
 Journal of Theoretical and Applied Information Technology
31st January 2025. Vol.103. No.2

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

472

FROG LEAP INSPIRED OPTIMIZATION-BASED EXTREME
LEARNING MACHINE FOR ACCURATE CLASSIFICATION

OF LATENT AUTOIMMUNE DIABETES IN ADULTS (LADA)

B. SUCHITRA1, J. RAMKUMAR2, R. KARTHIKEYAN3

1,2 Assistant Professor, Department of Information Technology & Cognitive Systems,
 Sri Krishna Arts and Science College, India

3Assistant Professor, Department of Computer Technology,
Sri Krishna Adithya College of Arts and Science, India

 E-mail: 1suchiprdaeep@gmail.com, 2jramkumar1986@gmail.com, 3karthikeyanrkrish@gmail.com

ABSTRACT

Latent Autoimmune Diabetes in Adults (LADA), also known as type 1.5 diabetes, represents a hybrid form
of diabetes with characteristics of both type 1 and type 2 diabetes. Unlike type 1 diabetes, which has a rapid
onset, LADA develops gradually, often diagnosed in adults over 30. In contrast to type 2 diabetes, LADA is
caused by an autoimmune response that progressively destroys insulin-producing beta cells. This overlap
often leads to misdiagnosis, as LADA is commonly mistaken for type 2 diabetes, delaying appropriate
treatment. Classification algorithms face challenges in predicting LADA due to overlapping symptoms, high-
dimensional health data, and imbalanced datasets. Existing methods lack robustness in accurately
differentiating LADA from other diabetes types, leading to frequent misclassifications and treatment
inefficiencies. To address these challenges, the Frog Leap Inspired Optimization-based Extreme Learning
Machine (FLIO-ELM) has been proposed. FLIO-ELM combines bio-inspired optimization with a single-
layer neural network framework. Inspired by frog-leaping behavior, this method enhances input weight and
bias optimization, ensuring better feature selection. Frogs in the optimization represent potential solutions,
with local and global search phases refining parameters. The Extreme Learning Machine (ELM) framework
computes output weights using the least squares method, ensuring fast training and robust generalization.
This hybrid mechanism balances exploration and exploitation to improve prediction accuracy. FLIO-ELM
achieves significant improvements in performance metrics, with an 81.304% classification accuracy and an
82.093% F-measure. Its false discovery and omission rates are minimized, ensuring reliability in LADA
prediction. These results establish FLIO-ELM as an effective diagnostic tool.
Keywords: LADA, Frog Leap Inspired Optimization, ELM, Diabetes, Bio-Inspired Algorithms

1. INTRODUCTION

Latent Autoimmune Diabetes in Adults

(LADA), often described as "type 1.5 diabetes,"
represents a distinct form of diabetes blending
characteristics from both type 1 and type 2
diabetes[1]. LADA arises from an autoimmune
response, where the body’s immune system
gradually targets and damages the insulin-producing
beta cells in the pancreas. Unlike the rapid onset in
typical type 1 diabetes, LADA develops slowly,
often diagnosed in adults over the age of 30. This
gradual decline in insulin production, combined with
its slow progression, results in frequent
misdiagnoses as type 2 diabetes, leading to treatment
challenges. Standard diagnostic tools primarily
focused on metabolic markers often fail to identify
LADA’s autoimmune components. Testing for
autoantibodies, such as glutamic acid decarboxylase
(GAD) antibodies, can provide a more accurate

diagnosis by confirming the autoimmune nature of
LADA. Identifying LADA early proves critical, as
optimal treatment may involve insulin rather than
standard oral medications for type 2 diabetes[2].
Recognizing LADA’s unique pathology helps in
implementing an appropriate management approach,
which may slow beta-cell deterioration and preserve
endogenous insulin production. Understanding
LADA as a distinct entity within the diabetes
spectrum enhances personalized treatment
strategies, improving both short-term and long-term
outcomes for those affected[3].

Classification algorithms have enabled a

significant advancement in diabetes prediction by
analyzing complex health data to categorize
individuals according to their risk profiles. Through
examination of factors such as blood glucose levels,
family history, lifestyle habits, and metabolic
indicators, these algorithms identify patterns that can

 Journal of Theoretical and Applied Information Technology
31st January 2025. Vol.103. No.2

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

473

signal early or pre-diabetic stages, allowing for
timely intervention[4], [5]. They assess each
variable's relevance and weight, refining the
prediction of diabetes onset or classification of
specific types, which can vary significantly in
pathology and treatment needs. Accurate prediction
through classification reduces misdiagnosis and
guides personalized treatment plans, as specific
forms of diabetes require tailored approaches. Early
identification through classification models helps
healthcare providers implement preventive
measures, thereby reducing potential complications
linked to delayed diagnosis[6]. By distinguishing
among diabetes types with greater precision,
classification methods support optimized
management strategies, such as lifestyle
modifications or timely medication, improving long-
term patient outcomes. The ability of classification
algorithms to continually adapt with new data
ensures their role remains pivotal in the future of
diabetes care, equipping healthcare providers with
insights to deliver data-driven, proactive
treatment[7].

Bio-inspired optimization techniques have

proven invaluable in advancing diabetes
classification by enhancing the efficiency and
accuracy of classification algorithms. These
techniques draw inspiration from natural
processes—such as the movement of animals,
evolutionary patterns, and collective behaviors—
replicating these mechanisms to improve algorithm
performance[8]. In the classification of diabetes,
bio-inspired optimization strengthens algorithms by
refining feature selection, identifying which data
points—such as glucose levels, age, family history,
and lifestyle factors—are most relevant to predicting
diabetes risk or distinguishing between different
types of diabetes. This focused selection reduces
computational demands and improves prediction
accuracy, addressing one of the most challenging
aspects of diabetes classification. Bio-inspired
optimization also addresses issues in handling large,
complex datasets, which often contain overlapping
characteristics across different diabetes types[9]. By
optimizing parameters and tuning the model based
on naturally inspired search strategies, these
algorithms navigate through complex data to find
optimal solutions with fewer resources. The
adaptability of bio-inspired optimization allows
these classification algorithms to self-adjust and
improve continuously as they encounter new data,
keeping pace with changing patient information and
medical advancements. Through this approach, bio-
inspired optimization contributes to creating highly

accurate, reliable, and efficient classification
models, directly benefiting diabetes prediction and
personalized healthcare[10].

1.1 Problem Statement

Diabetes classification remains a challenging
area in medical diagnostics due to overlapping
symptoms, genetic variability, and environmental
factors, which complicate the distinction between
types of diabetes. Conventional classification
algorithms often face limitations in identifying and
categorizing specific diabetes subtypes accurately,
leading to frequent misdiagnosis and ineffective
treatments. Many current algorithms struggle with
high-dimensional data, which includes numerous
patient attributes like glucose levels, insulin
sensitivity, lifestyle factors, and genetic
predispositions. Such complexity creates issues with
data redundancy and irrelevant feature selection,
reducing prediction accuracy. Additionally, the
dynamic nature of patient health data requires
adaptive models capable of updating with new
information. The absence of precise, adaptive
algorithms for diabetes classification impacts early
diagnosis and treatment effectiveness, potentially
resulting in delayed intervention and increased risk
of complications. Improving classification accuracy
and adaptability within diabetic datasets remains an
urgent need to enhance healthcare outcomes.

1.2. Motivation

The need for accurate diabetes classification
has gained importance as diabetes prevalence rises
globally, impacting millions of lives and straining
healthcare systems. Effective classification is
essential not only to ensure appropriate treatments
but also to prevent the progression of complications,
such as cardiovascular disease, neuropathy, and
kidney failure, which can develop from
misdiagnosed or poorly managed diabetes.
Traditional classification methods often fail to
account for the diversity in diabetes presentations,
particularly with conditions like Latent Autoimmune
Diabetes in Adults (LADA), requiring advanced,
adaptive approaches. Bio-inspired optimization
provides a promising solution, with its ability to
handle large, complex datasets and optimize feature
selection. This approach has potential to enhance the
predictive accuracy of diabetes classification
algorithms, improving patient outcomes.
Developing precise and adaptive classification
methods addresses a critical gap, fostering early
interventions that can ultimately reduce healthcare
costs and enhance quality of life for diabetes
patients.

 Journal of Theoretical and Applied Information Technology
31st January 2025. Vol.103. No.2

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

474

1.3. Objective
The main objective of this research focuses on

developing a Frog Leap Inspired Optimization-based
Extreme Learning Machine (FLIO-ELM) to improve
the classification accuracy of Latent Autoimmune
Diabetes in Adults (LADA) among other diabetes
types. This objective employs frog leap-inspired
optimization to enhance feature selection and
optimize parameter tuning within the Extreme
Learning Machine (ELM) framework. By simulating
the adaptive leap strategies of frogs, FLIO-ELM
addresses challenges in handling high-dimensional
and complex data, improving both speed and
predictive accuracy. This optimized approach aims
to isolate the most relevant features in diabetic
datasets, enabling precise differentiation of LADA
cases from type 1 and type 2 diabetes. This refined
classification model supports healthcare providers
by offering a faster, more reliable diagnostic tool,
ultimately contributing to early intervention and
personalized treatment strategies for patients with
LADA.

2. LITERATURE REVIEW

Hybrid Artificial Neural Network (HANN) is
proposed for predicting diabetes mellitus with
improved accuracy and reliability. The research
investigates the potential of neural network
algorithms to analyze patient data and identify
patterns indicative of diabetes. The approach
employs k-fold cross-validation to ensure unbiased
performance evaluation while exploring the
influence of hidden layer configurations on
prediction accuracy. By utilizing structured data and
scalable training methods, the system demonstrates
adaptability across varying datasets. The findings
provide evidence of significant accuracy
improvements, making the model a promising tool
for early detection of diabetes. This study reinforces
the role of artificial intelligence in advancing
healthcare diagnostics and personalized treatment
strategies [11]. Efficient Deep Learning Technique
(EDLT) is proposed for analyzing and predicting
diabetes with improved accuracy using the Indian
Diabetes Dataset. The framework integrates
advanced neural network architectures to process
large-scale medical data effectively. The research
emphasizes the importance of feature extraction and
optimization strategies to enhance classification
outcomes. Rigorous evaluation demonstrates the
model's capability in achieving reliable predictions,
addressing challenges in chronic disease detection.
The study provides a significant contribution to the
application of artificial intelligence in healthcare,
offering a robust solution for improving diagnostic

accuracy and patient care in diabetes management
[12].

The Enhanced Machine Learning Approach by
Ying et al. (2024) predicts severe proteinuria in IgA
nephropathy patients, effectively analyzing clinical
data for improved patient stratification. This
algorithm integrates robust feature selection,
enhancing model accuracy and clinical relevance in
nephrology. The study’s results underscore the
potential for tailored healthcare interventions, aiding
in the proactive management of disease progression
[13]. The Transparent Machine Learning Algorithm
by Musacchio et al. (2024) analyzes HbA1c patterns
linked to therapeutic inertia in type 2 diabetes cases
where metformin monotherapy fails. By identifying
hidden data patterns, this model assists clinicians in
overcoming therapeutic inertia, thereby enhancing
diabetes management outcomes [14]. The Patient
Sentiment Analysis Model by Madan et al. (2024)
applies machine learning to assess healthcare
sentiment, empowering providers to adapt to patient
needs based on real-time feedback. The model has
contributed to enhancing patient-centered care by
capturing sentiment dynamics, thus facilitating data-
driven healthcare improvements [15]. The Predictive
Machine Learning Approach by Cichosz et al.
(2024) evaluates pancreatic cancer risk among
newly diagnosed diabetes patients using biochemical
markers. The algorithm identifies risk factors early,
underscoring its role in facilitating timely
intervention for high-risk individuals, with potential
implications in oncology and preventative healthcare
[16].

The Machine Learning-Based Model by Nayak
et al. (2024) predicts and monitors diabetic kidney
disease progression, leveraging retrospective data.
This single-center study emphasizes the algorithm's
potential in nephrology, where early identification of
disease progression enhances patient outcomes and
informs therapeutic decisions [17]. The Heart Rate
Variability-Based Machine Learning Model by
Keng et al. (2025) forecasts sepsis risk, derived from
vital sign data. This model validates the prognostic
potential of heart rate variability measures in
intensive care, highlighting its significance in early
sepsis intervention and risk stratification [18]. The
Mobile Health Application Adoption Model by
Kokila et al. (2024) identifies factors influencing
mHealth app adoption using machine learning. This
model provides insights into user preferences and
potential barriers, contributing to strategies for
improving healthcare accessibility through mobile
technology [19]. The Web-Based Machine Learning

 Journal of Theoretical and Applied Information Technology
31st January 2025. Vol.103. No.2

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

475

Model by Rahman et al. (2024) predicts polycystic
ovary syndrome (PCOS) early, aiding in proactive
health management for women. This approach
utilizes accessible clinical data, enhancing early
intervention capabilities in reproductive health [20].
The Birth Outcome Predictive Model by Adebanji et
al. (2024) analyzes factors affecting birth outcomes
through a machine learning perspective. This
algorithm supports healthcare providers in
identifying high-risk pregnancies, contributing to
improved maternal and neonatal healthcare
strategies [21].

