
 Journal of Theoretical and Applied Information Technology 
15th February 2025. Vol.103. No.3 

©   Little Lion Scientific  
 

ISSN: 1992-8645                                                                    www.jatit.org                                                     E-ISSN: 1817-3195 

 
1117 

 

DEEP LEARNING APPROCHES FOR TUMOR DETECTION 
USING MRI DATA 

 

PURNACHANDRARAO MURALA1, KUNJAM NAGESWARA RAO2 
1Research Scholar, Department of CS&SE, Andhra University, Visakhapatnam, India 

2Professor, Department of CS&SE, Andhra University, Visakhapatnam, India 

E-mail:  1purnachandrarao.m@gmail.com, 2kunjamnag@gmail.com   
 
 

ABSTRACT 
 

Neurological diseases are relatively severe in the field of health informatics, often associated with life-
threatening symptoms and costly treatments. Among these, brain tumors stand out as a well-known concern, 
showing a noteworthy increase in the affected patient’s number over the past decade. MRI imaging is the 
primary method for tumor detection, and recent advancements in Computer-Aided Diagnosis (CAD) using 
deep learning have improved diagnostic accuracy. However, existing models have drawbacks, such as 
inadequate dataset sizes, which hinder early-stage tumor detection, and the limited number of extracted 
features from input images. To address the challenges, an Enhanced Convolutional Neural Network (ECNN) 
model has been proposed. The proposed ECNN is trained on the MRI images taken from the BR35H 
benchmark dataset with extensive data augmentation techniques to improve generalization. The ECNN model 
achieved a high accuracy of 99.3% in classifying tumor images. Once tumor-positive images were identified, 
further analysis was performed using a Vision Transformer (ViT) model, trained on a different subset of the 
BR35H dataset. The ViT model achieved an accuracy of 97% in localizing tumor regions, showing its 
effectiveness in precise tumor segmentation. This hybrid technique, which addresses important issues in 
automated brain tumor diagnosis, improves both detection accuracy and interpretability by using CNN-based 
classification followed by Transformer-based localization. 

Keywords: Brain Tumors, MRI Images, Computer-Aided Diagnosis (CAD), Enhanced Convolutional Neural 
Network (ECNN)s, Vision Transformer (VIT). 

 
1. INTRODUCTION  

Brain tumors pose a significant health challenge, 
impacting lives throughout the world. Though 
medical research and technology are advanced, the 
incidence of brain tumors is continuously increasing 
and affecting people of all age groups. A brain tumor 
refers to an abnormal mass of cells caused by 
uncontrolled cell division within the brain. If 
appropriate measures are not taken at an early stage, 
these groups of cells harm healthy cells, which 
reduces the functionality of the brain [1]. Computer-
aided diagnosis (CAD) helps neuro-oncologists in 
different ways to detect brain tumors [3]. CAD 
includes diagnostic systems that are based on deep 
learning and machine learning [2]. The increasing 
use of CAD for tumor detection is largely attributed 
to advancements in medical imaging technologies 
like MRI and CT scans, coupled with digital image 
processing techniques [4]. 

Magnetic Resonance Imaging (MRI) is the most 
commonly and widely used option for diagnosing 
brain tumors. MRI provides high-resolution images 
of the brain, offering detailed contrast in soft tissues, 
which facilitates the detection of abnormalities. 
Traditionally, radiologists manually analyze MRI 
scans to identify irregularities in the brain. However, 
with the rapid advancements in medical imaging 
hardware and procedures, the volume of MRI data 
has grown exponentially, making manual analysis 
challenging and time-consuming. This has created a 
need for automation or semi-automation of the 
manual procedures, where machine learning plays an 
important role. Machine learning has become the 
powerful tool for improving performance in different 
medical applications in different fields, such as 
identifying molecular and cellular structures, tissue 
segmentation, and classification of images [5-7]. 

Deep learning, which is a part of machine 
learning, has become an innovative tool in medical 
imaging that provides unmatched precision and 
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efficiency in diagnostic tasks. It involves multi-
layered neural networks that can learn hierarchical 
features directly from raw data. Among the several 
deep learning architectures, CNNs are effective for 
the image-based applications. CNNs are good at 
extracting spatial and contextual features from 
medical images, making them a better option for 
brain tumor detection. By applying different filters 
over MRI images, CNNs can detect patterns that are 
essential for differentiating between tumor and non-
tumor regions. For tasks like tumor classification and 
segmentation, advanced CNN-based models are 
being widely utilized in CAD systems to improve 
accuracy over traditional approaches. 

