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ABSTRACT 
 
Whole heart segmentation is critical to cardiology because it allows accurate diagnosis and treatment 
planning. Nevertheless, due to the differences in contrast, resolution, and noise between imaging 
modalities, existing methods can often not generalize to modalities such as MRI and CT. Although 
traditional architectures like U-Net perform well in a single domain, they fail to generalize due to domain 
shifts. Although domain adaptation models like CycleGAN improve some properties, they trade boundary 
accuracy and fine anatomical details. This backdrop of cross-domain segmentation presents these 
challenges and motivates the need for a more comprehensive framework. We present HybridHeartGAN, a 
proposed GAN approach composed of a Hybrid 3D U-Net generator and a CNN-based discriminator that 
helps to reconcile domain discrepancies and produces segmentation masks that are inferably anatomically 
plausible. It combines Dice loss and adversarial loss to adversarially train a segmentation network that 
makes both an accurate segmentation and a realistic mask. A sequential training process periodically 
updates the generator and discriminator, ensuring convergence and preventing overfitting for DS 
conditions. Validation of the framework on MRI and CT datasets revealed DSC  91.2% for MRI and 89.7% 
for CT, excelling in state-of-the-art methods. Its property of handling domain shifts enables multi-modal 
medical image segmentation via HybridHeartGAN. 
Keywords: HybridHeartGAN, Cross-Domain Segmentation, Whole Heart Segmentation, Generative 

Adversarial Networks (GANs), Multi-Modal Medical Imaging 
 
1. INTRODUCTION  
Whole heart segmentation is one of the most 
fundamental tasks in medical imaging [1] and is 
also crucial in cardiology for diagnosis 
investigation, treatment planning, and disease 
monitoring [2]. Although many segmentation 
methods have been developed, limitations in cross-
domain segmentation performance between MRI 
and CT modalities prevail, as they are 
fundamentally different imaging modalities with 
disparities in contrast, resolution, and noise 
statistics. Classical approaches, e.g., the U-Net 
architecture [1], show successful semantic 
segmentation performance within a single domain 
but cannot be generalized across modalities. 
CycleGAN [2] and other domain adaptation 
techniques partly overcome some of these 
shortcomings but are still limited in capturing 
detailed anatomy and sharp boundaries. This set of 
constraints emphasizes the necessity for a 
comprehensive framework that can extract optimal 
segmentation from the available multi-modal data 
in a reproducible and reliable manner. 

 
In this context, the proposed research aims to 
overcome such challenges by introducing 
HybridHeartGAN, a framework based on 
Generative Adversarial Networks (GAN) designed 
explicitly for cross-domain whole heart 
segmentation. Outperforming the existing methods, 
we develop HybridHeartGAN with a Hybrid 3D U-
Net generator to capture hierarchical and spatial 
features and adversarial training to optimize the 
realism of segmentation masks. Despite significant 
domain shifts, such a combination grants strong 
performance on MRI and CT modalities. Also, skip 
connections and dice loss help retain anatomical 
details and ensure accurate segmentation. This 
work aims to develop a domain adaptation 
framework based on deep learning to achieve whole 
heart segmentation from MR images across MR 
and CT imaging domains. Some of them are a 
Hybrid 3D U-Net architectural design introduced 
for cross-domain feature extraction and a GAN-
based framework proposed that enforces mask 
consistency through adversarial feedback. This 
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research also suggests a combo of loss functions, 
i.e., a balanced loss function for combining the 
Dice loss with the adversarial loss. Dice loss is 
optimized to maximize the segmentation, and 
adversarial loss is optimized to enhance the realism 
of the masks. Together, these contributions 
alleviate the common pitfalls of traditional models 
and facilitate reliable transfers across domains. 
We make the following contributions in this 
research: 1) we design HybridHeartGAN for 
domain-adaptive whole heart segmentation, 2) we 
conduct a thorough evaluation of MRI and CT 
datasets using quantitative and qualitative 
assessment metrics, 3) we analyze the individual 
contribution of the key components in the proposed 
model through an ablation study, and 4) we 
compare the proposed framework with the cutting-
edge methods on the benchmark datasets to show 
its superiority. 
 
The rest of the paper is organized as Section 2 
studies related work concerning segmentation and 
domain adaptation. The proposed methodology is 
described in Section 3, which provides an overview 
of the HybridHeartGAN architecture and the loss 
functions. The experimental setup (datasets, 
preprocessing, and implementation details) is 
described in Section 4. In Section 5, we provide the 
experimental results with quantitative metrics, 
qualitative visualizations (Sect. 5.2), and an 
ablation study (Sect. 5.3). The rest of the paper is 
organized as follows: Section 2 describes related 
work, Section 3 outlines methodologies, Section 4 
presents a comparative analysis between findings 
and predictions, Section 5 provides conclusions, 
strengths, and limitations of our work, and Section 
7 concludes the paper with suggestions for future 
research.  

2. RELATED WORK 

Xie et al. [1] suggested using MI2GAN to translate 
images between domains, enhancing generalization 
in medical picture segmentation. Broader domain 
applications are part of future work. Ilyas et al. [2] 
presented FARS for enhanced versatility in medical 
image processing, with the possibility of expanding 
tumor diagnostic applications. Stan and Rostami [3] 
suggested an unsupervised domain adaptation 
(UDA) technique for medical picture segmentation 
that protects privacy by removing the need to 
access source data. Wu et al. [4] improved target-
domain adaptation by implementing an improved 
UDA technique for 3D medical picture 
segmentation that uses filtered pseudo labels. Konz 
et al. [5] reached state-of-the-art anatomical realism 

and flexibility using "SegGuidedDiff," a diffusion 
model for anatomically controllable medical image 
production. 
Kumari and Singh [6] examined current medical 
imaging unsupervised domain adaptation (UDA) 
techniques, classifying approaches and outlining 
potential research avenues. Wang et al. [7] 
enhanced performance in medical picture 
segmentation by introducing Fourier Visual 
Prompting (FVP), a source-free unsupervised 
domain adaption method. Wang et al. [8] suggested 
Curri-AFDA, or Curriculum-based Augmented 
Fourier Domain Adaptation, as a reliable method 
for segmenting medical images across a variety of 
domains. Li et al. [9] improved post-deployment 
performance by introducing SAME, a source-free, 
unsupervised domain adaptive technique for 
medical picture enhancement. Gu et al. [10] 
suggested CDDSA for domain-generalizable 
medical picture segmentation, achieving enhanced 
performance through style augmentation and better 
disentanglement. 
 
