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ABSTRACT 
 

The automated and accurate detection of pneumonia poses a significant problem in medical analysis due to 
the subtlety of its indicators in X-ray or CT images. This task is of paramount importance, as pneumonia 
claims millions of lives annually. Leveraging sophisticated techniques such as deep learning is essential to 
enhancing both diagnostic precision and operational efficiency. However, adapting existing neural network 
frameworks for clinical imaging tasks often results in overfitting and limited transferability. To mitigate these 
limitations, we introduce PneumoClassifyNet, an innovative lightweight convolutional network architecture 
tailored specifically for Pneumonia Detection in          chest X-ray analysis. This architecture is more compact 
yet more potent than traditional fine-tuning approaches. Additionally, we introduce a new loss function, 
RadCE-loss, designed to effectively extract distinguishing characteristics from incorrectly classified and 
fuzzy images. Furthermore, the convolutional kernels are optimized within the convolutional neural network 
(CNN) model to improve accuracy of classification. The paper presents PneumoClassifyNet, an optimized 
CNN for chest X-ray classification, and RadCE-loss, a function that enhances accuracy by handling 
misclassified images. Results of Experiments indicate that the lightweight PneumoClassifyNet, coupled with 
the RadCE-loss, achieves superior performance across key metrics, including F1-score, recall, accuracy and 
AUC. These findings affirm that a carefully optimized convolutional neural network (CNN) architecture can 
outperform fine-tuned deep learning models. 

Keywords: Pneumonia Detection, Convolutional Neural Network, Optimized Loss Function, Radce-Loss , 
F1 Score, Accuracy 

1 INTRODUCTION 

Over the past decade, computer vision 
has become an indispensable asset in tackling 
numerous complex challenges of the 21st century. 
One of its most promising applications lies in 
medical image diagnosis, where AI has 
demonstrated significant potential.Pneumonia 
continues to be a leading cause of mortality, 
claiming over 4 million lives annually, and 
constituting more than 15% of fatalities in 
children under five years old[1,2].  The risk 
factors include chronic illnesses such as asthma, 
cystic fibrosis, diabetes, cardiac failure and 
reduced immunity. Accurate and swift diagnosis 
is essential for better patient care.In medical 
imaging, chest X-rays are widely utilized for 
diagnosis, favoured for their non-invasive nature 
and cost-effectiveness. However, interpreting 
chest X-rays for pneumonia diagnosis is 

susceptible to subjective 
interpretability/variability [3]. While clinical 
evaluation and imaging form the cornerstone of 
pneumonia detection, even skilled radiologists 
may struggle with interpretation due to 
overlapping visual indicators with other thoracic 
conditions or the subtlety of the signs. 

This underscores the need for automated 
detection systems. Numerous studies have 
developed automated systems for pneumonia 
detection via chest radiography using deep 
learning, which enables end-to-end classification 
by autonomously extracting features from raw 
data, unlike traditional machine learning requiring 
manual feature selection [4]. 
CNNs(Convolutional neural networks) are 
particularly adept at recognizing patterns in 
images for classification, as it inherently captures 
the translationally invariant information through 
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convolutional processes. Sharma et al.[5] and 
Stephen et al.[6][25] designed primitive CNN 
models for classifying pneumonia in chest X-rays, 
incorporating augmentation of data to address the 
scarcity of available data. Utilizing a dataset 
created by Kermany et al.[7][26], Stephen et al. 
secured 93.73% accuracy, while Sharma et al. 
attained an accuracy of 90.68%. Rajpukar et al.[8] 
applied the DenseNet121 convolutional neural 
network (CNN) model for classification of 
pneumonia, obtaining an F1-score of 76.8%. They 
attributed the suboptimal performance to the 
absence of patient history, which affected both 
their deep network model and the medical experts 
against whom the model's performance was 
compared.Panwar et al. [9][27] integrated the 
VGG-19 architecture alongside GradCAM, 
resulting in a 95.6% accuracy within a 3-class 
pneumonia classification problem. Likewise, 
Brunese et al. [10] utilized a VGG-16-based 
architecture in conjunction with the GradCAM for 
visual rectification, securing a 96.2% accuracy on 
a data collection comprising of 6,523 chest X-
rays. Adi and Kemal et al.[11][29] implemented a 
DenseNet-201 model and accomplished recall and 
accuracy metrics of up to 95%, along with a 
precision of nearly 90% on over 6,000 chest X-
rays sourced from Kaggle. Mahmud et al. [12] 
introduced CovXNet, a CNN architecture that 
employs depth-wise convolutions with variable 
dilation rates to obtain a diverse array of features 
from chest X-rays. This model, trained on 6,161 
chest X-rays, attained a accuracy of 97.4% in a 
binary class pneumonia detection scenario.   

