
 Journal of Theoretical and Applied Information Technology
15th February 2025. Vol.103. No.3

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1053

PRONGHORN SWIFT OPTIMIZATION FRAMEWORK (PSOF)
A DYNAMIC AND SCALABLE APPROACH FOR
ENHANCING WEB SERVICE PERFORMANCE

J. GNANABHARATHI1, K. VADIVAZHAGAN2
1 Research Scholar, Department of Computer and Information Science,

 Annamalai University,Chidambaram,Tamilandu India.
2Assistant Professor, Department of Computer and Information Science, Annamalai

University,Chidambaram,Tamilnadu,India.
E-mail: 1jbharathi.jb@gmail.com, 2vadivazhagan@gmail.com

ABSTRACT

The Pronghorn Swift Optimization Framework (PSOF) is proposed to address critical challenges in
web services, including high latency, inefficient resource utilization, and poor scalability. The growing
demand for fast, reliable, and scalable web services has highlighted the need for frameworks capable of
optimizing performance while maintaining low overhead. PSOF is designed to enhance the efficiency of data
delivery, reduce response times, and improve system throughput under dynamic traffic conditions. The
framework leverages adaptive mechanisms to handle fluctuating network loads, ensuring seamless
performance across distributed environments. Simulation results reveal that PSOF significantly improves key
metrics such as latency, throughput, and load balancing. PSOF creates a robust infrastructure for modern web
applications by dynamically allocating resources and optimizing service interactions.PSOF bridges gaps in
web service optimization by introducing a unified framework that enhances reliability and scalability,
meeting the demands of evolving digital environments.

Keywords: Pronghorn Swift Optimization, Web Service Optimization, Latency Reduction Scalability in Web
Services, Throughput Enhancement, Load Balancing Techniques.

1. INTRODUCTION

 Web services facilitate communication
between applications across diverse platforms and
languages using standard protocols and formats. The
purpose centres on interoperability, making web
services a fundamental technology for integrating
applications, especially in distributed environments
[1]. Key components include XML or JSON for data
representation, HTTP or HTTPS for communication,
and protocols like SOAP and REST for standardizing
request and response structures. A web service
operates through a request-response model. Clients
send requests to access specific services, and servers
respond by fulfilling these requests [2]. This
interaction often uses SOAP (Simple Object Access
Protocol), which leverages XML for defining
messages, and REST (Representational State
Transfer), which operates through standard HTTP
methods (GET, POST, PUT, DELETE) to manage
resources. SOAP offers a structured way to interact
with complex systems, supporting security and
transaction controls, making it suitable for enterprise
applications [3]. REST is lightweight and flexible,

making it ideal for web-based applications and APIs
that demand quick responses and high flexibility [4].

The purpose of web services is multifaceted.
Primarily, they enable interoperability, which allows
different software systems, possibly developed in
other programming languages and running on various
platforms, to communicate seamlessly. Organizations
can use web services to build modular applications
where different components function independently
but communicate through standard interfaces [5]. This
modularity allows developers to create, update, or
replace individual services without impacting the
entire system, promoting scalability and reducing
maintenance complexity [6].

Web services also play a significant role in
enabling cloud computing and distributed
applications. They allow applications to interact with
cloud-based resources, retrieving data, processing
information, or store records on remote servers [7]. As
a result, web services facilitate a wide range of cloud-
based services, such as data storage, computational
resources, and machine learning models, which

 Journal of Theoretical and Applied Information Technology
15th February 2025. Vol.103. No.3

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1054

organizations can access over the Internet without
requiring extensive infrastructure investments[8].

Security and reliability are also critical
aspects of web services. Web service protocols
support secure communication channels, typically
HTTPS, and standards such as WS-Security for
SOAP or OAuth for REST[9]. This emphasis on
security ensures that sensitive data remains protected
during transmission, addressing concerns surrounding
data breaches and unauthorized access. Furthermore,
web services enable reliable transactions across
different systems by providing fault tolerance
mechanisms, session management, and transactional
support[10].

Web services have transformed e-commerce,
social networking, and enterprise resource planning
(ERP) by enabling seamless data flow across different
applications. In e-commerce, for example, web
services connect payment gateways, customer
management systems, and inventory tracking,
ensuring smooth transaction processing and inventory
updates. Social networks utilize web services to
enable third-party applications to securely access user
profiles, posts, and other data, enhancing social
connectivity[11]. ERP systems integrate various
business processes using web services, allowing real-
time data synchronization across departments like
sales, accounting, and supply chain. Web services
encounter performance and scalability challenges due
to factors inherent in their architecture and
communication protocols. Performance bottlenecks
often arise from the overhead introduced by XML or
JSON serialization, as both formats tend to be verbose
and require additional processing time for parsing and
validation[12]. When handling high data volumes,
this overhead can lead to latency issues, as the system
expends resources encoding, decoding, and
transmitting extensive payloads. Network latency,
compounded by frequent requests or large response
sizes, further impacts performance, particularly in
applications demanding real-time responses[13].

Scalability issues emerge when web services
face limitations in handling concurrent requests, often
due to inadequate resource management. As traffic
increases, server resources like CPU and memory
may become overtaxed, resulting in reduced response
times and service failures. Statelessness in RESTful
services, while enhancing simplicity, contributes to
scalability constraints by requiring repeated
authentication and resource fetching with each
request, which consumes additional resources[14].
Load balancing and caching techniques are frequently
applied to alleviate these constraints, but they demand
careful configuration. Web services require robust

infrastructure, optimized message formats, and
efficient load distribution mechanisms to scale
effectively in high-demand environments. To address
high latency and enhance performance and scalability
in web services, a practical framework involves
specific optimization methods that improve data
processing speed, reduce bottlenecks, and enable
efficient resource utilization[15].

Bio-inspired computing represents an
interdisciplinary approach that draws principles from
natural biological processes to solve complex
computational problems[16]. This field mimics the
mechanisms observed in nature, such as evolution,
self-organization, and collective behaviour, to
develop efficient algorithms and systems. Techniques
such as genetic algorithms, ant colony optimization,
particle swarm optimization, and artificial neural
networks are central to this domain[17]. Bio-inspired
computing finds applications in optimization,
machine learning, robotics, and data mining[18]. By
leveraging the adaptability and resilience of
biological systems, this approach addresses
challenges in scalability, efficiency, and
robustness[19]. Its potential for solving real-world
problems continues to expand, fostering innovation
across science, engineering, and technology[20].

1.1. Problem Statement

Web services have become integral to
modern digital infrastructures, enabling seamless
communication and data exchange between
distributed applications. As demand for web services
increases, high latency, inefficient resource
utilization, and limited scalability hinder their ability
to meet user expectations. Frequent packet loss,
uneven load distribution, and suboptimal routing
paths exacerbate these challenges, leading to
degraded performance and reduced service reliability.
Dynamic network conditions and fluctuating traffic
patterns further complicate maintaining consistent
quality of service.

Current frameworks often struggle to
address these challenges effectively due to their
inability to dynamically adapt to evolving traffic
demands or optimize resource allocation. The absence
of cohesive strategies for reducing latency and
managing workloads contributes to inefficient
operations, particularly in large-scale distributed
systems. Furthermore, achieving high throughput and
minimizing packet drop ratio while maintaining
scalability remains a critical concern in web service
environments. This scenario highlights the need for an
advanced optimization framework that dynamically
adjusts to varying conditions, ensures equitable load

 Journal of Theoretical and Applied Information Technology
15th February 2025. Vol.103. No.3

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1055

distribution, reduces latency, and maximizes resource
efficiency. The PSOF is proposed to address these
gaps by providing a comprehensive, scalable solution
for optimizing web services, enabling robust
performance and reliability under diverse operating
conditions.

1.2. Motivation

The increasing reliance on web services for
real-time applications, data-intensive tasks, and
distributed systems underscores the critical need for
optimized frameworks. High latency, inefficient
resource allocation, and uneven load distribution limit
the system’s ability to meet user demands effectively.
Growing network complexity and fluctuating traffic
patterns further exacerbate challenges, impacting
performance and scalability. The necessity to address
these challenges has motivated the development of a
framework that ensures low latency, efficient resource
utilization, and improved scalability across diverse
web service environments. By leveraging adaptive
mechanisms, optimization strategies, and dynamic
resource management, the proposed PSOF aims to
bridge gaps in current solutions. PSOF is designed to
create a robust infrastructure capable of sustaining
high throughput, equitable load distribution, and
reliable performance, meeting the evolving demands
of modern web service architectures.

1.3. Objective

The objective is to address critical
challenges in web services by enhancing
performance, scalability, and reliability. The
framework minimizes latency, improves throughput,
and ensures efficient resource utilization in
distributed environments. By leveraging adaptive
optimization techniques, PSOF aims to dynamically
allocate resources and balance workloads, reducing
bottlenecks and achieving equitable load distribution
across network nodes.

PSOF handles fluctuating traffic patterns and
high-density network conditions while maintaining
seamless operations. The framework seeks to
optimize data delivery paths, reduce packet drop
ratios, and improve response times, creating a resilient
infrastructure for modern web applications. An
additional objective of PSOF is to ensure robust
scalability by introducing mechanisms that
dynamically adapt to varying network conditions. By
integrating strategies that enhance resource
management, caching efficiency, and routing
precision, PSOF provides a unified solution to address
the limitations of existing frameworks. The ultimate
goal of PSOF is to create a high-performance web
service architecture that meets the growing demands

of real-time applications, ensuring consistent quality
of service across diverse operational scenarios while
bridging gaps in current optimization methodologies.

2. RESEARCH BACKGROUND AND

CONTEXT

Web of Shadows[21]examines the misuse of
legitimate internet services by malware, focusing on
command-and-control, data exfiltration, and malware
distribution. It introduces methodologies to identify
and analyze malicious behaviours camouflaged
within regular web service traffic. A comprehensive
study of traffic patterns aids in understanding how
malware adapts to exploit existing internet
infrastructures. Web-Based GIS[22]This study
introduces a GIS-based platform for biomass data
management. The platform integrates spatial and
tabular data layers, providing tools for users to access
and analyze forestry and environmental information.
The system emphasizes scalability, accessibility, and
data accuracy for sustainable resource
management.QOS-QOE[23] proposes an approach
using feature selection techniques to improve quality
models for mobile networks. It employs ordinal
regression methods to prioritize significant features,
enhancing the precision of Quality of Service (QoS)
and Quality of Experience (QoE) evaluations in video
and web-based services.

Medical-Webservice [24] presents a
framework for achieving interoperability in hospital
information systems. Composing web services
enables efficient data sharing and seamless
integration among diverse healthcare systems. The
approach improves coordination, ensuring
compatibility and enhancing overall healthcare
management. Dynamic Cluster[25]introduces a novel
dynamic clustering approach for aggregating web
services using Minkowski similarity. The method
optimizes service aggregation by calculating
similarity metrics to group services with related
functionalities. The clustering adapts to varying
service characteristics, enhancing accuracy and
efficiency in large-scale environments. The proposed
technique facilitates effective grouping, ensuring
users can efficiently access and utilize aggregated
services. GMF [5] presents a modular framework
designed for dark web analysis, emphasizing
scalability and flexibility. The framework integrates
advanced tools for data collection, content
categorization, and behaviour analysis within dark
web ecosystems. By supporting modular components,
the framework enables tailored applications, allowing
researchers to explore hidden activities while
maintaining adaptability for various investigative

 Journal of Theoretical and Applied Information Technology
15th February 2025. Vol.103. No.3

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1056

objectives.APIRec[26] is a system for recommending
web APIs based on deep learning and diversity-aware
techniques. It incorporates semantic analysis and
contextual understanding to match APIs with user
needs. The model emphasizes diversity in
recommendations to ensure comprehensive solutions.
The system enhances developer productivity by
providing accurate and varied API suggestions
through knowledge-driven mechanisms.

Snipweb[27]introduces a method for
uncovering input-handling vulnerabilities in web
applications. The approach analyses application
behaviour under crafted inputs to identify security
flaws. Techniques include automated testing and
targeted injection methods to expose vulnerabilities
such as cross-site scripting and injection attacks. The
paper highlights systematic processes for enhancing
web application security. Cognitive Access[28]This
paper explores the challenges of implementing
cognitive accessibility features within digital services.
It identifies technical, design, and organizational
barriers that hinder effective integration. The work
highlights the need for improved frameworks and
standards to address these issues, aiming to make
digital platforms more inclusive for users with
cognitive impairments. Feedback monitoring [29]
proposes an inclusive framework for evaluating web
content accessibility through automation. It combines
standardized accessibility guidelines with advanced
algorithms to assess compliance. The framework
supports continuous monitoring and feedback,
ensuring that web content remains accessible to users
with diverse needs. The modular structure allows
integration into existing development workflows.