In addition to CNNs, specialized architectures 
such as U-Net and ViTs are also receiving attention 
in medical imaging for tasks that need accurate 
localization and segmentation. U-Net, a popular 
encoder-decoder network, is well known for 
biomedical image segmentation because of its 
symmetric structure and skip connections, which 
ensure detailed spatial information remains 
accessible throughout the network. Even with small 
training data, U-Nets can precisely define the borders 
of tumors in MRI scans. On the other side, ViTs use 
self-attention mechanisms to identify long-range 
dependencies within images, making them effective 
for both segmentation and classification tasks. By 
processing images as patches and concentrating on 
inter-patch interactions, ViTs are able to identify 
small abnormalities in MRI images, where 
traditional models might miss. 

2. RELATED WORK 

[7] Saeedi, Rezayi, and Keshavarz employed a 
combination of 2D CNN and autoencoder networks, 
along with machine learning techniques like MLP 
and KNN, for detecting brain tumors from MRI 
images. The 2D CNN achieved a peak accuracy of 
96.47% on a dataset of 3,264 MRI images, 
demonstrating the effectiveness of integrating 
unsupervised learning with traditional classification 
methods to enhance feature extraction. 

[8] Srikanth B. and Suryanarayana S.V. introduced a 
method for multi-class brain tumor classification, 
combining data augmentation with a deep neural 
network. They used a 16-layer VGG-16 model, 
leveraging advanced feature extraction methods to 
achieve an accuracy of 98% on a dataset collected in 
China from 2010 to 2015. This approach illustrates 
the strength of robust architectures and data 

augmentation for improving diagnostic 
performance. 

[9] Fahad Ahmed et al. employed the VGG-16 
architecture along with explainable artificial 
intelligence techniques for brain tumor identification 
and prediction. Their model achieved 97.33% 
accuracy on a brain MRI dataset, emphasizing the 
value of transparency in AI models for medical 
imaging and ensuring interpretable, trustworthy 
results. 

[10] Sulejman Karamehic and Samed Jukic focused 
on brain tumor detection using DenseNet and 
MobileNet architectures, with the support of the 
Python Imaging Library. DenseNet, in particular, 
showed superior performance, highlighting the 
importance of efficient and lightweight models for 
deployment in resource-limited environments. 

[11] Shenbagarajan Anantharajan et al. worked on 
brain tumor detection from MRI images, combining 
deep learning with traditional machine learning 
techniques. Their model, trained on a dataset of 255 
T1-mode MRI images, demonstrated the advantage 
of blending classical and modern approaches, 
especially for small-scale datasets. 

[12] Sonia Ben Brahmin, Samia Dardouri, and Ridha 
Bouallegue utilized a deep CNN model for brain 
tumor detection, achieving an accuracy of 96% on a 
dataset of 3,000 MRI images. This research 
highlights the importance of diverse and 
comprehensive datasets for enhancing the 
generalization ability of diagnostic models. 

[13] Aamir Muhammad et al. proposed an optimized 
CNN-based approach for brain tumor detection and 
classification, achieving a 97% accuracy across three 
Kaggle datasets. Their work underlines the 
importance of fine-tuning architectures to handle 
varying data sources effectively for better 
performance. 

[14] Renhao Liu et al. focused on feature-based 
classification of brain tumor MRI images using deep 
convolutional neural networks (DCNN). Their 
model achieved an accuracy of 95.40%, stressing the 
importance of capturing detailed features in medical 
image analysis to ensure high accuracy. 

[15] Yohan Jun et al. employed a 3D CNN model for 
detecting metastatic brain tumors, utilizing 3D black 
blood imaging. Their model achieved an accuracy of 



 Journal of Theoretical and Applied Information Technology 
15th February 2025. Vol.103. No.3 

©   Little Lion Scientific  
 

ISSN: 1992-8645                                                                    www.jatit.org                                                     E-ISSN: 1817-3195 

 
1119 

 

97.08% on a clinical dataset, demonstrating the 
value of analyzing volumetric data for identifying 
complex tumor structures. 