Ouchicha et al[24][30]. established a 
residual CNN model that was trained on 2,905 X-
ray images, resulting in an accuracy of 96.7% in 
pneumonia classification task.Wang and Bao et 
al.[13][31] introduced a prior attention residual 
learning block, which they integrated into two 
3DResNets. Their model resulted in an accuracy 
of 93.3% on a pneumonia classification task, 
utilizing a dataset of 4,697 X-rays. Das et 
al.[14][32] explored transfer learning with 
established CNN architectures, specifically 
DenseNet201, ResNet50V2, and InceptionV3. By 
leveraging a weighted average ensembling 
method, they achieved 91.62% accuracy in 
differentiating between viral pneumonia and 
healthy lung tissues in a binary classification 
scenario, employing a data set of 1,004 X-ray 
scans. Nikolaou and Massaro et al.[15][33] 
enhanced the pre-trained EfficientNetB0 model 
by adding a dense layer, resulting in a more robust 
CNN architecture. This model, trained on 15,153 

X-ray images, attained a accuracy of 95%, 
effectively differentiating between healthy and 
viral pneumonia cases. Singh and Tripathi et 
al.[16][34] employed a Quaternion Convolutional 
Neural Network (QCNN), specifically using a 
Quaternion Residual Network, to categorize chest 
X-rays as either heathy or abnormal cases. By 
treating the RGB color channels as a single unit 
for capturing patterns, their model, trained on 
5,856 images, accomplished a accuracy of 
93.75%. Joshi and Yadav et al[17] proposed a 
DL(deep learning) system derived from DarkNet-
53, a 53-layer CNN pre-trained on ImageNet. 
After fine-tuning on dataset comprising 6,884 
chest X-ray images, the model demonstrated an 
average testing accuracy at 97.11%, accompanied 
by an inference time measuring 0.137 seconds per 
image, making it a rapid diagnostic tool. Dash and 
Mohapatra et al.[18][28] presented a modified 
VGG-16 architecture, eliminating the fully 
connected layers and substituting them with a 
simplified set to optimize the model for 
pneumonia detection. Trained on a dataset of 
1,272 X-rays, the model attained an accuracy of 
97.12%. 

Despite these breakthroughs, CNN 
models often encounter challenges such as 
overfitting on limited medical datasets and poor 
generalization to unseen data, limiting their utility 
in clinical settings. To overcome these limitations, 
we propose PneumoLiteNet, a compact and 
efficient CNN architecture particularly tailored 
for detection of Pneumonia in chest 
radiography(X-ray) images. Unlike traditional 
methods that rely on fine-tuning   pre-trained deep 
learning models, PneumoLiteNet is built from 
scratch to optimize performance for this particular 
task. Additionally, we propose a novel loss 
function, RadCE-loss, which enhances model 
learning by focusing on distinguishing features in 
misclassified and ambiguous images. This 
approach not only boosts classification accuracy 
but also mitigates overfitting, making the model 
more adaptable to diverse patient data. 

Our contributions in this paper are 
twofold: First, we present PneumoClassifyNet, a 
lightweight CNN model that categorizes chest X-
ray images into two classes: healthy or abnormal. 
The model is optimized for efficiency, reducing 
unnecessary parameters, rearranging layer orders 
and incorporating elements from conventional 
CNN architectures to improve feature extraction. 
Its lightweight nature ensures faster training and 
lower computational costs. Second, we propose 
the RadCE-loss function, which enhances the 
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performance of PneumoClassifyNet by 
effectively handling misclassified and indistinct 
images through a self-adjusting coefficient.This 
paper is structured as follows: 2nd Section 
outlines the proposed technique, 3rd Section 
compares our results with the modern advanced 
approaches, and the last 4th Section concludes the 
study.  
 