ESPRESSO[30] is a framework that
enhances search capabilities within decentralized web
environments. It integrates distributed indexing,
ranking algorithms, and metadata aggregation to
improve the efficiency of decentralized search. The
framework ensures secure and privacy-aware search
mechanisms, addressing challenges distributed
architectures pose while maintaining usability and
scalability. Graph-Based Web Service[31] presents a
framework leveraging multi-source information
graphs for web service recommendations. Integrating
functional attributes, user preferences, and service
relationships constructs a graph-based representation
of the web service ecosystem. Advanced algorithms
analyze the graph to identify and recommend optimal
services. This approach ensures personalized
recommendations while enhancing the utility of
service ecosystems. Label Semantics[3]proposes an
enhanced web service clustering method combining
label-based functional semantics and collaboration

metrics. Incorporating labelled data improves the
semantic representation of services, while service
collaboration insights refine clustering accuracy. The
technique organizes services into more coherent and
meaningful clusters, supporting better discovery and
management. Quality WS [32] proposes a semi-
supervised learning method for classifying web
services based on quality metrics. By combining
labelled and unlabeled data, the approach enhances
classification accuracy. It employs advanced
algorithms to identify patterns and categorize services
effectively, ensuring a comprehensive assessment of
quality attributes in service ecosystems.

 EdgeX [33]examines the implementation of
a web service application using the EdgeX OpenEdge
server, highlighting its potential for supporting IoT
services. The framework focuses on enabling
distributed edge computing to manage resource-
constrained IoT devices efficiently. The architecture
integrates microservices to facilitate device
communication, data preprocessing, and local
analytics. EdgeX’s modularity allows flexible
deployment of applications, while its compatibility
with various protocols ensures seamless device
integration. The study evaluates the platform’s ability
to reduce latency, enhance resource utilization, and
provide scalability in IoT environments, emphasizing
its viability as a solution for edge computing in
dynamic and heterogeneous ecosystems.ARTP [34] is
a machine learning-based framework for real-time
detection and prevention of Distributed Denial of
Service (DDoS) attacks on web systems. The
methodology employs anomaly detection to identify
irregular traffic patterns indicative of DDoS activities.
Feature extraction techniques process network traffic
data, allowing machine learning algorithms to classify
legitimate and malicious requests. The framework
incorporates real-time monitoring and adaptive
learning to counteract evolving attack strategies. The
prevention mechanism dynamically mitigates threats
by filtering malicious traffic while ensuring
uninterrupted access for genuine users. By leveraging
data-driven insights and robust machine learning
techniques, ARTP offers an efficient approach to
safeguarding web infrastructures from DDoS attacks.
More optimization techniques are being employed in
networking domain research to get better results [35]-
[59]

3. PRONGHORN SWIFT OPTIMIZATION
FRAMEWORK (PSOF)

The Pronghorn Swift Optimization
Framework (PSOF) utilizes Pronghorn’s agility,
speed, precision, and resilience attributes to enhance
the performance and scalability of web services. This

 Journal of Theoretical and Applied Information Technology
15th February 2025. Vol.103. No.3

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1057

structured approach aims to create a swift, low-
latency response system by mirroring the Pronghorn’s
natural efficiency in rapid, sustained movement over
long distances. The Pronghorn Swift Optimization
Framework (PSOF) provides a comprehensive, agile
solution for enhancing web service performance and
scalability. By integrating these optimization
techniques, PSOF leverages Pronghorn’s speed,
adaptability, and resourcefulness, creating a
responsive, high-performing web service architecture.

3.1. Sprint Compression

Sprint Compression in the PSOF aims to
reduce data size effectively, enabling swift data
transfer between clients and servers. This
compression technique is crucial for optimizing
latency and decreasing network transmission time. By
minimizing the data payload, Sprint Compression
reduces the drag that can slow down performance,
enhancing web service agility. In the optimization of
data compression, let the size of the uncompressed
data be represented as 𝐷௨and the compressed data as

𝐷௖ . The compression ratio 𝐶௥ quantifies the
reduction achieved and is defined as shown in Eq.(1).

𝐶௥ =
𝐷௨

𝐷௖
 (1)

where a higher 𝐶௥ indicates a more efficient
compression. Sprint Compression in PSOF by
targeting maximum𝐶௥ , supports rapid data transfers

by minimizing 𝐷௖relative to 𝐷௨. Each element in the
compression process contributes to achieving an
optimized transfer process with reduced latency.

Considering the time required to compress
data, let 𝑇௖ be the time taken to compress the data, 𝑇ௗ
be the time required to decompress it, and 𝑇௧
represent the transmission time of compressed data.
The total time 𝑇௧௢௧௔௟ for transmitting and
reconstructing data can be described as expressed
mathematically in Eq.(2).

𝑇௧௢௧௔௟ = 𝑇௖ + 𝑇௧ + 𝑇ௗ (2)

Sprint Compression optimizes 𝑇௧௢௧௔௟by minimizing

𝑇௖ and 𝑇ௗthrough efficient algorithms, as well as

reducing 𝑇௧ by lowering 𝐷௖ . An optimized algorithm

ensures that both 𝑇௖and 𝑇ௗare kept at minimal values,
maintaining the flow of requests and responses
without unnecessary delays.

In Sprint Compression, entropy 𝐻(𝐷),
representing the average amount of information per

data unit, plays a critical role. A lower entropy results
in more predictable data patterns, which compression
algorithms can exploit to reduce data size. Entropy for
data 𝐷 with probability distribution 𝑝(𝑥) is
calculated as represented mathematically in Eq.(3).

𝐻(𝐷) = − ∑ 𝑝(𝑥)𝑙𝑜𝑔ଶ𝑝(𝑥)௫∈஽ (3)

Efficient data compression algorithms minimize
𝐻(𝐷), achieving an optimized 𝐷௖ by capitalizing on
redundancies. In Sprint Compression, reducing
𝐻(𝐷) optimizes the process, akin to the Pronghorn’s
swift response to low-resistance paths, improving web
service speed.

The latency impact of data transfer can be
further understood by considering bandwidth 𝐵,
which represents the amount of data transmitted per
unit time, with data transfer time 𝑇ௗ defined as
shown in Eq.(4).

𝑇ௗ =
஽೎

஻
 (4)

Optimized Sprint Compression reduces 𝐷௖ to

optimize 𝑇ௗ , enhancing the throughput across web

services. By minimizing 𝑇ௗ, the framework achieves
near-instantaneous data transfers, similar to the
Pronghorn’s agile movements across terrain with
minimal resistance.

Another significant factor in Sprint
Compression involves the bit rate 𝑅, or the number of
bits per unit of time required to represent compressed
data. An efficient Sprint Compression algorithm
lowers 𝑅 to match or fall below network capacity 𝐶,
preventing bottlenecks. This relationship is expressed
mathematically in Eq.(5).

𝑅 =
஽೎.଼

்೏
 (5)

where an optimized bit rate 𝑅 aligns with the
network’s capacity, allowing the data to pass without
congestion. The pronghorn-inspired approach adjusts
𝐷௖and 𝑅 for optimized bandwidth utilization,
minimizing lag.

Error correction is essential in Sprint
Compression to prevent data loss or corruption during
transmission. Let the probability of an error occurring
in transmission be 𝑃௘ . The probability of successfully
transmitting compressed data without error is
depicted in Eq.(6).

𝑃௦ = 1 − 𝑃௘ (6)

 Journal of Theoretical and Applied Information Technology
15th February 2025. Vol.103. No.3

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1058

An optimized error correction approach in Sprint
Compression minimizes 𝑃௘by implementing
checksums or error correction codes (ECC). This
enhances reliability, mirroring the Pronghorn’s
optimized path selection, where the risk of errors in
navigating challenging terrain is minimized.

The compression rate 𝑅௖ further
characterizes the efficiency of Sprint Compression.
Defined as the ratio of the reduction in data size per
second, 𝑅௖ aligns with how effectively the PSOF

reduces data load. 𝑅௖ can be calculated as shown in
Eq.(7).

 𝑅௖ =
஽ೠି஽೎

೎்
 (7)

A higher 𝑅௖reflects a faster, more efficient
compression process, optimizing Sprint Compression
to support rapid, continuous data flow. By focusing
on maximizing 𝑅௖ , PSOF aligns with pronghorn-

inspired performance, ensuring agile data exchanges.

The efficiency 𝐸 of Sprint Compression,
measuring the effectiveness of the compression
process compared to the theoretical limit, is calculated
mathematically in Eq.(8).

 𝐸 =
஼ೝ

ு(஽)
 (8)

Higher 𝐸 values indicate a closer approach

to optimal compression, where 𝐻(𝐷) is minimized,

and 𝐶௥reaches its peak. This efficiency parallels the
Pronghorn’s energy-conserving movements, where
the path taken minimizes resistance, optimizing travel
speed. By utilizing these parameters, Sprint
Compression enhances web service responsiveness
by aligning with Pronghorn’s optimized, swift
characteristics.

3.2. Leap Serialization

Leap Serialization in the PSOF employs an
optimized approach to reduce latency by streamlining
data serialization and deserialization processes. Leap
Serialization achieves efficiency through minimized
data format overhead, enhancing the speed of
encoding and decoding, similar to how a pronghorn
navigates swiftly by leaping over obstacles. Central to
PSOF, this process ensures agile data movement
between applications, transforming structured data
into a compact format for faster network transmission.

Encoding efficiency is critical to reduce
serialized data size. Let 𝐸ௗ represent the encoding

duration, which depends on the size of the data 𝐷௦

and the complexity 𝐶 of the data structure is
represented mathematically in Eq.(9).

 𝐸ௗ = 𝐷௦ × 𝐶 (9)

Optimizing 𝐸ௗIt is essential to align with PSOF’s aim

for minimal latency. A lower 𝐸ௗ reduces the
computational load for encoding, allowing Leap
Serialization to facilitate rapid data exchanges
reflecting Pronghorn’s optimized leaps over terrain.

Compression methods are used with
serialization to decrease data redundancy and enhance
speed further. A reduction factor represents the
effectiveness of compression for serialized data. 𝑅௙ ,
calculated as shown in Eq.(10).

 𝑅௙ =
஽ೀ

஽ೞ
 (10)

where 𝐷ைis the original data size and 𝐷௦ is the size

after serialization. A higher 𝑅௙ signifies greater
efficiency, optimizing Leap Serialization to support
swift transmission by minimizing data that needs to
pass through the network, thus emulating the
Pronghorn’s efficient, high-speed movement.

A key factor influencing serialization speed
in Leap Serialization is the number of fields 𝐹௡ in the
data object. Each field requires individual encoding,
which impacts the total serialization time 𝑇௦. The
relationship is expressed mathematically in Eq.(11).

 𝑇௦ = 𝐹௡ × 𝐸ௗ (11)

Minimizing 𝐹௡without losing data integrity,

reduces 𝑇௦, allowing for streamlined data transfer.
This aspect of Leap Serialization mirrors Pronghorn’s
agile pathfinding, where optimal leaps minimize the
total energy expended.

Network transmission efficiency in Leap
Serialization depends on both the bit rate 𝐵௥ of

serialized data and network capacity 𝑁௖ .

Transmission delay 𝑇௧ can be calculated as depicted
in Eq.(12).

𝑇௧ =
஽ೞ

஻ೝ
 (12)

An optimized 𝑇௧ enhances LeapSerialization’s
effectiveness by aligning the serialized data output
with network capabilities, reducing the likelihood of
data congestion and allowing data to move fluidly
across systems.

 Journal of Theoretical and Applied Information Technology
15th February 2025. Vol.103. No.3

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1059

The deserialization process also contributes
significantly to overall latency. Let 𝐷ௗ denote
deserialization duration, determined by the serialized
data size 𝐷௦and the computational efficiency 𝐶௘ of
the decoding algorithm is represented mathematically
in Eq.(13).

 𝐷ௗ =
஽ೞ

஼೐
 (13)

Higher 𝐶௘values ensure faster deserialization,
enabling Leap Serialization to handle incoming data
with minimal delay. This efficiency echoes the
Pronghorn’s instinct to conserve energy by choosing
the most efficient paths.

Leap Serialization further optimizes latency
by encoding data in a binary format. Binary encoding
reduces the data size compared to text formats like
JSON or XML. Let 𝐵௙ represent the binary format

size and 𝑇௙ the text format size. The conversion ratio

𝐶௥is represented mathematically in Eq.(14).