[16] J. Amin et al. developed a computer-assisted 
approach using brain MRI for distinguishing 
between malignant and benign lesions. Using an 
SVM classifier, they achieved 98% accuracy across 
multiple datasets, showcasing the flexibility of 
machine learning techniques in adapting to different 
medical datasets for accurate diagnoses. 

[17] Gull S. and Akbar S. implemented a binary 
classification model for brain tumors using 
DenseNet and DarkNet-based CNN architectures, 
achieving an accuracy of 96.52% on the BRATS 
2018 dataset. Their work demonstrates the potential 
of transfer learning to optimize performance on 
medical image datasets. 

[18] Praveen Kumar Ramtekkar et al. proposed a 
CNN-based approach for brain tumor detection, 
achieving an accuracy of 98.9% on MRI images. 
This study emphasizes the benefits of end-to-end 
learning frameworks in streamlining medical 
diagnostic workflows. 

[19] R. Rajasree et al. worked on brain tumor 
classification using deep learning models, including 
U-Net and CNN architectures. Their model achieved 
96.36% accuracy on the BRATS 2015 dataset, 
showcasing the utility of segmentation networks in 
improving classification accuracy by isolating tumor 
regions effectively. 

[20] S. Deepak et al. explored hybrid deep learning 
models for feature extraction, combining a CNN and 
SVM. Their approach, applied to the Figshare and 
brain MRI datasets, achieved 97.10% accuracy, 
emphasizing the complementary strengths of deep 
learning and traditional machine learning models for 
working with feature-rich data. 

[21] Alexander S. Lundervold et al. used supervised 
learning techniques throughout the MRI processing 
pipeline, including acquisition, segmentation, and 
illness prediction. They achieved 95.20% accuracy 
by combining quantitative susceptibility mapping 
with CNNs, demonstrating how advanced imaging 
techniques can enhance deep learning performance. 

[22] Arshia Rehman et al. developed a three-layer 
CNN model using transfer learning with VGG-16 for 

brain tumor detection. They achieved 98.69% 
accuracy on MRI brain slices from 233 patients, 
showing the effectiveness of transfer learning in 
reducing training time while maintaining high model 
performance. 

[23] Justin S. Paul et al. applied various deep 
learning and machine learning techniques for brain 
tumor detection using CNNs. Their model achieved 
an accuracy of 91.40% on a tumor dataset, 
highlighting the challenges of dataset imbalance and 
the need for pre-processing techniques to improve 
model robustness. 

[24] Md Abdullah Al Nasim et al. worked on tumor 
detection using a range of algorithms, including 
SVM, KNN, MLP, and others. SVM achieved the 
highest accuracy of 92.42% on a real-time dataset, 
demonstrating the reliability of SVM for multi-class 
classification tasks. 

[25] Dewage et al. proposed custom CNN 
architectures alongside ResNet V2, DenseNet201, 
and VGG-16 for brain tumor detection. Their custom 
CNN model achieved an accuracy of 94.51% on a 
brain tumor MRI dataset, emphasizing the 
importance of model customization for improving 
efficiency and performance. 

[26] Eze Benson et al. used CNNs to classify brain 
tumor features, achieving 92.00% accuracy on the 
BRATS 2018 dataset. Their research highlighted the 
significance of integrating feature engineering with 
deep learning for analyzing complex datasets. 

[27] Fabian Isensee et al. applied a DCNN model 
with a U-Net architecture for brain tumor detection, 
achieving an accuracy of 90.10% on the BRATS 
challenge dataset. Their work showcased the ability 
of U-Net's encoder-decoder structure to handle both 
segmentation and classification tasks effectively. 

[28] Takahashi et al. compares ViTs and CNNs in 
medical image analysis, evaluating their 
effectiveness in terms of robustness, efficiency, 
scalability, and accuracy. Analysis of 36 studies 
reveals that ViTs, especially with pre-training, often 
outperform CNNs in handling complex datasets. The 
findings aim to assist researchers in choosing 
suitable models for medical imaging tasks based on 
recent advancements. 

3. PROPOSED SYSTEM 
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Figure 1: Proposed Architecture for Brain Tumor Detection and Localization

The proposed architecture for brain tumor detection 
uses a pipelined approach, integrating two distinct 
yet complementary sections for enhanced accuracy 
and precision. In the first section, a CNN-based 
classification model is utilized to accurately 
differentiate between tumor and non-tumor images, 
ensuring reliable identification. In parallel, the 
second section uses a ViT model to detect and locate 
the affected tumor area within the MRI images. The 
proposed framework in Figure 1. illustrates a step-
by-step procedure outlining the various stages 
involved in tumor detection. 

