
 Journal of Theoretical and Applied Information Technology
15th February 2025. Vol.103. No.3

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1038

FORWARD AND REVERSE ENGINEERING USING UML
WITH RATIONAL ROSE AND OBJECT-ORIENTED

PROGRAMMING LANGUAGE

1DR G LAKSHMI, 2DR. KOLLURU SURESH BABU,3DR. RATNA RAJU MUKIRI, 4DR L
BHAGYA LAKSHMI, 5D VENKATA RAVI KUMAR 6DR SURESH BETAM 7CHETLA

CHANDRA MOHAN

1Asst Prof, Dept. of IT, PVP Siddhartha Institute of Technology Vijayawada, AP

2 Professor & HOD, Dept.of CSE, Vasireddy Venkatadri Institute of Technology, Namburu AP.
3Assoc Professor, Dept. of CSE, St. Ann's College of Engineering and Technology, Chirala, AP

4Sr Asst Prof, Dept. of Freshman Engineering, Lakireddy Bali Reddy College of Engineering, Mylavaram, AP
5Associate Professor, Dept. of CSE, Aditya University, Surampalem AP

6Asst Professor Dept. of CSE, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur, AP
7Asst Professor, Dept. of IT, PVP Siddhartha Institute of Technology Vijayawada, AP

Email: chetlachandramohan234@gmail.com

ABSTRACT

Sometimes the source code itself is the only documentation available for post-delivery maintenance. When
maintaining legacy systems—that is, software that is still in use but was created no more than 15 or 20
years ago—this occurs far too frequently. It might be quite challenging to maintain the code in these
situations. Starting with source code and trying to reproduce the design documents or even the specs is one
method of addressing this issue. We refer to this procedure as reverse engineering. This approach can be
aided by CASE tools. A nice printer is one of the easiest, and it could make the code easier to see. Other
technologies create diagrams, like UML diagrams or flow charts, straight from the source code; these visual
aids can support the design recovery process.
 One of the two options available to the maintenance team after reconstructing
the design is to try to reconstruct the specifications, make the necessary modifications to the reconstructed
specifications, and then re-implement the product in the conventional manner. In the context of reverse
engineering, forward engineering is the standard development process that moves from analysis through
design to implementation. Roundtrip engineering is the process of combining forward and backward
engineering. This paper describes how to use UML with Java and Rational Rose to do this.

Keywords: Forward Engineering, Reverse Engineering, UML, JAVA, Rational Rose

1. INTRODUCTION

Unified Modelling Language is what UML stands
for. A language called UML is used to document
and visualize the artifacts of software-intensive
systems. Model, according to James Rumbaugh, is
a simplification of reality. Modelling is the process
of capturing key components of a system.
Visual modelling is a type of modelling that uses
common graphical symbols. In order to better
comprehend the system, we are creating, we
construct models.
Models allow us to specify the structure of a
system, help us visualize a system as it is or as we
wish it to be, and provide a template that directs the

system's construction.
Models can serve as a record of our decisions; they
can capture business processes; they are a tool for
communication; they can manage complexity; and
they encourage reuse.

 In the late 1980s and early 1990s there
were 3 methodologies:
Booch Methodology: This was designed by Grady
Booch which is great in design
OMT (Object Modeling Technique)
Methodology: This was designed by James
Rumbaugh et’ al which is great in analysis

 Journal of Theoretical and Applied Information Technology
15th February 2025. Vol.103. No.3

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1039

OOSE (Objectory) Methodology: This was
designed by Ivar Jacobson which is heart of UML
i.e., use case
 In 1994, James Rumbaugh joined in
Rational with Booch and worked together and this
is the beginning of unification method. In 1995,
Jacobson joined in Rational with Booch and Jim. In
1996, matured unified method was released. In
1997, in January UML 1.0 was released. In 1997 on
November 14th UML was accepted by OMG and
accepted as a standard language. UML can be used
in