 𝐶௥ =
்೑

஻೑
 (14)

A high 𝐶௥ indicates substantial data reduction,
improving LeapSerialization’s speed by minimizing
payload. The lean binary format supports efficient
data leaps between systems, akin to the Pronghorn’s
streamlined leaps that eliminate unnecessary detours.

Error correction in serialized data is
managed to ensure reliability without excessive
redundancy. Let 𝑃௘ represent the probability of error

and 𝐸௥ the error correction capacity. The error

resilience 𝑅௘of Leap Serialization is mathematically
expressed in Eq.(15).

 𝑅௘ = 1 − 𝑃௘ × 𝐸௥ (15)

Optimized error resilience keeps data intact while
reducing the need for retransmission. By maintaining
robust error control, Leap Serialization enhances
reliability, similar to how the Pronghorn navigates its
terrain with precision and low risk of missteps.

The compression time 𝐶௧ is also crucial in
Leap Serialization, especially for large data sets. Let
𝑆ௗ represent the data set size and 𝐹௖ the efficiency of
the compression algorithm. The compression duration
𝐶௧ can be determined as Eq.(16).

 𝐶௧ =
ௌ೏

ி೎
 (16)

A higher 𝐹௖reduces 𝐶௧, allowing serialized data to
flow without unnecessary delay. Optimized
compression reflects the Pronghorn’s instinct for
rapid, continuous movement, where speed is
prioritized without compromising on reliability.

Leap Serialization efficiency can be
quantified through an optimization coefficient.𝑂௖ ,
which measures the ratio of reduction in size to time
saved, expressed as shown in Eq.(17).

 𝑂௖ =
ோ೑

ೞ்ା்೑ା஽೏
 (17)

A high 𝑂௖ aligns with the PSOF framework’s goal of
swift, seamless data exchanges, mirroring the
Pronghorn’s adaptive capabilities for optimized,
energy-efficient traversal across expansive terrain.
Leap Serialization provides a structured approach to
streamline data movement, leveraging encoding
precision, minimized data fields, binary formats, and
efficient compression. By optimizing each element,
Leap Serialization enables high-speed, low-latency
data handling across networked environments,
inspired by the Pronghorn’s agility in rapidly
overcoming obstacles.

3.3. Boundless Asynchronous Processing

This phase provides a continuous,
unbounded flow, mirroring the Pronghorn’s ability to
sustain rapid movements across varied terrain. By
decoupling request handling from response
generation, Boundless Asynchronous Processing
reduces latency and increases throughput, facilitating
high-speed, seamless data exchanges. In Boundless
Asynchronous Processing, let 𝑅௜௡ denote the rate of

incoming requests and 𝑅௢௨௧ the rate of responses. An

optimized system requires balancing. 𝑅௜௡ and

𝑅௢௨௧to prevent bottlenecks. The mathematical
representation of optimal performance is shown in
Eq.(18).

 𝑅௜௡ ≈ 𝑅௢௨௧ (18)

Maintaining this equilibrium ensures that requests are
processed as they arrive, preventing latency build-up
and optimizing the throughput, akin to the
Pronghorn’s swift adaptation to varying speed
requirements in its environment.

A critical aspect of asynchronous processing
involves the duration 𝑇௣ for processing each request.

For an individual task 𝑖, the average processing time
can be described in Eq.(19).

 𝑇௣,௜ = 𝑇௤௨௘௨௘,௜ + 𝑇௘௫௘௖,௜ (19)

 Journal of Theoretical and Applied Information Technology
15th February 2025. Vol.103. No.3

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1060

where 𝑇௤௨௘௨௘,௜represents the time spent in the queue

and 𝑇௘௫௘௖,௜ the execution time. Optimizing 𝑇௣,௜ for
each request enables the system to achieve high
responsiveness, avoiding delays typical of
synchronous systems and ensuring an efficient data
flow.

Considering concurrent requests, let 𝑁
denote the number of tasks processed simultaneously,
and 𝑇௖ the time saved through concurrency. The

effective time 𝑇௘௙௙ when processing 𝑁 requests
asynchronously is expressed as Eq.(20).

 𝑇௘௙௙ =
∑ ்೛,೔

ಿ
೔సభ

ே
 (20)

Minimizing 𝑇௘௙௙Asynchronous handling allows
Boundless Asynchronous Processing to manage
larger workloads without delay, reflecting
Pronghorn’s ability to manage sustained speed across
multiple sprints.

To further optimize performance, the
handling capacity 𝐶௛defines the maximum number of
requests a server can manage concurrently. For
sustainable processing, 𝑅௜௡ must not exceed 𝐶௛ as
expressed mathematically in Eq.(21).

𝑅௜௡ ≤ 𝐶௛ (21)

By regulating 𝑅௜௡to stay within 𝐶௛, the system
prevents overloading, enabling efficient utilization of
resources. This approach mirrors the Pronghorn’s
energy conservation strategy, where sustained effort
prevents exhaustion, ensuring agility across distances.

In Boundless Asynchronous Processing,
event-driven handling minimizes idle time, allowing
for optimal resource utilization. Let 𝐸௜ௗ௟௘ represent

idle time per task and 𝑇௘௫௘௖ total execution time. The

efficiency 𝐸௙of asynchronous handling is expressed
as Eq.(22).

𝐸௙ = ೐்ೣ೐೎

೐்ೣ೐೎ାா೔೏೗೐
 (22)

Maximizing 𝐸௙ increases the number of requests
processed per unit time, enhancing system
responsiveness, akin to the Pronghorn’s continuous
momentum without rest breaks, ensuring a smooth
transition from one task to the next.

Resource consumption in asynchronous
processing plays a crucial role in maintaining system
efficiency. Let 𝐶௠௘௠ denote memory consumption

per request and 𝐶௧௢௧௔௟ total memory capacity. For

stable operation, the inequality 𝑁 × 𝐸௙ ≤ 𝐶௧௢௧௔௟
must hold as expressed in Eq.(23).

 𝑁 × 𝐶௠௘௠ ≤ 𝐶௧௢௧௔௟ (23)

This constraint ensures that resource allocation
remains within capacity, avoiding memory overflows
that can impede performance. By aligning with the
Pronghorn’s instinct for balanced energy use,
Boundless Asynchronous Processing manages
resources to sustain high-speed operations.

The probability 𝑃௕௟௢௖௞ of encountering
blocked operations in synchronous handling is high
due to sequential dependencies. In asynchronous
processing, the reduction factor 𝑅௕ for blocked
operations can be defined mathematically in Eq.(24).

 𝑅௕ = 1 − 𝑃௕௟௢௖௞ (24)

Increasing 𝑅௕ optimizes the workflow by allowing
requests to be completed independently, avoiding
delays due to sequential constraints. This reduction of
blockages is analogous to the Pronghorn’s ability to
evade obstacles, enhancing the continuity of data
handling.

Another aspect of Boundless Asynchronous
Processing involves the latency 𝐿 associated with
message passing. For asynchronous requests, latency
depends on network factors and internal processing.
Let 𝑇௡௘௧ denote network latency and 𝑇௣௥௢௖internal

processing delay; then total latency 𝐿௧௢௧௔௟ is
expressed mathematically in Eq.(25).

𝐿௧௢௧௔௟ = 𝑇௡௘௧ + 𝑇௣௥௢௖ (25)

Minimizing 𝐿௧௢௧௔௟ through streamlined processing
aligns with PTSD’s goal of responsive interactions.
By lowering 𝑇௡௘௧ and 𝑇௣௥௢௖ , Boundless
Asynchronous Processing achieves low-latency
responses, enhancing the user experience.

The throughput 𝑇ℎof asynchronous systems
represents the number of requests processed per unit
of time and is a crucial measure of efficiency.
Throughput is calculated as shown in Eq.(26).

 𝑇ℎ =
ோ೔೙ିோ೚ೠ೟

்೟೚೟ೌ೗
 (26)

An optimized throughput ensures maximum task
completion within the available time frame, mirroring
the Pronghorn’s optimized speed. Maximizing
𝑇ℎBoundless Asynchronous Processing guarantees
high performance under fluctuating loads,
maintaining continuity in web service operations.In

 Journal of Theoretical and Applied Information Technology
15th February 2025. Vol.103. No.3

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1061

Boundless Asynchronous Processing, each request is
handled with minimal delay through non-blocking
operations, high concurrency, and efficient resource
utilization. Thus, The framework balances
responsiveness and resource management, effectively
supporting high-speed, low-latency operations.
Emulating the Pronghorn’s instinct for swift
adaptation, Boundless Asynchronous Processing
empowers web services to manage fluctuating
demands while maintaining optimal performance,
enhancing overall throughput and service agility in
the framework.

3.4. Steady Pace Load Balancing

Steady Pace Load Balancing in the PSOF
applies a systematic approach to distributing
incoming network traffic evenly across multiple
servers, ensuring that no single server bears an
excessive load. This balanced distribution enables
consistent service speed, agility, and reliability, akin
to the Pronghorn’s sustainable, steady pace. Steady
Pace Load Balancing optimizes web service
performance by preventing resource exhaustion,
enabling seamless scalability and high availability
across fluctuating traffic levels. In Steady Pace Load
Balancing, incoming requests are represented as 𝑅௜௡,
are managed by multiple servers to ensure even
distribution. Let 𝑆 denote the number of available

servers and 𝑅௦ the requests allocated per server. The
fundamental load distribution is defined as Eq.(27).

 𝑅௦ =
ோ೔೙

ௌ
 (27)

This relationship ensures an optimal allocation of
requests where 𝑅௦ remains consistent with each

server’s capacity. By balancing 𝑅௦ across 𝑆, Steady
Pace Load Balancing supports steady service
performance without overburdening any individual
server, reflecting the Pronghorn’s steady movement
across long distances.

The capacity of each server, represented by
𝐶௦, limits the maximum number of requests it can
process effectively. To avoid overload, the condition
𝑅௦ ≤ 𝐶௦ must be met as specified in Eq.(28).

 𝑅௦ ≤ 𝐶௦ (28)

This constraint ensures that each server handles only
as much traffic as it can efficiently process,
preventing latency spikes due to overloading. Like the
Pronghorn’s pace regulation to avoid exhaustion,
Steady Pace Load Balancing aligns incoming requests
with each server’s capabilities.

Considering network latency 𝐿௡, which
affects the overall response time; balancing aims to
minimize 𝐿௡ by optimizing server utilization. For an
optimized load-balancing configuration, the target
latency 𝐿௢௣௧should be less than or equal to the

maximum tolerable latency 𝐿௠௔௫ which is
represented mathematically in Eq.(29).

 𝐿௢௣௧ ≤ 𝐿௠௔௫ (29)

Achieving this balance prevents delays in server
response times, maintaining a smooth and efficient
request-response cycle. By targeting 𝐿௢௣௧, the PSOF
framework aligns with the Pronghorn’s instinctive
optimization of movement for sustained performance.

Throughput 𝑇ℎ௦, defined as the number of
requests processed by each server per unit of time,
must match demand to prevent performance
degradation. For effective load balancing, the
throughput across all servers 𝑇ℎ௧௢௧௔௟ should equal
the total incoming request rate as represented
mathematically in Eq.(30).

𝑇ℎ௧௢௧௔௟ = ∑ 𝑇ℎ௦೔
= 𝑅௜௡

ௌ
௜ୀଵ (30)

This total throughput calculation ensures that Steady
Pace Load Balancing maintains service continuity
under varying loads, achieving equilibrium akin to the
Pronghorn’s sustained movement in response to
external pressures.

Efficiency in load balancing can be further
quantified by load variance 𝑉௟, representing the
difference in workload distribution among servers.
Minimizing 𝑉௟ enhances system stability and resource
utilization. Load variance is calculated as expressed
in Eq.(31).

𝑉௟ =
∑ ቀோೞ೔

ିோതೞቁ
మ

ೄ
೔సభ

ௌ
 (31)

where 𝑅ത௦ represents the average requests per server.

Lower 𝑉௟ reflects a more balanced distribution,
enabling consistent server performance and
resembling the Pronghorn’s smooth pacing, where no
part of its movement disrupts the overall balance.

Another critical aspect of Steady Pace Load
Balancing involves fault tolerance, defined by the
probability 𝑃௙ of a server failing to process a request.
With fault tolerance mechanisms, steady pace load
balancing is minimized. 𝑃௙ by redistributing traffic

upon server failure. The fault tolerance factor 𝐹௧ is
expressed as shown in Eq.(32).

