 
calculated based on the input matrix   the weights   
and the bias   
 

Once   has been computed, the next step 
involves determining the output weights   This can 
be done using the following least squares solution: 

𝛽 = (𝐻்𝐻)ିଵ𝐻்𝑌     (2) 

The final output of the ELM model can be 
represented as: 

𝑌 − 𝐻𝛽 (3) 

where 𝑌 ∈ 𝑅×ଵ represents the predicted output 
from the model. To measure the error between 
predicted and actual values, calculate the error 
vector 𝐸 ∈ 𝑅×ଵ as: 

𝐸 = 𝑌 − 𝑌 (4) 

3.2. Initialize ELM Parameters 
In this step, initialize the ELM parameters, 

including the weights and biases of the hidden layer. 
Let the weight matrix for the hidden layer be 
represented as 𝑊 ∈ 𝑅×, where 𝑚 denotes the 
number of input features, and 𝐿 represents the 
number of neurons in the hidden layer. The bias 
vector 𝑏 ∈ 𝑅ଵ× is also randomly initialized. The 
hidden layer output 𝐻 ∈ 𝑅× can be computed as: 

𝐻 = 𝑔(𝑋𝑊 + 𝑏) (5) 

where 𝑋 ∈ 𝑅× represents the input matrix and 
𝑔(. ) denotes the activation function applied 
element-wise. Depending on the configuration, the 
activation function could be a sigmoid, hyperbolic 
tangent, or ReLU. 
 

Initialize these parameters using a uniform 
distribution over a specific range. This can be 
mathematically expressed as: 

𝑊~𝑈(−𝛼, 𝛼), 𝑏~𝑈(−𝛽, 𝛽) (6) 

where 𝛼 and 𝛽 are small positive constants, and 
𝑈(−𝛼, 𝛼) denotes a uniform distribution within the 
range [−𝛼, 𝛼]. 
 

The next step involves calculating the output 
weights 𝛽 ∈ 𝑅×ଵ that connect the hidden layer 
output 𝐻to the final predicted output 𝑌 . Using the 
least squares solution determine 𝛽 as: 

                 𝛽 = (𝐻்𝐻)ିଵு    

where 𝑌 ∈ 𝑅×ଵ is the target vector. The predicted 
output 𝑌 ∈ 𝑅×ଵ is the calculated by: 

                             𝑌 = 𝐻𝛽 (8) 

The prediction error is computed by: 

                                 𝐸 = 𝑌 − 𝑌 (9) 

This initializes the ELM and prepares it for 
further optimization in subsequent steps. 
3.3. Frog Population Initialization for ELM 
Optimization 

In this step, the frog population is initialized for 
the FLIO to optimize the ELM parameters. Each frog 
in the population represents a potential solution 
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corresponding to a set of ELM input weights and 
biases. Let the population consist of 𝑃 frogs, where 
each frog is represented by a solution vector. 𝑆 for 
𝑖 = 1,2, … , 𝑃. Each solution vector 𝑆 consists of the 
ELM parameters, i.e., the input weight matrix 𝑊 ∈
𝑅× and bias vector 𝑏 ∈ 𝑅ଵ×.  Hence, each frog’s 
solution vector can be expressed as: 

𝑆𝑖=𝑊𝑖,𝑏𝑖,  𝑊𝑖∈𝑅𝑚×𝐿,𝑏𝑖∈𝑅1×𝐿 (10) 

The initial population of frogs 𝑆 is generated 
randomly within predefined bounds. For each frog, 
initialize the input weights and biases for the ELM 
model using random values from a uniform 
distribution, as done in the previous step: 

𝑊~𝑈(−𝛼, 𝛼), 𝑏~𝑈(−𝛽, 𝛽) (11) 

where 𝛼 and 𝛽 are small positive constants, and 
𝑈(−𝛼, 𝛼) denotes the uniform distribution over the 
interval [−𝛼, 𝛼]. 
 

The fitness of each frog 𝑆 is evaluated based 
on the performance of the corresponding ELM 
model. For each frog, compute the hidden layer 
output 𝐻 ∈ 𝑅× using the current weights 𝑊 and 
biases 𝑏 as follows: 

𝐻 = 𝑔(𝑋𝑊 + 𝑏) (12) 

where 𝑋 ∈ 𝑅× is the input matrix, and 𝑔(. ) is the 
activation function applied element-wise.  
 

The output weights 𝛽 ∈ 𝑅×ଵ for the ELM are 
computed using the least squares method: 

𝛽 = (𝐻
்𝐻)ିଵ𝐻

்𝑌 (13) 

where 𝑌 ∈ 𝑅×ଵ  is the target vector. The predicted  
predicted output 𝑌 ∈ 𝑅×ଵ for the 𝑖𝑡ℎ frog’s ELM 
model is given by: 

𝑌 = 𝐻𝛽  (14) 

To evaluate the performance of the 𝑖-th frog, 
compute the error between the predicted output. 𝑌 
and the actual target 𝑌 using the following error 
metric, such as the mean squared error (MSE): 

𝐸 =
1

𝑛
൫𝑦 − 𝑦ො൯

ଶ


ୀଵ

 (15) 

where 𝑦 and 𝑦ො are the actual and predicted values 
for the 𝑗𝑡ℎ sample, respectively. The fitness 𝐹 of the 
𝑖𝑡ℎ frog is inversely proportional to the error: 

𝐹𝑖=1𝐸𝑖 (16) 

A lower error corresponds to higher fitness, so 
the optimization process aims to improve each frog’s 
fitness by adjusting the ELM model's corresponding 
input weights and biases. After computing the fitness 
for all frogs in the population, sort them in 
descending order based on their fitness values. The 
frogs with higher fitness (better-performing ELM 
models) are positioned at the top, while the lower 
fitness frogs are placed at the bottom. Divide the frog 
population into 𝑀 memeplexes, each containing a 
subset of frogs, where each memeplex performs 
independent local searches. 
 

This initialization of the frog population and 
fitness evaluation prepares the system for further 
optimization of the ELM model using FLIO, 
focusing on improving the input weights and biases 
to enhance the overall model performance. Each frog 
represents a potential solution that will evolve in 
subsequent steps based on the frog leaping rules and 
the optimization strategy. 
 
3.4. Fitness Evaluation Based on ELM 

Performance 
In this step, the frog population will be divided 

into memeplexes for local optimization. Let 𝑃 
represent the total number of frogs in the population, 
and 𝑀 denote the number of memeplexes. Each 

memeplex will consist of 𝑁 frogs, where 𝑁 =


ெ
. 

Therefore, divide the frogs into 𝑀 distinct 
memeplexes, 𝑀ଵ, 𝑀ଶ, … , 𝑀ெ , where each memeplex 
contains 𝑁 frogs. The sorting of frogs based on 
fitness, performed in the previous step, ensures that 
the frogs with higher fitness occupy higher positions 
in the memeplexes. Denote the sorted frogs as 
𝑆ଵ, 𝑆ଶ, … , 𝑆 , where 𝑆ଵ has the highest fitness and 𝑆 
has the lowest fitness. Divide these frogs across 
memeplexes in a round-robin fashion. 

 
For each memeplex 𝑀, where 𝑘 ∈

{1,2, … , 𝑀}, assign frogs 
𝑆 , 𝑆ାெ , 𝑆ାଶெ, … , 𝑆ା(ேିଵ)ெ. This division 
ensures a balanced distribution of frogs across 
memeplexes with a mixture of high, medium, and 
low fitness solutions. Once memeplexes are 
established, apply the local search within each 
memeplex. For a given memeplex 𝑀 , identify the 
frog with the highest fitness, denoted as 𝑆௦௧

 , and 
the frog with the lowest fitness, denoted as 𝑆௪௦௧

 .  
The goal of the local search is to improve the 

fitness of 𝑆௪௦௧
  by moving it closer to 𝑆௦௧

  within 
the memeplex. The update rule for the frog leaping 
strategy is expressed as: 
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𝑆௪௦௧
 = 𝑆௪௦௧

 + 𝑟. ൫𝑆௦௧
 −𝑆௪௦௧

 ൯ (17) 

where 𝑟 ∈ [0,1] is a random number drawn from a 
uniform distribution. This equation moves the worst 
frog towards the best-performing frog within the 
memeplex, improving its position in the solution 
space. The new solution 𝑆௪௦௧

  contains updated 
ELIM parameters (input weights 𝑊 and biases 𝑏). 
 