2 DATA RESOURCES AND 

PROCEDURES  

2.1. Dataset 
The Images utilized in this research 

originates from a deep learning competition 
hosted on Kaggle. It comprises X-rays of the 
lungs of young children between ages of one and 
five. These X-rays are sourced from the 
Guangzhou Children’s Medical Centre and are 
verified by healthcare professionals. The dataset 
comprises a total of 5,856 labeled images, with 
4,273 displaying indications of pneumonia, while 
the remaining 1,583 are identified as healthy. 
Each Image is a grayscale scan with dimensions 
varying between 1,346×1,044 and 2,090×1,858 
pixels. Typically, the severely affected 
pneumonia Images are often characterized by 
prominent alveolar consolidations, primarily 
resulting from bacterial infections and fluid 
accumulation in the lungs. While in some Images, 
the differences between healthy and pneumonia-
affected X-rays are generally discernible, in 
certain instances, the variations are less 
pronounced. 

 
2.2. CNN Method Foundations 
 This section outlines two primary 
contributions: enhancing the loss/cost function 
and designing a more efficient structure or design 
of the model. Drawing inspiration from the 
characteristics of specific radical power functions, 
we developed a self-adapting component to refine 
the process of training/learning of model, with 
particular focus on enhancing the recognition of 
indistinct and wrongly classified images. Given 
the limitations of fine-tuning and the significant 
differences of images between chest X-ray and 
those used to train pretrained models, we opted to 
design a novel architecture from scratch. This new 
model is thinner, lighter, and optimized for binary 
classification. Below, detailed descriptions of the 
novel loss function, followed by the model 
architecture and the learning process is provided. 
 

2.2.1. Problem Formulation of the Novel Loss 
Function 
  Anomaly detection in chest X-rays is 
formulated as a problem of binary classification, 
where the chest X-ray image is provided, and the 
outcome is a dual label signifying either the 
existence (1) or absence (0) of illness. For binary 
image classification tasks, the SoftMax cross 
entropy cost function is commonly utilized as the 
optimization criterion. 
 

L = −
ଵ

୒
∑ൣt୧ ln q୨ + (1 − t୧) ln൫1 − q୨൯൧    (1) 

Where ti is ground truth value taking value 1 or 0, 
N is the total no. of images employed for training 
the model, and qj ∈ [0, 1] is  the SoftMax 
probability defined as :  
 

q୨ =
ୣ

౩ౠ

∑ ୣ౩ౙి
ౙసభ

 (2) Where s denote the value that 

is fed to the SoftMax and C represents the total no. 
of categories and j∈[0,C−1], In this specific case, 
C=2. When examining the image X, the outcome 
of the final layer Qi is transformed by the model 
network as follows: 
q୧ = g(X|w୤),  q୧୨ ∈ Q୨ (3) Where g represent 

the entire nonlinear model network and wf denote 
the parameter vector across all network layers. 
Finding the best parameter configuration by 
iteratively modifying them to minimize the 
following function, as shown in Equation (4) is 
the aim of the training procedure. 
 

𝑎𝑟𝑔𝑚𝑖𝑛௪೑∈ௐಷ

ଵ

୒
∑ L୧(Q୧, t୧| w୤)   (4) 

Differentiating between healthy and pathological 
chest X-rays poses a significant challenge, 
particularly when normal images contain noise 
and the diseased areas in abnormal images are not 
readily apparent 

 

Fig 1. Graph plot of various radical power functions 
for distinct values of m 

To address this issue, we introduce a self-adapting 
coefficient which is multiplied with the loss 
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function during the processing of the training 
image X, as depicted in Equation (5): 
𝐿௜൫𝑄௜ , 𝑡௜ห 𝑤௙൯  =  𝐾௜ [𝑡௜ ln 𝑞௝ + (1 − 𝑡௜) ln൫1 −

𝑞௝൯]. (5) 
We seek an appropriate 𝐾௜ with a basic shape that 
is monotonically decreasing and convex within 
the interval [0,1]. This inspiration comes from the 
behaviour of a simple radical power function 

1−x
m

, particularly when 0<m<1. It is observed 
that the convex function curve declines from 1 to 
0 when x ranges from 0 to 1 as illustrated in 
Figure 1. 
 