 Journal of Theoretical and Applied Information Technology
15th February 2025. Vol.103. No.3

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1062

 𝐹௧ = 1 − 𝑃௙ (32)

A high 𝐹௧ ensures that failed requests are re-routed to
active servers, maintaining stability and preventing
service interruptions. By managing server failures, the
framework emulates the Pronghorn’s instinctive
adaptability, enhancing reliability in dynamic
conditions.

Server utilization 𝑈௦ measures the active
workload on each server, calculated by the ratio of
requests processed 𝑅௦ to the server’s total capacity

𝐶௦ as depicted in Eq.(33).

𝑈௦ =
ோೞ

஼ೞ
 (33)

A utilization rate within optimal levels maintains
system efficiency and prevents overloading. This
balance, where 𝑈௦is neither too low nor too high,
ensures that resources are effectively used, reflecting
thepronghorn’s ability to sustain steady effort without
depleting energy.

Balancing algorithms used in Steady Pace
Load Balancing, such as round-robin or least-
connections, adapt dynamically based on real-time
server load data. Let 𝑅௖௨௥௥௘௡௧ denote the current

load of each server, and 𝑅௠௜௡ represent the load on
the least-loaded server. The dynamic allocation rule is
specified in Eq.(34).

 𝑅௡௘௪ = 𝑚𝑖𝑛(𝑅௖௨௥௥௘௡௧) (34)

This allocation ensures that new requests are directed
toward the server with the lowest load, distributing
resources efficiently. The adaptive distribution, akin
to the Pronghorn’s route selection based on terrain,
maintains balance and optimizes response times.

Latency distribution 𝐿ௗ across servers
indicates the uniformity of request handling. To
minimize 𝐿ௗdiscrepancies, latency variance 𝑉௟
across servers should approach zero.

𝑉௟ =
∑ ቀ௅ೞ೔

ି௅തೞቁ
మ

ೄ
೔సభ

ௌ
 (35)

In Eq.(35), where 𝐿ത௦ denotes the average latency per

server. A low 𝑉௟Promote consistent server response
times, enabling uniform service delivery and
emulating the Pronghorn’s balanced strides. Steady
Pace Load Balancing within PSOF uses optimized
traffic distribution, load variance minimization, fault
tolerance, and dynamic load allocation to maintain
equilibrium in high-demand environments. Steady
Pace Load Balancing achieves consistent, optimized

service delivery across servers through this balanced
approach, reflecting the Pronghorn’s adaptive and
enduring pace over varied terrain.

3.5. Quick Cache Recall

Quick Cache Recall in the PSOF enhances
web service performance by reducing data retrieval
time through efficient caching mechanisms. This
process uses memory-based storage to temporarily
hold frequently accessed data, allowing the system to
retrieve this data quickly without repeated access to
the primary database. Like the Pronghorn’s swift
adaptation to its environment, Quick Cache Recall
ensures agility in data access, optimizes response
times, and reduces latency in high-demand scenarios.

The cache hit rate can quantify the
effectiveness of Quick Cache Recall 𝐻௥ , which
represents the percentage of requests successfully
retrieved from the cache rather than the primary
database. Defined as the ratio of cache hits 𝐶௛ to the

total requests 𝑅௧,𝐻௥ is calculated as shown in
Eq.(36).

 𝐻௥ =
஼೓

ோ೟
 (36)

A high 𝐻௥ reflects efficient cache utilization,
minimizing database queries and reducing response
times. Quick Cache Recall in PSOF aims to maximize
𝐻௥ , allowing rapid data retrieval akin to the
Pronghorn’s instinctive recall of efficient routes,
enhancing overall system responsiveness.

The data retrieval time 𝑇௥is divided between

the cache retrieval time 𝑇௖௔௖௛௘ and the database

retrieval time 𝑇ௗ௕ . In cases of a cache hit, the retrieval

time 𝑇௛௜௧ is expressed mathematically in Eq.(37).

 𝑇௛௜௧ = 𝑇௖௔௖௛௘ (37)

The event of a cache miss, the retrieval time 𝑇௠௜௦௦
the cache retrieval and database access time are
incorporated as expressed in mathematical equation
Eq.(38).

 𝑇௠௜௦௦ = 𝑇௖௔௖௛௘ + 𝑇ௗ௕ (38)

Quick Cache Recall aims to minimize 𝑇௠௜௦௦The
system can provide fast responses and maintain an
uninterrupted flow of data requests by optimizing
caching strategies. This efficient recall of data aligns
with the Pronghorn’s quick reflexes, where instant
decisions on terrain enhance its speed and agility.

Cache capacity 𝐶௠௔௫ plays a critical role in
determining the volume of data stored for quick

 Journal of Theoretical and Applied Information Technology
15th February 2025. Vol.103. No.3

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1063

access. As data accumulates, the cache size 𝐶௦must

be managed to stay within 𝐶௠௔௫ to prevent overflow.
The conditions for maintaining optimal cache usage
are represented in Eq.(39).

 𝐶௦ ≤ 𝐶௠௔௫ (39)

This constraint ensures that the cache remains within
memory limits, allowing the system to operate
efficiently without consuming excessive resources.
Like the Pronghorn’s capacity to gauge distances and
conserve energy, Quick Cache Recall manages
storage for high efficiency.

Eviction policies are crucial for maintaining
cache efficiency, dictating which data to remove
when it reaches its limit. Let 𝐸௥ represent the rate of
cache eviction, which balances the inflow of new data
𝐷௜௡ with the outgoing data 𝐷௢௨௧ to maintain the
cache within capacity is depicted mathematically in
Eq.(40).

 𝐸௥ = 𝐷௢௨௧ − 𝐷௜௡ (40)

An optimized 𝐸௥ aligns with demand,
ensuring that frequently accessed data remains
accessible while lesser-used data is evicted. This
strategy mirrors Pronghorn’s adaptive approach to
maintaining optimal performance by prioritizing
high-value resources.

The probability 𝑃௛௜௧of a cache hit is directly
proportional to the cache’s efficiency in storing
frequently accessed data. 𝑃௛௜௧can be represented by

the ratio of frequently accessed data 𝐷௙to total data

𝐷௧ as shown in Eq.(41).

 𝑃௛௜௧ =
஽೑

஽೟
 (41)

Quick Cache Recall optimizes 𝑃௛௜௧to maintain high
availability of critical data, reducing reliance on the
primary database. Similar to the Pronghorn’s instinct
for efficiency, a high 𝑃௛௜ enhances agility in data
handling, allowing for fast and reliable responses.

Cache refresh rate 𝑅௙ , which represents the
frequency of updating the cache with new data,
impacts the cache’s relevance. The refresh interval
𝑇௥௘௙௥௘௦௛is inversely proportional to 𝑅௙ which is
represented mathematically in Eq.(42).

 𝑇௥௘௙௥௘ =
ଵ

ோ೑
 (42)

A carefully managed 𝑅௙ Keep the cache up-to-date
without excessive overhead, ensuring the Quick

Cache Recall process is efficient. This approach
reflects the Pronghorn’s adaptation to changing
environments, where strategic decisions maintain
speed and resourcefulness.

Memory efficiency 𝑀௘within the cache
ensures optimal resource utilization, calculated as the
ratio of compelling data stored 𝐷௘௙௙to the total

allocated memory 𝑀௧௢௧௔௟ .

 𝑀௘ =
஽೐೑೑

ெ೟೚೟ೌ೗
 (43)

In Eq.(43) where High 𝑀௘ values indicate that cache
memory is used effectively, storing only relevant data
and avoiding wastage. In Quick Cache Recall,
optimizing 𝑀௘ enhances system efficiency, similar to
the Pronghorn’s selective use of resources to maintain
agility and endurance over long distances.

The cache response time 𝑇௥௘௦௣ the time
taken to retrieve data from the cache and serve the
request must remain low to maximize performance.
The ideal𝑇௥௘௦௣ is expressed as Eq.(44).

𝑇௥௘௦௣ =
஼೓×்೎ೌ೎೓೐

ோ೟
 (44)

This response time metric helps in evaluating cache
efficiency, where lower 𝑇௥௘௦௣ values indicate quick
access to stored data. Through optimized Quick
Cache Recall, PSOF achieves rapid response times,
enabling web services to handle high volumes of
requests seamlessly, reflecting Pronghorn’s swift
movements across vast terrains. Quick Cache Recall
enhances overall system agility by reducing database
dependency and maintaining high cache efficiency.
The strategic use of cache hits, optimized retrieval
times, memory efficiency, and precise eviction
policies provide fast and continuous access to critical
data.

3.6. Edge Sprinting

Edge Sprinting in the PSOF enhances data
transmission efficiency by positioning computation
closer to users. This process leverages edge servers
distributed across different locations to minimize data
travel distance and latency, optimizing response
times, similar to how the Pronghorn strategically
navigates its terrain for swift movement. Edge
Sprinting enhances service performance and
scalability through this approach, particularly for
latency-sensitive applications. In Edge Sprinting, data
latency 𝐿ௗ plays a critical role in determining the

responsiveness of data exchanges. Let 𝐷 represent the
physical distance between the user and the edge

 Journal of Theoretical and Applied Information Technology
15th February 2025. Vol.103. No.3

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1064

server, and 𝑉 denote the data transmission speed. The

latency 𝐿ௗis defined mathematically in Eq.(45).

 𝐿ௗ =
஽

௏
 (45)

Reducing 𝐷 by placing servers closer to the user

lowers 𝐿ௗ , facilitating quicker data exchanges. The
Edge Sprinting approach mirrors the Pronghorn’s
strategy of minimizing path resistance and achieving
optimal speed across vast terrains.

Bandwidth efficiency 𝐵௘ in Edge Sprinting,
the utilization rate of network bandwidth is
represented when transferring data. For a data size 𝑆ௗ
and available bandwidth 𝐵, bandwidth efficiency is
calculated.

 𝐵௘ =
ௌ೏

஻
 (46)

In Eq.(46), where higher 𝐵௘ values indicate efficient

usage of bandwidth. By optimizing 𝐵௘ , Edge
Sprinting reduces network congestion, improving
data transfer speed between edge servers and users.
This efficiency reflects the Pronghorn’s instinctive
energy conservation, allowing quick sprints without
overtaxing resources.

Edge server placement, a crucial aspect of
Edge Sprinting, depends on user distribution 𝑈ௗ

across a region. Let 𝑁௘ represent the number of edge

servers and 𝑅௨ the request rate from users. Optimal
edge server distribution is achieved when the
condition is expressed mathematically in Eq.(47).

 𝑈ௗ ≈
ோೠ

ே೐
 (47)

Aligning 𝑈ௗwith 𝑅௨/𝑁௘ ensures that each server
effectively manages local demand, avoiding overload
and reducing response times. This strategic
positioning aligns with the Pronghorn’s navigation to
advantageous terrains, ensuring sustained speed and
stability across high-traffic routes.

Processing latency 𝑃௟ at the edge server also
affects overall response time. For a data processing
task 𝑇௣,𝑃௟ is represented as shown in Eq.(48).

 𝑃௟ = 𝑇௣ × 𝑁ௗ (48)

where 𝑁ௗ denotes the number of data packets

handled. Lower 𝑃௟ values in Edge Sprinting
contribute to faster service delivery, resembling the
Pronghorn’s rapid response in familiar terrain, where
minimal resistance leads to swift movement.

Network latency 𝑁௟ measures the time data
packets travel between edge servers and the central
data center. This latency is calculated based on data
size 𝑆ௗand transmission rate 𝑅௧.

 𝑁௟ =
ௌ೏

ோ೟
 (49)

In Eq.(49), where Reducing 𝑁௟ efficient edge server
placement in Edge Sprinting minimizes delays
associated with distant data centers. This setup, akin
to the Pronghorn’s choice of proximity-based paths,
optimizes service response by reducing travel
distances for data.

Data replication across edge servers
maintains data availability and reduces access time.
The replication factor 𝑅௙ , indicating the number of
copies stored at different servers, ensures data
accessibility. For a data object 𝐷௢with replication

across 𝑁௘servers, 𝑅௙ is given as shown in Eq.(50).

𝑅௙ =
஽೚×ே೐

஽೟೚೟ೌ೗
 (50)

where 𝐷௧௢௧௔௟represents total data managed.

Optimizing 𝑅௙ensures each server has a locally
accessible copy, reducing the need for remote
retrieval and enhancing data access speed. This
replication strategy parallels the Pronghorn’s memory
of resource locations, supporting rapid access without
repetitive travel.

Edge Sprinting also leverages load
distribution to balance the incoming request rate 𝑅௜௡
across edge servers. Let 𝐶௦ denote the handling

capacity of each server and 𝑅௦ the rate of requests
assigned to each server. The load balancing condition
is represented mathematically in Eq.(51).