The Cancer-Related Fatigue Prediction Model
by Wang et al. (2024) assesses fatigue risks in
lymphoma survivors. Through machine learning,
this model supports patient quality-of-life
improvements by anticipating fatigue symptoms,
offering a valuable tool for personalized
survivorship care [22]. Explainable Deep Learning
Approach by Tanim et al. (2025) utilizes
DeepNetX2 to enhance diabetes diagnosis,
integrating explainability in model decisions for
healthcare applications. DeepNetX2 applies layered
feature extraction, combining convolutional layers
with fully connected ones, yielding accurate
diagnostic outcomes. By emphasizing
interpretability, the model enables clinicians to
understand decision pathways, thus aligning deep
learning outputs with clinical reasoning in diabetes
care [23]. Subspace Learning Machine (SLM) by Fu
et al. (2024) introduces a novel methodology for
subspace learning by extracting low-dimensional
representations from high-dimensional data. SLM
employs geometric and statistical principles,
enhancing learning efficiency while retaining
essential data features. Performance evaluations
reveal its robustness across diverse tasks,
establishing SLM as a powerful tool in visual data
representation [24].

Chronic Kidney Disease Diagnostic Model by
Dharmarathne et al. (2024) implements a machine
learning-based interface integrated with explainable
AI to diagnose chronic kidney disease. The interface
combines decision tree-based predictions with
transparency tools that elucidate the reasoning
behind model outputs, providing clinicians with
insights for improved diagnostic accuracy in
nephrology [25]. AI-aided Cardiovascular Diagnosis
in Cattle by Cihan et al. (2024) compares machine
learning and deep learning for detecting
cardiovascular disease in cattle using retinal
imaging. By leveraging image processing
techniques, the study demonstrates deep learning’s

superiority in extracting nuanced retinal features,
showing promise in animal health management and
early diagnosis [26]. Diverse Ensemble Learning
Classifiers by Kawarkhe and Kaur (2024) for
diabetes prediction utilize a mix of ensemble
classifiers, including Random Forest, AdaBoost, and
Gradient Boosting, to achieve high diagnostic
accuracy. The model integrates multiple weak
learners, enhancing predictive precision in diabetes
datasets and underscoring ensemble methods’
robustness in medical diagnostics [27]. Machine
Learning Model for Knee Arthroplasty by Mittal et
al. (2024) predicts prolonged hospital stays post-
revision knee arthroplasty, utilizing a national
dataset. Through regression-based techniques, the
model identifies key predictors for length of stay,
informing post-operative management strategies that
optimize healthcare resources and improve patient
outcomes [28].

Atrial Fibrillation Mortality Prediction Model

by Luo et al. (2024) applies machine learning for in-
hospital mortality prediction in critically ill atrial
fibrillation patients. This model integrates
demographic, clinical, and lab data, employing
gradient boosting and logistic regression to stratify
risk levels accurately, thus aiding in critical care
decision-making [29]. Big Data Classification
Algorithms by Singh et al. (2025) explores various
machine learning algorithms in classifying big data,
evaluating methods such as Decision Trees, SVM,
and Neural Networks. This comparative study
analyzes algorithmic efficiency and accuracy,
establishing criteria for selecting optimal classifiers
in large-scale datasets, crucial in data-intensive
applications [30]. Red Blood Cell Demand
Prediction Model by Hur et al. (2024) uses machine
learning for predicting personalized red blood cell
needs in thoracic surgery. Validated through clinical
datasets, this model incorporates patient-specific
parameters to forecast transfusion requirements,
contributing to precision in resource allocation and
patient safety in surgical care [31]. Differentiable L-
1 Norm in Pattern Recognition by Zhang et al.
(2024) introduces a novel L-1 norm, enhancing
gradient-based optimization in pattern recognition.
Designed for differentiability, this norm improves
convergence in machine learning models,
optimizing feature selection and classification
accuracy, pivotal for complex recognition tasks [32].

Bio-inspired optimization algorithms

consistently outperform conventional optimization
algorithms by mimicking natural processes and
behaviors, allowing for dynamic adaptability, global

 Journal of Theoretical and Applied Information Technology
31st January 2025. Vol.103. No.2

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

476

search capabilities, and robustness against local
optima [33]-[60]. These algorithms excel in handling
complex, high-dimensional, and non-linear
optimization problems with improved accuracy and
efficiency.

3. Frog Leap Inspired Optimization-based
Extreme Learning Machine (FLIO-ELM)

Frog Leap Inspired Optimization-based
Extreme Learning Machine (FLIO-ELM) integrates
the exploration capabilities of Frog Leap Inspired
Optimization (FLIO) with the learning efficiency of
Extreme Learning Machine (ELM). In this hybrid
model, FLIO optimizes ELM's input weights and
biases by simulating frogs' social foraging behavior,
which enhances search and convergence. The ELM
component uses a single-layer neural network with
randomly assigned hidden layer weights, which are
further refined by FLIO. This combination
accelerates training, improves accuracy, and ensures
robust model generalization, making FLIO-ELM
suitable for complex tasks in large datasets,
including classification, regression, and real-time
decision-making applications.

3.1. Problem Formulation

Define the dataset where represents the input
features and is the target variable for a regression
task or for a classification task. The objective in the
step involves determining the input matrix and
target vector that will be used to train the ELM
model. Let be the input matrix, where each row
corresponds to an input vector and is the target
vector. The aim is to feed these inputs to the hidden
layer of the ELM, which can be expressed
mathematically as:

𝐻 = 𝑔(𝑋𝑊 + 𝑏) (1)

where is the hidden layer matrix, represents the
weight matrix between the input and hidden layer,
is the bias vector, and is the activation function
applied element-wise. The hidden layer output is
calculated based on the input matrix the weights
and the bias

Once has been computed, the next step
involves determining the output weights This can
be done using the following least squares solution:

𝛽 = (𝐻்𝐻)ିଵ𝐻்𝑌 (2)

The final output of the ELM model can be
represented as:

𝑌 − 𝐻𝛽 (3)

where 𝑌 ∈ 𝑅×ଵ represents the predicted output
from the model. To measure the error between
predicted and actual values, calculate the error
vector 𝐸 ∈ 𝑅×ଵ as:

𝐸 = 𝑌 − 𝑌 (4)

3.2. Initialize ELM Parameters
In this step, initialize the ELM parameters,

including the weights and biases of the hidden layer.
Let the weight matrix for the hidden layer be
represented as 𝑊 ∈ 𝑅×, where 𝑚 denotes the
number of input features, and 𝐿 represents the
number of neurons in the hidden layer. The bias
vector 𝑏 ∈ 𝑅ଵ× is also randomly initialized. The
hidden layer output 𝐻 ∈ 𝑅× can be computed as:

𝐻 = 𝑔(𝑋𝑊 + 𝑏) (5)

where 𝑋 ∈ 𝑅× represents the input matrix and
𝑔(.) denotes the activation function applied
element-wise. Depending on the configuration, the
activation function could be a sigmoid, hyperbolic
tangent, or ReLU.

Initialize these parameters using a uniform
distribution over a specific range. This can be
mathematically expressed as:

𝑊~𝑈(−𝛼, 𝛼), 𝑏~𝑈(−𝛽, 𝛽) (6)

where 𝛼 and 𝛽 are small positive constants, and
𝑈(−𝛼, 𝛼) denotes a uniform distribution within the
range [−𝛼, 𝛼].

The next step involves calculating the output
weights 𝛽 ∈ 𝑅×ଵ that connect the hidden layer
output 𝐻to the final predicted output 𝑌 . Using the
least squares solution determine 𝛽 as:

 𝛽 = (𝐻்𝐻)ିଵு

where 𝑌 ∈ 𝑅×ଵ is the target vector. The predicted
output 𝑌 ∈ 𝑅×ଵ is the calculated by:

 𝑌 = 𝐻𝛽 (8)

The prediction error is computed by:

 𝐸 = 𝑌 − 𝑌 (9)

This initializes the ELM and prepares it for
further optimization in subsequent steps.
3.3. Frog Population Initialization for ELM
Optimization

In this step, the frog population is initialized for
the FLIO to optimize the ELM parameters. Each frog
in the population represents a potential solution

 Journal of Theoretical and Applied Information Technology
31st January 2025. Vol.103. No.2

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

477

corresponding to a set of ELM input weights and
biases. Let the population consist of 𝑃 frogs, where
each frog is represented by a solution vector. 𝑆 for
𝑖 = 1,2, … , 𝑃. Each solution vector 𝑆 consists of the
ELM parameters, i.e., the input weight matrix 𝑊 ∈
𝑅× and bias vector 𝑏 ∈ 𝑅ଵ×. Hence, each frog’s
solution vector can be expressed as:

𝑆𝑖=𝑊𝑖,𝑏𝑖, 𝑊𝑖∈𝑅𝑚×𝐿,𝑏𝑖∈𝑅1×𝐿 (10)

The initial population of frogs 𝑆 is generated
randomly within predefined bounds. For each frog,
initialize the input weights and biases for the ELM
model using random values from a uniform
distribution, as done in the previous step:

𝑊~𝑈(−𝛼, 𝛼), 𝑏~𝑈(−𝛽, 𝛽) (11)

where 𝛼 and 𝛽 are small positive constants, and
𝑈(−𝛼, 𝛼) denotes the uniform distribution over the
interval [−𝛼, 𝛼].

The fitness of each frog 𝑆 is evaluated based
on the performance of the corresponding ELM
model. For each frog, compute the hidden layer
output 𝐻 ∈ 𝑅× using the current weights 𝑊 and
biases 𝑏 as follows:

𝐻 = 𝑔(𝑋𝑊 + 𝑏) (12)

where 𝑋 ∈ 𝑅× is the input matrix, and 𝑔(.) is the
activation function applied element-wise.

The output weights 𝛽 ∈ 𝑅×ଵ for the ELM are
computed using the least squares method:

𝛽 = (𝐻
்𝐻)ିଵ𝐻

்𝑌 (13)

where 𝑌 ∈ 𝑅×ଵ is the target vector. The predicted
predicted output 𝑌 ∈ 𝑅×ଵ for the 𝑖𝑡ℎ frog’s ELM
model is given by:

𝑌 = 𝐻𝛽 (14)

To evaluate the performance of the 𝑖-th frog,
compute the error between the predicted output. 𝑌
and the actual target 𝑌 using the following error
metric, such as the mean squared error (MSE):

𝐸 =
1

𝑛
൫𝑦 − 𝑦ො൯

ଶ

ୀଵ

 (15)

where 𝑦 and 𝑦ො are the actual and predicted values
for the 𝑗𝑡ℎ sample, respectively. The fitness 𝐹 of the
𝑖𝑡ℎ frog is inversely proportional to the error:

𝐹𝑖=1𝐸𝑖 (16)

A lower error corresponds to higher fitness, so
the optimization process aims to improve each frog’s
fitness by adjusting the ELM model's corresponding
input weights and biases. After computing the fitness
for all frogs in the population, sort them in
descending order based on their fitness values. The
frogs with higher fitness (better-performing ELM
models) are positioned at the top, while the lower
fitness frogs are placed at the bottom. Divide the frog
population into 𝑀 memeplexes, each containing a
subset of frogs, where each memeplex performs
independent local searches.

This initialization of the frog population and
fitness evaluation prepares the system for further
optimization of the ELM model using FLIO,
focusing on improving the input weights and biases
to enhance the overall model performance. Each frog
represents a potential solution that will evolve in
subsequent steps based on the frog leaping rules and
the optimization strategy.

3.4. Fitness Evaluation Based on ELM

Performance
In this step, the frog population will be divided

into memeplexes for local optimization. Let 𝑃
represent the total number of frogs in the population,
and 𝑀 denote the number of memeplexes. Each

memeplex will consist of 𝑁 frogs, where 𝑁 =

ெ
.

Therefore, divide the frogs into 𝑀 distinct
memeplexes, 𝑀ଵ, 𝑀ଶ, … , 𝑀ெ , where each memeplex
contains 𝑁 frogs. The sorting of frogs based on
fitness, performed in the previous step, ensures that
the frogs with higher fitness occupy higher positions
in the memeplexes. Denote the sorted frogs as
𝑆ଵ, 𝑆ଶ, … , 𝑆 , where 𝑆ଵ has the highest fitness and 𝑆
has the lowest fitness. Divide these frogs across
memeplexes in a round-robin fashion.