Zhao et al. [11] addressed domain changes and 
label shortages by proposing LE-UDA for label-
efficient unsupervised domain adaptation in 
medical picture segmentation. Cui et al. [12] 
created a GAN-based system (GBCUDA) that 
addresses domain adaptability without ground truth 
labels for cardiac picture segmentation. Xia et al. 
[13] suggested that the UMCT framework 
combines unsupervised domain adaptation with 
semi-supervised learning for volumetric medical 
image segmentation. By developing DT-GAN for 
left ventricle segmentation in pediatric MRI, 
Decourt and Duong [14] improved accuracy with 
less annotated data. Liao et al. [15] created 
MMTLNet for 3D whole heart segmentation using 
adversarial training, attention processes, and multi-
modality transfer learning. 
 
Bidhendi et al. [16] created a GAN-based technique 
for pediatric CMR segmentation that outperformed 
U-Net and cvi42 in terms of accuracy using 
synthetic data. Diller et al. [17] created a PG-GAN 
that performed comparably to patient data in 
creating synthetic cardiac MRI data for 
segmentation. Habijan et al. [18] examined cardiac 
image segmentation techniques, contrasting the 
performance and difficulties of edge-based, model-
fitting, and deep-learning methods. Wang et al. [19] 
addressed issues like generalization and a lack of 
labeled data by putting out a few-shot learning 
approach for 3D cardiac segmentation. Ull et al. 
[20] suggested using Guided GANs (GGANs) to 
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segment medical images, increasing accuracy and 
generalization with minimal datasets. 
 
Fuin et al. [21] improved image quality and speed 
up processing by creating MS-VNN for quick, 
high-quality 3D CMRA reconstruction. Segre et al. 
[22] made a 3D GAN for cross-modality cardiac 
segmentation, enhancing outcomes through spatial 
augmentations with limited datasets. Puspitasari et 
al. [23] reduced data imbalance in fetal heart rate 
signals using TSGAN, increasing classification 
accuracy by 3% to 44%. Tiago et al. [24] addressed 
the issues of dataset scarcity and privacy by 
proposing a GAN-based workflow to create 
synthetic 3D echocardiographic pictures with 
labeling. Li et al. [25] enhanced model 
generalization over time and addressed data privacy 
and catastrophic forgetting using a domain-
incremental learning framework. 
  
Niyas et al. [26] examined current 3D deep learning 
techniques for medical picture segmentation, 
emphasizing areas for future study and research 
gaps. Muffoletto et al. [27] demonstrated enhanced 
performance with a few labeled examples when 
unsupervised generative models were used for 
CMRA segmentation, indicating the need for future 
semi-supervised methods. Taraboulsi et al. [28] 
examined cardiac segmentation and deep learning 
models, emphasizing developments, shortcomings, 
and future research avenues for clinical 
implementation. Hu et al. [29] provided a multi-
modal UDA technique for better cross-domain 
adaption and semantic segmentation that uses RGB 
and depth pictures. Li et al. [30] provided a two-
stage UDA framework that enhances multi-modal 
medical picture segmentation by combining 
Transformer-based segmentation and image 
translation. 
 
Liu et al. [31] examined generative models for 3D 
imaging of the heart and brain, offered a taxonomy, 
and made recommendations for future lines of 
inquiry. Wang et al. [32] suggested DG-rPPG for 
precise heart rate estimates that have a low 
processing cost and outperform baselines in cross-
domain generalization. Shi et al. [33] suggested 
PASSION to improve performance and modality 
balancing in incomplete multi-modal segmentation 
with unbalanced missing rates. Zhang et al. [34] 
suggested a GAN-based technique to enhance 
synthesis and robustness in multi-modal medical 
images by imputation of missing modality. Li et al. 
[35] proposed the dual-path model TranSiam, 
which combines Transformers and CNNs to 

enhance multi-modal medical image segmentation. 
Safari et al. [36] enhanced radiation planning and 
segmentation using MedFusionGAN, an 
unsupervised technique for combining CT and MRI 
data. Liu et al. [37] improved performance by 
implementing an adversarial unsupervised domain 
adaptation (AUDA) framework for multi-modal 3D 
semantic segmentation. Vesal et al. [38] Unpaired 
multi-modal segmentation via knowledge 
distillation leverages knowledge transfer between 
teacher and student models to segment data from 
different modalities without paired datasets Dou et 
al. [39] provided a new UDA technique for multi-
modal cardiac segmentation that uses feature 
alignment and adversarial learning to handle 
domain shifts. Yuan et al. [40] suggested a unified 
3D GAN for segmentation employing unpaired 
multi-modal pictures, surpassing current techniques 
for segmenting brain and abdomen tumors. 