𝑅௦ ≤ 𝐶௦ (51)

Ensuring 𝑅௦ ≤ 𝐶௦ distributes load evenly,
preventing any single server from becoming a
bottleneck. This balance reflects the Pronghorn’s
instinct to distribute energy efficiently across
movements, ensuring consistent performance.

Throughput 𝑇௛, measuring the rate of data
processed by each edge server plays a critical role in
maintaining smooth data exchanges.

 𝑇௛ =
ௌ೏×ோ೔೙

೛்ೝ೚೎
 (52)

In Eq.(52), where 𝑇௣௥௢௖ denotes the processing time

per data unit. By maximizing 𝑇௛, Edge Sprinting

 Journal of Theoretical and Applied Information Technology
15th February 2025. Vol.103. No.3

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1065

maintains high data processing rates, enabling fast
service delivery that resembles Pronghorn’s adaptive
capacity for continuous movement without lag.

Edge resilience 𝐸௥ ensures that each edge
server continues to operate smoothly even during high
demand or minor failures. Let 𝑃௙ represent the failure
probability of an edge server. The resilience factor
𝐸௥is expressed as Eq.(53)

 𝐸௥ = 1 − 𝑃௙ (53)

A higher 𝐸௥ enhances the stability of Edge Sprinting,
ensuring consistent access to services regardless of
individual server issues. This resilience reflects the
Pronghorn’s instinct for navigating challenging
terrain without interruption. Edge Sprinting in PSOF
enhances web service responsiveness and scalability
through optimized latency, bandwidth, and load
distribution.

3.7. Focus Query Optimization

Focus Query Optimization in the PSOF
enhances database query performance by streamlining
query execution paths and minimizing data retrieval
time. This optimization technique eliminates
unnecessary steps in the query process, ensuring
efficient data access and reducing latency. Focus
Query Optimization echoes Pronghorn’s instinctive
efficiency in avoiding obstacles and conserving
energy, ensuring that data requests are handled
quickly and precisely. Efficient queries in Focus
Query Optimization are defined by their execution
time 𝑇௤ , which depends on the complexity of the

query 𝐶௤and the amount of data 𝐷௥ retrieved. The
basic formula for query time is given as Eq.(54).

 𝑇௤ = 𝐶௤ × 𝐷௥ (54)

Reducing 𝑇௤Through query simplification and
targeted data access, the system can handle requests
swiftly, mirroring the Pronghorn’s calculated
movements across its terrain, where minimal energy
expenditure is prioritized to sustain speed over long
distances.

Indexing represents a critical component in
Focus Query Optimization, as it reduces search time
by organizing data in a structured manner. Let 𝑇௜ௗ௫
represent the time saved through indexing for a
dataset size 𝑆ௗ with index efficiency 𝐸௜ௗ௫. The time

savings 𝑇௜ௗ௫ is expressed as shown in Eq.(55).

 𝑇௜ௗ௫ =
ௌ೏

ா೔೏ೣ
 (55)

A higher 𝐸௜ௗ௫enables faster data retrieval,

minimizing 𝑇௤ for repeated queries. This efficiency
reflects the Pronghorn’s adaptation to optimal routes,
where every movement reduces time spent on
unnecessary detours, enhancing overall speed.

The selectivity 𝑆௤ a query that measures the
fraction of data retrieved relative to the total dataset
significantly reduces unnecessary data processing.
Selectivity 𝑆௤is defined as Eq.(56).

 𝑆௤ =
஽ೝ

஽೟
 (56)

where 𝐷௧ represents the total data. Lower 𝑆௤ values
achieved through optimized filtering result in faster
query responses, aligning with the Pronghorn’s ability
to navigate selectively and bypass obstacles to
maintain momentum and precision.

Caching frequently accessed query results
further enhances query efficiency in Focus Query
Optimization. Let 𝐻௖ represent the cache hit rate for

queries and 𝑇௖௔௖௛௘ the retrieval time from the cache.

The overall retrieval time 𝑇௥௘௧௥௜௘௩௘for a cached
query is expressed as Eq.(57).

𝑇௥௘௧௥௜௘௩௘ = 𝐻௖ × 𝑇௖௔௖௛௘ + (1 − 𝐻௖) × 𝑇௤
(57)

Maximizing 𝐻௖reduces dependence on
database retrieval, enhancing response times and
reducing 𝑇௤ for recurring queries. This caching
approach resembles Pronghorn’s instinct for
familiarity, where habitual paths are recalled quickly,
minimizing the time spent searching.

Focus Query Optimization also considers the
cost 𝐶௘௫௘௖ of executing complex queries, where each
step in the query process requires resources. The
execution cost is determined by Eq.(58).

 𝐶௘௫௘௖ = 𝐶௤ × 𝑅௥ (58)

where 𝑅௥ represents the resource usage per query. By

reducing 𝐶௤ through query refinement, Focus Query

Optimization reduces 𝐶௘௫௘௖, ensuring that resources
are allocated effectively, similar to how the
Pronghorn efficiently uses its energy reserves,
conserving them for critical movements.

In scenarios involving multiple joined tables,
query optimization includes minimizing the number
of joins 𝐽 required. Each join increases processing

 Journal of Theoretical and Applied Information Technology
15th February 2025. Vol.103. No.3

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1066

time, so reducing 𝐽 enhances query efficiency. The

time 𝑇௝௢௜௡ for queries with multiple joins is
calculated as expressed mathematically in Eq.(59).

 𝑇௝௢௜௡ = 𝐽 × 𝑇௤ (59)

Reducing 𝐽 through optimized data structure design
and selective filtering aligns with Pronghorn’s
adaptive approach to reduce unnecessary movements,
achieving efficient data processing through focused
paths.

Partitioning further supports Focus Query
Optimization by dividing large datasets into smaller,
more manageable segments. Let 𝑃௡ represent the

number of partitions and 𝑇௣ the time taken to retrieve
data from each partition. Total partition retrieval time
𝑇௣௔௥௧ is determined in Eq.(60).

 𝑇௣௔௥௧ =
೜்

௉೙
 (60)

A higher 𝑃௡reduces 𝑇௣௔௥௧, enhancing retrieval speed,
particularly for queries targeting specific data
segments. This partitioning approach aligns with
Pronghorn’s terrain navigation, where particular
routes are chosen to maintain speed and avoid slower
pathways.

Parallel processing, where queries are
divided into smaller sub-tasks executed concurrently,
significantly improves query performance. Let 𝑁௣
denote the number of parallel processes and
𝑇௣௔௥௔௟௟௘௟ represent the reduced query time with
parallel processing.

 𝑇௣௔௥௔௟௟௘௟ =
೜்

ே೛
 (61)

In Eq.(61) where, Increasing 𝑁௣shortens 𝑇௣௔௥௔௟௟௘௟ ,
enabling efficient data retrieval for high-demand
queries. This parallel approach resembles the
Pronghorn’s ability to adapt its movements based on
multiple stimuli, responding with rapid and
coordinated actions to maintain efficiency.

Optimization also includes adjusting the
query plan representing the sequence in which
database operations are executed. In Eq.(62), where
the query plan cost 𝐶௣௟௔௡, depending on the

estimated time for each operation 𝑇௢௣ and the

number of operations 𝑂௡.

 𝐶௣௟௔௡ = ∑ 𝑇௢௣,௜
ை೙
௜ୀଵ (62)

Reducing 𝑂௡ through an optimized query plan lowers

𝐶௣௟௔௡, allowing faster query completion. This focus
on a streamlined path parallels the Pronghorn’s
instinct to follow efficient routes, avoiding
unnecessary energy expenditure while maintaining
speed. In Focus Query Optimization, query efficiency
is achieved by reducing retrieval time, enhancing
selectivity, minimizing joins, implementing caching,
and leveraging parallel processing.

3.8. Pool Sprint Connections

Pool Sprint Connections in the PSOF
enhances connection management by reusing
established connections, reducing the time and
resources needed to develop new ones. This approach
minimizes latency and improves overall response
times by pooling and optimizing existing connections,
emulating the Pronghorn’s swift, energy-efficient
sprints that conserve resources over distances. By
reusing connections, Pool Sprint Connections enables
rapid, continuous data exchanges that maintain
service agility. In Pool Sprint Connections, the total
connection time 𝑇௖for each request depends on the

setup time 𝑇௦௘௧௨௣ and transmission time 𝑇௧௥௔௡௦
expressed mathematically in Eq.(63).

 𝑇௖ = 𝑇௦௘௧௨௣ + 𝑇௧௥௔௡௦ (63)

Minimizing 𝑇௦௘௧௨௣by reusing existing connections

directly reduces 𝑇௖ , enabling faster response times for
repeated requests. This method aligns with the
Pronghorn’s sustaining speed without repeatedly
exerting energy, as the Pronghorn conserves its
resources through efficient and direct paths.

The number of connections 𝑁௖ pooled at any
time must be balanced to prevent server overload. Let
𝐶௠௔௭ denote the maximum allowable connections.
The pooling condition is defined as Eq.(64).

 𝑁௖ ≤ 𝐶௠௔௫ (64)

Maintaining 𝑁௖ ≤ 𝐶௠௔௫ ensures optimal
performance by avoiding excessive server load. By
managing the active connections within these limits,
Pool Sprint Connections resembles the Pronghorn’s
instinct to regulate speed and conserve energy,
adapting to its environment without overtaxing its
capacity.

Pooling efficiency 𝐸௣in Pool Sprint
Connections measures the reduction in setup time for
each connection relative to the total number of
requests 𝑅௧. The formula for pooling efficiency is
represented mathematically in Eq.(65).

 Journal of Theoretical and Applied Information Technology
15th February 2025. Vol.103. No.3

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1067

𝐸௣ =
൫ ೞ்೐೟ೠ೛×ோ೟൯ି(ೝ்೐ೠೞ೐×ேೝ)

ೞ்೐೟ೠ೛×ோ೟
 (65)

where 𝑇௥௘௨௦௘represents the reduced time when

reusing connections and 𝑁௥ the reused connections.

A high 𝐸௣ reflects efficient connection reuse,
reducing latency for each request. This efficiency
reflects the Pronghorn’s optimized sprinting, where
each movement is directed to minimize time spent on
repetitive actions.

Bandwidth allocation 𝐵௔ for pooled
connections also plays a vital role in maintaining
high-speed data transfers. For a pooled connection set
𝑃௖with bandwidth 𝐵௠௔௫ , the total bandwidth

requirement 𝐵௧ must satisfy.

 𝐵௧ = 𝑁௖ × 𝐵௔ ≤ 𝐵௠௔௫ (66)

where in Eq.(66), Balancing 𝐵௧within 𝐵௠௔௫ ensures
that each connection can transmit data without
network congestion. By maintaining bandwidth
efficiency, Pool Sprint Connections support high-
speed communication, resembling the Pronghorn’s
intuitive balance of speed and energy conservation
across challenging terrains.

Connection reuse rate 𝑅௥ represents the
frequency of reusing pooled connections and is
critical for optimizing response times. For 𝑅௧requests

and a reuse count 𝑁௥ , the reuse rate 𝑅௥ is determined
in Eq.(67).

 𝑅௥ =
ேೝ

ோ೟
 (67)

A high 𝑅௥ indicates that connections are reused
efficiently, minimizing setup times for new requests
and reducing latency. This optimized reuse reflects
the Pronghorn’s ability to maintain high-speed
movement by following familiar, efficient routes
without frequent stops, ensuring uninterrupted
progress.

Latency reduction 𝐿௥ through connection
pooling, the time saved in each data exchange is
measured by reusing connections. For a connection
setup time 𝑇௦௘௧௨௣ and reuse time 𝑇௥௘௨௦௘ , latency
reduction is calculated as shown in Eq.(68).

𝐿௥ = 𝑇௦௘௧௨௣ − 𝑇௥௘௨௦௘ (68)

Higher 𝐿௥ values signify significant time savings,
allowing faster data exchange. This latency reduction
mirrors the Pronghorn’s instinctive sprints, where

obstacles are minimized, and speed is maintained,
conserving effort while covering distances swiftly.

The connection life 𝐿௖ defines the duration
for which each pooled connection remains active,
balancing reuse efficiency with resource
management. For a connection expiration threshold
𝐸௧௛, the connection life condition is expressed
mathematically in Eq.(69).

𝐿௖ ≤ 𝐸௧௛ (69)

Maintaining 𝐿௖ ≤ 𝐸௧௛ensures that connections are
periodically refreshed, preventing degradation in
performance due to outdated connections. This
management strategy echoes the Pronghorn’s
adaptive pace, calibrating each sprint to sustain
energy without exhaustion.