For each memeplex 𝑀, where 𝑘 ∈

{1,2, … , 𝑀}, assign frogs
𝑆 , 𝑆ାெ , 𝑆ାଶெ, … , 𝑆ା(ேିଵ)ெ. This division
ensures a balanced distribution of frogs across
memeplexes with a mixture of high, medium, and
low fitness solutions. Once memeplexes are
established, apply the local search within each
memeplex. For a given memeplex 𝑀 , identify the
frog with the highest fitness, denoted as 𝑆௦௧

 , and
the frog with the lowest fitness, denoted as 𝑆௪௦௧

 .
The goal of the local search is to improve the

fitness of 𝑆௪௦௧
 by moving it closer to 𝑆௦௧

 within
the memeplex. The update rule for the frog leaping
strategy is expressed as:

 Journal of Theoretical and Applied Information Technology
31st January 2025. Vol.103. No.2

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

478

𝑆௪௦௧
 = 𝑆௪௦௧

 + 𝑟. ൫𝑆௦௧
 −𝑆௪௦௧

 ൯ (17)

where 𝑟 ∈ [0,1] is a random number drawn from a
uniform distribution. This equation moves the worst
frog towards the best-performing frog within the
memeplex, improving its position in the solution
space. The new solution 𝑆௪௦௧

 contains updated
ELIM parameters (input weights 𝑊 and biases 𝑏).

For the updated solution, recompute the hidden
layer output matrix. 𝐻௪௦௧

 for the corresponding
ELM using the updated weights 𝑊௪௦௧

 and biases
𝑏௪௦௧

 .

𝐻௪௦௧
 = 𝑔(𝑋𝑊௪௦௧

 −𝑏௪௦௧
) (18)

Next, update the output weights 𝛽௪௦௧

 by
solving the least squares equation:

𝛽௪௦௧
 = ቀ𝐻௪௦௧

 ்
𝐻௪௦௧

 ቁ
ିଵ

𝐻௪௦௧
 ்

𝑌 (19)

where 𝑌 is the target vector, and the predicted output
𝑌௪௦௧

 is:

𝑌௪௦௧
 = 𝐻௪௦௧

 𝛽௪௦௧
 (20)

To evaluate the fitness of the updated worst

frog 𝑆௪௦௧
 , calculate the error between the predicted

output 𝑌௪௦௧
 and the actual target values 𝑌 using the

mean squared error (MSE):

𝐸௪௦௧
 =

1

𝑛
൫𝑦 − 𝑦ො௪௦௧,

 ൯
ଶ

ୀଵ

 (21)

The new fitness 𝐹௪௦௧
 is:

𝐹௪௦௧
 =

1

𝐸௪௦௧

 (22)

It the fitness of the updated frog 𝐹௪௦௧

improves compared to its previous fitness, retain the
new solution; otherwise, restore the previous
solution. Perform the local search for each
memeplex 𝑀 independently. After completing the
local search for all memeplexes, regroup the entire
frog population for the global search phase in
subsequent steps. This process ensures that each
memeplex undergoes localized optimization while
balancing exploration and exploitation of the
solution space.

3.5. Adaptive Frog Leaping Strategy

In this step, proceed with the global search
phase by regrouping all frogs from the memeplexes
after completing the local search. The global search

allows information exchange among the
memeplexes, enhancing exploration in the overall
solution space. The entire frog population,
consisting of 𝑃 frogs, is reassembled after local
searches to evaluate their performance across the
entire population. Let the reassembled population be
represented by 𝑆ଵ, 𝑆ଶ, … . , 𝑆, where each frog 𝑆 is
defined by a solution vector containing the
optimized ELM parameters 𝑊 ∈ 𝑅× (weights)
and 𝑏 ∈ 𝑅ଵ× (biases). The goal of the global search
is to perform a broader exploration of the solution
space and improve the global fitness of the
population.

The fitness 𝐹 of each frog is calculated again
after the local search using the mean squared error
(MSE) of the corresponding ELM model. For each
frog, compute the hidden layer output matrix as:

𝐻 = 𝑔(𝑋𝑊 + 𝑏) (23)

where 𝑔(.) is the activation function, 𝑋 ∈ 𝑅× is
the input matrix, and 𝑊 and 𝑏 are the frog’s current
weights and biases, respectively. The output weights
𝛽 ∈ 𝑅×ଵ for each frog are updated using the least
squares method:

𝛽 = (𝐻
்𝐻)ିଵ𝐻

்𝑌 (24)

where 𝑌 ∈ 𝑅×ଵ is the target vector. The predicted
output 𝑌 ∈ 𝑅×ଵ is given by:

𝑌 = 𝐻𝛽 (25)

The error 𝐸 for each frog is computed as:

𝐸 =
1

𝑛
൫𝑦 − 𝑦ො൯

ଶ

ୀଵ

 (26)

where 𝑦 represents the actual target values, and 𝑦ො
are the predicted values from the ELM model of frog
𝑆. The fitness 𝐹 of each frog is updated as:

𝐹 =
1

𝐸

 (27)

Following the fitness evaluation, identify the
frog with the highest global fitness, denoted as 𝑆௦௧ ,
and the frog with the lowest global fitness, denoted
as 𝑆௪௦௧ . The global search then moves the worst-
performing frog towards the best-performing frog
across all memeplexes. The global update rule for
𝑆௪௦௧ is given by:

𝑆௪௦௧ = 𝑆௪௦௧ + 𝑟. (𝑆௦௧ − 𝑆௪௦௧) (28)

where 𝑟 ∈ [0,1] is a random number from a uniform
distribution. This equation adjusts the worst frog's

 Journal of Theoretical and Applied Information Technology
31st January 2025. Vol.103. No.2

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

479

ELM parameters (input weights and biases) to
improve its position based on the best-performing
frog in the global population.

After updating 𝑆௪௦௧, compute the new hidden
layer output 𝐻௪௦௧ using the updated weights 𝑆௪௦௧
and biases 𝑏௪௦௧:

𝐻௪௦௧ = 𝑔(𝑋𝑊௪௦௧ + 𝑏௪௦௧) (29)

Update the output weights 𝛽௪௦௧ as:

𝛽௪௦௧ = (𝐻௪௦௧
் 𝐻௪௦௧)ିଵ𝐻௪௦௧

் 𝑌 (30)

Calculate the new predicted output 𝑌௪௦௧

as:

𝑌௪௦௧ = 𝐻௪௦௧𝛽௪௦௧ (31)

Evaluate the new error 𝐸௪௦௧ and fitness

𝐹௪௦௧ for the updated frog. If the fitness improves,
retain the new solution; otherwise, revert to the
previous solution. Repeat this process until all frogs
in the population have been updated based on the
global search phase. This step ensures that the worst-
performing frogs benefit from the global best
solution, promoting convergence towards better
solutions across the population.

3.6. Dynamic Hidden Neuron and Activation

Function Configuration
In this step, employ an adaptive frog leaping

strategy to control the intensity of the search process.
The adaptive leaping mechanism adjusts the leap
size based on the performance improvements in the
fitness values of the frogs, ensuring efficient
exploration and exploitation during optimization.
Let 𝑆 represent the solution vector of the 𝑖𝑡ℎ frog,
where each solution vector consists of the input
weight matrix 𝑊 ∈ 𝑅× and bias vector 𝑏 ∈ 𝑅ଵ×.
The leap size 𝑑 for the 𝑖𝑡ℎ frog is calculated based
on its fitness improvement ∆𝐹 between two
consecutive iterations. If the fitness improvement is
significant, the leap size is reduced to fine-tune the
solution, whereas a smaller fitness improvement
results in larger leaps to explore other regions of the
solution space. The adaptive leap size 𝑑 can be
defined as:

𝑑 = 𝑟. ൬
∆𝐹

𝐹௦௧

൰ . (𝑆௦௧ − 𝑆) (32)

where 𝑟 ∈ [0,1] is a random number drawn from a
uniform distribution, 𝐹௦௧ is the fitness of the best-
performing frog in the population, and ∆𝐹 is the

change in fitness of the 𝑖𝑡ℎ frog from the previous
iteration, calculated as:

∆𝐹 = 𝐹
(௧)

− 𝐹
(௧ିଵ) (33)

where 𝐹
(௧) and 𝐹

(௧ିଵ) denote the fitness values of the
𝑖𝑡ℎ frog at the current and previous iterations,
respectively. If ∆𝐹 is large, indicating significant
improvement, the leap size 𝑑 is reduced, allowing
fine adjustments to the frog’s position. Conversely,
a smaller ∆𝐹 increases the leap size, promoting
exploration.

Update the solution vector 𝑆 for the 𝑖𝑡ℎ frog
by applying the adaptive leap size 𝑑 :

𝑆
(௧ାଵ)

= 𝑆
(௧)

+ 𝑑 (34)

where 𝑆
(௧ାଵ) represents the updated solution for the

next iteration. The new input weights 𝑊
(௧ାଵ) and

biases 𝑏
(௧ାଵ)are extracted from the updated solution

vector 𝑆
(௧ାଵ)

.

For the updated frog, recompute the hidden
layer output matrix 𝐻 of the ELM using the updated

weights 𝑊
(௧ାଵ) and biases 𝑏

(௧ାଵ)
.

𝐻
(௧ାଵ)

= 𝑔൫𝑋𝑊
(௧ାଵ)

+ 𝑏
(௧ାଵ)

൯ (35)

Update the output weights 𝛽
(௧ାଵ) for the ELM

model by solving the least squares equation:

𝛽
(௧ାଵ)

= ൫𝐻
(௧ାଵ)்

𝐻
(௧ାଵ)

൯
ିଵ

𝐻
(௧ାଵ)்

𝑌 (36)

where 𝑌 is the target vector. Calculate the predicted

output 𝑌
(௧ାଵ) for the updated frog:

𝑌
(௧ାଵ)

= 𝐻
(௧ାଵ)

𝛽
(௧ାଵ) (37)

To evaluate the performance of the updated

frog, calculate the error 𝐸
(௧ାଵ) between the predicted

output 𝑌
(௧ାଵ) and the actual target values 𝑌 using the

mean squared error (MSE):

𝐸
(௧ାଵ)

=
1

𝑛
൫𝑦 − 𝑦ො

(௧ାଵ)
൯

ଶ

ୀଵ

 (38)

Finally, update the fitness 𝐹
(௧ାଵ) of the frog

based on the computed error:

𝐹
(௧ାଵ)

=
1

𝐸

(௧ାଵ)
 (39)

 Journal of Theoretical and Applied Information Technology
31st January 2025. Vol.103. No.2

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

480

Repeat the adaptive frog leaping process until
the performance of the ELM model converges or the
maximum number of iterations is reached. The
adaptive strategy ensures that the search intensity
adjusts dynamically based on fitness improvements,
allowing for both exploration of new solutions and
exploitation of near-optimal solutions.

3.7. Local Search in Memeplexes (Exploitation)

In this step, the mutation mechanism is
incorporated to introduce diversity into the frog
population and prevent premature convergence
during the optimization of the ELM. Mutation
randomly perturbs the parameters of a subset of
frogs, enhancing exploration and enabling the
population to escape local optima. Let 𝑃 represent
the total population of frogs, where each frog 𝑆 is
represented by a solution vector containing the input
weight matrix 𝑊 ∈ 𝑅× and bias vector 𝑏 ∈ 𝑅ଵ×.
Apply mutation to a subset of the population,
denoted as 𝑃௨௧ , where 𝑃௨௧ ⊆ 𝑃 and the size of the
subset is |𝑃௨௧|.

For each frog 𝑆 ∈ 𝑃௨௧, randomly perturb its
input weights and biases. Let the mutation rate 𝜇 ∈
[0,1] determine the probability of perturbation for
each element of the weight matrix 𝑊 and bias vector
𝑏. For each element 𝑊 in the weight matrix 𝑊,
mutate as follows:

𝑊
(௨௧)

= 𝑊
(௧)

+ 𝛿. 𝜎 (40)

where 𝛿 is a small random perturbation drawn from
a uniform distribution 𝑈(−𝛾, 𝛾), and 𝜎 is a binary
indicator that equals 1 if mutation occurs,
determined by the mutation rate 𝜇, and otherwise.
Similarly, for each element 𝑏 in the bias vector 𝑏 ,
apply the mutation rule:

𝑏
(௨௧)

= 𝑏
(௧)

+ 𝛿. 𝜎 (41)

where 𝛿 follows the same distribution 𝑈(−𝛾, 𝛾), and
𝜎 is the binary indicator for mutation. The mutation
process ensures that random perturbations are
applied to the weights and biases of the selected
frogs, introducing new potential solutions into the
population.

After mutation, the updated solution vector

𝑆
(௨௧)

= ቄ𝑊
(௨௧)

, 𝑏
(௨௧)

ቅ represents the mutated

ELM parameters for frog 𝑆 . For each mutated frog,

recompute the hidden layer output 𝐻
(௨௧) using the

mutated weights and biases:

𝐻
(௨௧)

= 𝑔൫𝑋𝑊
(௨௧)

+ 𝑏
(௨௧)

൯ (42)

Update the output weights 𝛽
(௨௧) by solving

the least squares problem:

𝛽
(௨௧)

= ൫𝐻
(௨௧)்

𝐻
(௨௧)

൯
ିଵ

𝐻
(௨௧)

𝑌 (43)

where 𝑌 ∈ 𝑅×ଵ is the target vector. Calculate the

predicted output 𝑌
(௨௧) as:

𝑌
(௨௧)

= 𝐻
(௨௧)

𝛽
(௨௧) (44)

To evaluate the fitness of each mutated frog,

compute the error 𝐸
(௨௧) between the predicted

output 𝑌
(௨௧) and the actual target values 𝑌

using the mean squared error (MSE):

𝐸
(௨௧)

=
1

𝑛
൫𝑦 − 𝑦ො

(௨௧)
൯

ଶ

ୀଵ

 (45)

The new fitness 𝐹
(௨௧) of the mutated frog is

then calculated as:

𝐹
(௨௧)

=
1

𝐸

(௨௧)
 (46)

The mutation process introduces variability
into the population by creating new potential
solutions that differ from the original set of frogs. If

the fitness 𝐹
(௨௧) of the mutated frog improves

compare to its previous fitness 𝐹
(௧), retain the

mutated solution; otherwise, revert to the original
solution.