For the updated solution, recompute the hidden 
layer output matrix. 𝐻௪௦௧

  for the corresponding 
ELM using the updated weights 𝑊௪௦௧

  and biases 
𝑏௪௦௧

 . 

𝐻௪௦௧
 = 𝑔(𝑋𝑊௪௦௧

 −𝑏௪௦௧
 ) (18) 

 
Next, update the output weights 𝛽௪௦௧

  by 
solving the least squares equation: 

𝛽௪௦௧
 = ቀ𝐻௪௦௧

 ்
𝐻௪௦௧

 ቁ
ିଵ

𝐻௪௦௧
 ்

𝑌 (19) 

where 𝑌 is the target vector, and the predicted output 
𝑌௪௦௧

  is: 

𝑌௪௦௧
 = 𝐻௪௦௧

 𝛽௪௦௧
  (20) 

 
To evaluate the fitness of the updated worst 

frog 𝑆௪௦௧
 , calculate the error between the predicted 

output 𝑌௪௦௧
  and the actual target values 𝑌 using the 

mean squared error (MSE): 

𝐸௪௦௧
 =

1

𝑛
൫𝑦 − 𝑦ො௪௦௧,

 ൯
ଶ



ୀଵ

 (21) 

The new fitness 𝐹௪௦௧
  is: 

𝐹௪௦௧
 =

1

𝐸௪௦௧


 (22) 

It the fitness of the updated frog 𝐹௪௦௧
  

improves compared to its previous fitness, retain the 
new solution; otherwise, restore the previous 
solution. Perform the local search for each 
memeplex 𝑀  independently. After completing the 
local search for all memeplexes, regroup the entire 
frog population for the global search phase in 
subsequent steps. This process ensures that each 
memeplex undergoes localized optimization while 
balancing exploration and exploitation of the 
solution space. 

 
3.5. Adaptive Frog Leaping Strategy 

In this step, proceed with the global search 
phase by regrouping all frogs from the memeplexes 
after completing the local search. The global search 

allows information exchange among the 
memeplexes, enhancing exploration in the overall 
solution space. The entire frog population, 
consisting of  𝑃 frogs, is reassembled after local 
searches to evaluate their performance across the 
entire population. Let the reassembled population be 
represented by 𝑆ଵ, 𝑆ଶ, … . , 𝑆, where each frog 𝑆 is 
defined by a solution vector containing the 
optimized ELM parameters 𝑊 ∈ 𝑅× (weights) 
and 𝑏 ∈ 𝑅ଵ× (biases). The goal of the global search 
is to perform a broader exploration of the solution 
space and improve the global fitness of the 
population. 
 

The fitness 𝐹 of each frog is calculated again 
after the local search using the mean squared error 
(MSE) of the corresponding ELM model. For each 
frog, compute the hidden layer output matrix as:  

𝐻 = 𝑔(𝑋𝑊 + 𝑏) (23) 

where 𝑔(. ) is the activation function, 𝑋 ∈ 𝑅× is 
the input matrix, and 𝑊 and 𝑏 are the frog’s current 
weights and biases, respectively. The output weights 
𝛽 ∈ 𝑅×ଵ for each frog are updated using the least 
squares method: 

𝛽 = (𝐻
்𝐻)ିଵ𝐻

்𝑌 (24) 

where 𝑌 ∈ 𝑅×ଵ is the target vector. The predicted 
output 𝑌 ∈ 𝑅×ଵ is given by: 
 

𝑌 = 𝐻𝛽  (25) 

The error 𝐸 for each frog is computed as: 

𝐸 =
1

𝑛
൫𝑦 − 𝑦ො൯

ଶ


ୀଵ

 (26) 

where 𝑦 represents the actual target values, and 𝑦ො 
are the predicted values from the ELM model of frog 
𝑆. The fitness 𝐹 of each frog is updated as: 

𝐹 =
1

𝐸

 (27) 

Following the fitness evaluation, identify the 
frog with the highest global fitness, denoted as 𝑆௦௧ , 
and the frog with the lowest global fitness, denoted 
as 𝑆௪௦௧ . The global search then moves the worst-
performing frog towards the best-performing frog 
across all memeplexes. The global update rule for 
𝑆௪௦௧ is given by: 

𝑆௪௦௧ = 𝑆௪௦௧ + 𝑟. (𝑆௦௧ − 𝑆௪௦௧) (28) 

where 𝑟 ∈ [0,1] is a random number from a uniform 
distribution. This equation adjusts the worst frog's 
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ELM parameters (input weights and biases) to 
improve its position based on the best-performing 
frog in the global population. 
 

After updating 𝑆௪௦௧, compute the new hidden 
layer output 𝐻௪௦௧  using the updated weights 𝑆௪௦௧ 
and biases 𝑏௪௦௧: 

𝐻௪௦௧ = 𝑔(𝑋𝑊௪௦௧ + 𝑏௪௦௧) (29) 

 
Update the output weights 𝛽௪௦௧  as: 

𝛽௪௦௧ = (𝐻௪௦௧
் 𝐻௪௦௧)ିଵ𝐻௪௦௧

் 𝑌 (30) 

 
Calculate the new predicted output 𝑌௪௦௧ 

as: 

𝑌௪௦௧ = 𝐻௪௦௧𝛽௪௦௧  (31) 

 
Evaluate the new error 𝐸௪௦௧ and fitness 

𝐹௪௦௧  for the updated frog. If the fitness improves, 
retain the new solution; otherwise, revert to the 
previous solution. Repeat this process until all frogs 
in the population have been updated based on the 
global search phase. This step ensures that the worst-
performing frogs benefit from the global best 
solution, promoting convergence towards better 
solutions across the population. 

 
3.6. Dynamic Hidden Neuron and Activation 

Function Configuration 
In this step, employ an adaptive frog leaping 

strategy to control the intensity of the search process. 
The adaptive leaping mechanism adjusts the leap 
size based on the performance improvements in the 
fitness values of the frogs, ensuring efficient 
exploration and exploitation during optimization. 
Let 𝑆 represent the solution vector of the 𝑖𝑡ℎ frog, 
where each solution vector consists of the input 
weight matrix 𝑊 ∈ 𝑅× and bias vector 𝑏 ∈ 𝑅ଵ×. 
The leap size 𝑑 for the 𝑖𝑡ℎ frog is calculated based 
on its fitness improvement ∆𝐹 between two 
consecutive iterations. If the fitness improvement is 
significant, the leap size is reduced to fine-tune the 
solution, whereas a smaller fitness improvement 
results in larger leaps to explore other regions of the 
solution space. The adaptive leap size 𝑑  can be 
defined as: 

𝑑 = 𝑟. ൬
∆𝐹

𝐹௦௧

൰ . (𝑆௦௧ − 𝑆) (32) 

where 𝑟 ∈ [0,1] is a random number drawn from a 
uniform distribution, 𝐹௦௧ is the fitness of the best-
performing frog in the population, and ∆𝐹 is the 

change in fitness of the 𝑖𝑡ℎ frog from the previous 
iteration, calculated as: 

∆𝐹 = 𝐹
(௧)

− 𝐹
(௧ିଵ) (33) 

where 𝐹
(௧) and 𝐹

(௧ିଵ) denote the fitness values of the 
𝑖𝑡ℎ frog at the current and previous iterations, 
respectively. If ∆𝐹 is large, indicating significant 
improvement, the leap size 𝑑 is reduced, allowing 
fine adjustments to the frog’s position. Conversely, 
a smaller ∆𝐹 increases the leap size, promoting 
exploration. 
 

Update the solution vector 𝑆 for the 𝑖𝑡ℎ frog 
by applying the adaptive leap size 𝑑 : 

𝑆
(௧ାଵ)

= 𝑆
(௧)

+ 𝑑 (34) 

where 𝑆
(௧ାଵ) represents the updated solution for the 

next iteration. The new input weights 𝑊
(௧ାଵ) and 

biases 𝑏
(௧ାଵ)are extracted from the updated solution 

vector 𝑆
(௧ାଵ)

. 
 

For the updated frog, recompute the hidden 
layer output matrix 𝐻  of the ELM using the updated 

weights 𝑊
(௧ାଵ) and biases 𝑏

(௧ାଵ)
. 