Connection allocation efficiency 𝐴௘ ,
representing the proportion of active to idle
connections, further improving resource usage. Let
𝑁௔ denote active connections and 𝑁௜ idle

connections. The allocation efficiency 𝐴௘
isrepresented mathematically in Eq.(70).

 𝐴௘ =
ேೌ

ேೌାே೔
 (70)

High 𝐴௘ values indicate that most connections are
actively used, optimizing server performance and
reducing resource wastage. This efficient allocation
resembles the Pronghorn’s instinct for purposeful
movement, where energy is directed toward practical
actions rather than idle exertion.

The throughput 𝑇ℎ௖ of pooled connections,
which measures the data transmitted per unit of time
across all active connections, is critical for
maintaining high service levels. For data 𝐷

transmitted and transmission time 𝑇, the throughput

𝑇ℎ௖is calculated as expressed in Eq.(71).

 𝑇ℎ௖ =
஽

்
 (71)

Higher 𝑇ℎ௖ values ensure efficient data handling,
supporting rapid communication across networked
applications. This optimized throughput echoes the
Pronghorn’s continuous movement, where speed is
maintained without unnecessary pauses, enhancing
overall performance. Pool Sprint Connections in
PSOF leverages optimized connection reuse,
bandwidth efficiency, and active connection
management to reduce latency and maximize data
transmission speed. By sustaining swift, continuous
connections, Pool Sprint Connections emulates the

 Journal of Theoretical and Applied Information Technology
15th February 2025. Vol.103. No.3

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1068

Pronghorn’s ability to maintain speed with calculated,
resourceful movement across distances. Pool Sprint
Connections enhances system responsiveness and
scalability through this approach, enabling seamless
data handling across demanding environments.

3.9. Reactive Scaling Pulse

The reactive scaling pulse in the PSOF
ensures dynamic resource allocation to meet
fluctuating demand while maintaining performance
and responsiveness. This scaling mechanism allows
the system to expand or reduce resource availability
as needed, preserving optimal operation during peak
and low-traffic periods. Reflecting the Pronghorn’s
adaptive agility, Reactive Scaling Pulse provides
quick, energy-efficient responses to environmental
changes, ensuring that resources are deployed only
when necessary, conserving system energy and
optimizing load handling.

The rate of demand change, represented as
𝑅ௗ , influences the scaling decision. For an initial

demand 𝐷௜ and a change in demand 𝛥𝐷 over a

period 𝑇, the rate of demand change is given by
Eq.(72).

 𝑅ௗ =
∆஽

்
 (72)

when 𝑅ௗexceeds a predefined threshold 𝑇௛, the
Reactive Scaling Pulse triggers additional resources.
This adaptability mirrors the Pronghorn’s automatic
response to external pressures, where speed adjusts
instantly to maintain optimal movement.

Scaling latency 𝐿௦, or the time taken to
activate or deactivate resources, affects the system’s
ability to respond effectively to demand fluctuations.
For a scaling activation time 𝑇௔and deactivation time

𝑇ௗ, the total scaling latency is calculated as shown in
Eq.(73).

 𝐿௦ = 𝑇௔ + 𝑇ௗ (73)

Reducing 𝐿௦ ensures that the Reactive Scaling Pulse
activates resources swiftly, enhancing responsiveness
during high-demand periods. This efficiency reflects
the Pronghorn’s ability to react promptly, maintaining
speed without delay when faced with varying terrain
conditions.

The total resource allocation 𝑅௧at any time

depends on the baseline resources 𝑅௕and the

additional resources 𝑅௔ deployed in response to
demand surges. The equation for resource allocation
is expressed in Eq.(74).

𝑅௧ = 𝑅௕ + 𝑅௔ (74)

Reactive Scaling Pulse maintains 𝑅௧ at optimal
levels, ensuring the system handles incoming load
efficiently. This controlled increase and decrease of
resources mirrors the Pronghorn’s capacity to
modulate energy output as required, achieving
sustained performance over extended sprints.

Elasticity 𝐸, a measure of the system’s
ability to scale resources up or down based on
demand, is represented by the ratio of change in
allocated resources 𝛥𝑅 to the shift in demand 𝛥𝐷 as
shown in Eq.(75).

𝐸 =
∆ோ

∆஽
 (75)

A high elasticity 𝐸 ensures that the Reactive Scaling
Pulse matches resource availability to demand
closely, preventing under- or over-provisioning. This
elasticity echoes the Pronghorn’s agility, where
immediate adjustments maintain balance and enable
seamless movement across changing landscapes.

Resource utilization 𝑈௥ measures the
efficiency of resource deployment, calculated as the
ratio of resources actively used 𝑅௨ to the total

allocated resources 𝑅௧.

𝑈௥ =
ோೠ

ோ೟
 (76)

In Eq.(76) where maintaining 𝑈௥ near-optimal levels
prevent resource wastage and ensure each active
component contributes to performance, reflecting the
Pronghorn’s efficient energy allocation for rapid and
precise movements.

Cost efficiency 𝐶௘ in Reactive Scaling Pulse
evaluates the financial impact of scaling actions,
which is essential for cost-sensitive applications. For
scaling cost 𝐶௦and the total number of resources 𝑁௥ ,
cost efficiency is represented as Eq.(77).

 𝐶௘ =
ேೝ

஼ೞ
 (77)

By maximizing 𝐶௘ , Reactive Scaling Pulse minimizes
expenses associated with resource allocation,
ensuring a balance between performance and cost.
This cost-conscious approach mirrors the
Pronghorn’s instinctive conservation of energy,
where effort is expended judiciously to achieve
sustained speed.

The scaling threshold 𝑇௦௖௔௟௘ , a
predetermined limit that triggers resource changes

 Journal of Theoretical and Applied Information Technology
15th February 2025. Vol.103. No.3

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1069

prevents unnecessary scaling actions. For baseline
demand 𝐷௕and threshold demand 𝐷௧௛ , the scaling
condition is represented mathematically in Eq.(78).

 𝐷௕ ≥ 𝐷௧௛ (78)

This condition ensures that the Reactive
Scaling Pulse activates only during significant
demand shifts, maintaining system stability. This
selective activation reflects the Pronghorn’s adaptive
instincts, where rapid responses are conserved for
crucial moments, avoiding unnecessary expenditure
of resources.

The response time 𝑇௥ scaling up or scaling
down events impacts overall performance,
particularly during rapid demand fluctuations. For
time intervals 𝑇௨௣ and 𝑇ௗ௢௪௡ during scaling, the
total response time is expressed mathematically in
Eq.(79).

 𝑇௥ = 𝑇௨௣ + 𝑇ௗ௢௪௡ (79)

Lower 𝑇௥ values ensure a timely reaction to demand
changes, supporting uninterrupted service and
reflecting the Pronghorn’s swift adjustment to
external stimuli, maintaining agility over varying
distances.

Load balancing efficiency 𝐿௕ in Reactive
Scaling Pulse assesses the effectiveness of
distributing incoming requests across scaled
resources. Let 𝑅௧௢௧௔௟ represent total incoming

requests and 𝑅ௗ௜௦௧௥௜௕௨௧௘ௗ the requests managed by
scaled resources. Load balancing efficiency is given
as expressed mathematically in Eq.(80).

 𝐿௕ =
ோ೏೔ೞ೟ೝ೔್ೠ೟೐೏

ோ೟೚೟ೌ೗
 (80)

Maximizing 𝐿௕ supports smooth distribution of
demand, preventing overload on individual resources
and sustaining optimal performance. This efficiency
mirrors the Pronghorn’s strategic pacing, where
energy is distributed evenly to maintain endurance
and speed over challenging terrain. Reactive Scaling
Pulse’s ability to dynamically scale resources based
on demand, manage costs, and optimize resource
usage aligns with Pronghorn’s instinct for agility and
conservation. By balancing these factors, Reactive
Scaling Pulse ensures that resources are allocated
effectively, maintaining high performance and
responsiveness across fluctuating workloads.

4. SIMULATION SETTING AND
PARAMETERS

Web services enable seamless application
communication using standardized protocols such as
HTTP/2, SOAP, and REST. These services form the
backbone of distributed systems by allowing
platforms to interact efficiently. Evaluating the
performance and scalability of web services under
varying conditions is critical, particularly for
frameworks like the PSOF, which aims to enhance
latency reduction, scalability, and resource efficiency.
Simulation is pivotal in testing such frameworks by
providing a controlled, repeatable environment. The
NS-3 simulator offers an ideal platform for evaluating
PSOF’s performance. Designed for network
simulation, NS-3 models application behaviours,
traffic patterns, and protocol performance under
dynamic conditions. NS-3 helps assess how PSOF
components interact and optimize web service
efficiency by simulating real-world workloads and
network topologies. Below is the simulation setting
table for PSOF evaluation in NS-3.

Table 1. Simulation Settings.

Parameter Value

Simulation Time 600 seconds

Network Type Hybrid (Wired and Wireless)

Number of Nodes 50

Application Traffic HTTP/2, REST API Calls

Data Payload Size 128 KB

Bandwidth 100 Mbps

Propagation Delay 2 ms

Queue Size 100 packets

Mobility Model Random Waypoint

Cache Size per Node 500 MB

Edge Server

Placement

Distributed (3 Edge Nodes)

Protocol Stack TCP/IP with QUIC

This configuration enables precise testing of PSOF’s
components like load balancing, caching, and edge
computing, replicating real-world traffic dynamics
and scalability challenges.

5. RESULTS AND DISCUSSIONS

The evaluation of the PSOF in NS-3
highlights its effectiveness compared to Edge-X and
ARTP across different node densities. The Packet

 Journal of Theoretical and Applied Information Technology
15th February 2025. Vol.103. No.3

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1070

Delivery Ratio (PDR), defined as the percentage of
successfully delivered packets to the total packets
sent, serves as the primary metric for analysis. As
node density increases from 50 to 500 nodes, PSOF
consistently achieves higher PDR values, with an
average of 71.945%, outperforming Edge-X and
ARTP, which record averages of 46.985% and
56.209%, respectively. For 50 nodes, PSOF achieves
the highest PDR of 78.33%. In contrast, Edge-X and
ARTP deliver lower ratios of 58.40% and 64.94%,
highlighting the superior resource allocation and load-
balancing capabilities of PSOF under lower traffic
loads.

The PDR for all frameworks declines due to
congestion and resource competition when node
density is increased. At 500 nodes, PSOF maintains a
competitive PDR of 65.67%, compared to the
significantly lower values of 34.12% and 47.31% for
Edge-X and ARTP. This stability demonstrates
PSOF’s scalability and ability to manage high-traffic
volumes effectively. The superior performance of
PSOF can be attributed to its optimized components,
such as Quick Cache Recall, Edge Sprinting, and
Reactive Scaling Pulse, which reduce latency,
improve routing efficiency, and balance server loads
dynamically. These enhancements ensure consistent
data delivery across varying network conditions,
emphasizing PSOF’s potential for improving web
service reliability and scalability in distributed
environments.

Fig. 1. Packet Delivery and Packet Drop

Fig. 1 highlights its effectiveness in minimizing the
Packet Drop Ratio (PDrR). PDrR is the percentage of
data packets that fail to reach their destination relative
to the total packets sent. Lower PDrR indicates better

network reliability and efficiency.PSOF consistently
outperforms Edge-X and ARTP by maintaining a
significantly lower PDrR across all node densities.
With 50 nodes, PSOF achieves a PDrR of 21.67%,
compared to 41.60% for Edge-X and 35.06% for
ARTP. This demonstrates the robust packet
management strategies of PSOF under light traffic
conditions.

As node density increases, PDrR rises for all
frameworks due to congestion and resource
contention. At 500 nodes, PSOF maintains a PDrR of
34.33%, significantly lower than the 65.88% recorded
by Edge-X and 52.69% by ARTP. The average PDrR
for PSOF across all scenarios is 28.055%, showcasing
its ability to maintain efficient packet delivery even
under high network loads. Edge-X and ARTP record
averages of 53.015% and 43.791%, respectively. The
improvements achieved by PSOF can be attributed to
its optimized mechanisms, such as Reactive Scaling
Pulse for dynamic resource allocation and Quick
Cache Recall for enhanced data accessibility, which
reduces packet loss during congestion. These results
emphasize the capability of PSOF to ensure reliable
data transmission in distributed environments.

Fig. 2. Load Balancing Index

The evaluation of the PSOF in terms of the
Load Balancing Index (LBI) demonstrates its
efficiency compared to Edge-X and ARTP. LBI is
defined as a measure of the uniformity in resource
utilization across servers, with lower values indicating
better load distribution. Fig. 2. Illustrates the LBI
pictorially. PSOF achieves an LBI of 1.037,
significantly outperforming Edge-X (1.425) and
ARTP (1.385). The reduced LBI of PSOF highlights
its ability to balance workloads more effectively,
minimizing resource bottlenecks and enhancing
system stability.