3.1 About Dataset 

To train the models, the Br35H dataset obtained 
from the Kaggle repository has been used. There are 
two main sections in the dataset: one contains yes 
and no folders, where yes represents the tumor-
contained MRI images, whereas no contains non-
tumor images. Each of the folders contains 1500 
images. The second section consists of train, test, and 
val folders with 500, 100, and 201 MRI images, 
respectively. Additionally, it includes an 
annotations_all.json file, which provides essential 
annotations for the images, including segmentation 
masks that highlight the tumor regions in the MRI 
images and labels that indicate whether an image 

contains a tumor or not, along with any additional 
segmentation information for training, validation, 
and testing purposes. 

3.2 Pre-Processing MRI Images 

The preprocessing step varies for each pipeline. 
For the ECNN model, preprocessing begins with 
resizing the images to 224×224 pixels.  

 

Figure 2: Preprocessing for ECNN model 

Next, the input images are converted from RGB 
format to Grayscale to reduce the image complexity 
and number of channels in order to improve 
computational efficiency. Following this, Scaling is 
performed, which normalizes the pixel intensity 
values to a specific range by dividing the pixel values 
by 225, ensuring they fall within a specific range. 



 Journal of Theoretical and Applied Information Technology 
15th February 2025. Vol.103. No.3 

©   Little Lion Scientific  
 

ISSN: 1992-8645                                                                    www.jatit.org                                                     E-ISSN: 1817-3195 

 
1121 

 

Later, data augmentation techniques such as 
Reflection, which creates the mirror versions of the 
images along vertical or horizontal axes, and 
Rotation, which rotates the images by specified 
angles, such as 45 or 90, are performed. Figure 2. 
explains the preprocessing steps of ECNN model. 
After pre-processing, the processed images are fed 
into the ECNN for training. 

Similar to the ECNN model, the ViT model's 
preprocessing step begins with resizing all input 
images to a target size of 224×224 pixels to ensure 
uniform input dimensions for the model [29]. Next, 
the images undergo denoising to remove the 
unwanted noise and improve the image quality. 
Binary masks are then generated from annotations, 
where pixels corresponding to regions of interest, 
such as tumors, are set to 1, and the rest of the pixels 
are set to 0. The images with their respective masks 
are resized and normalized by dividing pixel 
intensity values by 255, scaling them to a range of 
[0, 1], to align with model requirements and enhance 
computational efficiency. Annotation files in JSON 
format are loaded for training, testing, and validation 
datasets to ensure alignment between images, masks, 
and ground truth. Each resized image is further 
divided into 16×16 non-overlapping patches, 
resulting in 196 patches, which serve as input tokens 
for the Vision Transformer (ViT). This patching 
process enables the ViT to learn both local and 
global patterns, facilitating accurate segmentation by 
highlighting critical tumor regions and 
understanding relationships between distant areas 
within the image. 

3.3 Classification and Tumor Identification 

The dataset is divided into training, validation, 
and test subsets to ensure reliable model evaluation. 
For the ECNN model, the balanced dataset, 
consisting of an equal number of tumor and non-
tumor images, is utilized. A total of 3000 images are 
allocated for training and testing, with various split 
ratios explored to identify the optimal performance. 
The best results are achieved with an 84:16 train-test 
split. Furthermore, the training set is subdivided, 
with 84% used for model training and 16% reserved 
for validation, facilitating cross-validation. Finally, 
the ECNN model is evaluated on unseen test data to 
classify images accurately as either tumor or non-
tumor. 

For the Vision Transformer (ViT) model, 
another section of the dataset, pre-divided into 
training, validation, and test subsets, is utilized. The 
ViT model and U-Net are trained for tumor 
segmentation using the ground truth masks provided 
in the dataset. Tumor segmentation involves 
identifying and localizing tumor regions within MRI 
images. Semantic segmentation is used to classify 
each pixel in the image as either part of the tumor or 
background. The U-Net model, a widely recognized 
architecture in medical imaging, processes 224x224 
input images through a symmetric U-shaped 
network. It consists of an encoder (contracting path) 
to capture features and context and a decoder 
(expanding path) to reconstruct segmentation maps. 
It outputs a segmentation mask of size 224x224, 
highlighting the tumor regions. Both the ViT and U-
Net models are trained for 10 epochs with a batch 
size of 16. Post-training, validation accuracy across 
epochs is compared, and the ViT model outperforms 
U-Net in segmentation accuracy. As a result, the ViT 
model is employed to segment tumor regions in MRI 
images classified as tumors by the ECNN model, 
ensuring precise tumor location. 