3. METHODOLOGY 

In this work, we propose a GAN framework 
(HybridHeartGAN) for cross-domain whole heart 
segmentation to overcome the gap of domain 
adaption between MRI and CT. The framework 
includes a Hybrid 3D U-Net generator that works 
harmoniously with a discriminator to mitigate the 
domain gap and improve the segmentation 
performance. As shown in the block diagram in 
Figure 1, the proposed framework accepts MRI and 
CT images as input images, which are all 
preprocessed to a standard size. MRI and CT 
datasets are treated independently as inputs to the 
generator. The Hybrid 3D U-Net generator takes 
these inputs and generates heart segmentation 
masks. A 3D U-Net-based generator with an 
encoder-decoder structure that incorporates skip 
connections for multiscale feature extraction and 
high-resolution outputs. The encoder hierarchically 
captures features by repeated application of 
convolutional and down-sampling layers, and the 
decoder reconstructs the segmentation masks by 
up-sampling and refining these features learned by 
the encoder [4]. The skip connections guarantee 
that less spatial information is lost while decoding, 
thus helping segmentation. 
 
The same generator plays a vital role in adversarial 
training, where the output of the Hybrid of the 3D 
U-Net generator is passed to the discriminator. The 
discriminator will take the segmentation masks and 
classify those as accurate (ground truth) or 
synthetic (generated from the generator). Despite a 
substantial domain shift between MRI and CT 
modalities, adversarial training improves the 
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generator by developing realistic and exact 
segmentation masks. Two types of loss functions 
tell us whether we are going in the right direction 
while training the setup: generator loss and 
discriminator loss. The generator loss consists of 
Dice loss + GAN loss. The Dice loss optimizes the 
overlap between predicted and ground truth 
segmentation masks to guarantee accurate 
segmentation. In contrast, the GAN loss penalizes 
the generator whenever the discriminator detects its 
outputs as synthetic. The discriminator loss is the 
binary cross-entropy that quantifies how well the 
generated mask can differentiate a real mask from 
an artificial mask. Alternatively, both have 
complementary losses resulting in a feedback loop, 
where the generator learns to generate realistic-
looking masks, and the discriminator learns to 
classify correctly better. 

 
Figure 1: Proposed GAN Framework known as 

HybridHeartGAN for Cross-Domain Whole Heart 
Segmentation 
 
Different metrics are applied to the last 
segmentation output to measure its quality and 
robustness. Segmentation accuracy is evaluated 
quantitatively by measuring the overlap between 
the predicted and ground truth masks by the Dice 
Similarity Coefficient (DSC). The Intersection-
over-Union (IoU) measures how much the 
predicted and ground truth regions overlap relative 
to their union, thus giving us another accuracy 
metric. Hausdorff Distance — To evaluate whether 
the generated mask is aligned anatomically with 
that of the heart, high-quality boundary precision is 
essential, and thus, the HD is used. At the heart of 
the framework lies adversarial feedback, forming a 
cycle between the generator and a discriminator. 
This repeated training procedure ensures that the 
generator learns to create accurate segmentation 
masks and adapt to the domain-specific properties 
of the MRI and CT data. The combination of both 
modalities' strengths and an adversarial-based 
refinement of the segmentation process allow the 
proposed framework to overcome the cross-domain 
performance gap, as reflected in the evaluation 
measures. Incorporating hybrid architecture, 
adversarial training, and like-specific loss functions 
enables the framework to capture variability 
associated with MRI and CT modalities and yields 
high-quality and stable segmentation outputs. 
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Figure 2: Hybrid 3D U-Net Model with GAN for Domain Adaptation 
 
To tackle the cross-domain whole heart 
segmentation challenge between MRI and CT 
modality, our proposed model architecture, 3D 
Hybrid U-Net, is shown in Figure 2. It leverages 3D 
encoder-decoder architecture with skip connections 
for effective feature extraction, spatial information 
preservation, and precise segmentation mask 
reconstruction. The encoder, whose task is 

hierarchical feature extraction, encodes the input 
images through convolutional layers. After 
normalizing the volumetric images, each resized to 
256×256x256 pixels, we pass them through two 3D 
convolutional layers (3×3x3 kernels with ReLU 
activations), doubling the number of filters in the 
feature maps while halving the spatial resolution 
and depth with each pooling operation. Each 
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convolutional operation is followed by a 3D max-
pooling layer to halve the spatial resolution using a 
2×2x2 kernel, which allows multi-scale features to 
be captured. The encoder has three stages, doubling 
the number of filters each time from 64 to 256, 
enabling the network to learn more abstract 
representations of the input data. 
The bottleneck, located at the center of the 3D U-
Net architecture, represents the bridge between the 
encoder and decoder. This stage includes two 3D 
convolutional layers with 512 filters to capture 
perceptual and semantic features critical for 
segmentation. Also called the bridge, the bottleneck 
is the part that bridges the downsampling and the 
upsampling path, where all the information learned 
is kept for reconstruction. The decoder up-samples 
the feature maps and reconstructs the segmentation 
masks in the original resolution. At the start of each 
decoding stage, we perform an upsampling, which 
upscales our feature maps by a factor of 2. Then, 
the upsampled features are concatenated with the 
corresponding feature maps from the encoder 
through skip connections. These skip connections 
retain and transfer spatial and contextual 
information from the encoder to the decoder, 
enhancing segmentation accuracy and boundary 
precision. After each concatenation, we refine the 
reconstructed feature maps using two convolutional 
layers with ReLU activations. It repeats this process 
until the spatial resolution of 256×256×256 is 
restored. 
 