Utilizing this radical function enables us to get 
learning more effectively from misclassified and 
indistinguishable chest X-rays. The coefficient is 
outlined as follows:  
𝐾௜ = 1- qij

m                                                             (6) 
 
In our study, qij∈[0,1] and m=0.5. Figure 2(a) 
illustrates the standard CE loss when Ki =1. In 
contrast, Figure 2(b) represents a modified form 
of Figure 2(a), where Ki is defined as per Equation 
(6). 
 

It is evident that the curve in Figure 2(b) exhibits 
a steeper decline compared to the curve in   2(a) 
when qij<0.5, indicating a higher loss value when 
qij is small. This characteristic allows the curve in 
Figure 2(b) to prioritize images that are wrongly 
classified during the learning process.  
 

 
                               (a) 
 

 
                                  (b) 

Fig 2. Loss function curves based on varying Ki 
value, (a) is the standard CE loss when Ki =1, (b) 
is a variant of (a) with Ki defined by Equation (6) 
 

Consequently, the RadCE-loss is expressed as in 
(7):  

   𝐿௡௘௪൫𝑄௜ , 𝑡௜ห 𝑤௙൯ = −
ଵ

୒
 Σ 𝐿௜൫𝑄௜ , 𝑡௜ห 𝑤௙൯ (7)     

The final loss is computed as the average loss 
across all data samples. Averaging the loss 
normalizes the output, contributing to the 
stabilization of the training process. 
The parameters 𝑤௙  are iteratively modified by 
using backpropagation to optimise 𝐿௡௘௪  as shown 
in (8): 

𝑤௙ = 𝑤௙ −  𝜂 
ఋ௅೙೐ೢ

ఋ௪೑
    (8) 

After initializing 𝑤௙  randomly, 
ఋ௅೙೐ೢ

ఋ௪೑
  is obtained 

through backpropagation, and 𝑤௙  is revised with 
the gradient descent approach, and 𝜂 denotes the 

learning rate ; 
ఋ௅೙೐ೢ

ఋ௪೑
  represents the gradient of 

𝐿௡௘௪൫𝑄௜ , 𝑡௜ห 𝑤௙൯.   

To determine the optimal parameters 𝑤௙  to 
make  𝐿௡௘௪൫𝑄௜ , 𝑡௜ห 𝑤௙൯ minimal, Equation (8) is 
iteratively executed, with both 𝑤௙  

and 𝐿௡௘௪൫𝑄௜ , 𝑡௜ห 𝑤௙൯  continuously updated until 
𝐿௡௘௪൫𝑄௜ , 𝑡௜ห 𝑤௙൯  converges to its minimum value. 
Executing the updates in Equation (8) makes the 
network to focus more on misclassified images, 
resulting in the development of more 
discriminative features and improving 
classification accuracy. 

3.2.2 Model Architecture and Training Process 
              Numerous studies have endeavoured to 
improve on current convolutional neural network 
(CNN) architectures, including ResNet, VGGNet, 
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DenseNet, for the training of medical images 
[19]-[21]. Nevertheless, transfer-learning may 
prove suboptimal when substantial differences 
exist between the original and target datasets. The 
chest X-rays in the utilized dataset are high-
dimensional grayscale images, which differ 
significantly from the natural images in 
ImageNet. With advancements in computational 
power, training a domain-specific classifier from 
scratch has become feasible. In this study, we 
introduce an innovative network named 
PneumoLiteNet (Pneumonia Detection 
Light/Compact Network). 