 
4. DEEP LEARNING MODELS FOR 

TUMOR CLASSIFICATION AND 
LOCALIZATION 

In this article, deep learning models are used for 
detecting and locating the tumors in brain MRI 
images, which address both classification and 
segmentation tasks. MRI images are classified into 
tumor and non-tumor categories with great accuracy 
using Enhanced CNNs. For the second task of 
locating tumors, advanced architectures like ViT and 
UNet are compared to identify the best model for 
tumor localization. These models are designed to 
assist radiologists in the precise detection and 
identification of tumor regions in their early stages, 
enhancing diagnostic accuracy and facilitating more 
informed and effective clinical decision-making. 

4.1 Enhanced CNN(ECNN) 

The architecture of the ECNN model is 
illustrated in Figure 3, showcasing all the layers 
along with their respective details, including layer 
types, configurations, and parameters. 
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Figure 3: Architecture of ECNN model 

The network begins with an input layer that 
accepts MRI images, which are typically resized and 
normalized to ensure consistent processing. The 
network's first layer is a Convolutional (Conv2D) 
layer with 32 filters, each measuring 3x3 in size. The 
purpose of this layer is to extract essential features, 
such as edges or simple textures, from the input 
image by applying convolutional operations. The 
convolution operation is mathematically expressed 
as shown in equation (1): 

              (1) 

where 𝐼 represents the input image, 𝐾 is the filter 
kernel, and 𝑏 is the bias term. This process outputs 
feature maps, highlighting regions of interest. 
Following the convolutional operation, the output is 
passed through a LeakyReLU activation function, 
defined as shown in equation (2): 

 

          (2) 

where α is a small positive constant (commonly set 
to 0.001). LeakyReLU allows a small gradient for 
negative inputs, preventing the "dying neuron" 

problem and improving model learning during 
training. To address overfitting, a dropout layer is 
incorporated, randomly deactivating 30% of the 
neurons during training. This stochastic 
regularization enhances the model's ability to 
generalize to unseen data. Following this, the output 
is passed through a 2D max-pooling layer, which 
reduces spatial dimensions by retaining the 
maximum values from 3x3 regions. Max pooling 
serves to reduce dimensionality, improving 
computational efficiency while capturing dominant 
features and ensuring translation invariance. 

The second convolutional block begins with 
another convolutional layer, similar to the first, using 
32 filters of size 3x3 to extract more complex 
features and patterns, such as shapes and textures 
essential for tumor detection. This convolution 
operates as previously described. The LeakyReLU 
activation function is used to introduce non-linearity, 
allowing the model to capture complex relationships 
in the data. To minimize overfitting, a dropout layer 
with a rate of 30% is incorporated [30]. Following 
this, a max-pooling layer is applied to downsample 
the feature maps while retaining the most critical 
patterns. The structured stacking of convolutional, 
activation, dropout, and pooling layers allows the 
network to learn both low-level and high-level 
features crucial for accurate tumor classification. 



 Journal of Theoretical and Applied Information Technology 
15th February 2025. Vol.103. No.3 

©   Little Lion Scientific  
 

ISSN: 1992-8645                                                                    www.jatit.org                                                     E-ISSN: 1817-3195 

 
1123 

 

Once feature extraction is complete, the 
network moves to the fully connected layers, where 
the extracted features are transformed into a 1D 
vector. This vector is processed through several fully 
connected layers, enabling high-level reasoning and 
decision-making. The purpose of these layers is to 
integrate all the extracted features and map them to 
a final classification output. Each fully connected 
layer employs a ReLU activation function to add 
non-linearity. This ensures faster convergence 
during training and reduces the likelihood of 
vanishing gradients. The final output from the last 
fully connected layer is processed through a sigmoid 
activation function, producing a probability score 
between 0 and 1. This score represents the likelihood 
of the input image being classified as either "tumor" 
or "non-tumor". 