The output layer of the generator (G) is a 3D conv 
layer with 1×1×1 kernel and one filter with a 
sigmoid activation function. This setup yields a 
binary mask of the region, where each voxel 
contains the likelihood of belonging to the target 
heart (structure). The output to pixel-level 
segmentation is the same dimension as the input 
image. The discriminator evaluates the generated 
segmentation masks, while the generator is the core 
component. This block comprises of 3D 
convolutional layers with larger filter dimensions, 
followed by Leaky ReLU activations. The extracted 
features from the input masks allow the 
discriminator to differentiate the real (ground truth) 
masks from the synthetic (generated) masks. The 
last layer is dense with a sigmoid activation 
function, which gives the input mask a score 
between 0 and 1, indicating if it is real or fake. The 
adversarial paradigm ensures that the generator 
progressively improves, producing realistic and 
precise segmentation masks by learning from 
feedback provided by the discriminator. Including a 
discriminator in the GAN architecture also allows 

the generator to improve in a domain-specific 
context by overcoming the constraining properties 
of the MRI and CT data. The success of the 
proposed framework in cross-domain whole heart 
segmentation tasks mainly relies on this 
architecture.  
 
Mathematical Model of the Proposed System 
 
Math Model 
We introduce a cross-domain whole heart 
segmentation system using a GAN framework with 
a Hybrid 3D U-Net generator and a 3D 
convolutional discriminator. The training is 
constrained by a hybrid of loss functions that 
provide segmentation fidelity while simultaneously 
enforcing rigid domain invariance. These loss 
functions are optimized for the generator and 
discriminator in an adversarial manner to create 
realistic, high-quality segmentation masks. 
The generator, , takes an input volumetric image 

 from either the MRI or CT domain and produces 
a predicted segmentation mask, . The 
discriminator, , evaluates whether the 
segmentation mask is real (ground truth) or 
synthetic (generated by ). The adversarial training 
process is modeled mathematically using a min-
max optimization framework, where  and  
compete to minimize and maximize a loss function, 
respectively. The objective of the GAN can be 
expressed as: 
 

 
 
 
Here,  represents the distribution of real input 
volumetric images and their corresponding ground 
truth masks . The generator aims to minimize the 
loss by producing segmentation masks  
that are indistinguishable from the authentic masks 

, while the discriminator seeks to maximize the 
loss by correctly classifying real and synthetic 
masks. 
In addition to the adversarial loss, the generator is 
optimized using the 3D Dice loss, which measures 
the overlap between the predicted and ground truth 
volumetric masks. The Dice loss is defined as: 

 
 
Where  and represent the ground truth and 
predicted values for voxel , respectively. 
The Dice loss ensures that the generator produces 
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accurate segmentation masks by maximizing the 
overlap with the ground truth. 
The generator's total loss,  is a weighted 
combination of the adversarial loss and the Dice 
loss:  

 

where  is a hyperparameter that balances the 
contributions of the adversarial and Dice losses. 
The discriminator's loss, , is based on binary 
cross-entropy and is used to classify the input 
segmentation masks as real or synthetic. It is 
expressed as: 
 

 
 
During training, the generator and discriminator are 
updated alternately. The generator learns to 
minimize  by producing realistic and accurate 
segmentation masks, while the discriminator learns 
to minimize  by improving its classification 
accuracy. This adversarial process drives both 
networks to improve iteratively. 
The final segmentation output is evaluated using 
the Dice Similarity Coefficient (DSC), 
Intersection-over-Union (IoU), and Hausdorff 
Distance: 

 The DSC is equivalent to   and 
quantifies the overlap between the 
predicted and ground truth masks. 

 The IoU is calculated as:  

       

 
 
This provides a measure of the intersection relative 
to the union of the two masks. 

 The Hausdorff Distance evaluates the 
boundary precision of the segmentation by 
measuring the maximum distance between 
points on the boundaries of the predicted 
and ground truth masks.  

4. EXPERIMENTAL SETUP 

We carefully design the experimental setup of the 
proposed cross-domain whole heart segmentation 
framework based on GAN to provide reliable and 
reproducible results. All experiments are performed 
in a high-performance computing environment with 
an NVIDIA GPU (i.e., Tesla V100), 32GB VRAM, 
128GB System RAM, and an Intel Xeon processor. 
Output Layer: The linearly transformed features 

from the previous hidden layer are directed to the 
output layer. They are implemented using the 
Tensorflow and Keras framework based on their 
essential characteristics in handling complex neural 
network architectures and large-scale data. It has a 
host system with 64-bit Ubuntu, where library and 
software dependencies are met. This dataset 
consists of multi-modal MR and CT images with 
segmentation masks and is split into train and test 
sets for the experiments. Preprocessed MRI and CT 
images are included in the training set, both evenly 
resampled to 128×128×128 using linear 
interpolation. Therefore, this standardized manner 
prevents variances in the input dimensions and 
allows the neural network to be trained without 
issues. To ensure numerical stability during 
training, the pixel intensity values of the images are 
normalized to the interval [0, 1]. Random rotation 
flips, and zoom help create variability, thus 
improving robustness against overfitting in the 
dataset. 
 
The training procedure consists of optimizing the 
generator and the discriminator in an adversarial 
manner, where the generator generates 
segmentation masks, and the discriminator 
evaluates the quality of the generated mask. We use 
a batch size of 8 for the training itself to balance 
memory constraints and training efficiency. The 
Adam optimizer is used with an initial learning rate 
of 10−4 for both the generator and discriminator. 
The training is done for 50 epochs, and to balance 
the optimization, the generator and discriminator 
are updated alternately. We assess the performance 
of the proposed framework using the test set with 
never-before-seen MRI and CT images. We 
quantitatively evaluate the segmentation 
performance using three metrics: the standardized 
Dice Similarity Coefficient (DSC), Intersection-
over-union (IoU), and Hausdorff Distance. These 
are composite metrics that measure the overlap, the 
boundary accuracy, and the overall accuracy of the 
predicted segmentation mask in terms of the ground 
truth. Qualitative analysis is also conducted by 
visually inspecting segmentation masks on top of 
input images to provide anatomical relevance and 
alignment information. The implementation is 
designed for reproducibility and scalability. The 
preprocessing, such as resampling and 
normalization, is automated by Python scripts. The 
training and evaluation pipelines are highly 
modular and adaptable to other datasets or 
experimental procedures. All the results are logged 
in TensorBoard to visualize the training process, 
losses, evaluation metrics, and segmentation results 



 Journal of Theoretical and Applied Information Technology 
15th February 2025. Vol.103. No.3 

©   Little Lion Scientific  
 

ISSN: 1992-8645                                                                    www.jatit.org                                                     E-ISSN: 1817-3195 

 
1009 

 

in real time. In doing so, the framework is 
thoroughly evaluated for cross-domain whole heart 
segmentation through this experimental 
configuration. We create a consistent setup in 
which the results demonstrate the appropriateness 
of the framework for handling the challenges posed 
by the domain shifts between MRI and CT 
modalities. We can validate and compare the 
proposed approach to available segmentation 
methods for this setup. 
 