Repeat the mutation process for all selected
frogs in 𝑃௨௧ensuring that diversity is maintained
throughout the population. This step helps to balance
exploration and exploitation, enhancing the overall
performance of the FLIO-ELM model by
introducing random perturbations and allowing for
the discovery of new, potentially better solutions.

3.8. Mutation Mechanism for Diversity

In this step, a penalty function will be
implemented to discourage the creation of overly
complex ELM models during the optimization
process. The goal is to maintain the efficiency of the
models by penalizing solutions that use too many
hidden neurons or large parameter values, promoting
simpler models with better generalization
capabilities. Let 𝑆 represent the solution vector for
the 𝑖𝑡ℎ frog, consisting of the input weight matrix
𝑊 ∈ 𝑅× and the bias vector 𝑏 ∈ 𝑅ଵ× , where 𝐿
denotes the number of hidden neurons. A penalty

 Journal of Theoretical and Applied Information Technology
31st January 2025. Vol.103. No.2

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

481

term 𝑃(𝑆) is added to the frog's fitness function to
prevent the optimization process from favoring
overly complex solutions.

Define the penalty function 𝑃(𝑆) as a

combination of two terms: one penalizing the
number of hidden neurons 𝐿 and another penalizing
the magnitude of the input weights 𝑊 and biases 𝑏.
The penalty function is expressed as:

𝑃(𝑆) = 𝜆ଵ. 𝐿 + 𝜆ଶ. ቌ
1

𝑚𝐿
 𝑊

ଶ

ୀଵ

ୀଵ

+
1

𝐿
 𝑏

ଶ

ୀଵ

ቍ

(47)

where 𝜆ଵ and 𝜆ଶ are regularization parameters
controlling the strength of the penalties, 𝐿 is the
number of hidden neurons, and the terms 𝑊

ଶ and 𝑏
ଶ

represent the squared magnitudes of the input
weights and biases, respectively. The first term
penalizes models with a larger number of hidden
neurons, while the second term discourages large
weight and bias values.

The modified fitness function for the 𝑖-th frog,
incorporating the penalty term, is given by:

𝐹
()

=
1

𝐸

− 𝑃(𝑆) (48a)

where 𝐸 is the mean squared error (MSE) between
the predicted output 𝑌 and the actual target values 𝑌,
computed.

𝐸 =
1

𝑛
൫𝑦 − 𝑦ො൯

ଶ

ୀଵ

 (48b)

The fitness 𝐹
() decreases when the penalty

function 𝑃(𝑆) increases, which encourages the
optimization process to favor simpler models with
fewer hidden neurons and smaller parameter
magnitudes. This penalization approach balances
model complexity with accuracy. After applying the
penalty function, the optimization continues by
updating the solution vector 𝑆 , which contains the
input weights 𝑊 and biases 𝑏, using the frog
leaping strategy or other optimization mechanisms
described in the previous steps. For the updated
solution, recalculate the hidden layer output 𝐻 using
the updated parameters:

𝐻 = 𝑔(𝑋𝑊 + 𝑏) (49)

where 𝑔(.) is the activation function, and 𝑋 ∈ 𝑅×
is the input matrix. The output weights 𝛽 ∈ 𝑅×ଵ are
then recalculated using the least squares method:

𝛽 = (𝐻
்𝐻)ିଵ𝐻

்𝑌 (50)

The predicted output 𝑌 ∈ 𝑅×ଵ is obtained as:

𝑌 = 𝐻𝛽 (51)

The error 𝐸 is updated based on the new

predicted output, and the fitness 𝐹
() is

recalculated by incorporating the updated penalty
term. The penalty-based fitness function is then used
to guide the optimization process toward more
efficient solutions that generalize well without
excessive complexity. Introducing this penalty
function controls the model's complexity while still
optimizing for performance. The trade-off between
accuracy and simplicity ensures that the ELM
models remain computationally efficient and robust
against overfitting, which is critical for achieving
generalization in real-world applications.

3.9. Global Search Across Memeplexes

(Exploration)
In this step, the hybrid learning approach will

be integrated by combining the FLIO improvements
with traditional ELM output weight adjustments.
This hybrid learning step ensures that the FLIO
optimization process effectively refines the input
weights and biases, while ELM’s least squares
method is used to compute the final output weights,
maintaining computational efficiency. Let 𝑆
represent the optimized solution vector of the
𝑖𝑡ℎ frog, where the vector consists of the input
weight matrix 𝑊 ∈ 𝑅× and bias vector 𝑏 ∈ 𝑅ଵ×.
For each optimized frog 𝑆 , use the refined input
weights and biases obtained from the FLIO
optimization to calculate the hidden layer output 𝐻 :

𝐻 = 𝑔(𝑋𝑊 + 𝑏) (52)

where 𝑔(.) is the activation function, and 𝑋 ∈ 𝑅×
is the input matrix. The output weights 𝛽 ∈ 𝑅×ଵ are
then updated using the traditional least squares
method, which minimizes the error between the
predicted and actual outputs.

The least squares solution for 𝛽 is given by:

𝛽 = (𝐻
்𝐻)ିଵ𝐻

்𝑌 (53)

The least squares solution for 𝛽 is given by:

𝛽 = (𝐻
்𝐻)ିଵ𝐻

்𝑌 (54)

 Journal of Theoretical and Applied Information Technology
31st January 2025. Vol.103. No.2

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

482

where 𝑌 ∈ 𝑅×ଵ is the target vector. The predicted
output 𝑌 ∈ 𝑅×ଵ for the optimized frog is then
calculated as:

𝑌 = 𝐻𝛽 (55)

Next, calculate the error 𝐸 between the
predicted output 𝑌 and the actual target values 𝑌
using the mean squared error (MSE) as the error
metric:

𝐸 =
1

𝑛
൫𝑦 − 𝑦ො൯

ଶ

ୀଵ

 (56)

The error 𝐸measures the performance of the

ELM model after applying both FLIO optimization
and least squares output weight adjustments. The
fitness 𝐹 for each frog is updated based on the
calculated error as:

𝐹 =
1

𝐸

 (57)

This hybrid learning step ensures that the
refined input weights and biases, obtained through
FLIO, are effectively combined with the
computationally efficient least squares method for
adjusting the output weights. This approach
leverages FLIO's strength in optimizing the hidden
layer and allows the least squares method to handle
the output layer efficiently, ensuring faster
convergence.

After updating the output weights and
calculating the fitness for each frog, identify the frog
with the highest fitness, denoted as 𝑆௦௧ . The global
search or mutation mechanism can further refine the
solution, as described in the previous steps. The
hybrid learning approach ensures that the
optimization process benefits from the exploratory
capabilities of FLIO while preserving the ELM’s
computational efficiency. The least squares method
provides a closed-form solution for the output
weights, reducing the complexity of simultaneously
optimizing both the input weights and output
weights.

To ensure generalization, this step incorporates
cross-validation on the updated ELM model for each
frog. Divide the dataset into training and validation
sets, and evaluate the performance of the ELM
model on the validation set to check for overfitting.
The cross-validation process is expressed as:

𝐸௩ =
1

𝑛௩

൫𝑦௩, − 𝑦ො௩,൯
ଶ

ೡೌ

ୀଵ

 (58)

where 𝐸௩ represents the validation error, 𝑛௩ is the
number of validation samples 𝑦௩, represents the
actual target values for the validation set, and 𝑦ො௩,
represents the predicted values for the validation set.

This hybrid learning step, by combining FLIO
for input weight optimization and the least squares
method for output weights, ensures that the ELM
model achieves accuracy and computational
efficiency. The resulting model exhibits improved
generalization and performance across diverse
datasets.

3.10. Hybrid Learning Step

In this step, a convergence check should be
implemented to determine whether the optimization
process should stop or continue. The stopping
criteria are based on the fitness values, error
reduction, and the number of iterations completed.
The goal is to ensure that the FLIO-ELM model has
reached an optimal or near-optimal solution without
overfitting or wasting computational resources. Let

𝐹
(௧) represent the fitness of the 𝑖𝑡ℎ frog at iteration

𝑡, and let 𝐸
(௧) represent the corresponding error at

that iteration. A typical convergence check involves

monitoring the change in fitness ∆𝐹
(௧) or the error

∆𝐸
(௧) between consecutive iterations. Define the

change in fitness as:

∆𝐹𝑖(𝑡)=𝐹𝑖(𝑡)−𝐹𝑖(𝑡−1) (59)

Similarly, the change in error is defined as:

∆𝐸𝑖(𝑡)=𝐸𝑖(𝑡−1)−𝐸𝑖(𝑡) (60)

The optimization process can stop if the

absolute change in fitness ∆𝐹
(௧) or error ∆𝐸

(௧) falls
below a predefined threshold 𝜖. Mathematically, the
stopping condition can be expressed as:

ห∆𝐹
(௧)

ห < 𝜖 or ห∆𝐸
(௧)

ห < 𝜖 (61)

where 𝜖 is a small positive constant that defines the
tolerance for convergence. If either of these
conditions is satisfied, the optimization for the
corresponding frog 𝑆 is considered converged. This
ensures that further iterations will not yield
significant fitness or error reduction improvements.

Another stopping criterion involves monitoring
the maximum number of iterations 𝑇௫ . If the
optimization reaches 𝑇௫ iterations, the process
stops to prevent excessive computation. This
condition is expressed as:

 Journal of Theoretical and Applied Information Technology
31st January 2025. Vol.103. No.2

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

483

𝑡≥𝑇𝑚𝑎𝑥 (62)

Once the convergence check is performed for
all frogs in the population, those frogs that have met
the stopping criteria will no longer undergo further
updates. The remaining frogs, which have not yet
converged, continue with the optimization process in
subsequent iterations. This selective convergence
approach ensures that only non-converged frogs
participate in further searches, reducing
computational effort.

To further enhance the optimization process,
introduce a dynamic adjustment of the mutation rate
𝜇 based on the convergence behavior of the
population. If a large proportion of the population
has converged, reduce 𝜇 to focus more on fine-
tuning the remaining frogs. Conversely, if most frogs
have not converged, increase 𝜇 to encourage
exploration. The dynamic mutation rate is defined
as:

𝜇(௧ାଵ) = 𝜇(௧). ቆ
|𝑃௩|

𝑃
ቇ (63)

where 𝜇(௧) is the mutation rate at iteration 𝑡, |𝑃௩|
represents the number of converged frogs, and 𝑃 is
the total number of frogs. This dynamic adjustment
helps balance exploration and exploitation during
the optimization process.

To ensure the robustness of the FLIO-ELM
model, cross-validation must be applied during the
convergence check. Evaluate the performance of the
model on a validation set at each iteration. If the

validation error 𝐸௩
(௧) starts to increase while the

training error 𝐸
(௧) decreases, the model may be

overfitting. The validation error is calculated as:

𝐸௩
(௧)

=
1

𝑛௩

൫𝑦௩, − 𝑦ො௩,
(௧)

൯
ଶ

ೡೌ

ୀଵ

 (64)

where 𝑛௩ represents the number of validation

samples, and 𝑦௩, and 𝑦ො௩,
(௧) represent the actual and

predicted values for the validation set, respectively.
If overfitting is detected, reduce the complexity of
the model by adjusting the number of hidden
neurons 𝐿, or applying regularization to the input
weights 𝑊 and biases 𝑏.

Through these convergence checks and
dynamic adjustments, the FLIO-ELM model ensures
efficient optimization, preventing unnecessary
iterations and maintaining generalization
capabilities across various datasets.

3.11. Penalty Function for Efficient ELM Models
In this step, evaluate the final FLIO-ELM

model after completing the convergence checks and
optimization. The objective involves analyzing the
model’s performance on the test dataset and ensuring
that the learned parameters (weights and biases)
generalize well to unseen data. Performance
evaluation is based on calculating various metrics,
such as accuracy, mean squared error (MSE),
precision, recall, and F1-score. Let the final set of
optimized weights and biases for the 𝑖𝑡ℎ frog be
denoted by 𝑊

∗ ∈ 𝑅× and 𝑏
∗ ∈ 𝑅ଵ× , respectively,

after the optimization process. For each test input
𝑋௧௦௧ ∈ 𝑅ೞ×, where 𝑛௧௦௧ represents the number
of test samples, compute the hidden layer output 𝐻

∗
using the optimized weights and biases:

𝐻
∗ = 𝑔(𝑋௧௦௧𝑊

∗ + 𝑏
∗) (65)

where 𝑔(.) is the activation function applied
element-wise. The output weights 𝛽

∗ ∈ 𝑅ଵ×
obtained from the previous optimization are used to
predict the output 𝑌௧௦௧ ∈ 𝑅ೞ×ଵ.