𝐻
(௧ାଵ)

= 𝑔൫𝑋𝑊
(௧ାଵ)

+ 𝑏
(௧ାଵ)

൯ (35) 

 

Update the output weights 𝛽
(௧ାଵ) for the ELM 

model by solving the least squares equation: 

𝛽
(௧ାଵ)

= ൫𝐻
(௧ାଵ)்

𝐻
(௧ାଵ)

൯
ିଵ

𝐻
(௧ାଵ)்

𝑌 (36) 

where 𝑌 is the target vector. Calculate the predicted 

output 𝑌
(௧ାଵ) for the updated frog: 

𝑌
(௧ାଵ)

= 𝐻
(௧ାଵ)

𝛽
(௧ାଵ) (37) 

 
To evaluate the performance of the updated 

frog, calculate the error 𝐸
(௧ାଵ) between the predicted 

output 𝑌
(௧ାଵ) and the actual target values 𝑌 using the 

mean squared error (MSE): 

𝐸
(௧ାଵ)

=
1

𝑛
൫𝑦 − 𝑦ො

(௧ାଵ)
൯

ଶ


ୀଵ

 (38) 

 

Finally, update the fitness 𝐹
(௧ାଵ) of the frog 

based on the computed error: 

𝐹
(௧ାଵ)

=
1

𝐸


(௧ାଵ)
 (39) 
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Repeat the adaptive frog leaping process until 
the performance of the ELM model converges or the 
maximum number of iterations is reached. The 
adaptive strategy ensures that the search intensity 
adjusts dynamically based on fitness improvements, 
allowing for both exploration of new solutions and 
exploitation of near-optimal solutions. 

 
3.7. Local Search in Memeplexes (Exploitation) 

In this step, the mutation mechanism is 
incorporated to introduce diversity into the frog 
population and prevent premature convergence 
during the optimization of the ELM. Mutation 
randomly perturbs the parameters of a subset of 
frogs, enhancing exploration and enabling the 
population to escape local optima. Let 𝑃 represent 
the total population of frogs, where each frog 𝑆 is 
represented by a solution vector containing the input 
weight matrix 𝑊 ∈ 𝑅× and bias vector 𝑏 ∈ 𝑅ଵ×. 
Apply mutation to a subset of the population, 
denoted as 𝑃௨௧ , where 𝑃௨௧ ⊆ 𝑃 and the size of the 
subset is |𝑃௨௧|. 
 

For each frog 𝑆 ∈ 𝑃௨௧, randomly perturb its 
input weights and biases. Let the mutation rate 𝜇 ∈
[0,1] determine the probability of perturbation for 
each element of the weight matrix 𝑊 and bias vector 
𝑏. For each element 𝑊 in the weight matrix 𝑊, 
mutate as follows: 

𝑊
(௨௧)

= 𝑊
(௧)

+ 𝛿. 𝜎  (40) 

where 𝛿 is a small random perturbation drawn from 
a uniform distribution 𝑈(−𝛾, 𝛾), and 𝜎 is a binary 
indicator that equals 1 if mutation occurs, 
determined by the mutation rate 𝜇, and otherwise. 
Similarly, for each element 𝑏 in the bias vector 𝑏 , 
apply the mutation rule: 

𝑏
(௨௧)

= 𝑏
(௧)

+ 𝛿. 𝜎 (41) 

where 𝛿 follows the same distribution 𝑈(−𝛾, 𝛾), and 
𝜎 is the binary indicator for mutation. The mutation 
process ensures that random perturbations are 
applied to the weights and biases of the selected 
frogs, introducing new potential solutions into the 
population. 
 

After mutation, the updated solution vector 

𝑆
(௨௧)

= ቄ𝑊
(௨௧)

, 𝑏
(௨௧)

ቅ represents the mutated 

ELM parameters for frog 𝑆 . For each mutated frog, 

recompute the hidden layer output 𝐻
(௨௧) using the 

mutated weights and biases: 

𝐻
(௨௧)

= 𝑔൫𝑋𝑊
(௨௧)

+ 𝑏
(௨௧)

൯ (42) 

Update the output weights 𝛽
(௨௧) by solving 

the least squares problem: 

𝛽
(௨௧)

= ൫𝐻
(௨௧)்

𝐻
(௨௧)

൯
ିଵ

𝐻
(௨௧)

𝑌 (43) 

where 𝑌 ∈ 𝑅×ଵ is the target vector. Calculate the 

predicted output 𝑌
(௨௧)  as: 

𝑌
(௨௧)

= 𝐻
(௨௧)

𝛽
(௨௧) (44) 

 
To evaluate the fitness of each mutated frog, 

compute the error 𝐸
(௨௧) between the predicted 

output  𝑌
(௨௧) and the actual target values 𝑌 

using the mean squared error (MSE): 

𝐸
(௨௧)

=
1

𝑛
൫𝑦 − 𝑦ො

(௨௧)
൯

ଶ


ୀଵ

 (45) 

 

The new fitness 𝐹
(௨௧) of the mutated frog is 

then calculated as: 

𝐹
(௨௧)

=
1

𝐸


(௨௧)
 (46) 

The mutation process introduces variability 
into the population by creating new potential 
solutions that differ from the original set of frogs. If 

the fitness 𝐹
(௨௧) of the mutated frog improves 

compare to its previous fitness 𝐹
(௧), retain the 

mutated solution; otherwise, revert to the original 
solution. 
 

Repeat the mutation process for all selected 
frogs in 𝑃௨௧ensuring that diversity is maintained 
throughout the population. This step helps to balance 
exploration and exploitation, enhancing the overall 
performance of the FLIO-ELM model by 
introducing random perturbations and allowing for 
the discovery of new, potentially better solutions. 
 
3.8. Mutation Mechanism for Diversity 

In this step, a penalty function will be 
implemented to discourage the creation of overly 
complex ELM models during the optimization 
process. The goal is to maintain the efficiency of the 
models by penalizing solutions that use too many 
hidden neurons or large parameter values, promoting 
simpler models with better generalization 
capabilities. Let 𝑆 represent the solution vector for 
the 𝑖𝑡ℎ frog, consisting of the input weight matrix 
𝑊 ∈ 𝑅× and the bias vector 𝑏 ∈ 𝑅ଵ× , where 𝐿 
denotes the number of hidden neurons. A penalty 
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term 𝑃(𝑆) is added to the frog's fitness function to 
prevent the optimization process from favoring 
overly complex solutions. 

 
Define the penalty function 𝑃(𝑆) as a 

combination of two terms: one penalizing the 
number of hidden neurons 𝐿 and another penalizing 
the magnitude of the input weights 𝑊 and biases 𝑏. 
The penalty function is expressed as: 

𝑃(𝑆) = 𝜆ଵ. 𝐿 + 𝜆ଶ. ቌ
1

𝑚𝐿
  𝑊

ଶ



ୀଵ



ୀଵ

+
1

𝐿
 𝑏

ଶ



ୀଵ

ቍ 

(47) 

where 𝜆ଵ and 𝜆ଶ are regularization parameters 
controlling the strength of the penalties, 𝐿 is the 
number of hidden neurons, and the terms 𝑊

ଶ  and 𝑏
ଶ 

represent the squared magnitudes of the input 
weights and biases, respectively. The first term 
penalizes models with a larger number of hidden 
neurons, while the second term discourages large 
weight and bias values. 
 

The modified fitness function for the 𝑖-th frog, 
incorporating the penalty term, is given by: 

𝐹
()

=
1

𝐸

− 𝑃(𝑆) (48a) 

where 𝐸 is the mean squared error (MSE) between 
the predicted output 𝑌 and the actual target values 𝑌, 
computed. 

𝐸 =
1

𝑛
൫𝑦 − 𝑦ො൯

ଶ


ୀଵ

 (48b) 

The fitness 𝐹
() decreases when the penalty 

function 𝑃(𝑆) increases, which encourages the 
optimization process to favor simpler models with 
fewer hidden neurons and smaller parameter 
magnitudes. This penalization approach balances 
model complexity with accuracy. After applying the 
penalty function, the optimization continues by 
updating the solution vector 𝑆 ,  which contains the 
input weights 𝑊 and biases 𝑏, using the frog 
leaping strategy or other optimization mechanisms 
described in the previous steps. For the updated 
solution, recalculate the hidden layer output 𝐻  using 
the updated parameters: 

𝐻 = 𝑔(𝑋𝑊 + 𝑏) (49) 

where 𝑔(. ) is the activation function, and 𝑋 ∈ 𝑅× 
is the input matrix. The output weights 𝛽 ∈ 𝑅×ଵ are 
then recalculated using the least squares method: 

𝛽 = (𝐻
்𝐻)ିଵ𝐻

்𝑌 (50) 

 
The predicted output 𝑌 ∈ 𝑅×ଵ is obtained as: 

𝑌 = 𝐻𝛽  (51) 

The error 𝐸 is updated based on the new 

predicted output, and the fitness 𝐹
() is 

recalculated by incorporating the updated penalty 
term. The penalty-based fitness function is then used 
to guide the optimization process toward more 
efficient solutions that generalize well without 
excessive complexity. Introducing this penalty 
function controls the model's complexity while still 
optimizing for performance. The trade-off between 
accuracy and simplicity ensures that the ELM 
models remain computationally efficient and robust 
against overfitting, which is critical for achieving 
generalization in real-world applications. 
 