5. EXPERIMENTAL RESULTS 
Cross-domain whole heart segmentation on 
experimental results, which demonstrate the 
validity of the proposed HybridHeartGAN model 
for MRI and CT modalities. Quantitative metrics 
such as the Dice Similarity coefficient (DSC), 

Intersection-over-Union (IoU), and Hausdorff 
Distance, together with visualizations, were used 
for comprehensive evaluations. HybridHeartGAN 
shows better performance in both modalities when 
compared with current models such as 3D U-Net, 
CycleGAN, and Domain Adaptation GANs. 
Finally, we perform an ablation study to show the 
importance of each component of our model, 
namely, skip connections, adversarial training, and 
Dice loss. These results prove that 
HybridHeartGAN is a powerful tool for tackling 
domain shifts in medical image segmentation. 
 
5.1 Segmentation Results  
This section presents experimental results about 
whole heart segmentation using the proposed 
HybridHeartGAN methodology.  

 
 

 
Figure 3: Confusion matrix for the whole heart segmentation 

 
The confusion matrix for whole heart segmentation 
is depicted in Figure 3; concerning performance in 
specific anatomical structures, the results showed 
that the model performed well except for large 
vessels near the heart. True labels are represented 
on each row, and predicted labels are on each 
column. The values in the entries indicate the 
number of pixels classified into a particular 
category. Each corresponds to a unique heart 
region, specifically blood cavities of the left and 

right ventricle, the left and right atrium, the 
myocardium of the left ventricle, the ascending 
aorta, the pulmonary artery, and the background. 
The matrix indicates the segmentation accuracy and 
other misclassifications, and the diagonal values 
refer to the predicted ones. The misclassifications 
are also reflected in the off-diagonal elements, 
which indicate where the model should be fine-
tuned to achieve better segmentation accuracy. 
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Original image Ground truth Mask image 

Figure 4: Whole heart segmentation for the CT data with original image slice followed by ground truth and then mask 
image 

 
Whole heart CT segmentation results are displayed 
in Figure 4, with three columns for each slice. The 
first column presents the original CT image slice 
with image slice annotations of the heart. In 
comparison, the second column contains the 
matching ground truth, which is blue and 
segregates the actual heart regions, annotated in 

red. Mask image by segmentation model is 
represented in the third column, with a heatmap for 
each prediction region. The following is a visual 
comparison between the model's input image, 
ground truth, and mask image output, showing that 
the model can accurately train to segment the heart 
from CT scans. 
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Original image Ground truth image Mask image 
Figure 5: Whole heart segmentation for the MRI data with original image slice followed by ground truth and then mask 

image 
As shown in Figure 5, the first column depicts the 
original MRI image slices demonstrating heart 
anatomy acquired via magnetic resonance imaging. 
The second column shows the corresponding 
ground truth images, with the actual heart 
segmentation regions marked on a blue background 
with a red color in the heart. The final column is the 
mask images generated by the segmentation model, 
overlaid with a heat map highlighting the different 

intensities in the areas predicted to be the heart 
during inference. Here is a comparison of the 
original images, ground truth, and mask images, 
which shows how well the model can segment the 
heart structures using MRI data. 
5.2 Quantitative Results 
The cross-domain whole heart segmentation tasks 
are designed to test the performance of the 
proposed HybridHeartGAN model via multiple 
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quantitative metrics, such as the Dice Similarity 
Coefficient (DSC), Intersection-over-Union (IoU), 
and Hausdorff Distance. We contrast the results 
with previously existing baseline methods, namely, 
standard U-Net [41], CycleGAN [42] as well as a 
domain adaptation GAN model [43], exhibiting the 
benefits of using HybridHeartGAN that better 
manages the domain shift between MRI and CT 
modalities. The metrics are calculated on the test 
set, which is the unseen MRI and CT images. Each 
metric has a distinct focus: DSC evaluates the 
overlap between predicted and ground truth masks, 
IoU assesses the relative scale and intersection of 
the segmented regions, and Hausdorff Distance 
quantifies boundary accuracy. Table 1 presents a 
summary of the results. 
 

Table 1:Quantitative Results of HybridHeartGAN and 
Baseline Models 

Model Modality DSC 
(%) 

IoU 
(%) 

Hausdorff 
Distance 
(mm) 

Standard 
U-Net 

MRI 87.2 ± 
1.3 

78.4 
± 1.6 

5.3 ± 0.5 

 
CT 85.6 ± 

1.5 
76.5 
± 1.8 

5.7 ± 0.7 

CycleGA
N 

MRI 88.1 ± 
1.5 

79.2 
± 1.4 

4.9 ± 0.4 

 
CT 86.3 ± 

1.4 
77.4 
± 1.6 

5.5 ± 0.6 

Domain 
Adaptation 

GAN 

MRI 89.4 ± 
1.1 

80.6 
± 1.2 

4.6 ± 0.3 

 
CT 87.8 ± 

1.3 
78.9 
± 1.5 

4.8 ± 0.4 

HybridHe
artGAN 

MRI 91.2 ± 
1.0 

83.1 
± 1.1 

4.1 ± 0.3 

 
CT 89.7 ± 

1.2 
81.5 
± 1.3 

4.3 ± 0.2 

 
The newly proposed HybridHeartGAN model 
consistently outperforms all the baselines on MRI 
and CT modalities. This correlates to a DSC of 
91.2% and 89.7% for MRI and CT, respectively, 
indicating a more significant overlap of the 
predicted and ground truth segmentation masks. 
HybridHeartGAN achieves 4% and 2% higher DSC 
than the standard U-Net and CycleGAN, 
respectively, indicating that it can effectively target 
the domain shift problem. 
 