4.2 U-Net Model for Tumor Localization 

Advanced deep learning models, such as U-Net 
and Vision Transformer (ViT), are selected after a 
detailed comparison of related studies. U-Net, a 
convolutional neural network (CNN) architecture, is 
tailored for biomedical image segmentation and 
consists of two primary parts: an encoder and a 
decoder. The encoder focuses on extracting features 
and understanding the context of input images, while 
the decoder reconstructs the spatial information to 
produce segmented outputs. The architecture begins 
with an input layer capable of handling 2D or 3D 
images, where pixel intensity values serve as input 
features. The encoder utilizes downsampling to 
extract key features through several convolutional 
blocks, each comprising two 3x3 convolutional 
layers activated by ReLU, followed by a 2x2 max-
pooling layer with a stride of 2 for spatial 
dimensionality reduction. To improve the 
representation of high-level features, the number of 
feature channels doubles at every stage of the 
encoder. 

The bottleneck phase, positioned between the 
encoder and decoder, includes two convolutional 
layers with ReLU activation and batch normalization 
to enhance feature extraction. The decoder mirrors 
the encoder, utilizing transposed convolutions to 
restore spatial dimensions. It also incorporates skip 
connections, which merge features from 
corresponding encoder layers to preserve spatial 
context. Each decoding block contains a transposed 
convolution layer and two 3x3 convolutional layers 
with ReLU activation. In the final stage, a 1x1 

convolution layer in the output layer reduces the 
feature maps to align with the number of target 
classes, generating a segmentation mask where each 
pixel is assigned a class label. The model's 
effectiveness is measured using the accuracy metric 
and is compared with the performance of the ViT 
model to evaluate its efficiency. 

4.3 ViT Model for Tumor Localization 

Vision transformers function similarly to 
traditional transformers, utilizing the self-attention 
mechanism to identify the relevance of various 
elements within a sequence for accurate predictions, 
yielding excellent performance in sequence-based 
tasks. As shown in Figure 4, the ViT workflow starts 
by segmenting an image into smaller patches of fixed 
size, where each patch corresponds to a specific 
region of the image. The pixel values from each 
patch are flattened into a one-dimensional vector, 
allowing the model to handle the patches as 
sequential data. These vectors are then projected into 
a lower-dimensional space using trainable linear 
transformations, preserving critical features while 
reducing dimensionality. 

 

Figure 4: Workflow of Vision Transformers 

Positional encodings are incorporated to preserve the 
spatial relationships between patches. These 
encodings help the model grasp the relative locations 
of various patches within the image. Mathematically, 
for a patch xi, the embedding is computed as shown 
in equation (3): 

  (3) 

where Wp is the learnable projection matrix and 
Ep represents the positional embedding.  The input 
to the encoder comprises the sequence of patch 
embeddings and positional embeddings.
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Figure 5: ViT for Brain tumor detection 

The encoder consists of multi-head self-attention 
mechanisms (MHSA), multi-layer perceptron (MLP) 
blocks, and layer normalization (LN) applied before 
each block. MHSA computes relationships between 
patches by projecting the input into Query (Q), Key 
(K), and Value (V) matrices using learnable weights 
WQ, WK, and WV. The attention scores are calculated 
as shown in equation (4): 

(4) 

where dk is the dimensionality of the keys. The Feed 
Forward Network (FFN) applies a two-layer fully 
connected network with non-linearity, given as 
shown in equation (5):  

      (5) 

where W1, W2, b1, b2 are learnable parameters, and σ 
is an activation function (e.g., ReLU or GELU). 
During training, an optimizer modifies the model's 
hyperparameters based on the loss calculated in each 
iteration. For image classification, a unique 
"classification token" is added to the beginning of the 
sequence of patch embeddings. The final state of this 
token, after passing through the transformer encoder, 
represents the overall image. 

In the case of brain MRI images, images are 
converted into patches, which are provided as inputs 
to the patch embedding layer as shown in figure 5. 

The patch embedding layer converts patches into 
dense vectors and adds positional embeddings. A 
16x16 patch is embedded into a 64-dimensional 
vector. The transformer block captures relationships 
between patches and processes attention outputs. 
Then upsampling transforms the output back to 
image dimensions (224 x 224) using transposed 
convolutions. The final output is a segmented image 
where each pixel is classified into specific 
categories, such as tumor or non-tumor regions. The 
upsampling step ensures that the spatial resolution of 
the segmented output matches the original input 
image dimensions, preserving details for accurate 
tumor localization. 