3.9. Global Search Across Memeplexes 

(Exploration) 
In this step, the hybrid learning approach will 

be integrated by combining the FLIO improvements 
with traditional ELM output weight adjustments. 
This hybrid learning step ensures that the FLIO 
optimization process effectively refines the input 
weights and biases, while ELM’s least squares 
method is used to compute the final output weights, 
maintaining computational efficiency. Let 𝑆 
represent the optimized solution vector of the 
𝑖𝑡ℎ frog, where the vector consists of the input 
weight matrix 𝑊 ∈ 𝑅× and bias vector 𝑏 ∈ 𝑅ଵ×. 
For each optimized frog 𝑆 , use the refined input 
weights and biases obtained from the FLIO 
optimization to calculate the hidden layer output 𝐻 : 

𝐻 = 𝑔(𝑋𝑊 + 𝑏) (52) 

where 𝑔(. ) is the activation function, and 𝑋 ∈ 𝑅× 
is the input matrix. The output weights 𝛽 ∈ 𝑅×ଵ are 
then updated using the traditional least squares 
method, which minimizes the error between the 
predicted and actual outputs. 
 

The least squares solution for 𝛽 is given by: 

𝛽 = (𝐻
்𝐻)ିଵ𝐻

்𝑌 (53) 

 
The least squares solution for 𝛽 is given by: 

𝛽 = (𝐻
்𝐻)ିଵ𝐻

்𝑌 (54) 
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where 𝑌 ∈ 𝑅×ଵ is the target vector. The predicted 
output 𝑌 ∈ 𝑅×ଵ for the optimized frog is then 
calculated as: 

𝑌 = 𝐻𝛽  (55) 

Next, calculate the error 𝐸 between the 
predicted output 𝑌 and the actual target values 𝑌 
using the mean squared error (MSE) as the error 
metric: 

𝐸 =
1

𝑛
൫𝑦 − 𝑦ො൯

ଶ


ୀଵ

 (56) 

 
The error 𝐸measures the performance of the 

ELM model after applying both FLIO optimization 
and least squares output weight adjustments. The 
fitness 𝐹 for each frog is updated based on the 
calculated error as: 

𝐹 =
1

𝐸

 (57) 

This hybrid learning step ensures that the 
refined input weights and biases, obtained through 
FLIO, are effectively combined with the 
computationally efficient least squares method for 
adjusting the output weights. This approach 
leverages FLIO's strength in optimizing the hidden 
layer and allows the least squares method to handle 
the output layer efficiently, ensuring faster 
convergence. 
 

After updating the output weights and 
calculating the fitness for each frog, identify the frog 
with the highest fitness, denoted as 𝑆௦௧ . The global 
search or mutation mechanism can further refine the 
solution, as described in the previous steps. The 
hybrid learning approach ensures that the 
optimization process benefits from the exploratory 
capabilities of FLIO while preserving the ELM’s 
computational efficiency. The least squares method 
provides a closed-form solution for the output 
weights, reducing the complexity of simultaneously 
optimizing both the input weights and output 
weights. 
 

To ensure generalization, this step incorporates 
cross-validation on the updated ELM model for each 
frog. Divide the dataset into training and validation 
sets, and evaluate the performance of the ELM 
model on the validation set to check for overfitting. 
The cross-validation process is expressed as: 

𝐸௩ =
1

𝑛௩

൫𝑦௩, − 𝑦ො௩,൯
ଶ

ೡೌ

ୀଵ

 (58) 

where 𝐸௩  represents the validation error, 𝑛௩ is the 
number of validation samples 𝑦௩, represents the 
actual target values for the validation set, and 𝑦ො௩, 
represents the predicted values for the validation set. 
 

This hybrid learning step, by combining FLIO 
for input weight optimization and the least squares 
method for output weights, ensures that the ELM 
model achieves accuracy and computational 
efficiency. The resulting model exhibits improved 
generalization and performance across diverse 
datasets. 
 
3.10. Hybrid Learning Step 

In this step, a convergence check should be 
implemented to determine whether the optimization 
process should stop or continue. The stopping 
criteria are based on the fitness values, error 
reduction, and the number of iterations completed. 
The goal is to ensure that the FLIO-ELM model has 
reached an optimal or near-optimal solution without 
overfitting or wasting computational resources. Let 

𝐹
(௧) represent the fitness of the 𝑖𝑡ℎ frog at iteration 

𝑡, and let 𝐸
(௧) represent the corresponding error at 

that iteration. A typical convergence check involves 

monitoring the change in fitness ∆𝐹
(௧) or the error 

∆𝐸
(௧) between consecutive iterations. Define the 

change in fitness as: 

∆𝐹𝑖(𝑡)=𝐹𝑖(𝑡)−𝐹𝑖(𝑡−1) (59) 

 
Similarly, the change in error is defined as: 

∆𝐸𝑖(𝑡)=𝐸𝑖(𝑡−1)−𝐸𝑖(𝑡) (60) 

The optimization process can stop if the 

absolute change in fitness ∆𝐹
(௧) or error ∆𝐸

(௧) falls 
below a predefined threshold 𝜖. Mathematically, the 
stopping condition can be expressed as: 

ห∆𝐹
(௧)

ห < 𝜖 or ห∆𝐸
(௧)

ห < 𝜖 (61) 

where 𝜖 is a small positive constant that defines the 
tolerance for convergence. If either of these 
conditions is satisfied, the optimization for the 
corresponding frog 𝑆 is considered converged. This 
ensures that further iterations will not yield 
significant fitness or error reduction improvements. 
 

Another stopping criterion involves monitoring 
the maximum number of iterations 𝑇௫ . If the 
optimization reaches 𝑇௫ iterations, the process 
stops to prevent excessive computation. This 
condition is expressed as: 



 Journal of Theoretical and Applied Information Technology 
31st January 2025. Vol.103. No.2 

©   Little Lion Scientific  
 

ISSN: 1992-8645                                                                    www.jatit.org                                                     E-ISSN: 1817-3195 

 
483 

 

𝑡≥𝑇𝑚𝑎𝑥 (62) 

Once the convergence check is performed for 
all frogs in the population, those frogs that have met 
the stopping criteria will no longer undergo further 
updates. The remaining frogs, which have not yet 
converged, continue with the optimization process in 
subsequent iterations. This selective convergence 
approach ensures that only non-converged frogs 
participate in further searches, reducing 
computational effort. 
 

To further enhance the optimization process, 
introduce a dynamic adjustment of the mutation rate 
𝜇 based on the convergence behavior of the 
population. If a large proportion of the population 
has converged, reduce 𝜇 to focus more on fine-
tuning the remaining frogs. Conversely, if most frogs 
have not converged, increase 𝜇 to encourage 
exploration. The dynamic mutation rate is defined 
as: 

𝜇(௧ାଵ) = 𝜇(௧). ቆ
|𝑃௩|

𝑃
ቇ (63) 

where 𝜇(௧) is the mutation rate at iteration 𝑡, |𝑃௩| 
represents the number of converged frogs, and 𝑃 is 
the total number of frogs. This dynamic adjustment 
helps balance exploration and exploitation during 
the optimization process. 
 