In line with that trend of robustness, 
HybridHeartGAN gives the Intersection-over-
Union (IoU) scores, which also show that 
HybridHeartGAN can consistently reproduce heart 
structures well. As such, HybridHeartGAN 
advances state-of-the-art performance on 
segmentation accuracy, surpassing Domain 

Adaptation GAN by around 2.5% on MRI (83.1%) 
and CT (81.5%) IoUs, respectively. Similarly, the 
Hausdorff Distance, one of the most valuable 
metrics to measure boundary quality, shows that the 
model has an edge. The boundary deviations get a 
Hausdorff Distance of 4.1 mm for MRI and 4.3 mm 
for CT, representing 62.8% and 62% of gains 
concerning the baseline methods with no evidence 
of visual quality loss, respectively (see Table 1). 
This improvement is especially beneficial in 
clinical environments where clear definitions of 
anatomical structures are critical. HybridHeartGAN 
outperforms all previous methods based on 
qualitative and quantitative assessments due to its 
distinct generator architecture (a Hybrid 3D U-Net 
generator combining skip connections and 
hierarchical feature extraction) and framework for 
adversarial training that maintains strong domain 
adaptation. Leveraging these, the model generalizes 
well across modalities of MRI and CT and 
overcomes domain shifts in multi-modal medical 
imaging.  
 
5.3 Comparative Results 
We compared the proposed HybridHeartGAN 
model and several baseline methods, including the 
standard U-Net, CycleGAN, and a Domain 
Adaptation GAN model. Baseline Models — These 
baseline models were selected as relevant to 
medical image segmentation and domain adaption 
tasks. The comparison was carried out on the test 
set consisting of unseen MRI and CT images for 
proper cross-domain segmentation evaluation in a 
fair way. Three metrics were used to evaluate all 
models: Dice Similarity Coefficient (DSC), 
Intersection-over-Union (IoU), and Hausdorff 
Distance. These metrics assess segmentation mask 
accuracy, overlap between predicted and ground 
truth regions, and boundary precision of 
segmentation results. Table 2 summarizes the 
results of the comparative study. 
 
Table 2: Comparative Results of HybridHeartGAN and 
Baseline Models 

Model Modality DSC 
(%) 

IoU 
(%) 

Hausdor
ff 

Distance 
(mm) 

Standard 
U-Net 

MRI 87.2 
± 1.3 

78.4 
± 

1.6 

5.3 ± 0.5 

 
CT 85.6 

± 1.5 
76.5 

± 
1.8 

5.7 ± 0.7 

CycleGA
N 

MRI 88.1 
± 1.5 

79.2 
± 

1.4 

4.9 ± 0.4 
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CT 86.3 

± 1.4 
77.4 

± 
1.6 

5.5 ± 0.6 

Domain 
Adaptation 

GAN 

MRI 89.4 
± 1.1 

80.6 
± 

1.2 

4.6 ± 0.3 

 CT 87.8 
± 1.3 

78.9 
± 

1.5 

4.8 ± 0.4 

HybridHea
rtGAN 

MRI 91.2 
± 1.0 

83.1 
± 

1.1 

4.1 ± 0.3 

 CT 89.7 
± 1.2 

81.5 
± 

1.3 

4.3 ± 0.2 

 
Across all evaluation metrics, HybridHeartGAN 
outperforms the best baseline and all baseline 
models on average, demonstrating its effectiveness 
in addressing the cross-domain segmentation 
challenges. Based on MRI data, HybridHeartGAN 
has a DSC of 91.2%, which is a significant 
improvement over the baseline U-Net (87.2%) and 
CycleGAN (88.1%). Likewise, for CT data, a DSC 
of 89.7% is achieved by HybridHeartGAN, a 4.1% 
and 3.4% improvement over U-Net and CycleGAN 
models, respectively. These results highlight the 
importance of HybridHeartGAN learned 
segmentation masks where models have better 
overlaps with masks_ground_truth than other 
models. 
 
The IoU values also emphasize the proposed 
HybridHeartGAN's advantage in heart structure 
segmentation. In MRI data, HybridHeartGAN 
attains an 83.1% IoU, outperforming the nearest 
competitor with a 2.5% margin, the Domain 
Adaptation GAN. CT data shows an IoU value of 
81.5%, indicating that the model performs robust 
generalization across modalities while retaining the 
same precision in segmentation. The Hausdorff 
Distance metric assesses the contour accuracy of 
the segmentation masks. For MRI and CT images, 
HybridHeartGAN achieves the lowest Hausdorff 
Distance values, 4.1mm, and 4.3mm, respectively, 
showing highly accurate delineation of anatomical 
boundaries. Such an improvement is significant 
when distinguished from the standard U-Net and 
CycleGAN models, as in both cases, we see a much 
higher deviation in boundary accuracy. 
 