5. RESULTS 

The models are trained by using the Br35H 
dataset, which has different folders mapped to train 
different models. The ECNN models use the 
balanced dataset, which has 3000 tumor and non-
tumor images. The graph in figure 6 illustrates the 
training and validation loss over 20 epochs. It is clear 
that both the validation and training losses exhibit a 
significant decline, indicating effective learning by 
the model. The training loss decreases steadily 
without overfitting, as reflected by the consistent 
behavior of the validation loss. By the 18th epoch, 
the validation loss stabilizes at a minimal value, 
signifying that the model has achieved optimal 
performance and is well generalized to unseen data. 
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Figure 6: ECNN Model Training and Validation Loss 

 
Figure 7: ECNN Model Confusion Matrix 

Figure 7 is a confusion matrix that evaluates the 
model's classification performance. It shows that out 
of all healthy samples, 351 were correctly classified 
as "Healthy," and only 4 were misclassified. 
Similarly, for tumor samples, the model achieved 
perfect classification, identifying all 365 cases 
correctly. This results in a high classification 
accuracy, with near-zero false negatives, which is 
particularly crucial for tumor detection tasks. The 
table 1 shows the performance metrics achieved by 
the ECNN model. 

Table 1: ECNN Model Performance Metrics. 

Metric Score (%) 
Accuracy 99.4 
Precision 98.9 

Recall 1.00 
F1-score 99.4 

The ECNN model achieved a remarkable 
performance in classifying brain MRI images, with 
an accuracy of 99.4% and a precision of 98.9%.  

 
Figure 8: Validation Accuracy of ViT vs U-Net 

The graph in figure 8 shows the comparison 
of the validation accuracy between the ViT and U-
Net models and reveals that ViT consistently 
achieved higher accuracy across all epochs. 
Specifically, ViT maintained a validation accuracy 
ranging from approximately 0.965 to 0.975, 
outperforming U-Net, whose accuracy varied 
between 0.945 and 0.960. In terms of overall 
performance metrics, ViT demonstrated superior 
accuracy, recall, and F1-score, indicating its strength 
in identifying tumor regions in brain MRI images. 
However, U-Net exhibited slightly better precision 
than ViT, reflecting its ability to minimize false 
positives effectively. This comparison highlights the 
capability of ViT for segmentation tasks. 

 

Figure 9: ViT Model Training and Validation Loss 

Figure 9, illustrates the training and validation 
loss of ViT model over 30 epochs. These losses show 
good learning and convergence as they gradually 
decline. The close proximity of the two curves 
suggests minimal overfitting.  
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Figure 10: ViT Model Training and Validation Accuracy 

The accuracy of the ViT model's training and 
validation over 30 epochs is shown in Figure 10, 
where both converge close to 98% and exhibit steady 
improvement. This showcases the ViT model's 
robust generalization to unseen validation data while 
achieving high accuracy, making it an excellent 
choice for segmentation tasks. 

 

Figure 11: ViT Model Training and Validation Accuracy 

Figure 11 illustrates the process of segmenting brain 
tumors from MRI scans. The first section shows the 
original MRI image, the second represents the actual 
tumor outline (ground truth mask), and the third 
highlights the model's predicted tumor region, 
emphasizing its precision. 

6. CONCLUSION 

This work explores the use of advanced deep 
learning models for detecting and locating brain 
tumors in MRI scans. The ECNN model 
demonstrated strong performance in accurately 
identifying the presence of tumors, proving effective 
for binary classification tasks. Additionally, a 
comparative evaluation of U-Net and Vision 
Transformer (ViT) models was performed for tumor 
region segmentation. While U-Net delivered reliable 
results for segmenting tumor areas, the ViT model 

surpassed it in accuracy, showcasing its superior 
ability to generalize across unseen data. 

The ViT model's capability to leverage self-
attention mechanisms and extract intricate features 
resulted in precise tumor localization, making it a 
valuable tool for clinical applications. Its 
outstanding performance demonstrates its ability to 
automate the segmentation of tumors in MRI 
images, providing radiologists with substantial 
assistance in diagnosis and treatment planning. This 
study also emphasizes the importance of advanced 
deep learning models like ViT in enhancing the 
accuracy and efficiency of medical imaging-based 
diagnostic systems. 
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