𝑌௧௦௧ = 𝐻
∗𝛽

∗ (66)

To assess the accuracy of the FLIO-ELM

model, calculate the error 𝐸௧௦௧between the predicted
output 𝑌௧௦௧ and the actual target values 𝑌௧௦௧ ∈
𝑅ೞ×ଵ. The mean squared error (MSE) for the test
dataset is expressed as:

𝐸௧௦௧ =
1

𝑛௧௦௧

 ൫𝑦௧௦௧, − 𝑦ො௧௦௧,൯
ଶ

ೞ

ୀଵ

 (67)

where 𝑦௧௦௧, represents the actual target values,
𝑦ො௧௦௧, are the predicted values for each test sample.
A lower 𝐸௧௦௧value indicates better performance of
the model on the test set.

Additional evaluation metrics such as
accuracy, precision, recall, and F1-score are
calculated for classification tasks. Accuracy
measures the percentage of correctly predicted labels
out of all test samples:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (68)

where 𝑇𝑃 represents true positives, 𝑇𝑁 represents
true negatives, 𝐹𝑃 represents false positives, and
𝐹𝑁 represents false negatives. Precision evaluates
the proportion of correctly predicted positive
samples out of all predicted positives:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (69)

 Journal of Theoretical and Applied Information Technology
31st January 2025. Vol.103. No.2

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

484

Recall (or sensitivity) measures the proportion
of correctly predicted positive samples out of all
actual positives:

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (70)

The F1-score provides a balance between

precision and recall and is calculated as:

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2.
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛. 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (71)

These evaluation metrics are used to assess the

performance of the final FLIO-ELM model on the
test dataset. If the model performs well on the test set
with low MSE and high accuracy, precision, recall,
and F1-score, it indicates successful generalization
of the learned parameters to unseen data. To further
validate the robustness of the FLIO-ELM model,
perform k-fold cross-validation on the entire dataset,
including training and testing sets. Divide the data
into 𝑘 equal-sized subsets and use 𝑘 − 1 subsets for
training and the remaining subset for testing. Repeat
this process 𝑘 times, with each subset serving as the
test set exactly once. The cross-validation error 𝐸௩
is calculated as the average error across all folds:

𝐸௩ =
1

𝑘
 𝐸௧௦௧,

ୀଵ

 (72)

where 𝐸௧௦௧, represents the error for the 𝑖-th fold.
This step helps assess the model's ability to
generalize across different splits of the data,
reducing the likelihood of overfitting.

By thoroughly evaluating the performance of
the final FLIO-ELM model using these metrics and
validation techniques, the reliability and
generalization capabilities of the optimized model
are ensured.

3.12. Regularization for Stability

In this step, a final refinement of the FLIO-
ELM model is performed by adjusting its
hyperparameters to maximize performance.
Hyperparameters such as the number of hidden
neurons 𝐿, the regularization parameters 𝜆ଵ and 𝜆ଶ,
the mutation rate 𝜇, and the learning rate 𝜂 require
fine-tuning to optimize the model’s accuracy and
generalization capability. Let the number of hidden
neurons 𝐿 be initially set based on the dataset's
complexity. A search process can be implemented to
find the optimal number of hidden neurons that
minimizes the error on the validation dataset. Let the
set of candidate values for 𝐿 be denoted as 𝐿 =
{𝐿ଵ, 𝐿ଶ, … , 𝐿}, where each 𝐿 ∈ 𝐿 represents a

potential value for the number of hidden neurons.
For each 𝐿, compute the hidden layer output 𝐻
using the input weights 𝑊 ∈ 𝑅×ೕand bias vector
𝑏 ∈ 𝑅ଵ×ೕ:

𝐻 = 𝑔൫𝑋𝑊 + 𝑏൯ (73)

For each candidate 𝐿 update the output
weights 𝛽 ∈ 𝑅ೕ×ଵ using the least squares solution:

𝛽 = ൫𝐻
்𝐻൯

ିଵ
𝐻

்𝑌 (74)

Compute the predicted output 𝑌 for each

candidate 𝐿:

𝑌 = 𝐻𝛽 (75)

Evaluate the error 𝐸 for each 𝐿 using the mean

squared error (MSE) on the validation set:

𝐸 =
1

𝑛௩

൫𝑦௩, − 𝑦ො,൯
ଶ

ೡೌ

ୀଵ

 (76)

Select the value 𝐿௧ ∈ 𝐿 that minimizes 𝐸 :

𝐿௧ = arg min
ೕ∈

𝐸 (77)

After selecting 𝐿௧ , update the model's input

weights and biases using the refined number of
hidden neurons. Next, optimize the regularization
parameters. 𝜆ଵ and 𝜆ଶ, which control the penalty on
the number of neurons and the magnitude of the
weights and biases, respectively. Let 𝑅 = {(𝜆ଵ, 𝜆ଶ)}
represent the set of candidate regularization
parameter pairs. For each pair (𝜆ଵ, 𝜆ଶ) ∈ 𝑅, compute
the penalty function 𝑃൫𝑆൯ for the corresponding
frog solution 𝑆 as:

𝑃൫𝑆൯ = 𝜆ଵ. 𝐿 + 𝜆ଶ. ቌ
1

𝑚𝐿

 𝑊
ଶ

ೕ

ୀଵ

ୀଵ

+
1

𝐿

 𝑏
ଶ

ೕ

ୀଵ

ቍ

(78)

Update the fitness 𝐹
() for each candidate pair

based on the penalty function:

𝐹
()

=
1

𝐸

− 𝑃൫𝑆൯ (79)

 Journal of Theoretical and Applied Information Technology
31st January 2025. Vol.103. No.2

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

485

Select the optimal regularization parameters

൫𝜆ଵ
௧

, 𝜆ଶ
௧

൯ that maximize the fitness 𝐹
().

൫𝜆ଵ
௧

, 𝜆ଶ
௧

൯ = 𝑎𝑟𝑔 max
(ఒభ,ఒమ)∈ோ

𝑅
() (80)

Once the optimal hyperparameters for 𝐿, 𝜆ଵ,
and 𝜆ଶhave been determined, proceed to refine the
mutation rate 𝜇 and learning rate 𝜂 to further enhance
the optimization process. For the mutation rate 𝜇,
perform a grid search over a set of candidate values
𝑀 = {𝜇ଵ, 𝜇ଶ, … , 𝜇}. For each 𝜇 ∈ 𝑀, evaluate the
performance of the model by computing the
validation error and fitness. Select the mutation rate
𝜇௧ that yields the best performance. Finally, refine
the learning rate 𝜂 by performing a search over a
range of candidate values. The learning rate controls
the magnitude of updates to the weights and biases
during the optimization process. Let 𝜂 ∈ 𝜖 =
{𝜂ଵ, 𝜂ଶ, … , 𝜂} represent the set of candidate learning
rates. For each 𝜂௦ ∈ 𝜖, evaluate the model’s
performance and select the optimal learning rate
𝜂௧ based on the fitness and error reduction.

This final refinement ensures that the FLIO-
ELM model operates at peak efficiency by selecting
the optimal hyperparameters that minimize error and
maximize fitness across various validation datasets.

3.13 Model Stability and Robustness Analysis

In this step, a comprehensive analysis of the
FLIO-ELM model's stability and robustness will be
performed to ensure consistent performance across
various datasets and conditions. The objective is to
evaluate how the optimized model responds to the
data perturbations and assess its generalization
capability under different scenarios. First, introduce
noise into the input data 𝑋 to test the model's
sensitivity. Create a perturbed dataset 𝑋௧௨ௗ by
adding Gaussian noise 𝜖 to the original input data:

𝑋௧௨ௗ = 𝑋 + 𝜖 (81)

where 𝜖~𝑁(0, 𝜎ଶ) and 𝜎 represents the standard
deviation of the noise. Vary 𝜎 to simulate different
levels of noise intensity.

Compute the hidden layer output 𝐻௧௨ௗ
using the optimized input weights 𝑊∗ and biases 𝑏∗.

𝑋௧௨ௗ = 𝑔൫𝑋௧௨ௗ𝑊∗ + 𝑏∗൯ (82)

Calculate the predicted output 𝑌௧௨ௗ for

the perturbed data:

𝑌௧௨ௗ = 𝐻௧௨ௗ𝛽∗ (83)

Evaluate the error 𝐸௧௨ௗ between the
predicted output 𝑌௧௨ௗ and the actual target
values 𝑌:

𝐸௧௨ௗ =
1

𝑛
൫𝑦 − 𝑌௧௨ௗ,൯

ଶ

ୀଵ

 (84)

Compare 𝐸௧௨ௗ with the original error

𝐸 calculated on the unperturbed data to assess
the model’s robustness to noise. Next, perform a
sensitivity analysis by varying the input features to
determine the model's dependence on specific
variables. For each input feature 𝑥 , where 𝑗 =

1,2, … , 𝑚, introduce a small perturbation 𝛿 and
compute the change in the output:

𝛿𝑌 = 𝐻൫𝑊
∗ + 𝛿൯𝛽∗ − 𝐻𝑊

∗𝛽∗ (85)

where 𝑊
∗ is the 𝑗𝑡ℎ column of the weight matrix

𝑊∗, and 𝛿 is a small change applied to that column.

Compute the sensitivity 𝑆 of the model to each
input feature:

𝑆 =
ฮ𝛿𝑌ฮ

ฮ𝛿ฮ
 (86)

where ‖. ‖ denotes the Euclidean norm. A higher 𝑆
indicates greater sensitivity to the corresponding
input feature.

Test the model's stability by subjecting it to 𝐾-
fold cross-validation with different random seeds.
For each fold 𝑘, train the model on a training set

𝐷௧
() and evaluate it on a validation set 𝐷௩

()
.

Compute the validation error 𝐸௩
():

𝐸௩
()

=
1

𝑛௩

൫𝑦௩,
()

− 𝑦ො௩,
()

൯
ଶ

ೡೌ

ୀଵ

 (87)

Calculate the mean validation error 𝐸ത௩ across

all folds:

𝐸ത௩ =
1

𝐾
 𝐸௩

()

ୀଵ

 (88)

Compute the standard deviation 𝜎ா of the

validation errors to assess the model's stability:

𝜎ா = ඩ
1

𝐾
൫𝐸௩

()
− 𝐸ത௩൯

ଶ

ୀଵ

 (89)

 Journal of Theoretical and Applied Information Technology
31st January 2025. Vol.103. No.2

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

486

A lower 𝜎ா indicates that the model's
performance is consistent across different data splits,
demonstrating stability. Furthermore, evaluate the
model's robustness to adversarial attacks by
introducing adversarial examples 𝑋ௗ௩ generated
using the Fast Gradient Sign Method (FGSM).
Compute 𝑋ௗ௩ as:

𝑋ௗ௩ = 𝑋 + 𝜖. 𝑠𝑖𝑔𝑛(∇𝐸) (90)

where 𝜖 is a small perturbation parameter, ∇𝐸
represents the gradient of the error with respect to the
input 𝑋, and sign(.) Denotes the sign function
applied element-wise.

Compute the hidden layer output for the
adversarial examples:

𝐻ௗ௩ = 𝑔(𝑋ௗ௩𝑊∗ + 𝑏∗) (91)

Calculate the predicted output 𝑌ௗ௩ for the
adversarial data:

𝑌ௗ௩ = 𝐻ௗ௩𝛽∗ (92)

Evaluate the adversarial error 𝐸ௗ௩:

𝐸ௗ௩ =
1

𝑛
൫𝑦 − 𝑦ොௗ௩,൯

ଶ

ୀଵ

 (93)

Comparing 𝐸ௗ௩ with 𝐸 assesses the

model's robustness to adversarial perturbations.
Finally, analyze the model's response to different
initializations of weights and biases. Repeat the
entire optimization process with varying initial
weights 𝑊௧ and biases 𝑏௧:

𝑊௧
()

~𝑈(−𝛼, 𝛼), 𝑏௧
()

~𝑈(−𝛽, 𝛽) (94)

For 𝑙 = 1,2, … , 𝐿௧ , where 𝐿௧ is the number

of different initializations, and 𝑈(−𝛼, 𝛼) denotes a
uniform distribution. Evaluate the performance of
each model instance and compute the variance in
errors:

𝜎ா
= ඩ

1

𝐿௧

 (𝐸() − 𝐸ത௧)ଶ

ୀଵ

 (95)

where 𝐸ത௧ is the mean error across all
initializations. A low 𝜎ா

 indicates that the model's
performance is not heavily dependent on the initial
parameter values, demonstrating robustness.

By conducting these analyses, the stability and
robustness of the FLIO-ELM model are thoroughly

evaluated, ensuring reliable performance in practical
applications.