1. Banking and Financial services
2. Telecommunications
3.Transportation
4. Defense
5. Retail
6. Modeling Electronics
7.Scientific
8. Distributed Web services

1.1UML Diagrams
 Diagram is a graphical representation of
elements. UML diagrams can be classified into two
types

1. Structural Diagrams 2.
Behavioral Diagrams

Structural Diagrams:
 These can be divided into 4 types:

i. Class Diagram
ii. Object Diagram

iii. Component
iv. Deployment Diagram

Behavioral Diagrams:
 These can be classified into 5 types:

i. Use case diagrams
ii. Activity Diagram

iii. iii. State Chart Diagram
iv. Sequence diagram
v. Collaboration diagram

1.1.1BEHAVIORAL DIAGRAMS
i. Use case Diagram:

Use case diagram is created to visualize the
interaction of our system with the outside world.
The components of use case diagram are:
Use Case: Scenarios of the system
Actor: Someone or something who is interacting
with the system
Relationship: Semantic link between use case and
actor. The forms of relationship are:

a. Association b. Dependency
c. Generalization

ii. Activity Diagram
Activity diagram shows the flow of events within
our system. The components are:

a) Start State d) Decision
Box

b) Synchronization Bar e) End State
c) Transition f) Swim Lane

iii. Interaction Diagram
An interaction diagram models the dynamic
aspects of the system by showing the
relationship among the objects and messages
they may dispatch. There are two types of
interaction diagrams:

1. Sequence Diagram
Sequence diagram shows the step to step what
mush happen to accomplish a piece of functionality
provided by the system. The components are:

a) Actor d) Lifeline
b) Focus of Control e)

Messages f)Object
2. Collaboration Diagram

Collaboration diagram displays object interactions
organized around objects and their links to one
another. The components are:

a) Actor b)Object
c)Link

iv. State chart Diagram
State chart diagram show a life cycle of a single
class. The state is a condition where the object may
be in. The components are:

a) Start state
b) State
c) Transition
d) End state

1.1.2STRUCTURAL DIAGRAMS
i. Class Diagram

Class diagram shows structure of the software
system. The class diagram shows a set of classes,
interfaces and their relationships. The components
are:

a) Class
b) Relationship:

 The forms of relationship are:
1. Association
2. Dependency
3. Composition
4. Generalization 5.Aggregation

ii. Component Diagram
Component is a smallest individual physical
replaceable part of the system. Component diagram
shows the organization and dependencies among
software components. The components present are:

a) Component
a. Runtime component(.dll)
b. Software components(.h)
c. Executable components(.exe)

b) Dependency
c) Interface

 Journal of Theoretical and Applied Information Technology
15th February 2025. Vol.103. No.3

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1040

iii. Object Diagram
Object diagram shows objects and links among
objects. The components are:

a) Object b)Link
The object diagram cannot be model in rational
rose.

iv. Deployment Diagram
Deployment diagram visualizes distribution of
components across the enterprise

2.INTRODUCTION TO RATIONAL ROSE
 Rational Rose is a software where the
UML can be model. Here, Rational is the name of
the software, ROSE stands for Rational Object
Software Engineering.
To draw the UML Diagram in Rational Rose:

Step 1: Start Rational software, in that
Rational Rose Enterprise Edition. After that
Rational Rose Enterprise Edition will be activated.
The Rational Rose window contains 5 parts.