As respresented in Fig. 3, the architecture of 
the model comprises a repetitive sequence of 
convolutional layers succeeded by pooling layers. 
The convolutional layers act as the primary 
mechanism for this extraction process, with each 
convolutional block supplemented by a batch-
normalisation layer and a subsequent ReLU 
activation function.The model utilizes a 
streamlined design with only three consecutive 
blocks dedicated to feature extraction from 
images. The convolutional kernels are configured 
to 64, 128, and 256 in each respective block. To 
emphasize small lesion regions and capture 
intricate characteristics, a kernel size of 3x3 is 
employed. After these convolutional blocks, the 
architecture includes an additional convolutional 
layer (convlayer-4), succeeded by a dropout layer, 
batch-normalization, a global pooling layer, and 
the final output convolutional layer (convlayer-5). 

 

 

Fig 3. PneumoLiteNet 

The inclusion of these layers, rather than fully 
connected layers, decreases the parameter count, 
while the dropout and batch normalization[23] 
layers are designed to mitigate overfitting. 
Pooling layers generally succeed convolutional 
layers, serving to diminish the dimensionality and 
the no. of parameters within the feature maps. 
Pooling achieves this by summarizing the most 
salient features of the feature map. In this model, 
max-pooling with a stride and filter size of 3x3 
was used to downsample the features. ReLU was 
the activation function employed in every layer 
with the exception of the output final layer, where 
standard SoftMax function was utilized to classify 
whether the lung in an image is affected by 
pneumonia, by predicting probabilities in the final 
step.  

Unlike many widely-used networks, 
PneumoLiteNet consists of only five 
convolutional layers, with three layers dedicated 
to feature extraction, significantly fewer than 
established models such as ResNet(50 layers) and 
DenseNet(121 Layers). Additionally, a dropout, 
batch-normalization, and a global pooling layer 
are sequentially integrated between the final two 
convolutional layers to prevent overfitting, a 
configuration not commonly found in other model 
architectures. Throughout the training process, the 
Chest X-rays are input into PneumoLiteNet, 
where the parameters are optimized through 
backpropagation to achieve a minimal value of the 
RadCE cost function. 

To enhance the efficiency of the training 
process, ensure convergence, and minimize 
training time, two optimization mechanisms were 
strategically utilized. The first, known as "reduce 
learning rate on plateau," decreases the learning 
rate by a predefined factor when learning 
stagnates. This prevents gradient descent from 
overshooting the global minimum. In the 
proposed network, the patience parameter was 
established at a value of 5, meaning learning rate 
was reduced after five epochs of no improvement 
in accuracy. The reduction factor was established 
at 0.9, and the cooldown period, during which 
adjustments to the learning rate are paused, was 
designated as 5 epochs. This method aims to 
prevent overshooting and improve convergence 
efficiency.The second mechanism, "early 
stopping," monitors the validation loss and halts 
training when no improvement is observed over a 
defined interval. This method significantly 
accelerates the training process, as it avoids 
unnecessary epochs once convergence is 
achieved. For instance, although our model was 
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scheduled to train for 100 epochs, it converged 
after 35, saving time and preventing overfitting. 

We employed the Adam optimizer[22] to improve 
optimization efficiency. In addition to these 
mechanisms, careful tuning of hyperparameters—
like the batch size, learning rate and optimization 
algorithm played a critical role. We selected a 
learning rate of 4x10^-4, determined through 
hyperparameter tuning. It is essential to balance 
this parameter, as a large learning rate risks 
converging to a local minimum, while a smaller 
one slows down the training process. 
Experimentation showed that a mini-batch size of 
32 yielded optimal performance. The batch size 
refers to the count of samples that are passed 
through the model training before the parameters 
of the model are updated, and introducing some 
update through mini-batch gradient descent helps 
overcome local minima and saddle points in non-
convex optimization landscapes. 
 