0.00

50.00

100.00

Edge-X ARTP PSOF

46.99 56.21
71.9453.01

43.79
28.06

Packet Delivery Ratio Packet Drop Ratio

1.000 1.500 2.000

Edge-X

ARTP

PSOF

1.425

1.385
1.037

Load Balancing Index

 Journal of Theoretical and Applied Information Technology
15th February 2025. Vol.103. No.3

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1071

The superior performance of PSOF can be
attributed to its optimized mechanisms, such as
Steady Pace Load Balancing and Reactive Scaling
Pulse. These components dynamically distribute
incoming requests and adjust resource allocation
based on real-time traffic, ensuring that server loads
remain uniform. The higher LBI values recorded for
Edge-X and ARTP suggest uneven resource usage,
leading to overburdened servers and reduced overall
system efficiency. PSOF’s consistent load
distribution ensures minimal latency, enhanced
scalability, and improved user experience, making it
a robust solution for managing dynamic web service
environments.

Path Optimality measures how efficiently
data packets traverse the network from source to
destination, with lower values indicating more
efficient and optimal paths. Fig. 3. Exhibits the
outcome of PSOF in terms of Path Optimality.

PSOF consistently achieves better path
optimality, maintaining an average value of 0.940,
significantly outperforming Edge-X (1.208) and
ARTP (1.174). At 50 nodes, PSOF records the lowest
value of 0.900, compared to 1.05 for Edge-X and 1.03
for ARTP. This result highlights PSOF’s ability to
deliver highly efficient routing paths under light
network loads. As the number of nodes increases, path
optimality decreases slightly for all frameworks,
reflecting the increased complexity of managing
higher node densities. However, PSOF consistently
achieves better performance. At 500 nodes, PSOF
records a path optimality of 0.988, while Edge-X and
ARTP record 1.4 and 1.35, respectively. This
improvement is attributed to PSOF’s advanced
mechanisms, such as Leap Serialization and Focus
Query Optimization, which streamline data
transmission and ensure efficient path selection. The
superior performance of PSOF in achieving optimal
paths enhances network reliability, minimizes
congestion, and reduces overall latency,
demonstrating its robustness in large-scale and
dynamic environments.

Throughput is the rate at which data packets
are successfully processed and transmitted by the
system, typically measured in bits per second or
packets per second. Higher throughput indicates
better system efficiency and resource utilization. The
obtained throughput values of PSOF are depicted
pictorially in Fig. 4.

Fig. 4. Throughput

PSOF achieves an average throughput of
47.975, significantly surpassing Edge-X (39.853) and
ARTP (40.869). At 50 nodes, PSOF records a
throughput of 41.53, outperforming Edge-X (35.09)
and ARTP (35.78). This demonstrates PSOF’s ability
to handle light traffic loads efficiently while
maintaining a higher data transfer rate. As the network
size increases, throughput values for all frameworks
improve due to the availability of additional nodes to
handle traffic. However, PSOF consistently delivers
the highest throughput. At 500 nodes, PSOF achieves
a throughput of 55.25, compared to 45.14 for Edge-X
and 46.55 for ARTP. This improvement can be
attributed to PSOF’s components like Steady Pace
Load Balancing and Reactive Scaling Pulse, which
dynamically distribute workloads and allocate
resources to optimize data transfer.

6. CONCLUSION

The proposed work, PSOF, has proven to be
a robust solution for enhancing web services’
performance, scalability, and efficiency. By drawing
inspiration from the Pronghorn’s speed, agility, and
adaptability, PSOF integrates carefully designed steps
to address critical challenges such as latency
reduction, load balancing, resource optimization, and
fault tolerance. Each step, from Sprint Compression
to Reactive Scaling Pulse, creates a cohesive
framework that improves web service operations
under varying conditions. Simulation results have
demonstrated that PSOF consistently outperforms
frameworks like Edge-X and ARTP across multiple
performance metrics, including packet delivery ratio,
load balancing index, path optimality, and throughput.
PSOF’s superior performance is attributed to its

0.000

0.500

1.000

1.500

Edge-X ARTP PSOF

1.208 1.174
0.940

39.853

40.869

47.975

Throughput

Edge-X ARTP PSOF

 Journal of Theoretical and Applied Information Technology
15th February 2025. Vol.103. No.3

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1072

unique ability to adapt dynamically to fluctuating
traffic loads while maintaining efficient resource
allocation and routing precision. The framework
effectively reduces latency, minimizes packet loss,
and distributes workloads evenly, ensuring seamless
operations even in high-density network
environments. The scalability and reliability of PSOF
make it an ideal choice for large-scale, distributed
web services. By leveraging mechanisms such as
Quick Cache Recall for rapid data access, Edge
Sprinting for reduced data travel times, and Steady
Pace Load Balancing for equitable resource
utilization, PSOF addresses modern web service
demands effectively. The framework’s demonstrated
capability to enhance performance across diverse
scenarios highlights its potential to set a new
benchmark for optimized web service architecture.

REFERENCES:
[1]. V. Lange and H. Daduna, “The Weber problem

in logistic and services networks under
congestion,” EURO Journal on Computational
Optimization, vol. 11, p. 100056, 2023, doi:
https://doi.org/10.1016/j.ejco.2022.100056.

[2]. A. García-Domínguez, F. Palomo-Lozano, I.
Medina-Bulo, A. Ibias, and M. Núñez,
“Computing performance requirements for web
service compositions,” Comput Stand
Interfaces, vol. 83, p. 103664, 2023, doi:
https://doi.org/10.1016/j.csi.2022.103664.

[3]. Q. Liu, L. Wang, S. Du, and B. J. Van Wyk, “A
Method to Enhance Web Service Clustering by
Integrating Label-Enhanced Functional
Semantics and Service Collaboration,” IEEE
Access, vol. 12, pp. 61301–61311, 2024, doi:
10.1109/ACCESS.2024.3392607.

[4]. R. Herrero, “REST and EDA architectures in
IoT actuation,” Internet of Things and Cyber-
Physical Systems, vol. 3, pp. 205–212, 2023,
doi:
https://doi.org/10.1016/j.iotcps.2023.05.002.

[5]. . M. Ruiz Ródenas, J. Pastor-Galindo, and F.
Gómez Mármol, “A general and modular
framework for dark web analysis,” Cluster
Comput, vol. 27, no. 4, pp. 4687–4703, 2024,
doi: 10.1007/s10586-023-04189-2.

[6]. G. Ortiz et al., “A microservice architecture for
real-time IoT data processing: A reusable Web
of things approach for smart ports,” Comput
Stand Interfaces, vol. 81, p. 103604, 2022, doi:
https://doi.org/10.1016/j.csi.2021.103604.

[7]. S. Chickerur, S. Balannavar, P. Hongekar, A.
Prerna, and S. Jituri, “WebGL vs. WebGPU: A
Performance Analysis for Web 3.0,” Procedia

Comput Sci, vol. 233, pp. 919–928, 2024, doi:
https://doi.org/10.1016/j.procs.2024.03.281.

[8]. A. Laadharet al., “Web of Things Semantic
Interoperability in Smart Buildings,” Procedia
Comput Sci, vol. 207, pp. 997–1006, 2022, doi:
https://doi.org/10.1016/j.procs.2022.09.155.

[9]. V. S. Borkar, S. Choudhary, V. K. Gupta, and
G. S. Kasbekar, “Scheduling in wireless
networks with spatial reuse of spectrum as
restless bandits,” Performance Evaluation, vol.
149–150, p. 102208, 2021, doi:
https://doi.org/10.1016/j.peva.2021.102208.

[10]. F. Freitas, A. Ferreira, and J. Cunha, “A
methodology for refactoring ORM-based
monolithic web applications into
microservices,” J Comput Lang, vol. 75, p.
101205, 2023, doi:
https://doi.org/10.1016/j.cola.2023.101205.

[11]. P. S. S. K. Gandikota, D. Valluri, S. B.
Mundru, G. K. Yanala, and S. Sushaini, “Web
Application Security through Comprehensive
Vulnerability Assessment,” Procedia Comput
Sci, vol. 230, pp. 168–182, 2023, doi:
https://doi.org/10.1016/j.procs.2023.12.072.

[12]. R. Härting, C. Reichstein, L. Bühler, A. Gugel,
and K. Winter, “Success Factors of Web
Portals for Financial Forecasting,” Procedia
Comput Sci, vol. 207, pp. 2154–2161, 2022,
doi:
https://doi.org/10.1016/j.procs.2022.09.275.

[13]. L. Coote et al., “An early economic evaluation
of Kooth, a web-based mental health platform
for children and young people with emerging
mental health needs,” Internet Interv, vol. 36,
p. 100748,2024,doi:
https://doi.org/10.1016/j.invent.2024.100748.

[14]. D. Felício, J. Simão, and N. Datia, “RapiTest:
Continuous Black-Box Testing of RESTful
Web APIs,” Procedia Comput Sci, vol. 219,
pp. 537–545,2023,doi:
https://doi.org/10.1016/j.procs.2023.01.322.

[15]. L. C. P. Velasco, M. X. D. Rentucan, J. J. M.
Largo, and N. A. M. Racaza, “A web-based
market validation tool for the modified Startup
Business Company Validation Methodology,”
Procedia Comput Sci, vol. 234, pp. 937–945,
2024,doi:
https://doi.org/10.1016/j.procs.2024.03.082.

[16]. A. R. Svaigen, A. Boukerche, L. B. Ruiz, and
A. A. F. Loureiro, “BioMixD: A Bio-Inspired
and Traffic-Aware Mix Zone Placement
Strategy for Location Privacy on the Internet of
Drones,” Comput Commun, vol. 195, pp. 111–
123, 2022, doi:

 Journal of Theoretical and Applied Information Technology
15th February 2025. Vol.103. No.3

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1073

https://doi.org/10.1016/j.comcom.2022.07.012
.

[17]. R. Karthikeyan and R. Vadivel, “Boosted
Mutated Corona Virus Optimization Routing
Protocol (BMCVORP) for Reliable Data
Transmission with Efficient Energy
Utilization,” Wirel Pers Commun, 2024, doi:
10.1007/s11277-024-11155-7.

[18]. J. Ramkumar, A. Senthilkumar, M. Lingaraj,
R. Karthikeyan, and L. Santhi, “Optimal
Approach for Minimizing Delays in Iot-Based
Quantum Wireless Sensor Networks Using
Nm-Leach Routing Protocol,” J Theor Appl Inf
Technol, vol. 102, no. 3, pp. 1099–1111, 2024.

[19]. D. Jayaraj, J. Ramkumar, M. Lingaraj, and B.
Sureshkumar, “AFSORP: Adaptive Fish
Swarm Optimization-Based Routing Protocol
for Mobility Enabled Wireless Sensor
Network,” International Journal of Computer
Networks and Applications, vol. 10, no. 1, pp.
119–129, 2023, doi:
10.22247/ijcna/2023/218516.

[20]. J. Ramkumar, R. Vadivel, and B. Narasimhan,
“Constrained Cuckoo Search Optimization
Based Protocol for Routing in Cloud
Network,” International Journal of Computer
Networks and Applications, vol. 8, no. 6, pp.
795–803, 2021, doi:
10.22247/ijcna/2021/210727.

[21]. M. Allegretta, G. Siracusano, R. González, M.
Gramaglia, and J. Caballero, “Web of
shadows: Investigating malware abuse of
internet services,” ComputSecur, vol. 149, p.
104182, 2025, doi:
https://doi.org/10.1016/j.cose.2024.104182.

[22]. E. Lehtonen et al., “An open web-based GIS
service for biomass data in Finland,”
Environmental Modelling & Software, vol.
176, p.105972,2024,doi:
https://doi.org/10.1016/j.envsoft.2024.105972.

[23]. M. García-Torres et al., “Feature selection
applied to QoS/QoEmodeling on video and
web-based mobile data services: An ordinal
approach,” Comput Commun, vol. 217, pp.
230–245, 2024, doi:
https://doi.org/10.1016/j.comcom.2024.02.004
.

[24]. L. S. KONE TAPSOBA, Y. TRAORE, and S.
MALO, “Interoperability approach for
Hospital Information Systems based on the
composition of web services,” Procedia
Comput Sci, vol. 219, pp. 1161–1168, 2023,
doi:
https://doi.org/10.1016/j.procs.2023.01.397.