3.14. Convergence Check with Error Feedback

This step assesses the computational
complexity and scalability of the FLIO-ELM model
are assessed. The goal is to evaluate the time
complexity and memory usage, ensuring the model
remains efficient even as the dataset size and the
number of hidden neurons increase. Let 𝑛 represent
the number of data samples, 𝑚 represent the number
of input features, and 𝐿 denote the number of hidden
neurons in the ELM model. The computational
complexity for calculating the hidden layer output 𝐻
is:

𝑂(𝑛. 𝑚. 𝐿) (96)

Since the matrix multiplication between the
input data 𝑋 ∈ 𝑅× and the input weights 𝑊 ∈
𝑅× requires 𝑛. 𝑚. 𝐿 operations. The calculation of
the output weights 𝛽 using the least squares solution
involves solving the following system:

𝛽 = (𝐻்𝐻)ିଵ𝐻்𝑌 (97)

The matrix inversion dominates the
computational complexity for solving this system.
(𝐻்𝐻)ିଵ, which has a complexity of 𝑂(𝐿ଷ).Next,
analyze the memory requirements. The memory
needed for storing the input weights 𝑊 ∈ 𝑅× ,
biases 𝑏 ∈ 𝑅ଵ× , and output weights 𝛽 ∈ 𝑅×ଵ is:

𝑂(𝑚. 𝐿 + 𝐿 + 𝐿) (98)

This expression simplifies to 𝑂(𝑚 ⋅ 𝐿), which
grows linearly with the number of features 𝑚 and
hidden neurons 𝐿. Additionally, the model's
scalability is tested by increasing the dataset size and
observing the impact on the training time and
memory usage. As the number of samples 𝑛
increases, the complexity for computing 𝐻 scales
linearly with 𝑛, while the least squares solution
remains dependent on 𝐿. Thus, evaluating both time
and space complexity ensures the model's efficiency
when scaling to larger datasets or more complex
architectures.

3.15. Final ELM Model Output

In this step, the scalability and performance of
the FLIO-ELM model in a distributed computing
environment will be tested. This ensures the model
can handle larger datasets and more complex
optimization tasks by distributing the computational
workload across multiple processors. First, partition
the dataset 𝐷 = {(𝑋, 𝑌)}, where 𝑋 ∈ 𝑅×
represents the input features and 𝑌 ∈ 𝑅×ଵ is the
target vector, into smaller subsets 𝐷 = ൛൫𝑋, 𝑌൯ൟ,

 Journal of Theoretical and Applied Information Technology
31st January 2025. Vol.103. No.2

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

487

where 𝑝 = 1,2, … , 𝑃 represents the number of
partitions, and 𝑃 is the total number of processors
available. Each subset 𝐷 contains approximately

samples. The computation of the hidden layer output
𝐻 for each partition is performed in parallel on each
processor. For each partition 𝐷 , compute 𝐻 as:

𝐻 = 𝑔(𝑋𝑊 + 𝑏) (99)

where 𝑊 ∈ 𝑅× and 𝑏 ∈ 𝑅× are the input
weights and biases shared across all processors, and
𝑔(.) is the activation function applied element-wise.
The complexity for computing 𝐻 on each processor

is reduced to 𝑂 ቀ

. 𝑚. 𝐿ቁ, ensuring faster execution.

After computing the hidden layer output on all

partitions, the outputs 𝐻 from each processor are
aggregated to form the global hidden layer matrix
𝐻 ∈ 𝑅×. The aggregation step can be performed
as:

𝐻 = ራ 𝐻

ୀଵ

 (100)

Once 𝐻 is constructed, the output weights 𝛽 ∈

𝑅×ଵ are computed using the least squares method,
which minimizes the error between the predicted
output 𝑌 ∈ 𝑅×ଵ and the actual target values 𝑌. The
solution for 𝛽 is obtained by solving:

𝛽 = (𝐻்𝐻)ିଵ𝐻்𝑌 (101)

The complexity for solving this system remains
𝑂(𝐿ଷ), but since the hidden layer output 𝐻 is
computed in parallel, the overall computational time
for calculating 𝐻 and aggregating the results is
significantly reduced. Next, evaluate the
performance of the FLIO-ELM model on a large
dataset by calculating the predicted output 𝑌 on the
full dataset:

𝑌 = 𝐻𝛽 (102)

Compute the error 𝐸 using the mean squared
error (MSE) metric:

𝐸 =
1

𝑛
(𝑦 − 𝑦ො)ଶ

ୀଵ

 (103)

To further improve scalability, distribute the

optimization steps of the FLIO algorithm across
multiple processors. Partition the frog
population𝑆 = {𝑆ଵ, 𝑆ଶ, … , 𝑆} into subpopulations
𝑆, where each subpopulation is optimized in
parallel. For each frog 𝑆 in the subpopulation, the

fitness is computed based on the performance of the
corresponding ELM model.

The fitness 𝐹 for each frog is computed as:

𝐹 =
1

𝐸

 (104)

where 𝐸 represents the error for the 𝑖𝑡ℎ frog’s ELM
model. The parallel execution of the fitness
evaluation and optimization steps ensures that the
FLIO algorithm can efficiently handle larger
populations and search spaces.

After each parallel optimization iteration, the
best-performing frogs from each subpopulation are
exchanged across processors to ensure diversity and
avoid local optima. This exchange can be modeled
as:

𝑆 = 𝑏𝑒𝑠𝑡 ቌራ 𝑆

ୀଵ

ቍ (105)

where 𝑆 represents the set of globally best-
performing frogs.

Finally, a distributed evaluation of the model's
generalization capability will be performed by
conducting k-fold cross-validation across
processors. Each fold is processed independently on
separate processors, with the validation error for
each fold𝐸௩, computed as:

𝐸௩, =
1

𝑛௩

൫𝑦௩, − 𝑦ො௩,൯
ଶ

ೡೌ

ୀଵ

 (106)

The average validation error 𝐸ത௩ is the
computed as:

𝐸ത௩ =
1

𝐾
 𝐸௩,

ୀଵ

 (107)

This distributed computing approach allows

the FLIO-ELM model to scale efficiently with
increasing data size and complexity, ensuring fast
execution and improved generalization performance.

Algorithm: FLIO-ELM

Input:
 Dataset 𝐷 = {(𝑋, 𝑌)} where 𝑋 represents

input features and 𝑌 represents target
values

 Parameters: number of frogs 𝑃, number of
memeplexes 𝑀, number of hidden neurons
𝐿, mutation rate 𝜇, regularization
parameters 𝜆ଵ and 𝜆ଶ

Output:

 Journal of Theoretical and Applied Information Technology
31st January 2025. Vol.103. No.2

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

488

 Optimized ELM model with refined
weights, biases, and output weights

Procedure:

1. Problem Formulation: Define the problem
to be solved using ELM, including the input
and target datasets.

2. Initialize ELM Parameters: Randomly
initialize input weights, biases, and the
number of hidden neurons for the ELM
model.

3. Frog Population Initialization for ELM
Optimization: Initialize a population of
frogs where each frog represents an ELM
model with a unique combination of
weights and biases.

4. The division into Memeplexes: Divide the
frog population into memeplexes based on
fitness rankings for local optimization.

5. Local Search within Memeplexes: Perform
a local search in each memeplex by moving
the worst-performing frogs toward the best-
performing frogs.

6. Adaptive Frog Leaping Strategy: Adjust the
leap size dynamically based on fitness
improvement in each memeplex.

7. Mutation Mechanism for Diversity: Apply
mutation to a subset of frogs to introduce
random variations in their weights and
biases.

8. Penalty Function for Efficient ELM
Models: Apply a penalty function to
discourage overly complex models and
favor efficient configurations.

9. Hybrid Learning Step: FLIO and Least
Squares Integration: Refine the ELM model
by combining FLIO-optimized weights
with most minuscule squares adjustments
for output weights.

10. Convergence Check and Stopping Criteria:
Monitor the change in fitness or error and
stop the process if predefined convergence
criteria are met.

11. Performance Evaluation of the Final FLIO-
ELM Model: Evaluate the performance of
the optimized model on a test dataset using
error metrics and other evaluation criteria.

12. Final Refinement and Hyperparameter
Optimization: Fine-tune hyperparameters
such as the number of hidden neurons,
mutation rate, and regularization
parameters.

13. Model Stability and Robustness Analysis:
Test the stability and robustness of the
model by introducing noise, performing

cross-validation, and assessing sensitivity
to input features.

14. Computational Complexity and Scalability
Assessment: Analyze the time and space
complexity of the model to assess its
efficiency for larger datasets.

15. Distributed Scalability and Performance in
FLIO-ELM: Distribute the computation
across multiple processors to handle larger
datasets and optimize the model in a
parallel computing environment.

 4. DATASET

The Gestational Diabetes Mellitus (GDM)

dataset encompasses detailed records from 3,525
cases with 17 critical variables. This dataset serves
as a resource for analyzing factors contributing to
gestational diabetes. Key features include
demographic data such as age and number of
pregnancies, medical indicators like BMI, HDL
levels, and blood pressure, and specific risk factors
such as family history, sedentary lifestyle, and
PCOS. Unique attributes like unexplained prenatal
loss and large child or birth defect indicators provide
insights into prenatal complications. The dataset also
tracks clinical test results, including oral glucose
tolerance test (OGTT) and hemoglobin levels, which
are essential for diagnosing and monitoring
prediabetes. Focused on diabetes types, blurred
vision, and autoimmune disorders, it captures a
comprehensive view of health outcomes related to
gestational diabetes. This dataset aids in predictive
modeling, enhancing early diagnosis and
personalized intervention strategies.

 Table 1: GDM Dataset Features Description
Feature Name Description

Case Number Unique identifier for each patient in
the dataset.

Age Age of the individual at the time of
data collection.

Number of
Pregnancies

Total number of pregnancies
experienced by the individual.

Gestation Duration of pregnancy in weeks.

BMI
Body Mass Index, a measure of
body fat based on height and weight.

HDL
High-Density Lipoprotein
cholesterol levels, indicating heart
health.

Family History
Indicator of a family history of
diabetes or related conditions.

Unexplained
Prenatal Loss

History of unexplained
miscarriage or pregnancy loss.

Large Child or
Birth Defect

Record of delivering a child with
high birth weight or congenital
anomalies.

 Journal of Theoretical and Applied Information Technology
31st January 2025. Vol.103. No.2

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

489

PCOS
Presence of Polycystic Ovary
Syndrome, a risk factor for diabetes.

Systolic BP
Systolic blood pressure, measured in
mmHg.

Diastolic BP
Diastolic blood pressure, measured
in mmHg.

OGTT
Oral Glucose Tolerance Test results,
used for diabetes diagnosis.

Hemoglobin
Hemoglobin levels, reflecting the
individual's blood health.

Sedentary
Lifestyle

Indicator of a lack of physical
activity.

Prediabetics
Status indicating a prediabetic
condition.

5. RESULTS AND DISCUSSION

5.1. Classification Accuracy and F-Measure

Analysis
Classification accuracy measures the

proportion of correctly classified instances among
all predictions, reflecting the overall reliability of a
model. The F-measure combines precision and
recall, providing a balanced evaluation of a model's
ability to handle false positives and false negatives.
These metrics are critical in LADA prediction,
where accurate and balanced classification ensures
effective diagnosis and early intervention.

Figure 1: Classification Accuracy and F-Measure

Figure 1 illustrates the performance

comparison of three models—HANN, EDLT, and
FLIO-ELM—using classification accuracy and F-
measure metrics. HANN records the lowest
classification accuracy at 49.833%, highlighting
limitations in correctly classifying LADA instances.
EDLT improves upon this, achieving an accuracy of
62.003%, demonstrating a better capability to handle
LADA prediction. FLIO-ELM outperforms both,
with an accuracy of 81.304%, showcasing its robust
design and optimization efficiency. The F-measure
analysis aligns with the accuracy trends. HANN
shows limited performance with a value of 49.828%,
indicating challenges in balancing precision and

recall. EDLT improves this balance, attaining a
value of 62.087%. FLIO-ELM achieves the highest
F-measure of 82.093%, highlighting its ability to
reduce false predictions effectively. The results
establish FLIO-ELM as a superior approach in
LADA prediction, demonstrating its efficiency in
addressing both classification and balance
challenges.

5.2. False Discovery and Omission Analysis

False discovery rate (FDR) quantifies the
proportion of false positive predictions out of all
positive predictions, providing a measure of the
model’s precision. A high FDR indicates a larger
number of incorrect positive classifications, which
can lead to unnecessary interventions or
misdiagnoses. False omission rate (FOR) represents
the proportion of false negatives among all negative
predictions, measuring the extent of missed true
cases. A high FOR signifies that the model fails to
detect a significant number of actual positive cases,
which can delay critical treatment. In the context of
LADA, minimizing both FDR and FOR is essential
to ensure accurate and timely diagnoses, balancing
precision and recall to achieve reliable outcomes in
clinical applications.