3 RESULTS AND DISCUSSION  
 
3.1 Results 

For result analysis, Training accounted for 
80% of the available chest X-ray images, with 
70% going towards real training and 10% going 
towards validation. The rest, or 20%, was set aside 
for testing. A ten-fold cross validation was 
conducted for each CNN architecture utilized in 
this evaluation study. There are four commonly 
employed evaluation measures for classification 
scenarios: recall, precision, F1 score, and 
accuracy. Given their prevalence in classification 
research, detailed definitions of these metrics 
have been omitted. To offer a more complete 
assessment of the model's performance, the Area 
Under the Curve (AUC) was also calculated. To 
offer a more complete assessment of the model's 
performance, the Area Under the Curve (AUC) 
was also calculated. The AUC value, constrained 
between 0.5 and 1, provides a single numeric 
value to represent the model's classification 
ability, where a higher AUC signifies a superior 
classifier. This makes the AUC value a more 
intuitive and direct evaluation metric than the 
ROC curve itself. 

 
Table 1: Assessment of network models used in this evaluation study, along with their 

benchmark results of testing The metrics—precision, recall, accuracy, F1 score, AUC—are 
shown as mean values ± standard error/deviation. 

 Proposed Network Transfer learning 

Network 

 

Using 
standard CE-

loss 

Using 
RadCE-

loss 

VGG-19 ResNet50 Inception
V3 

Parameters 8.7 M 8.7 M 145.2 M 24.8 M 26.2 M 
Accuracy (%) 95.46  1.42 97.46  1.23 60.92  1.24 88.98  1.58 90.82  1.68 

Recall (%) 95.48  1.68 97.59  1.48 61.64  1.72 86.16  2.18 89.05  1.52 

Precision (%) 95.54  1.35 97.63  1.19 62.08  0.96 91.24  1.72 91.78  1.06 

F1 score (%) 95.51  1.56 97.60  1.28 61.86  1.25 88.63  1.84 90.39  1.18 

AUC 0.967  0.007 0.985  0.005 0.671 
 0.018 

0.915 
 0.010 

0.928 
 0.012 

Training time 
(100 epochs) 

4686 s 4862 s 13,156 s 11,458 s 12,454 s 

Single inference 
time 

115 ms 115 ms 328 ms 302 ms 315 ms 

Table 1 displays the key statistical metrics for the 
suggested PneumoLiteNet model utilizing 
RADCELoss, along with a variant that employs 
the standard cross-entropy loss in place of 
RadCE-loss in the convolutional layers. These 
results are compared to three popular pre-existing 

architectures implemented via transfer learning. 
Figure 5 illustrates the average performance 
indicators for each network model individually. 
Notably, the Additionally, due to its reduced 
number of trainable parameters, the proposed 
model demonstrates greater computational 
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efficiency, requiring an average of only 115 
milliseconds to generate a single inference for an 
image. This prediction time remains consistent for 
both the RadCE-loss and standard loss function 
models, as the loss function is applied only during 
the training phase. In comparison, transfer-
learning model networks require approximately 
three times the computational resources for a 
typical inference process. VGG-19 model was 
omitted from Figure 4 to highlight the 
performance distinctions among the advanced 
architectures. Furthermore, the dropout rate in the 
proposed network model was critical in 
optimizing performance. The best results were 
achieved with a dropout rate of 0.4, across all 
evaluation metrics. Dropout values below 0.2 
didn’t appreciably enhance metrics outcome 
compared to model without dropout, while rates 
above 50% hindered classification accuracy. 
These findings suggest that a carefully adjusted 
dropout rate in the network layers can 
substantially improve accuracy and convergence 
speed. The integration of dropout in the 
convolutional layers not only enhances 
classification accuracy but also accelerates 
convergence.Proposed architecture utilizing 
RadCE-loss outperformed all other models tested 

across the four key statistical metric recall, 
precision, F1 score and accuracy consistently 
exceeding 97%. The same network model, when 
using the standard cross-entropy loss, achieved 
the second-highest performance at 95.5%, while 
the Inception architecture followed with 
approximately 90%. This demonstrates a 
substantial performance gap, not only between the 
proposed model with RadCE-loss and the transfer 
learning architectures but also when compared to 
the model using the standard loss function.A 
notable distinction of approximately 2% was 
observed across all statistical indicators when 
comparing the two proposed architectures, 
favouring the model utilizing RadCE-loss in its 
convolutional layers. The low standard deviation 
of accuracy measurements further suggests that 
the proposed model maintains consistent 
performance across all tests, leading to reliable 
classifications. Table 1 also includes the AUC 
values derived from ROC curve analysis, 
presented in a mean and standard error/deviation 
format. Figure 5 depicts the ROC curves 
corresponding to mean AUC values for each 
network. These results further highlight the  
proposed network model with more perfect CXR 
image classifications. 