1. View Table
It contains:
a. Use case view

c.
b. Logical view
c. Component view
d. Deployment view

2. Diagram Tool Bar
This can contain the tools of the
corresponding diagram in which we
are going to draw

3. Diagram Window
In this window we can draw the
diagram

4. Message Window
It contains the message of
documentation of the corresponding
diagram

5. Log Window
This is the place where the errors can
be displayed when we are drawing the
diagram

2.1 USECASE VIEW
 In this view we can draw two diagrams:

1. Use case diagram
2. Activity Diagram
Steps to draw diagram:
1. Select use case view and then right

click on use case view
2. Select New, in that select use

case/activity diagram
3. Name the diagram
4. After double clicking on the diagram

name, the corresponding use
case/activity will be opened

5. We can draw the diagram by drag and
drop the components of the
corresponding diagram

2.2LOGICAL VIEW
 In this view we can model:

a. Class diagram
b. Sequence diagram
c. Collaboration diagram
d. State Chart diagram

To draw the diagram:
1. Select logical view and then right

click on the logical view
2. Select new in that select class/ state

chart/ sequence diagram
3. Name the diagram
4. After double clicking on the diagram

name, the corresponding diagram will
be opened

5. We can draw the diagram by drag and
drop the components of the
corresponding diagram

2.3 COMPONENT VIEW
 In this view we can model Component
Diagram

To draw the diagram:
1. Select component view and then click

on the component view
2. Select New, in that select component

diagram
3. Name the diagram
4. After double clicking on the diagram,

the corresponding diagram will be
opened

5. We can draw diagram by drag and
drop the components of corresponding
diagrams

2.4 DEPLOYMENT VIEW
In this we can model deployment diagram

 To draw diagram:
1. Select deployment view, then right

click on deployment view
2. Select New, in that select deployment

diagram
3. Name the diagram
4. After double clicking on the diagram

name, the corresponding diagram will
be opened

5. We can draw diagram by drag and
drop the components of corresponding
diagrams

 [
3.UNIFIED LIBRARY APPLICATION(ULAS)
INTRODUCTION
The Unified Library Application System places a
strong emphasis on online book reservations, loan,

 Journal of Theoretical and Applied Information Technology
15th February 2025. Vol.103. No.3

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1041

and return. The current library system is made
global by this system. The member can reserve any
book from anywhere in the world by using this
application. This application, which is still in its
infancy, will soon transform the current library
system.
A brief synopsis of the unified library application
system is as follows:

 Librarian lends books and magazines and
maintains list of members.

 Librarian maintains the list of all the
members of library

 Borrower makes reservation online
 Borrower can remove reservation online
 Librarian issues books to the borrower and

calculate bills.
 Borrower issues/returns books and/or

magazines
 Librarian places order about the

requirements to the master librarian
 Librarian updates system
 Master librarian maintains librarians

3.1TEXTUAL ANALYSIS
(a) ACTORS

i. Librarian
iii.Catalog

ii. MasterLibrarian
iv.Borrower

(b) VERBS
i. Borrower:

1. Logs into the system
2. Browses/searches for books or

magazines
3. Makes/removes reservation
4. Views results and reports from

the unified library application
system

ii. Librarian:
1. Manages and validates members
2. View reports from the system
3. Issues books
4. Calculates dues
5. Takes books
6. Places orders to the master

librarian
7. Maintains list of books and

magazine
iii. Master Librarian
1. Maintains other librarians

3.2FORWARD ENGINEERING: steps to do the
forward engineering by considering ULAS as
Case Study

a. Step1 – Project Specification

b.Step2 – Set Path

 Step3:-.Browse the path

Step4 – Select the classes to be forward engineered

 Journal of Theoretical and Applied Information Technology
15th February 2025. Vol.103. No.3

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1042

step5-Select Tools -> Java/J2EE -> Generate ccode to
forward engineer

The code is generated at the specified path that is specified
under Project Specification part as:

Administrator:
public class administrator {
 private String name;
 private String ID;
 public Librarian theLibrarian;
 public administrator() { }
 public String receive_order() {
 return null;}
 public void manage_librarians() {}

 public void purchase_new_stock() {}}
3.3REVERSE ENGINEERING: steps in
reverse engineering

Step 1 :- Open new project -> Class Diagram under
Logical View

 Step2 :-Select Tools -> Java/J2EE -> Reverse
Engineer to reverse engineer the code

 Step2 :-Select Tools -> Java/J2EE -> Reverse
Engineer to reverse engineer the code

Sstep3 :-Specify the path of code to reverse engineer.
Select the files to be reverse engineered

 Journal of Theoretical and Applied Information Technology
15th February 2025. Vol.103. No.3

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1043

 Sstep4 :-After adding all code files click Select
 All and then click Reverse.