Figure 2 : False Discovery and False Omission

Figure 2 demonstrates the comparative

performance of HANN, EDLT, and FLIO-ELM
models with respect to FDR and FOR. HANN
exhibits the highest FDR at 52.012%, suggesting
considerable inaccuracies in positive predictions.
EDLT reduces this rate to 38.901%, indicating a
moderate improvement in precision over HANN.
FLIO-ELM records the lowest FDR of 17.703%,
reflecting its ability to minimize false positive rates
effectively. In LADA prediction, FLIO-ELM's
performance underscores its reliability in correctly
identifying cases with minimal misclassifications,
thereby enhancing the precision of diagnostic
decisions. These results demonstrate the limitations
of HANN and highlight EDLT’s marginal

49.833 49.828

62.003 62.087

81.304 82.093

0

20

40

60

80

100

Classification Accuracy F-Measure

R
es

ul
ts

 (
%

)

Performance Metrics

HANN
EDLT
FLIO-ELM

52.012
48.175

38.901 37.059

17.703
19.775

0

8

16

24

32

40

48

56

64

False Discovery Rate False Omission Rate

R
es

ul
ts

 (
%

)

Performance Metrics

HANN EDLT FLIO-ELM

 Journal of Theoretical and Applied Information Technology
31st January 2025. Vol.103. No.2

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

490

improvements, while establishing FLIO-ELM as a
superior approach in managing positive
classification errors. The FOR analysis presents a
similar trend. HANN reports the highest value at
48.175%, indicating significant challenges in
detecting true negative cases. EDLT shows
improvement, achieving a FOR of 37.059%,
demonstrating enhanced reliability in reducing
missed diagnoses. FLIO-ELM records the lowest
FOR at 19.775%, effectively minimizing missed
positive cases. These findings highlight FLIO-
ELM’s effectiveness in balancing prediction errors,
reinforcing its efficiency in LADA prediction tasks.

5.3. Positive and Negative Likelihood Analysis

Positive likelihood ratio (PLR) measures how
much a positive result increases the probability of
having a condition, with higher values indicating
better diagnostic capability in identifying true
positives. Negative likelihood ratio (NLR) assesses
how much a negative result decreases the
probability of having the condition, with lower
values indicating fewer missed cases. These metrics
are essential in evaluating model effectiveness for
predictive healthcare applications such as LADA
diagnosis.

Table 2. Positive and Negative Likelihood

Algorithms
Positive

Likelihood
Ratio (%)

Negative
Likelihood
Ratio (%)

HANN 0.996 1.004

EDLT 1.615 0.605

FLIO-ELM 4.234 0.225

Table 2 compares PLR and NLR for HANN,

EDLT, and FLIO-ELM models. HANN shows a
PLR of 0.996, indicating minimal capability to
differentiate true positives from false positives. The
NLR for HANN is 1.004, highlighting significant
limitations in reducing false negatives, thereby
compromising reliability for accurate LADA
prediction. EDLT improves PLR to 1.615,
demonstrating better effectiveness in identifying true
positives. The NLR for EDLT is reduced to 0.605,
indicating moderate improvement in minimizing
false negatives. These results suggest EDLT has an
enhanced but limited diagnostic performance
compared to HANN. FLIO-ELM achieves a PLR of
4.234, representing a substantial improvement in
identifying true positives with high diagnostic
accuracy. Its NLR of 0.225 reflects a significant
reduction in false negatives, showcasing its
robustness in ensuring comprehensive detection.

These results position FLIO-ELM as a reliable
model for accurate and efficient LADA prediction.
The comparative analysis demonstrates that FLIO-
ELM significantly outperforms both HANN and
EDLT across PLR and NLR metrics. Its strong
diagnostic reliability makes it suitable for real-world
healthcare applications requiring precise and
consistent detection capabilities.

6. CONCLUSION

This research addresses the challenges in

accurately diagnosing Latent Autoimmune Diabetes
in Adults (LADA), a form of diabetes blending
characteristics of type 1 and type 2. Misclassification
of LADA as type 2 diabetes remains a critical issue,
often delaying appropriate interventions and
compromising patient outcomes. Existing
classification algorithms struggle with overlapping
symptoms, high-dimensional data, and the dynamic
nature of LADA's progression, limiting their ability
to distinguish this subtype accurately. To resolve
these challenges, the Frog Leap Inspired
Optimization-based Extreme Learning Machine
(FLIO-ELM) was proposed. This hybrid model
integrates bio-inspired optimization with the
computational efficiency of Extreme Learning
Machines to enhance classification performance.
FLIO-ELM optimizes input weights and biases by
simulating frog leap strategies, ensuring better
convergence and feature selection. The adaptive leap
mechanism balances exploration and exploitation,
refining predictions by effectively handling complex
datasets and reducing false discovery and omission
rates. The experimental analysis demonstrates
FLIO-ELM’s superior performance compared to
existing models. It achieved an accuracy of 81.304%
while significantly minimizing false positive and
false negative rates, as evidenced by improved
precision, recall, and F-measure scores. These
results validate FLIO-ELM as a robust, efficient, and
reliable model for LADA prediction, offering
substantial potential for clinical applications and
personalized treatment strategies.

REFERENCES:
[1]. R. M. Wasserman, S. R. Patton, M. A.

Clements, D. Guffey, D. D. Schwartz, and B.
J. Anderson, “Risky self-management
behaviors in adolescents with type 1 diabetes:
Measurement validation for the Diabetes-
Specific Risk-Taking Inventory,” Pediatr
Diabetes, vol. 23, no. 7, pp. 1113–1121, 2022,
doi: 10.1111/pedi.13387.

 Journal of Theoretical and Applied Information Technology
31st January 2025. Vol.103. No.2

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

491

[2]. N. Nirala, R. Periyasamy, B. K. Singh, and A.
Kumar, “Detection of type-2 diabetes using
characteristics of toe photoplethysmogram by
applying support vector machine,” Biocybern
Biomed Eng, vol. 39, no. 1, pp. 38–51, Jan.
2019, doi: 10.1016/j.bbe.2018.09.007.

[3]. J. A. Carter, C. S. Long, B. P. Smith, T. L.
Smith, and G. L. Donati, “Combining
elemental analysis of toenails and machine
learning techniques as a non-invasive
diagnostic tool for the robust classification of
type-2 diabetes,” Expert Syst Appl, vol. 115,
pp. 245–255, Jan. 2019, doi:
10.1016/j.eswa.2018.08.002.

[4]. S. P. Chatratiet al., “Smart home health
monitoring system for predicting type 2
diabetes and hypertension,” Journal of King
Saud University - Computer and Information
Sciences, vol. 34, no. 3, pp. 862–870, Mar.
2022, doi: 10.1016/j.jksuci.2020.01.010.

[5]. K. Kannadasan, D. R. Edla, and V. Kuppili,
“Type 2 diabetes data classification using
stacked autoencoders in deep neural
networks,” Clin Epidemiol Glob Health, vol.
7, no. 4, pp. 530–535, Dec. 2019, doi:
10.1016/j.cegh.2018.12.004.

[6]. A. Talaei-Khoei and J. M. Wilson,
“Identifying people at risk of developing type
2 diabetes: A comparison of predictive
analytics techniques and predictor variables,”
Int J Med Inform, vol. 119, pp. 22–38, 2018,
doi: 10.1016/j.ijmedinf.2018.08.008.

[7]. B. P. Nguyen et al., “Predicting the onset of
type 2 diabetes using wide and deep learning
with electronic health records,” Comput
Methods Programs Biomed, vol. 182, p.
105055, Dec. 2019, doi:
10.1016/j.cmpb.2019.105055.

[8]. J. Ramkumar and R. Vadivel, “Improved frog
leap inspired protocol (IFLIP) – for routing in
cognitive radio ad hoc networks (CRAHN),”
World Journal of Engineering, vol. 15, no. 2,
pp. 306–311, 2018, doi: 10.1108/WJE-08-
2017-0260.

[9]. J. Ramkumar and R. Vadivel, CSIP—cuckoo
search inspired protocol for routing in
cognitive radio ad hoc networks, vol. 556.
2017. doi: 10.1007/978-981-10-3874-7_14.

[10]. D. Jayaraj, J. Ramkumar, M. Lingaraj, and B.
Sureshkumar, “AFSORP: Adaptive Fish
Swarm Optimization-Based Routing Protocol
for Mobility Enabled Wireless Sensor
Network,” International Journal of Computer
Networks and Applications, vol. 10, no. 1, pp.

119–129, 2023, doi:
10.22247/ijcna/2023/218516.

[11]. B. Paul and B. Karn, “Diabetes Mellitus
Prediction using Hybrid Artificial Neural
Network,” in 2021 IEEE Bombay Section
Signature Conference (IBSSC), 2021, pp. 1–5.
doi: 10.1109/IBSSC53889.2021.9673397.

[12]. P. Singh, S. Silakari, and S. Agrawal, “An
Efficient Deep Learning Technique for
Diabetes Classification and Prediction Based
on Indian Diabetes Dataset,” in 2023 3rd
International Conference on Technological
Advancements in Computational Sciences
(ICTACS), 2023, pp. 487–491. doi:
10.1109/ICTACS59847.2023.10390518.

[13]. Y. Ying et al., “An enhanced machine learning
approach for effective prediction of IgA
nephropathy patients with severe proteinuria
based on clinical data,” ComputBiol Med, vol.
173, p. 108341, 2024, doi:
https://doi.org/10.1016/j.compbiomed.2024.1
08341.

[14]. N. Musacchio et al., “A transparent machine
learning algorithm uncovers HbA1c patterns
associated with therapeutic inertia in patients
with type 2 diabetes and failure of metformin
monotherapy,” Int J Med Inform, vol. 190, p.
105550, 2024, doi:
https://doi.org/10.1016/j.ijmedinf.2024.10555
0.

[15]. Prof. M. Madan, Ms. R. Madan, and D. P.
Thakur, “Analysing The Patient Sentiments in
Healthcare Domain Using Machine Learning,”
Procedia Comput Sci, vol. 238, pp. 683–690,
2024, doi:
https://doi.org/10.1016/j.procs.2024.06.077.

[16]. S. L. Cichosz, M. H. Jensen, O. Hejlesen, S. D.
Henriksen, A. M. Drewes, and S. S. Olesen,
“Prediction of pancreatic cancer risk in
patients with new-onset diabetes using a
machine learning approach based on routine
biochemical parameters,” Comput Methods
Programs Biomed, vol. 244, p. 107965, 2024,
doi:
https://doi.org/10.1016/j.cmpb.2023.107965.

[17]. S. Nayak et al., “Development of a machine
learning-based model for the prediction and
progression of diabetic kidney disease: A
single centred retrospective study,” Int J Med
Inform, vol. 190, p. 105546, 2024, doi:
https://doi.org/10.1016/j.ijmedinf.2024.10554
6.

[18]. H.-T. Keng et al., “Derivation and validation
of heart rate variability based Machine

 Journal of Theoretical and Applied Information Technology
31st January 2025. Vol.103. No.2

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

492

learning prognostic models for patients with
suspected sepsis,” Biomed Signal Process
Control, vol. 99, p. 106854, 2025, doi:
https://doi.org/10.1016/j.bspc.2024.106854.

[19]. Kokila, R. Jain, A. Munde, and Z. A. Ansari,
“Determinants of Adoption of Mobile Health
Applications: A Machine Learning
Approach,” Procedia Comput Sci, vol. 235,
pp. 1568–1576, 2024, doi:
https://doi.org/10.1016/j.procs.2024.04.148.

[20]. M. M. Rahman et al., “Empowering early
detection: A web-based machine learning
approach for PCOS prediction,” Inform Med
Unlocked, vol. 47, p. 101500, 2024, doi:
https://doi.org/10.1016/j.imu.2024.101500.

[21]. A. O. Adebanji, C. Asare, and S. A. Gyamerah,
“Predictive analysis on the factors associated
with birth Outcomes: A machine learning
perspective,” Int J Med Inform, vol. 189, p.
105529, 2024, doi:
https://doi.org/10.1016/j.ijmedinf.2024.10552
9.

[22]. Y. Wang et al., “Development and validation
of machine learning models for predicting
cancer-related fatigue in lymphoma
survivors,” Int J Med Inform, vol. 192, p.
105630, 2024, doi:
https://doi.org/10.1016/j.ijmedinf.2024.10563
0.

[23]. S. A. Tanim, A. R. Aurnob, T. E. Shrestha, M.
D. R. I. Emon, M. F. Mridha, and M. S. U.
Miah, “Explainable deep learning for diabetes
diagnosis with DeepNetX2,” Biomed Signal
Process Control, vol. 99, p. 106902, 2025, doi:
https://doi.org/10.1016/j.bspc.2024.106902.

[24]. H. Fu, Y. Yang, V. K. Mishra, and C.-C. J.
Kuo, “Subspace learning machine (SLM):
Methodology and performance evaluation,” J
Vis Commun Image Represent, vol. 98, p.
104058, 2024, doi:
https://doi.org/10.1016/j.jvcir.2024.104058.