To ensure the robustness of the FLIO-ELM 
model, cross-validation must be applied during the 
convergence check. Evaluate the performance of the 
model on a validation set at each iteration. If the 

validation error 𝐸௩
(௧)  starts to increase while the 

training error 𝐸
(௧) decreases, the model may be 

overfitting. The validation error is calculated as: 

𝐸௩
(௧)

=
1

𝑛௩

൫𝑦௩, − 𝑦ො௩,
(௧)

൯
ଶ

ೡೌ

ୀଵ

 (64) 

where 𝑛௩ represents the number of validation 

samples, and 𝑦௩, and 𝑦ො௩,
(௧)  represent the actual and 

predicted values for the validation set, respectively. 
If overfitting is detected, reduce the complexity of 
the model by adjusting the number of hidden 
neurons 𝐿, or applying regularization to the input 
weights 𝑊 and biases 𝑏. 
  

Through these convergence checks and 
dynamic adjustments, the FLIO-ELM model ensures 
efficient optimization, preventing unnecessary 
iterations and maintaining generalization 
capabilities across various datasets. 

 

3.11. Penalty Function for Efficient ELM Models 
In this step, evaluate the final FLIO-ELM 

model after completing the convergence checks and 
optimization. The objective involves analyzing the 
model’s performance on the test dataset and ensuring 
that the learned parameters (weights and biases) 
generalize well to unseen data. Performance 
evaluation is based on calculating various metrics, 
such as accuracy, mean squared error (MSE), 
precision, recall, and F1-score. Let the final set of 
optimized weights and biases for the 𝑖𝑡ℎ frog be 
denoted by 𝑊

∗ ∈ 𝑅× and 𝑏
∗ ∈ 𝑅ଵ× , respectively, 

after the optimization process. For each test input 
𝑋௧௦௧ ∈ 𝑅ೞ×, where 𝑛௧௦௧ represents the number 
of test samples, compute the hidden layer output 𝐻

∗ 
using the optimized weights and biases: 

𝐻
∗ = 𝑔(𝑋௧௦௧𝑊

∗ + 𝑏
∗) (65) 

where 𝑔(. ) is the activation function applied 
element-wise. The output weights 𝛽

∗ ∈ 𝑅ଵ× 
obtained from the previous optimization are used to 
predict the output 𝑌௧௦௧ ∈ 𝑅ೞ×ଵ. 

𝑌௧௦௧ = 𝐻
∗𝛽

∗ (66) 

 
To assess the accuracy of the FLIO-ELM 

model, calculate the error 𝐸௧௦௧between the predicted 
output 𝑌௧௦௧  and the actual target values 𝑌௧௦௧ ∈
𝑅ೞ×ଵ. The mean squared error (MSE) for the test 
dataset is expressed as: 

𝐸௧௦௧ =
1

𝑛௧௦௧

 ൫𝑦௧௦௧, − 𝑦ො௧௦௧,൯
ଶ

ೞ

ୀଵ

 (67) 

where 𝑦௧௦௧, represents the actual target values, 
𝑦ො௧௦௧, are the predicted values for each test sample. 
A lower 𝐸௧௦௧value indicates better performance of 
the model on the test set. 
 

Additional evaluation metrics such as 
accuracy, precision, recall, and F1-score are 
calculated for classification tasks. Accuracy 
measures the percentage of correctly predicted labels 
out of all test samples: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (68) 

where 𝑇𝑃 represents true positives, 𝑇𝑁 represents 
true negatives, 𝐹𝑃 represents false positives, and 
𝐹𝑁 represents false negatives. Precision evaluates 
the proportion of correctly predicted positive 
samples out of all predicted positives: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (69) 
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Recall (or sensitivity) measures the proportion 
of correctly predicted positive samples out of all 
actual positives: 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (70) 

 
The F1-score provides a balance between 

precision and recall and is calculated as: 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2.
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛. 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (71) 

 
These evaluation metrics are used to assess the 

performance of the final FLIO-ELM model on the 
test dataset. If the model performs well on the test set 
with low MSE and high accuracy, precision, recall, 
and F1-score, it indicates successful generalization 
of the learned parameters to unseen data. To further 
validate the robustness of the FLIO-ELM model, 
perform k-fold cross-validation on the entire dataset, 
including training and testing sets. Divide the data 
into 𝑘 equal-sized subsets and use 𝑘 − 1 subsets for 
training and the remaining subset for testing. Repeat 
this process 𝑘 times, with each subset serving as the 
test set exactly once. The cross-validation error 𝐸௩  
is calculated as the average error across all folds: 

𝐸௩ =
1

𝑘
 𝐸௧௦௧,



ୀଵ

 (72) 

where 𝐸௧௦௧, represents the error for the 𝑖-th fold. 
This step helps assess the model's ability to 
generalize across different splits of the data, 
reducing the likelihood of overfitting. 
 

By thoroughly evaluating the performance of 
the final FLIO-ELM model using these metrics and 
validation techniques, the reliability and 
generalization capabilities of the optimized model 
are ensured. 
 
3.12. Regularization for Stability 

In this step, a final refinement of the FLIO-
ELM model is performed by adjusting its 
hyperparameters to maximize performance. 
Hyperparameters such as the number of hidden 
neurons 𝐿, the regularization parameters 𝜆ଵ and 𝜆ଶ, 
the mutation rate 𝜇, and the learning rate 𝜂 require 
fine-tuning to optimize the model’s accuracy and 
generalization capability. Let the number of hidden 
neurons 𝐿 be initially set based on the dataset's 
complexity. A search process can be implemented to 
find the optimal number of hidden neurons that 
minimizes the error on the validation dataset. Let the 
set of candidate values for 𝐿 be denoted as 𝐿 =
{𝐿ଵ, 𝐿ଶ, … , 𝐿}, where each 𝐿 ∈ 𝐿 represents a 

potential value for the number of hidden neurons. 
For each 𝐿, compute the hidden layer output 𝐻 
using the input weights 𝑊 ∈ 𝑅×ೕand bias vector 
𝑏 ∈ 𝑅ଵ×ೕ: 

𝐻 = 𝑔൫𝑋𝑊 + 𝑏൯ (73) 

For each candidate 𝐿 update the output 
weights 𝛽 ∈ 𝑅ೕ×ଵ using the least squares solution: 

𝛽 = ൫𝐻
்𝐻൯

ିଵ
𝐻

்𝑌 (74) 

 
Compute the predicted output 𝑌 for each 

candidate 𝐿: 

𝑌 = 𝐻𝛽 (75) 

 
Evaluate the error 𝐸 for each 𝐿 using the mean 

squared error (MSE) on the validation set: 

𝐸 =
1

𝑛௩

൫𝑦௩, − 𝑦ො,൯
ଶ

ೡೌ

ୀଵ

 (76) 

 
Select the value 𝐿௧ ∈ 𝐿 that minimizes 𝐸 : 

𝐿௧ = arg min
ೕ∈

𝐸 (77) 

 
After selecting 𝐿௧ , update the model's input 

weights and biases using the refined number of 
hidden neurons. Next, optimize the regularization 
parameters. 𝜆ଵ and 𝜆ଶ, which control the penalty on 
the number of neurons and the magnitude of the 
weights and biases, respectively. Let 𝑅 = {(𝜆ଵ, 𝜆ଶ)} 
represent the set of candidate regularization 
parameter pairs. For each pair (𝜆ଵ, 𝜆ଶ) ∈ 𝑅, compute 
the penalty function 𝑃൫𝑆൯ for the corresponding 
frog solution 𝑆 as: 

𝑃൫𝑆൯ = 𝜆ଵ. 𝐿 + 𝜆ଶ. ቌ
1

𝑚𝐿

  𝑊
ଶ

ೕ

ୀଵ



ୀଵ

+
1

𝐿

 𝑏
ଶ

ೕ

ୀଵ

ቍ 

(78) 

 

Update the fitness 𝐹
() for each candidate pair 

based on the penalty function: 

𝐹
()

=
1

𝐸

− 𝑃൫𝑆൯ (79) 
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Select the optimal regularization parameters 

൫𝜆ଵ
௧

, 𝜆ଶ
௧

൯ that maximize the fitness 𝐹
(). 

൫𝜆ଵ
௧

, 𝜆ଶ
௧

൯ = 𝑎𝑟𝑔 max
(ఒభ,ఒమ)∈ோ

𝑅
() (80) 

Once the optimal hyperparameters for 𝐿, 𝜆ଵ, 
and 𝜆ଶhave been determined, proceed to refine the 
mutation rate 𝜇 and learning rate 𝜂 to further enhance 
the optimization process. For the mutation rate 𝜇, 
perform a grid search over a set of candidate values 
𝑀 = {𝜇ଵ, 𝜇ଶ, … , 𝜇}. For each 𝜇 ∈ 𝑀, evaluate the 
performance of the model by computing the 
validation error and fitness. Select the mutation rate 
𝜇௧ that yields the best performance. Finally, refine 
the learning rate 𝜂 by performing a search over a 
range of candidate values. The learning rate controls 
the magnitude of updates to the weights and biases 
during the optimization process. Let 𝜂 ∈ 𝜖 =
{𝜂ଵ, 𝜂ଶ, … , 𝜂} represent the set of candidate learning 
rates. For each 𝜂௦ ∈ 𝜖, evaluate the model’s 
performance and select the optimal learning rate 
𝜂௧ based on the fitness and error reduction. 
 