. step 5.The classes generated in the tree window. Drag
all the classes to the required area. The associations

among the classes is generated automatically

at last the reverse engineering is complete.

 Journal of Theoretical and Applied Information Technology
15th February 2025. Vol.103. No.3

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1044

4. CONCLUSION: Forward and reverse
engineering are combined to create roundtrip
engineering. This paper describes how to use
forward engineering to produce the skeleton source
code from the comprehensive design and reverse
engineering in UML with Rational Rose and Java
to extract visual notations such as UML diagrams
from the documentation called source code.

REFERENCE:

[1].Pankaj Jalote ,” An Integrated Approach to Soft
ware Engineering” 2 nd Edition , Narosa
Publishing House,2004,Chapter-4 (Planning a
Software Project),Pg no. 166-170. ISBN – 81-
7319-271-5

[2].Roger S Pressmen, “Software Engineering - a
Practitioner’s Approch” 6th Eddition Mc Graw
Hill international Edition, Pearson education,
ISBN 007 - 124083 - 7

[3]Waman S Jawdekar, “Software Engineering
Principles and Practices” Tata Mc graw hill
ISBN 0 -07 - 058371 – 4

[4] Walker Royce “Software Project Management
- A unified frame work” 2nd Edition, low price
Edition, ISBN 81 - 7758 - 378 - 6, pearson
education

 [5].Ian somarville, “Software Engineering” 5th
Edition low price Edition, International
Computer Science Series.

 6. Shari, Laurance, Pfleeger, “Software
Engineering theory and practies” 2nd Edition,
ISBN 81 - 7808 - 4589 - 7, low price edition.

 [7].Carlo ghezzi, Mehdi Jazayeri Dino Mandrioli,
“Fundamentals of Software Engineering”, PHI,
ISBN 81 - 203 – 0865.

[8]Booch, G., Rumbaugh, J., & Jacobson, I. (2005).
The unified modeling language user guide (2nd
ed.). Addison-Wesley. ISBN: 978-0321267979

[9]Fowler, M. (2004). UML distilled: A brief guide
to the standard object modeling language (3rd
ed.). Addison-Wesley. ISBN: 978-0321193681

[10]Rumbaugh, J., Jacobson, I., & Booch, G.
(2004). The unified modeling language
reference manual (2nd ed.). Addison-Wesley.
ISBN: 978-0321245625

[11]Sommerville, I. (2015). Software engineering
(10th ed.). Pearson. ISBN: 978-0133943030

[12]Dennis, A., Wixom, B. H., & Tegarden, D.
(2020). Systems analysis and design: An
object-oriented approach with UML (6th ed.).
Wiley. ISBN: 978-1119803784

[13]Arlow, J., & Neustadt, I. (2005). UML 2 and
the unified process: Practical object-oriented
analysis and design (2nd ed.). Addison-
Wesley. ISBN: 978-0321321275

[14] Larman, C. (2004). Applying UML and
patterns: An introduction to object-oriented
analysis and design and iterative development
(3rd ed.). Pearson. ISBN: 978-0131489066

[15]Whitten, J. L., & Bentley, L. D. (2007).
Systems analysis and design methods (7th ed.).
McGraw-Hill. ISBN: 978-0073052335

[16]Object Management Group (OMG). (2017).
OMG unified modeling language (OMG UML),
version 2.5.1. Retrieved from
https://www.omg.org/spec/UML/2.5.1

[17]Roff, T. (2003). UML: A beginner’s guide.
McGraw-Hill. ISBN: 978-0072224603