 

Fig 4.– Performance comparison of average precision, recall, accuracy, and F1 scores across different 
evaluated network models. 
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Fig 5. ROC curves for different network architectures. 

Additionally, due to its reduced number of 
trainable parameters, the proposed model 
demonstrates greater computational efficiency, 
requiring an average of only 115 milliseconds to 
generate a single inference for an image. This 
prediction time remains consistent for both the 
RadCE-loss and standard loss function models, as 
the loss function is applied only during the 
training phase. In comparison, transfer-learning 
model networks require approximately three 
times the computational resources for a typical 
inference process. VGG-19 model was omitted 
from Figure 4 to highlight the performance 
distinctions among the more advanced 
architectures. 
Furthermore, the dropout rate in the proposed 
network model was critical in optimizing 
performance. The best results were achieved with 
a dropout rate of 0.4, across all evaluation metrics. 
Dropout values below 0.2 didn’t appreciably 
enhance metrics outcome compared to model 
without dropout, while rates above 50% hindered 
classification accuracy. These findings suggest 
that a carefully adjusted dropout rate in the 
network layers can substantially improve 
accuracy and convergence speed. The integration 

of dropout in the convolutional layers not only 
enhances classification accuracy but also 
accelerates convergence. 
 
3.2 Discussion 

The primary conclusion of this work is the 
advantageous impact of using a lightweight model 
with significantly fewer parameters and 
incorporating a novel loss function for the 
convolutional neural network architecture. 
Besides facilitating converging of the model 
faster during training the model, the proposed 
model demonstrates superior accuracy in both 
validation and final inference phases. The 
utilization of this network for pneumonia 
identification / classification, utilizing chest 
radiographs, further supports the idea that smaller, 
customized CNN architectures can surpass bigger 
models implemented by transfer learning.The 
efficacy of the suggested PneumoLiteNet network 
was compared against established models within 
identical experimental settings, as presented in the 
tables and figures above. The results indicate that 
the newly implemented network outperforms its 
counterparts in both efficiency and accurac
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Table 2: Assessment of outcomes from various architectural models in the existing literature 
and proposed  

 

Study Technique Dataset F1 
Meas
ure 

Execution 
time 

Panwar et al.[9 ]  VGG-19 6382 X-Rays + 
2482 CT 

95.6% 2 s 

Ouchicha et al.[24] CVD-Net 2905 X-Rays 96.7%  NA 

Adi and Kemal et 
al[11] 

DenseNet 1218 X-Rays 94.95% ‘few 
seconds’ 

Wang et al.[13] 3D-ResNet 4697 X-Rays 93.3% NA 

Nikolaou and Massaro 
et al[15] 

EfficientNet  15153 X-Rays 95% NA 

Singh and Tripathi et 
al[16] 

Quaternion network 5856 X-Rays 93.75% NA 

Joshi and Yadav et 
al.[17] 

DarkNet 6884 X-Rays 97.1% 0.137 s 

Dash and Mohapatra 
et al.[18] 

transfer learning + 
CNN 

1272 X-Rays 97.1% NA 

Mahmud et al.[12]  CovXNet 6161 X-Rays 97.4% NA 

Proposed method customized CNN 
(PneumoLiteNet) 