This final refinement ensures that the FLIO-
ELM model operates at peak efficiency by selecting 
the optimal hyperparameters that minimize error and 
maximize fitness across various validation datasets. 
 
3.13 Model Stability and Robustness Analysis 

In this step, a comprehensive analysis of the 
FLIO-ELM model's stability and robustness will be 
performed to ensure consistent performance across 
various datasets and conditions. The objective is to 
evaluate how the optimized model responds to the 
data perturbations and assess its generalization 
capability under different scenarios. First, introduce 
noise into the input data 𝑋 to test the model's 
sensitivity. Create a perturbed dataset 𝑋௧௨ௗ by 
adding Gaussian noise 𝜖 to the original input data: 

𝑋௧௨ௗ = 𝑋 + 𝜖 (81) 

where 𝜖~𝑁(0, 𝜎ଶ) and 𝜎 represents the standard 
deviation of the noise. Vary 𝜎 to simulate different 
levels of noise intensity. 
 

Compute the hidden layer output 𝐻௧௨ௗ  
using the optimized input weights 𝑊∗ and biases 𝑏∗. 

𝑋௧௨ௗ = 𝑔൫𝑋௧௨ௗ𝑊∗ + 𝑏∗൯ (82) 

 
Calculate the predicted output 𝑌௧௨ௗ for 

the perturbed data: 

𝑌௧௨ௗ = 𝐻௧௨ௗ𝛽∗ (83) 

Evaluate the error 𝐸௧௨ௗ between the 
predicted output 𝑌௧௨ௗ and the actual target 
values 𝑌: 

𝐸௧௨ௗ =
1

𝑛
൫𝑦 − 𝑌௧௨ௗ,൯

ଶ


ୀଵ

 (84) 

 
Compare 𝐸௧௨ௗ with the original error 

𝐸  calculated on the unperturbed data to assess 
the model’s robustness to noise. Next, perform a 
sensitivity analysis by varying the input features to 
determine the model's dependence on specific 
variables. For each input feature 𝑥 , where 𝑗 =

1,2, … , 𝑚, introduce a small perturbation 𝛿 and 
compute the change in the output: 

𝛿𝑌 = 𝐻൫𝑊
∗ + 𝛿൯𝛽∗ − 𝐻𝑊

∗𝛽∗ (85) 

where 𝑊
∗ is the 𝑗𝑡ℎ column of the weight matrix 

𝑊∗, and  𝛿 is a small change applied to that column. 
 

Compute the sensitivity 𝑆 of the model to each 
input feature: 

𝑆 =
ฮ𝛿𝑌ฮ

ฮ𝛿ฮ
 (86) 

where ‖. ‖ denotes the Euclidean norm. A higher 𝑆 
indicates greater sensitivity to the corresponding 
input feature. 
 

Test the model's stability by subjecting it to 𝐾-
fold cross-validation with different random seeds. 
For each fold 𝑘, train the model on a training set 

𝐷௧
()  and evaluate it on a validation set 𝐷௩

()
. 

Compute the validation error 𝐸௩
(): 

𝐸௩
()

=
1

𝑛௩

൫𝑦௩,
()

− 𝑦ො௩,
()

൯
ଶ

ೡೌ

ୀଵ

 (87) 

 
Calculate the mean validation error 𝐸ത௩ across 

all folds: 

𝐸ത௩ =
1

𝐾
 𝐸௩

()



ୀଵ

 (88) 

 
Compute the standard deviation 𝜎ா of the 

validation errors to assess the model's stability: 

𝜎ா = ඩ
1

𝐾
൫𝐸௩

()
− 𝐸ത௩൯

ଶ


ୀଵ

 (89) 
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A lower 𝜎ா indicates that the model's 
performance is consistent across different data splits, 
demonstrating stability. Furthermore, evaluate the 
model's robustness to adversarial attacks by 
introducing adversarial examples 𝑋ௗ௩  generated 
using the Fast Gradient Sign Method (FGSM). 
Compute 𝑋ௗ௩  as: 

𝑋ௗ௩ = 𝑋 + 𝜖. 𝑠𝑖𝑔𝑛(∇𝐸) (90) 

where 𝜖 is a small perturbation parameter, ∇𝐸 
represents the gradient of the error with respect to the 
input 𝑋, and sign(. ) Denotes the sign function 
applied element-wise. 
 

Compute the hidden layer output for the 
adversarial examples: 

𝐻ௗ௩ = 𝑔(𝑋ௗ௩𝑊∗ + 𝑏∗) (91) 

Calculate the predicted output 𝑌ௗ௩  for the 
adversarial data: 

𝑌ௗ௩ = 𝐻ௗ௩𝛽∗ (92) 

Evaluate the adversarial error 𝐸ௗ௩: 

𝐸ௗ௩ =
1

𝑛
൫𝑦 − 𝑦ොௗ௩,൯

ଶ


ୀଵ

 (93) 

 
Comparing 𝐸ௗ௩  with 𝐸  assesses the 

model's robustness to adversarial perturbations. 
Finally, analyze the model's response to different 
initializations of weights and biases. Repeat the 
entire optimization process with varying initial 
weights 𝑊௧ and biases 𝑏௧: 

𝑊௧
()

~𝑈(−𝛼, 𝛼), 𝑏௧
()

~𝑈(−𝛽, 𝛽) (94) 

 
For 𝑙 = 1,2, … , 𝐿௧ , where 𝐿௧  is the number 

of different initializations, and 𝑈(−𝛼, 𝛼) denotes a 
uniform distribution. Evaluate the performance of 
each model instance and compute the variance in 
errors: 

𝜎ா
= ඩ

1

𝐿௧

 (𝐸() − 𝐸ത௧)ଶ



ୀଵ

 (95) 

where 𝐸ത௧ is the mean error across all 
initializations. A low 𝜎ா

 indicates that the model's 
performance is not heavily dependent on the initial 
parameter values, demonstrating robustness. 
 

By conducting these analyses, the stability and 
robustness of the FLIO-ELM model are thoroughly 

evaluated, ensuring reliable performance in practical 
applications. 
 
3.14. Convergence Check with Error Feedback 

This step assesses the computational 
complexity and scalability of the FLIO-ELM model 
are assessed. The goal is to evaluate the time 
complexity and memory usage, ensuring the model 
remains efficient even as the dataset size and the 
number of hidden neurons increase. Let 𝑛 represent 
the number of data samples, 𝑚 represent the number 
of input features, and 𝐿 denote the number of hidden 
neurons in the ELM model. The computational 
complexity for calculating the hidden layer output 𝐻 
is: 

𝑂(𝑛. 𝑚. 𝐿) (96) 

Since the matrix multiplication between the 
input data 𝑋 ∈ 𝑅× and the input weights 𝑊 ∈
𝑅× requires 𝑛. 𝑚. 𝐿 operations. The calculation of 
the output weights 𝛽 using the least squares solution 
involves solving the following system: 

𝛽 = (𝐻்𝐻)ିଵ𝐻்𝑌 (97) 

The matrix inversion dominates the 
computational complexity for solving this system. 
(𝐻்𝐻)ିଵ, which has a complexity of 𝑂(𝐿ଷ).Next, 
analyze the memory requirements. The memory 
needed for storing the input weights 𝑊 ∈ 𝑅× , 
biases 𝑏 ∈ 𝑅ଵ× , and output weights 𝛽 ∈ 𝑅×ଵ is: 

𝑂(𝑚. 𝐿 + 𝐿 + 𝐿) (98) 

This expression simplifies to 𝑂(𝑚 ⋅ 𝐿), which 
grows linearly with the number of features 𝑚 and 
hidden neurons 𝐿. Additionally, the model's 
scalability is tested by increasing the dataset size and 
observing the impact on the training time and 
memory usage. As the number of samples 𝑛 
increases, the complexity for computing 𝐻 scales 
linearly with 𝑛, while the least squares solution 
remains dependent on 𝐿. Thus, evaluating both time 
and space complexity ensures the model's efficiency 
when scaling to larger datasets or more complex 
architectures. 