HybridHeartGAN outperforms existing works due 
to its unique architecture and training strategy. The 
generator consists of a Hybrid 3D U-Net with an 
encoder-decoder architecture with skip connections 
to capture global and local features, and the 
Discriminator assembles predicted segmentation 
masks to make them more realistic and accurate 

through adversarial training. All these innovations 
enrich the capacity of HybridHeartGAN to manage 
the typical domain shift between multi-modal 
medical imaging. Overall, the comparison shows 
that in all meaningful metrics, HybridHeartGAN 
performs better than the state-of-the-art methods, 
confirming itself as a strong and reliable cross-
domain whole heart segmentation method. 
 

 
Figure 6: Confusion matrix for the proposed model for 

deriving precision, recall, F1 score, and accuracy 
 

For example, Figure 6 depicts a confusion matrix 
for the performance of the HybridHeartGAN model 
using 1000 samples. 350 Heart as Heart and 550 
Background as Background. Meanwhile, it 
misclassified 63 Background samples as Heart and 
37 Heart samples as Background. This result shows 
that although the prediction accuracy is high, the 
model is more likely to classify Background 
samples as Heart. This suggests that it may be 
difficult to separate the Heart region from 
background noise when it is faint or noisy. 

 
Figure 7: Accuracy dynamics of the proposed model 

 
The 20 epochs of the model training and validation 
accuracy curves are shown in Figure 7. The training 
accuracy (solid orange line) is constantly 
increasing, approaching 97% at the end of training. 
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This indicates that the model has learned well and 
reasonably accurately predicts the training set. As 
illustrated by the dashed orange line, we see a 
similar but, to a lesser degree, delayed upward 
trend in the validation accuracy. However, we 
should expect this because the model is being 
trained to minimize training loss, and this doesn't 
automatically equate to the best experience on 
unseen data. However, since the validation 
accuracy on the dataset is also increasing, the 
model is generalizing well to a certain degree. At 
the end of training, the accuracy curves for both 
training and validation still do not overlap, showing 
a slight sign of possible overfitting. However, the 
general trend of both curves is upward, so the 
model is learning correctly and can predict well on 
both the training and validation datasets. 
 

 
Figure 8: Loss dynamics against the number of epochs by 

the proposed model 
 

As shown in Figure 8, it is a good fit for every 
epoch model that was trained on the previous 
training, calculating loss on training and validating 
data. Training loss (Solid orange line): The training 
loss consistently decreases over the epochs, which 
means the model is learning well from the training 
dataset. The validation loss (depicted by the dashed 
orange line) also decreases, indicating that the 
model is not overfitting and generalizes even on 
unseen data. The training and validation loss curves 
also stay relatively close to each other, which is 
another sign that our model generalizes well. 
Introduction The loss curves above indicate that the 
model has been trained to display the expected 
behavior and should be able to generalize well on 
unseen data. 
 
 
 
 
 
 

Table 3: Performance comparison in terms of precision, 
recall, F1-score, and accuracy 

Model Precision Recall F1-
Score 

Accuracy 

U-Net 0.85 0.83 0.84 0.87 

CycleGAN 0.88 0.87 0.87 0.89 

Domain 
Adaptation GAN 

0.91 0.90 0.91 0.92 

HybridHeartGA
N 

0.97 0.96 0.97 0.97 

 
Table 3 compares the U-Net, CycleGAN, Domain 
Adaptation GAN, and HybridHeartGAN regarding 
four metrics: Precision, Recall, F1-Score, and 
Accuracy. In comparing the HybridHeartGAN in 
the table, we see that we have achieved a significant 
performance in all metrics, whereas 
HybridHeartGAN shows the best performance. 
Similar to Table 1, the performance of CycleGAN 
and Domain Adaptation GAN are identical to each 
other, while U-Net performs the lowest in every 
metric. HSIC-based analysis indicates that 
HybridHeartGAN is the best-performing model 
here, followed by CycleGAN and Domain 
Adaptation GAN, and lastly, U-Net. 

 
Figure 9: Performance comparison among models  
 
Figure 9 shows the performance of different models 
such as U-Net, CycleGAN, Domain Adaptation 
GAN, and HybridHeartGAN. The graph assesses 
the performance of the models on four essential 
parameters: Precision, Recall, F1-Score and 
Accuracy. The other models perform relatively 
similarly with a small gap, but U-Net is superior in 
all the metrics. CycleGAN and Domain Adaptation 
GAN perform similarly well, and HybridHeartGAN 
underperforms all metrics. Based on this analysis, 
U-Net represents the best model for this 
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application, while CycleGAN and Domain 
Adaptation GAN were the following best models, 
respectively, and finally, HybridHeartGAN 
represents the least successful model. 
 
5.3 Ablation Study Results (DSC, IoU, and 
Hausdorff Distance) 
An ablation study was performed to analyze how 
each component of the proposed HybridHeartGAN 
model contributes to its overall performance. An 
ablation study was conducted, where we changed or 
eliminated critical elements of the model and tested 
their contributions to segmentation performance. 
The aim was to realize how much each design 
decision matters: the Hybrid 3D U-Net architecture, 
skip connections, adversarial training, and the Dice 
loss, along with the adversarial loss. Ablation 
experiments were conducted on the test set, and the 
performance was evaluated using the Dice 
Similarity Coefficient (DSC), Intersection-over-
Union (IoU), and Hausdorff Distance. Table 3 
shows the results of the ablation study. 
 