[25]. S. K. Ayfan, D. Al-Shammary, A. M. Mahdi,
and F. Sufi, “Dynamic clustering based on
Minkowski similarity for web services
aggregation,” International Journal of
Information Technology, vol. 16, no. 8, pp.
5183–5194, 2024, doi: 10.1007/s41870-024-
02174-5.

[26]. F. Song, B. Wang, X. Xie, R. Pu, Q. Zhang, and
W. Wang, “APIRec: deep knowledge and
diversity-aware web API recommendation,”
Service Oriented Computing and Applications,
2024, doi: 10.1007/s11761-024-00427-6.

[27]. C. Brandi, G. Perrone, and S. Pietro Romano,
“Sniping at web applications to discover input-
handling vulnerabilities,” Journal of Computer
Virology and Hacking Techniques, vol. 20, no.
4, pp. 641–667, 2024, doi: 10.1007/s11416-
024-00518-0.

[28]. T. Kärpänen, “Barriers to creating value with
cognitive accessibility features in digital
services,” Univers Access Inf Soc, 2024, doi:
10.1007/s10209-024-01151-w.

[29]. J. Ara, C. Sik-Lanyi, A. Kelemen, and T.
Guzsvinecz, “An inclusive framework for
automated web content accessibility
evaluation,” Univers Access Inf Soc, 2024, doi:
10.1007/s10209-024-01164-5.

[30]. M. Ragab et al., “ESPRESSO: A Framework
to Empower Search on the Decentralized
Web,” Data Sci Eng, vol. 9, no. 4, pp. 431–448,
2024, doi: 10.1007/s41019-024-00263-w.

[31]. Z. Jia, Y. Fan, J. Zhang, X. Wu, C. Wei, and R.
Yan, “A Multi-Source Information Graph-
Based Web Service Recommendation
Framework for a Web Service Ecosystem,”
Journal of Web Engineering, vol. 21, no. 8, pp.
2287–2312, 2022, doi: 10.13052/jwe1540-
9589.2183.

[32]. M. N. Bonab, J. Tanha, and M. Masdari, “A
Semi-Supervised Learning Approach to
Quality-Based Web Service Classification,”
IEEE Access, vol. 12, pp. 50489–50503, 2024,
doi: 10.1109/ACCESS.2024.3385341.

[33]. A. Dhulfiqar, M. A. Abdala, N. Pataki, and M.
Tejfel, “Deploying a web service application
on the EdgeX open edge server: An evaluation
of its viability for IoT services,” Procedia
Comput Sci, vol. 235, pp. 852–862, 2024, doi:
https://doi.org/10.1016/j.procs.2024.04.081.

[34]. P. Krishna Kishore, S. Ramamoorthy, and V.
N. Rajavarman, “ARTP: Anomaly based real
time prevention of Distributed Denial of
Service attacks on the web using machine
learning approach,” International Journal of

 Journal of Theoretical and Applied Information Technology
15th February 2025. Vol.103. No.3

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1074

Intelligent Networks, vol. 4, pp. 38–45, 2023,
doi: https://doi.org/10.1016/j.ijin.2022.12.001.

[35]. R. Jaganathan, S. Mehta, and R. Krishan,
“Preface,” Intell. Decis. Mak. Through Bio-
Inspired Optim., pp. xiii–xvi, 2024, [Online].
Available:
https://www.scopus.com/inward/record.uri?ei
d=2-s2.0-
85192858710&partnerID=40&md5=f8f1079e
8772bd424d2cdd979e5f2710

[36]. S. P. Geetha, N. M. S. Sundari, J. Ramkumar,
and R. Karthikeyan, “ENERGY EFFICIENT
ROUTING IN QUANTUM FLYING AD
HOC NETWORK (Q-FANET) USING
MAMDANI FUZZY INFERENCE
ENHANCED DIJKSTRA’S ALGORITHM
(MFI-EDA),” J. Theor. Appl. Inf. Technol.,
vol. 102, no. 9, pp. 3708–3724, 2024, [Online].
Available:
https://www.scopus.com/inward/record.uri?ei
d=2-s2.0-
85197297302&partnerID=40&md5=72d5166
8bee6239f09a59d2694df67d6

[37]. J. Ramkumar and R. Vadivel, “Whale
optimization routing protocol for minimizing
energy consumption in cognitive radio wireless
sensor network,” Int. J. Comput. Networks
Appl., vol. 8, no. 4, pp. 455–464, 2021, doi:
10.22247/ijcna/2021/209711.

[38]. R. Vadivel and J. Ramkumar, “QoS-enabled
improved cuckoo search-inspired protocol
(ICSIP) for IoT-based healthcare
applications,” in Incorporating the Internet of
Things in Healthcare Applications and
Wearable Devices, IGI Global, 2019, pp. 109–
121. doi: 10.4018/978-1-7998-1090-2.ch006.

[39]. J. Ramkumar, K. S. Jeen Marseline, and D. R.
Medhunhashini, “Relentless Firefly
Optimization-Based Routing Protocol
(RFORP) for Securing Fintech Data in IoT-
Based Ad-Hoc Networks,” Int. J. Comput.
Networks Appl., vol. 10, no. 4, pp. 668–687,
2023, doi: 10.22247/ijcna/2023/223319.

[40]. R. Jaganathan and V. Ramasamy,
“Performance modeling of bio-inspired routing
protocols in Cognitive Radio Ad Hoc Network
to reduce end-to-end delay,” Int. J. Intell. Eng.
Syst., vol. 12, no. 1, pp. 221–231, 2019, doi:
10.22266/IJIES2019.0228.22.

[41]. R. Jaganathan, S. Mehta, and R. Krishan, Bio-
Inspired intelligence for smart decision-
making. IGI Global, 2024. doi:
10.4018/9798369352762.

[42]. M. P. Swapna, J. Ramkumar, and R.
Karthikeyan, “Energy-Aware Reliable Routing

with Blockchain Security for Heterogeneous
Wireless Sensor Networks,” in Lecture Notes
in Networks and Systems, V. Goar, M. Kuri, R.
Kumar, and T. Senjyu, Eds., Springer Science
and Business Media Deutschland GmbH,
2025, pp. 713–723. doi: 10.1007/978-981-97-
6106-7_43.

[43]. J. Ramkumar and R. Vadivel, “CSIP—cuckoo
search inspired protocol for routing in
cognitive radio ad hoc networks,” in Advances
in Intelligent Systems and Computing, D. P.
Mohapatra and H. S. Behera, Eds., Springer
Verlag, 2017, pp. 145–153. doi: 10.1007/978-
981-10-3874-7_14.

[44]. R. Jaganathan, S. Mehta, and R. Krishan,
“Preface,” Bio-Inspired Intell. Smart Decis.,
pp. xix–xx, 2024, [Online]. Available:
https://www.scopus.com/inward/record.uri?ei
d=2-s2.0-
85195725049&partnerID=40&md5=7a2aa7ad
c005662eebc12ef82e3bd19f

[45]. J. Ramkumar, R. Karthikeyan, and M.
Lingaraj, “Optimizing IoT-Based Quantum
Wireless Sensor Networks Using NM-TEEN
Fusion of Energy Efficiency and Systematic
Governance,” in Lecture Notes in Electrical
Engineering, V. Shrivastava, J. C. Bansal, and
B. K. Panigrahi, Eds., Springer Science and
Business Media Deutschland GmbH, 2025, pp.
141–153. doi: 10.1007/978-981-97-6710-
6_12.

[46]. J. Ramkumar, C. Kumuthini, B. Narasimhan,
and S. Boopalan, “Energy Consumption
Minimization in Cognitive Radio Mobile Ad-
Hoc Networks using Enriched Ad-hoc On-
demand Distance Vector Protocol,” in 2022
International Conference on Advanced
Computing Technologies and Applications,
ICACTA 2022, Institute of Electrical and
Electronics Engineers Inc., 2022. doi:
10.1109/ICACTA54488.2022.9752899.

[47]. J. Ramkumar, R. Karthikeyan, and V.
Valarmathi, “Alpine Swift Routing Protocol
(ASRP) for Strategic Adaptive Connectivity
Enhancement and Boosted Quality of Service
in Drone Ad Hoc Network (DANET),” Int. J.
Comput. Networks Appl., vol. 11, no. 5, pp.
726–748, 2024, doi: 10.22247/ijcna/2024/45.

[48]. L. Mani, S. Arumugam, and R. Jaganathan,
“Performance Enhancement of Wireless
Sensor Network Using Feisty Particle Swarm
Optimization Protocol,” in ACM International
Conference Proceeding Series, Association for
Computing Machinery, 2022. doi:
10.1145/3590837.3590907.

 Journal of Theoretical and Applied Information Technology
15th February 2025. Vol.103. No.3

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1075

[49]. J. Ramkumar and R. Vadivel, “Improved Wolf
prey inspired protocol for routing in cognitive
radio Ad Hoc networks,” Int. J. Comput.
Networks Appl., vol. 7, no. 5, pp. 126–136,
2020, doi: 10.22247/ijcna/2020/202977.

[50]. M. Lingaraj, T. N. Sugumar, C. S. Felix, and J.
Ramkumar, “Query aware routing protocol for
mobility enabled wireless sensor network,” Int.
J. Comput. Networks Appl., vol. 8, no. 3, pp.
258–267, 2021, doi:
10.22247/ijcna/2021/209192.

[51]. K. S. J. Marseline, J. Ramkumar, and D. R.
Medhunhashini, “Sophisticated Kalman
Filtering-Based Neural Network for Analyzing
Sentiments in Online Courses,” in Smart
Innovation, Systems and Technologies, A. K.
Somani, A. Mundra, R. K. Gupta, S.
Bhattacharya, and A. P. Mazumdar, Eds.,
Springer Science and Business Media
Deutschland GmbH, 2024, pp. 345–358. doi:
10.1007/978-981-97-3690-4_26.

[52]. N. K. Ojha, A. Pandita, and J. Ramkumar,
“Cyber security challenges and dark side of AI:
Review and current status,” in Demystifying
the Dark Side of AI in Business, IGI Global,
2024, pp. 117–137. doi: 10.4018/979-8-3693-
0724-3.ch007.

[53]. R. Jaganathan and R. Vadivel, “Intelligent Fish
Swarm Inspired Protocol (IFSIP) for Dynamic
Ideal Routing in Cognitive Radio Ad-Hoc
Networks,” Int. J. Comput. Digit. Syst., vol. 10,
no. 1, pp. 1063–1074, 2021, doi:
10.12785/ijcds/100196.

[54]. A. Senthilkumar, J. Ramkumar, M. Lingaraj,
D. Jayaraj, and B. Sureshkumar, “Minimizing
Energy Consumption in Vehicular Sensor
Networks Using Relentless Particle Swarm
Optimization Routing,” Int. J. Comput.
Networks Appl., vol. 10, no. 2, pp. 217–230,
2023, doi: 10.22247/ijcna/2023/220737.

[55]. R. Jaganathan, S. Mehta, and R. Krishan,
Intelligent Decision Making Through Bio-
Inspired Optimization. IGI Global, 2024. doi:
10.4018/979-8-3693-2073-0.

[56]. R. Karthikeyan and R. Vadivel, “Proficient
Dazzling Crow Optimization Routing Protocol
(PDCORP) for Effective Energy
Administration in Wireless Sensor Networks,”
in IEEE International Conference on
Electrical, Electronics, Communication and
Computers, ELEXCOM 2023, Institute of
Electrical and Electronics Engineers Inc.,
2023. doi:
10.1109/ELEXCOM58812.2023.10370559.

[57]. M. P. Swapna and J. Ramkumar, “Multiple
Memory Image Instances Stratagem to Detect
Fileless Malware,” in Communications in
Computer and Information Science, S.
Rajagopal, K. Popat, D. Meva, and S. Bajeja,
Eds., Springer Science and Business Media
Deutschland GmbH, 2024, pp. 131–140. doi:
10.1007/978-3-031-59100-6_11.

[58]. [28] P. Menakadevi and J. Ramkumar,
“Robust Optimization Based Extreme
Learning Machine for Sentiment Analysis in
Big Data,” in 2022 International Conference on
Advanced Computing Technologies and
Applications, ICACTA 2022, Institute of
Electrical and Electronics Engineers Inc.,
2022. doi:
10.1109/ICACTA54488.2022.9753203.

[59]. [29] J. Ramkumar and R. Vadivel,
“Multi-Adaptive Routing Protocol for Internet
of Things based Ad-hoc Networks,” Wirel.
Pers. Commun., vol. 120, no. 2, pp. 887–909,
2021, doi: 10.1007/s11277-021-08495-z.