 
3.15. Final ELM Model Output 

In this step, the scalability and performance of 
the FLIO-ELM model in a distributed computing 
environment will be tested. This ensures the model 
can handle larger datasets and more complex 
optimization tasks by distributing the computational 
workload across multiple processors. First, partition 
the dataset 𝐷 = {(𝑋, 𝑌)}, where 𝑋 ∈ 𝑅× 
represents the input features and 𝑌 ∈ 𝑅×ଵ is the 
target vector, into smaller subsets 𝐷 = ൛൫𝑋, 𝑌൯ൟ, 
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where 𝑝 = 1,2, … , 𝑃 represents the number of 
partitions, and 𝑃 is the total number of processors 
available. Each subset 𝐷 contains approximately 




 

samples. The computation of the hidden layer output 
𝐻 for each partition is performed in parallel on each 
processor. For each partition 𝐷 , compute 𝐻 as: 

𝐻 = 𝑔(𝑋𝑊 + 𝑏) (99) 

where 𝑊 ∈ 𝑅× and 𝑏 ∈ 𝑅×  are the input 
weights and biases shared across all processors, and 
𝑔(. ) is the activation function applied element-wise. 
The complexity for computing 𝐻 on each processor 

is reduced to 𝑂 ቀ



. 𝑚. 𝐿ቁ, ensuring faster execution. 

 
After computing the hidden layer output on all 

partitions, the outputs 𝐻 from each processor are 
aggregated to form the global hidden layer matrix 
𝐻 ∈ 𝑅×. The aggregation step can be performed 
as: 

𝐻 = ራ 𝐻



ୀଵ

 (100) 

 
Once 𝐻 is constructed, the output weights 𝛽 ∈

𝑅×ଵ are computed using the least squares method, 
which minimizes the error between the predicted 
output 𝑌 ∈ 𝑅×ଵ and the actual target values 𝑌. The 
solution for 𝛽 is obtained by solving: 

𝛽 = (𝐻்𝐻)ିଵ𝐻்𝑌 (101) 

The complexity for solving this system remains 
𝑂(𝐿ଷ), but since the hidden layer output 𝐻 is 
computed in parallel, the overall computational time 
for calculating 𝐻 and aggregating the results is 
significantly reduced. Next, evaluate the 
performance of the FLIO-ELM model on a large 
dataset by calculating the predicted output 𝑌  on the 
full dataset: 

𝑌 = 𝐻𝛽 (102) 

Compute the error 𝐸 using the mean squared 
error (MSE) metric: 

𝐸 =
1

𝑛
(𝑦 − 𝑦ො)ଶ



ୀଵ

 (103) 

 
To further improve scalability, distribute the 

optimization steps of the FLIO algorithm across 
multiple processors. Partition the frog 
population𝑆 = {𝑆ଵ, 𝑆ଶ, … , 𝑆} into subpopulations 
𝑆, where each subpopulation is optimized in 
parallel. For each frog 𝑆 in the subpopulation, the 

fitness is computed based on the performance of the 
corresponding ELM model. 

The fitness 𝐹 for each frog is computed as: 

𝐹 =
1

𝐸

 (104) 

where 𝐸 represents the error for the 𝑖𝑡ℎ frog’s ELM 
model. The parallel execution of the fitness 
evaluation and optimization steps ensures that the 
FLIO algorithm can efficiently handle larger 
populations and search spaces. 
 

After each parallel optimization iteration, the 
best-performing frogs from each subpopulation are 
exchanged across processors to ensure diversity and 
avoid local optima. This exchange can be modeled 
as: 

𝑆 = 𝑏𝑒𝑠𝑡 ቌራ 𝑆



ୀଵ

ቍ (105) 

where 𝑆  represents the set of globally best-
performing frogs. 
 

Finally, a distributed evaluation of the model's 
generalization capability will be performed by 
conducting k-fold cross-validation across 
processors. Each fold is processed independently on 
separate processors, with the validation error for 
each fold𝐸௩, computed as: 

𝐸௩, =
1

𝑛௩

൫𝑦௩, − 𝑦ො௩,൯
ଶ

ೡೌ

ୀଵ

 (106) 

The average validation error 𝐸ത௩  is the 
computed as: 

𝐸ത௩ =
1

𝐾
 𝐸௩,



ୀଵ

 (107) 

 
This distributed computing approach allows 

the FLIO-ELM model to scale efficiently with 
increasing data size and complexity, ensuring fast 
execution and improved generalization performance. 
 
 

Algorithm: FLIO-ELM 

 

Input: 
 Dataset 𝐷 = {(𝑋, 𝑌)} where 𝑋 represents 

input features and 𝑌 represents target 
values 

 Parameters: number of frogs 𝑃, number of 
memeplexes 𝑀, number of hidden neurons 
𝐿,  mutation rate 𝜇, regularization 
parameters 𝜆ଵ and 𝜆ଶ 

Output: 
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 Optimized ELM model with refined 
weights, biases, and output weights 

 
Procedure: 

1. Problem Formulation: Define the problem 
to be solved using ELM, including the input 
and target datasets. 

2. Initialize ELM Parameters: Randomly 
initialize input weights, biases, and the 
number of hidden neurons for the ELM 
model. 

3. Frog Population Initialization for ELM 
Optimization: Initialize a population of 
frogs where each frog represents an ELM 
model with a unique combination of 
weights and biases. 

4. The division into Memeplexes: Divide the 
frog population into memeplexes based on 
fitness rankings for local optimization. 

5. Local Search within Memeplexes: Perform 
a local search in each memeplex by moving 
the worst-performing frogs toward the best-
performing frogs. 

6. Adaptive Frog Leaping Strategy: Adjust the 
leap size dynamically based on fitness 
improvement in each memeplex. 

7. Mutation Mechanism for Diversity: Apply 
mutation to a subset of frogs to introduce 
random variations in their weights and 
biases. 

8. Penalty Function for Efficient ELM 
Models: Apply a penalty function to 
discourage overly complex models and 
favor efficient configurations. 

9. Hybrid Learning Step: FLIO and Least 
Squares Integration: Refine the ELM model 
by combining FLIO-optimized weights 
with most minuscule squares adjustments 
for output weights. 

10. Convergence Check and Stopping Criteria: 
Monitor the change in fitness or error and 
stop the process if predefined convergence 
criteria are met. 

11. Performance Evaluation of the Final FLIO-
ELM Model: Evaluate the performance of 
the optimized model on a test dataset using 
error metrics and other evaluation criteria. 

12. Final Refinement and Hyperparameter 
Optimization: Fine-tune hyperparameters 
such as the number of hidden neurons, 
mutation rate, and regularization 
parameters. 

13. Model Stability and Robustness Analysis: 
Test the stability and robustness of the 
model by introducing noise, performing 

cross-validation, and assessing sensitivity 
to input features. 

14. Computational Complexity and Scalability 
Assessment: Analyze the time and space 
complexity of the model to assess its 
efficiency for larger datasets. 

15. Distributed Scalability and Performance in 
FLIO-ELM: Distribute the computation 
across multiple processors to handle larger 
datasets and optimize the model in a 
parallel computing environment. 
 

 4. DATASET 
 
The Gestational Diabetes Mellitus (GDM) 

dataset encompasses detailed records from 3,525 
cases with 17 critical variables. This dataset serves 
as a resource for analyzing factors contributing to 
gestational diabetes. Key features include 
demographic data such as age and number of 
pregnancies, medical indicators like BMI, HDL 
levels, and blood pressure, and specific risk factors 
such as family history, sedentary lifestyle, and 
PCOS. Unique attributes like unexplained prenatal 
loss and large child or birth defect indicators provide 
insights into prenatal complications. The dataset also 
tracks clinical test results, including oral glucose 
tolerance test (OGTT) and hemoglobin levels, which 
are essential for diagnosing and monitoring 
prediabetes. Focused on diabetes types, blurred 
vision, and autoimmune disorders, it captures a 
comprehensive view of health outcomes related to 
gestational diabetes. This dataset aids in predictive 
modeling, enhancing early diagnosis and 
personalized intervention strategies. 

 
      Table 1: GDM Dataset Features Description 
Feature Name Description 

Case Number Unique identifier for each patient in 
the dataset. 