[25]. G. Dharmarathne, M. Bogahawaththa, M.
McAfee, U. Rathnayake, and D. P. P.
Meddage, “On the diagnosis of chronic kidney
disease using a machine learning-based
interface with explainable artificial
intelligence,” Intelligent Systems with
Applications, vol. 22, p. 200397, 2024, doi:
https://doi.org/10.1016/j.iswa.2024.200397.

[26]. P. Cihan, A. Saygılı, C. Şahin Ermutlu, U.
Aydın, and Ö. Aksoy, “AI-aided
cardiovascular disease diagnosis in cattle from
retinal images: Machine learning vs. deep
learning models,” Comput Electron Agric, vol.

226, p. 109391, 2024, doi:
https://doi.org/10.1016/j.compag.2024.10939
1.

[27]. M. Kawarkhe and P. Kaur, “Prediction of
Diabetes Using Diverse Ensemble Learning
Classifiers,” Procedia Comput Sci, vol. 235,
pp. 403–413, 2024, doi:
https://doi.org/10.1016/j.procs.2024.04.040.

[28]. A. Mittal et al., “Predicting prolonged length
of stay following revision total knee
arthroplasty: A national database analysis
using machine learning models,” Int J Med
Inform, vol. 192, p. 105634, 2024, doi:
https://doi.org/10.1016/j.ijmedinf.2024.10563
4.

[29]. Y. Luo, R. Dong, J. Liu, and B. Wu, “A
machine learning-based predictive model for
the in-hospital mortality of critically ill
patients with atrial fibrillation,” Int J Med
Inform, vol. 191, p. 105585, 2024, doi:
https://doi.org/10.1016/j.ijmedinf.2024.10558
5.

[30]. B. Singh, S. Indu, and S. Majumdar,
“Comparison of machine learning algorithms
for classification of Big Data sets,” Theor
Comput Sci, vol. 1024, p. 114938, 2025, doi:
https://doi.org/10.1016/j.tcs.2024.114938.

[31]. S. Hur et al., “Development, validation, and
usability evaluation of machine learning
algorithms for predicting personalized red
blood cell demand among thoracic surgery
patients,” Int J Med Inform, vol. 191, p.
105543, 2024, doi:
https://doi.org/10.1016/j.ijmedinf.2024.10554
3.

[32]. M. Zhang et al., “Design of a differentiable L-
1 norm for pattern recognition and machine
learning,” Pattern Recognit Lett, vol. 186, pp.
126–132,2024,doi:
https://doi.org/10.1016/j.patrec.2024.09.020.

[33]. N. K. Ojha, A. Pandita, and J. Ramkumar,
“Cyber security challenges and dark side of
AI: Review and current status,” in
Demystifying the Dark Side of AI in
Business, 2024, pp. 117–137. doi:
10.4018/979-8-3693-0724-3.ch007.

[34]. M. P. Swapna and J. Ramkumar, “Multiple
Memory Image Instances Stratagem to Detect
Fileless Malware,” in Communications in
Computer and Information Science, S.
Rajagopal, K. Popat, D. Meva, and S. Bajeja,
Eds., Cham: Springer Nature Switzerland,
2024, pp. 131–140. doi: 10.1007/978-3-031-
59100-6_11.

 Journal of Theoretical and Applied Information Technology
31st January 2025. Vol.103. No.2

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

493

[35]. J. Ramkumar, S. S. Dinakaran, M. Lingaraj,
S. Boopalan, and B. Narasimhan, “IoT-Based
Kalman Filtering and Particle Swarm
Optimization for Detecting Skin Lesion,” in
Lecture Notes in Electrical Engineering, K.
Murari, N. Prasad Padhy, and S.
Kamalasadan, Eds., Singapore: Springer
Nature Singapore, 2023, pp. 17–27. doi:
10.1007/978-981-19-8353-5_2.

[36]. R. Jaganathan and V. Ramasamy,
“Performance modeling of bio-inspired
routing protocols in Cognitive Radio Ad Hoc
Network to reduce end-to-end delay,” Int. J.
Intell. Eng. Syst., vol. 12, no. 1, pp. 221–231,
2019, doi: 10.22266/IJIES2019.0228.22.

[37]. L. Mani, S. Arumugam, and R. Jaganathan,
“Performance Enhancement of Wireless
Sensor Network Using Feisty Particle Swarm
Optimization Protocol,” ACM Int. Conf.
Proceeding Ser., pp. 1–5, Dec. 2022, doi:
10.1145/3590837.3590907.

[38]. J. Ramkumar, R. Vadivel, B. Narasimhan, S.
Boopalan, and B. Surendren, “Gallant Ant
Colony Optimized Machine Learning
Framework (GACO-MLF) for Quality of
Service Enhancement in Internet of Things-
Based Public Cloud Networking,” in Data
Science and Communication. ICTDsC 2023.
Studies in Autonomic, Data-driven and
Industrial Computing, J. M. R. S. Tavares, J.
J. P. C. Rodrigues, D. Misra, and D.
Bhattacherjee, Eds., Singapore: Springer
Nature Singapore, 2024, pp. 425–438. doi:
10.1007/978-981-99-5435-3_30.

[39]. J. Ramkumar, K. S. Jeen Marseline, and D. R.
Medhunhashini, “Relentless Firefly
Optimization-Based Routing Protocol
(RFORP) for Securing Fintech Data in IoT-
Based Ad-Hoc Networks,” Int. J. Comput.
Networks Appl., vol. 10, no. 4, pp. 668–687,
2023, doi: 10.22247/ijcna/2023/223319.

a. Senthilkumar, J. Ramkumar, M. Lingaraj, D.
Jayaraj, and B. Sureshkumar, “Minimizing
Energy Consumption in Vehicular Sensor
Networks Using Relentless Particle Swarm
Optimization Routing,” Int. J. Comput.
Networks Appl., vol. 10, no. 2, pp. 217–230,
2023, doi: 10.22247/ijcna/2023/220737.

[40]. J. Ramkumar and R. Vadivel, “Improved Wolf
prey inspired protocol for routing in cognitive
radio Ad Hoc networks,” Int. J. Comput.
Networks Appl., vol. 7, no. 5, pp. 126–136,
2020, doi: 10.22247/ijcna/2020/202977.

[41]. D. Jayaraj, J. Ramkumar, M. Lingaraj, and B.
Sureshkumar, “AFSORP: Adaptive Fish

Swarm Optimization-Based Routing Protocol
for Mobility Enabled Wireless Sensor
Network,” Int. J. Comput. Networks Appl.,
vol. 10, no. 1, pp. 119–129, Jan. 2023, doi:
10.22247/ijcna/2023/218516.

[42]. R. Vadivel and J. Ramkumar, “QoS-enabled
improved cuckoo search-inspired protocol
(ICSIP) for IoT-based healthcare
applications,” Inc. Internet Things Healthc.
Appl. Wearable Devices, pp. 109–121, 2019,
doi: 10.4018/978-1-7998-1090-2.ch006.

[43]. P. Menakadevi and J. Ramkumar, “Robust
Optimization Based Extreme Learning
Machine for Sentiment Analysis in Big Data,”
2022 Int. Conf. Adv. Comput. Technol. Appl.
ICACTA 2022, pp. 1–5, Mar. 2022, doi:
10.1109/ICACTA54488.2022.9753203.

[44]. J. Ramkumar, A. Senthilkumar, M. Lingaraj,
R. Karthikeyan, and L. Santhi, “Optimal
Approach for Minimizing Delays in Iot-
Based Quantum Wireless Sensor Networks
Using Nm-Leach Routing Protocol,” J. Theor.
Appl. Inf. Technol., vol. 102, no. 3, pp. 1099–
1111, 2024, [Online]. Available:
https://www.scopus.com/inward/record.uri?e
id=2-s2.0-
85185481011&partnerID=40&md5=bf0ff97
4ceabc0ad58e589b28797c684

[45]. M. Lingaraj, T. N. Sugumar, C. S. Felix, and
J. Ramkumar, “Query aware routing protocol
for mobility enabled wireless sensor
network,” Int. J. Comput. Networks Appl.,
vol. 8, no. 3, pp. 258–267, 2021, doi:
10.22247/ijcna/2021/209192.

[46]. R. Jaganathan and R. Vadivel, “Intelligent
Fish Swarm Inspired Protocol (IFSIP) for
Dynamic Ideal Routing in Cognitive Radio
Ad-Hoc Networks,” Int. J. Comput. Digit.
Syst., vol. 10, no. 1, pp. 1063–1074, 2021,
doi: 10.12785/ijcds/100196.

[47]. J. Ramkumar and R. Vadivel, “Improved frog
leap inspired protocol (IFLIP) – for routing in
cognitive radio ad hoc networks (CRAHN),”
World J. Eng., vol. 15, no. 2, pp. 306–311,
2018, doi: 10.1108/WJE-08-2017-0260.

[48]. J. Ramkumar and R. Vadivel, “Multi-
Adaptive Routing Protocol for Internet of
Things based Ad-hoc Networks,” Wirel. Pers.
Commun., vol. 120, no. 2, pp. 887–909, Apr.
2021, doi: 10.1007/s11277-021-08495-z.

[49]. J. Ramkumar, R. Vadivel, and B. Narasimhan,
“Constrained Cuckoo Search Optimization
Based Protocol for Routing in Cloud
Network,” Int. J. Comput. Networks Appl.,

 Journal of Theoretical and Applied Information Technology
31st January 2025. Vol.103. No.2

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

494

vol. 8, no. 6, pp. 795–803, 2021, doi:
10.22247/ijcna/2021/210727.

[50]. [19] J. Ramkumar and R.
Vadivel, “Whale optimization routing
protocol for minimizing energy consumption
in cognitive radio wireless sensor network,”
Int. J. Comput. Networks Appl., vol. 8, no. 4,
pp. 455–464, 2021, doi:
10.22247/ijcna/2021/209711.

[51]. J. Ramkumar and R. Vadivel, “CSIP—cuckoo
search inspired protocol for routing in
cognitive radio ad hoc networks,” in
Advances in Intelligent Systems and
Computing, Springer Verlag, 2017, pp. 145–
153. doi: 10.1007/978-981-10-3874-7_14.

[52]. J. Ramkumar, C. Kumuthini, B. Narasimhan,
and S. Boopalan, “Energy Consumption
Minimization in Cognitive Radio Mobile Ad-
Hoc Networks using Enriched Ad-hoc On-
demand Distance Vector Protocol,” in 2022
International Conference on Advanced
Computing Technologies and Applications,
ICACTA 2022, 2022. doi:
10.1109/ICACTA54488.2022.9752899.

[53]. S. P. Geetha, N. M. S. Sundari, J. Ramkumar,
and R. Karthikeyan, “Energy Efficient
Routing in Quantum Flying Ad Hoc Network
(Q-Fanet) Using Mamdani Fuzzy Inference
Enhanced Dijkstra ’ S Algorithm (Mfi-Eda),”
J. Theor. Appl. Inf. Technol., vol. 102, no. 9,
pp. 3708–3724, 2024.

[54]. M. P. Swapna, J. Ramkumar, and R.
Karthikeyan, “Energy-Aware Reliable
Routing with Blockchain Security for
Heterogeneous Wireless Sensor Networks BT
- Advances in Information Communication
Technology and Computing,” V. Goar, M.
Kuri, R. Kumar, and T. Senjyu, Eds.,
Singapore: Springer Nature Singapore, 2025,
pp. 713–723.

[55]. Bio-inspired intelligence for smart decision-
making. Sri Krishna Arts and Science
College, India; Auckland University of
Technology, New Zealand; Mata Sundri
University Girls College, Mansa, India: IGI
Global, 2024. doi: 10.4018/979-8-3693-
5276-2.

[56]. S. P. Priyadharshini and J. Ramkumar,
“Mappings Of Plithogenic Cubic Sets,”
Neutrosophic Sets Syst., vol. 79, pp. 669–
685, 2025, doi: 10.5281/zenodo.14607210.

[57]. R. Karthikeyan and R. Vadivel, “Proficient
Dazzling Crow Optimization Routing
Protocol (PDCORP) for Effective Energy
Administration in Wireless Sensor

Networks,” in IEEE International Conference
on Electrical, Electronics, Communication
and Computers, ELEXCOM 2023, 2023, pp.
1–6. doi:
10.1109/ELEXCOM58812.2023.10370559.

[58]. R. Karthikeyan and R. Vadivel, “Boosted
Mutated Corona Virus Optimization Routing
Protocol (BMCVORP) for Reliable Data
Transmission with Efficient Energy
Utilization,” Wirel. Pers. Commun., vol. 135,
no. 4, pp. 2281–2301, 2024, doi:
10.1007/s11277-024-11155-7.

[59]. R. Karthikeyan and R. Vadivel, “Boosted
Mutated Corona Virus Optimization Routing
Protocol (BMCVORP) for Reliable Data
Transmission with Efficient Energy
Utilization,” Wirel. Pers. Commun., vol. 135,
no. 4, pp. 2281–2301, 2024, doi:
10.1007/s11277-024-11155-7.