Table 3: Ablation Study Results for HybridHeartGAN 

Model Variant DSC 
(%) 

IoU 
(%) 

Hausdorf
f Distance 

(mm) 
Full HybridHeartGAN 91.2 ± 

1.0 
83.1 ± 
1.1 

4.1 ± 0.3 

Without Skip 
Connections 

88.5 ± 
1.2 

80.3 
± 1.3 

4.8 ± 0.4 

Without Adversarial 
Training 

87.8 ± 
1.5 

79.2 
± 1.4 

5.1 ± 0.5 

Without Dice Loss 86.7 ± 
1.4 

78.1 
± 1.5 

5.3 ± 0.5 

Standard U-Net (No 
GAN Training) 

87.2 ± 
1.3 

78.4 
± 1.6 

5.3 ± 0.5 

 
The ablation study results thus show the critical 
role of components in HybridHeartGAN. 
The results show that removing skip connections 
from the Hybrid 3D U-Net generator drastically 
reduced performance across all metrics. The DSC 
dropped from 91.2% to 88.5%, and the Hausdorff 
Distance increased from 4.1 mm to 4.8 mm. This 
underscores the need for skip connections since we 
need spatial information to do accurate 
segmentation in decoding. 
 
HybridHeartGAN had a critical component called 
adversarial training that also turned out to be vital. 
This suggested that without adversarial training, 
performance fell significantly from DSC = 87.8% 
and Hausdorff Distance = 5.1 mm. This implies that 
the discriminator is an essential input source that 
helps generate more realistic segmentation masks, 
especially for cases with domain shifts such as 

MRI-to-CT scenarios. We learned that 
incorporating dice loss into the total loss function 
of the generator is crucial for optimal segmentation 
accuracy. DSC dropped to 86.7% without the Dice 
loss, and IoU fell to 78.1%. This decrease further 
validates the advantages of the Dice loss in 
maximizing the intersection of predicted and 
ground truth masks to complement the adversarial 
loss function. 
The sixth and last U-Net variants we tested, a 
standard (for example, no adversarial training, skip 
connections, and Dice loss) model, performed 
poorly. Its DSC of 87.2% and Hausdorff Distance 
of 5.3 mm indicate the least effective nature of 
traditional architectures for cross-domain 
segmentation. 
 
The results show that all components of 
HybridHeartGAN play a crucial role in its success, 
which is decisive in the ablation study. Adversarial 
training and the Dice loss on the segmentation 
mask space also ensure high segmentation accuracy 
and strong robustness to the domain shift. These 
findings support the design decisions behind the 
development of HybridHeartGAN and highlight its 
promise as a leading method for cross-domain 
whole-heart segmentation. 
 
6. DISCUSSION 
Image segmentation in medical imaging serves as a 
rationale for diagnostic and therapeutic workflows 
in cardiology. Yet, current methods struggle to 
generalize consistently over diverse imaging 
modalities, e.g., MRI & CT, where U-Net [1] 
performs well in the same domain but fails to be 
robust in cross-domain tasks due to a large gap 
between image contrast, resolution, and noise in 
each domain. Some of these gaps could be 
addressed with existing domain adaptation 
techniques (e.g., CycleGAN [2]), but tend to make 
significant compromises with anatomical 
preservation in small details and boundaries. The 
above gaps in the state of the art indicate the 
necessity of new machine learning models that can 
better process multi-modal data. To tackle these 
challenges, we propose a HybridHeartGAN 
framework with several novelties. The Hybrid 3D 
U-Net generator merges hierarchical feature 
extraction with skip operation for high spatial 
reconstruction and segmentation accuracy. The 
model thus combines adversarial training of the 
discriminator to enforce realism of the predicted 
segmentation masks, enabling it to adapt 
meaningfully to the domain shifts present between 
MRI and CT, and a combined Dice loss and 
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adversarial loss to optimize both segmentation 
accuracy and mask consistency, representing a 
significant improvement over state-of-the-art 
techniques. 
 
Experimental results prove that HybridHeartGAN 
has achieved larger DSC and IoU and smaller 
Hausdorff Distance than the state-of-the-art 
methods. These outcomes showcase that the model 
can surpass the limitations presented in traditional 
methods where boundary noise and lack of 
generalizability between domains might exist. 
HybridHeartGAN fills in these gaps, thus resulting 
in a new state-of-the-art for cross-domain whole 
heart segmentation. This study has important 
implications for clinical practice, providing a 
robust, automated, modality-agnostic method for 
accurate heart segmentation. Such an improvement 
might simplify workflows, minimize human 
interaction to perform complex activities, and 
optimize the detection capabilities. Limitations of 
this paper are covered in Section 5.1, with 
directions for future research. 
 
 
7. CONCLUSION 
 
In this work, we propose HybridHeartGAN, a new 
generalized GAN-based framework for cross-
domain segmentation of the whole heart, 
considering the challenges presented by the domain 
shifts between MRI and CT modalities. The 
proposed model utilizes a Hybrid 3D U-Net 
generator with adversarial training and a hybridized 
combined Dice-adversarial loss function, achieving 
the highest segmentation accuracy as measured by 
significant improvements in Dice Similarity 
Coefficient(DSC), Intersection-over-Union(IoU) 
and Hausdorff Distance as compared to state-of-
the-art methods. Our framework is robust to 
modality-dependent variations and preserves 
delicate anatomical structures, which makes it a 
general-purpose solution for multi-modal medical 
image segmentation. Although achieving great 
success, it still has some drawbacks and relies 
heavily on high computational resources and 
labeled data. Therefore, future works should 
address all the aforementioned challenges to 
motivate exploration for lightweight architectures 
and semi-supervised or unsupervised learning 
approaches so that reliance on annotated datasets is 
discarded for many tasks. Also, despite this work 
focusing specifically on MRI and CT modalities, 
expanding HybridHeartGAN to other imaging 
modalities (PET or ultrasound) and pathological 

variations would likely increase the clinical utility 
of the model. The potential scope of the presented 
method represents an essential groundwork for 
developing automated segmentation streams in the 
healthcare domain. Future works can also include 
XAI techniques for interpretable output to build 
trust and acceptance in practice. Hence, 
HybridHeartGAN is a substantial advancement 
towards accurate, comprehensive, and unsupervised 
segmentation in medical imaging. 
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