Age Age of the individual at the time of 
data collection. 

Number of 
Pregnancies 

Total number of pregnancies 
experienced by the individual. 

Gestation Duration of pregnancy in weeks. 

BMI 
Body Mass Index, a measure of 
body fat based on height and weight. 

HDL 
High-Density Lipoprotein 
cholesterol levels, indicating heart 
health. 

Family History 
Indicator of a family history of 
diabetes or related conditions. 

Unexplained 
Prenatal Loss 

History of unexplained 
miscarriage or pregnancy loss. 

Large Child or 
Birth Defect 

Record of delivering a child with 
high birth weight or congenital 
anomalies. 
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PCOS 
Presence of Polycystic Ovary 
Syndrome, a risk factor for diabetes. 

Systolic BP 
Systolic blood pressure, measured in 
mmHg. 

Diastolic BP 
Diastolic blood pressure, measured 
in mmHg. 

OGTT 
Oral Glucose Tolerance Test results, 
used for diabetes diagnosis. 

Hemoglobin 
Hemoglobin levels, reflecting the 
individual's blood health. 

Sedentary 
Lifestyle 

Indicator of a lack of physical 
activity. 

Prediabetics 
Status indicating a prediabetic 
condition. 

 
5. RESULTS AND DISCUSSION 
 
5.1. Classification Accuracy and F-Measure 

Analysis 
Classification accuracy measures the 

proportion of correctly classified instances among 
all predictions, reflecting the overall reliability of a 
model. The F-measure combines precision and 
recall, providing a balanced evaluation of a model's 
ability to handle false positives and false negatives. 
These metrics are critical in LADA prediction, 
where accurate and balanced classification ensures 
effective diagnosis and early intervention. 
 

 
Figure 1: Classification Accuracy and F-Measure 

 
Figure 1 illustrates the performance 

comparison of three models—HANN, EDLT, and 
FLIO-ELM—using classification accuracy and F-
measure metrics. HANN records the lowest 
classification accuracy at 49.833%, highlighting 
limitations in correctly classifying LADA instances. 
EDLT improves upon this, achieving an accuracy of 
62.003%, demonstrating a better capability to handle 
LADA prediction. FLIO-ELM outperforms both, 
with an accuracy of 81.304%, showcasing its robust 
design and optimization efficiency. The F-measure 
analysis aligns with the accuracy trends. HANN 
shows limited performance with a value of 49.828%, 
indicating challenges in balancing precision and 

recall. EDLT improves this balance, attaining a 
value of 62.087%. FLIO-ELM achieves the highest 
F-measure of 82.093%, highlighting its ability to 
reduce false predictions effectively. The results 
establish FLIO-ELM as a superior approach in 
LADA prediction, demonstrating its efficiency in 
addressing both classification and balance 
challenges. 
 
5.2. False Discovery and Omission Analysis 

False discovery rate (FDR) quantifies the 
proportion of false positive predictions out of all 
positive predictions, providing a measure of the 
model’s precision. A high FDR indicates a larger 
number of incorrect positive classifications, which 
can lead to unnecessary interventions or 
misdiagnoses. False omission rate (FOR) represents 
the proportion of false negatives among all negative 
predictions, measuring the extent of missed true 
cases. A high FOR signifies that the model fails to 
detect a significant number of actual positive cases, 
which can delay critical treatment. In the context of 
LADA, minimizing both FDR and FOR is essential 
to ensure accurate and timely diagnoses, balancing 
precision and recall to achieve reliable outcomes in 
clinical applications.   
 

 
Figure 2 : False Discovery and False Omission 

 
Figure 2 demonstrates the comparative 

performance of HANN, EDLT, and FLIO-ELM 
models with respect to FDR and FOR. HANN 
exhibits the highest FDR at 52.012%, suggesting 
considerable inaccuracies in positive predictions. 
EDLT reduces this rate to 38.901%, indicating a 
moderate improvement in precision over HANN. 
FLIO-ELM records the lowest FDR of 17.703%, 
reflecting its ability to minimize false positive rates 
effectively. In LADA prediction, FLIO-ELM's 
performance underscores its reliability in correctly 
identifying cases with minimal misclassifications, 
thereby enhancing the precision of diagnostic 
decisions. These results demonstrate the limitations 
of HANN and highlight EDLT’s marginal 
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improvements, while establishing FLIO-ELM as a 
superior approach in managing positive 
classification errors. The FOR analysis presents a 
similar trend. HANN reports the highest value at 
48.175%, indicating significant challenges in 
detecting true negative cases. EDLT shows 
improvement, achieving a FOR of 37.059%, 
demonstrating enhanced reliability in reducing 
missed diagnoses. FLIO-ELM records the lowest 
FOR at 19.775%, effectively minimizing missed 
positive cases. These findings highlight FLIO-
ELM’s effectiveness in balancing prediction errors, 
reinforcing its efficiency in LADA prediction tasks. 
 
5.3. Positive and Negative Likelihood Analysis 

Positive likelihood ratio (PLR) measures how 
much a positive result increases the probability of 
having a condition, with higher values indicating 
better diagnostic capability in identifying true 
positives. Negative likelihood ratio (NLR) assesses 
how much a negative result decreases the 
probability of having the condition, with lower 
values indicating fewer missed cases. These metrics 
are essential in evaluating model effectiveness for 
predictive healthcare applications such as LADA 
diagnosis. 

 

Table 2. Positive and Negative Likelihood 

Algorithms 
Positive 

Likelihood 
Ratio (%)  

Negative 
Likelihood  
Ratio (%) 

HANN 0.996 1.004 

EDLT 1.615 0.605 

FLIO-ELM 4.234 0.225 

 
Table 2 compares PLR and NLR for HANN, 

EDLT, and FLIO-ELM models. HANN shows a 
PLR of 0.996, indicating minimal capability to 
differentiate true positives from false positives. The 
NLR for HANN is 1.004, highlighting significant 
limitations in reducing false negatives, thereby 
compromising reliability for accurate LADA 
prediction. EDLT improves PLR to 1.615, 
demonstrating better effectiveness in identifying true 
positives. The NLR for EDLT is reduced to 0.605, 
indicating moderate improvement in minimizing 
false negatives. These results suggest EDLT has an 
enhanced but limited diagnostic performance 
compared to HANN. FLIO-ELM achieves a PLR of 
4.234, representing a substantial improvement in 
identifying true positives with high diagnostic 
accuracy. Its NLR of 0.225 reflects a significant 
reduction in false negatives, showcasing its 
robustness in ensuring comprehensive detection. 

These results position FLIO-ELM as a reliable 
model for accurate and efficient LADA prediction. 
The comparative analysis demonstrates that FLIO-
ELM significantly outperforms both HANN and 
EDLT across PLR and NLR metrics. Its strong 
diagnostic reliability makes it suitable for real-world 
healthcare applications requiring precise and 
consistent detection capabilities. 
 
6. CONCLUSION 

 
This research addresses the challenges in 

accurately diagnosing Latent Autoimmune Diabetes 
in Adults (LADA), a form of diabetes blending 
characteristics of type 1 and type 2. Misclassification 
of LADA as type 2 diabetes remains a critical issue, 
often delaying appropriate interventions and 
compromising patient outcomes. Existing 
classification algorithms struggle with overlapping 
symptoms, high-dimensional data, and the dynamic 
nature of LADA's progression, limiting their ability 
to distinguish this subtype accurately. To resolve 
these challenges, the Frog Leap Inspired 
Optimization-based Extreme Learning Machine 
(FLIO-ELM) was proposed. This hybrid model 
integrates bio-inspired optimization with the 
computational efficiency of Extreme Learning 
Machines to enhance classification performance. 
FLIO-ELM optimizes input weights and biases by 
simulating frog leap strategies, ensuring better 
convergence and feature selection. The adaptive leap 
mechanism balances exploration and exploitation, 
refining predictions by effectively handling complex 
datasets and reducing false discovery and omission 
rates. The experimental analysis demonstrates 
FLIO-ELM’s superior performance compared to 
existing models. It achieved an accuracy of 81.304% 
while significantly minimizing false positive and 
false negative rates, as evidenced by improved 
precision, recall, and F-measure scores. These 
results validate FLIO-ELM as a robust, efficient, and 
reliable model for LADA prediction, offering 
substantial potential for clinical applications and 
personalized treatment strategies. 
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