5856 X-Rays 97.6% 0.122 s 

Table 2 compares our architecture’s performance 
with various contemporary advanced models. 
However, a direct assessment of the stated metric 
results may not always be unbiased, as various 
network models have been tested under different 
circumstances by their respective authors. 
Nonetheless, our lightweight network model with 
the novel loss function is highly competitive 
among its peers based on the metrics like F1-score 
and accuracy. Further analysis of the 
classification problem shows that the methods 
tested are designed to distinguish between two 
and four classes, depending on whether the focus 
is on distinguishing pneumonia from healthy 
lungs or categorizing various types of pneumonia. 
Reported F1 scores in previous studies range 
between 97% and 98%, which aligns with the 
accuracy range of our proposed network model. 
When evaluating performance against time, it is 
worth noting that only a few of the methods listed 
provide efficiency benchmarks. Those that do 
often report inference times lasting one or more 
seconds per test. In contrast, our model, with a 
122-millisecond inference time, is highly efficient 
and competitive with the fastest candidate models. 

     To obtain a more objective 
comparison, our final evaluation phase included 
testing our network against some of the cutting-
edge industry networks, such as ResNet50, 
InceptionV3, and VGG-19. All models were 
given the same pre-processed input, and the 
procedure of training was identical, with no 

changes to the parameters. The proposed network 
consistently outperformed the others across all 
metrics:, recall, precision, F1 score, and AUC. 
The outcomes confirm that PneumoLiteNet is 
effective in classifying CXR images, and the use 
of RadCE-loss significantly enhances 
performance compared to the standard cross-
entropy loss.Table 1 clearly demonstrates our 
network’s efficiency in comparison to other 
networks, with all models trained for 100 epochs. 
The smaller size of the proposed model greatly 
reduced training time, contributing to its overall 
performance superiority. This efficiency is further 
evident in the reduced average time required for a 
single prediction. In terms of model size, our 
architecture demonstrates a remarkable 
improvement over the others, especially when 
considering parameter count. This explains the 
markedly shorter training time and reduced 
inference duration for our proposed network. 

The primary drawback of this study is its 
solely on a singular collection of X-ray scans. 
Another limitation is the exclusive use of CXR 
data, without incorporating CT images. 
Nonetheless, this can also be seen as an 
advantage, given that X-ray imaging is 
significantly more accessible than CT.  
Most of the models for detection of pneumonia, 
including ours, were trained retrospectively using 
past cases from publicly available databases or 
private CXR collections. These datasets are 
unlikely to fully represent the population at large. 
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Therefore, clinical implementation would require 
periodic retraining of the main model that makes 
the final decisions using contemporary examples 
from the patient community at hand. A critical 
concern is the dependability of AI-driven 
decisions, that should be reproducible when the 
test is repeated under similar conditions. It is 
essential to ensure that AI models be trained well 
to base their decisions on pertinent medical image 
traits rather than circumstantial factors. 
Explainable AI models are gaining attention in 
medical decision-making as they offer 
transparency, helping clinicians understand how 
decisions are made, and are likely to see 
increasing adoption in this field[24]. 
 
4 CONCLUSION  

Chest X-ray Imaging is extensively 
employed for detecting Lung lesions and deep 
learning has proven to be an effective method to 
assist in this diagnosis. While fine-tuning existing 
deep networks is promising for CXR 
classification tasks, especially given constraints in 
data size, labeling and computational resources, it 
can sometimes result in low transfer efficiency 
and overfitting, particularly when the original and 
the final domain datasets significantly differ. To 
tackle these challenges, we analyzed a database 
consisting of image scans of Chest X rays and 
introduced a novel Convolutional network, 
PneumoLiteNet   tailored for anomaly detection 
in CXR images. Additionally, we proposed a new 
innovative loss function, RadCE-loss, which 
further enhances the performance of 
PneumoLiteNet. Experimental results 
demonstrate that PneumoLiteNet, despite having 
fewer layers and parameters, achieves superior 
accuracy compared to models relying on fine-
tuning, whether RadCE-loss is applied or not. The 
inclusion of RadCE-loss further enables  
improving its overall performance. 

Future research will focus on designing 
models and loss functions tailored to different 
classification tasks. For instance, integrating 
LSTM could allow the model to capture 
relationships between multiple labels, while 
further refinement of both CNN architectures and 
loss functions will remain a key area of our 
ongoing research. 
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